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Abstract

Deep State Space Models (SSMs), such as Mamba [10], have emerged as powerful
tools for language modeling, offering high performance with efficient inference and
linear scaling in sequence length. However, the application of parameter-efficient
fine-tuning (PEFT) methods to SSM-based models remains largely unexplored.
This paper aims to systematically study two key questions: (i) How do existing
PEFT methods perform on SSM-based models? (ii) Which modules are most
effective for fine-tuning? We conduct an empirical benchmark of four basic PEFT
methods on SSM-based models. Our findings reveal that prompt-based methods
(e.g., prefix-tuning) are no longer effective, an empirical result further supported
by theoretical analysis. In contrast, LoRA remains effective for SSM-based mod-
els. We further investigate the optimal application of LoRA within these models,
demonstrating both theoretically and experimentally that applying LoRA to linear
projection matrices without modifying SSM modules yields the best results, as
LoRA is not effective at tuning SSM modules. To further improve performance,
we introduce LoRA with Selective Dimension tuning (SDLoRA), which selectively
updates certain channels and states on SSM modules while applying LoRA to
linear projection matrices. Extensive experimental results show that this approach
outperforms standard LoRA.

1 Introduction

Over the past two years, Large Language Models (LLMs) such as ChatGPT [1, 2] have achieved
groundbreaking performance and are now widely used in daily life. Many models use the Transformer
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architecture [36], with its attention mechanism essential in predicting subsequent tokens based on
context. Each token computes attention scores with every preceding one, selectively focusing only
on the most relevant during processing. This, however, creates quadratic time complexity, posing
challenges when dealing with long sequences. In response, various alternative architectures like
Linear Attention [21], RWKV [32], RetNet [35], and Mamba [10] have been developed to operate
with subquadratic time complexity.

As the most popular subquadratic-time architecture currently serving as an alternative to Transformers,
SSMs [10, 12, 13, 14] achieve efficient training and inference. SSMs are closely related to linear
RNNs, which maintain a hidden state to encapsulate the information of previous tokens. When a new
input token is introduced, the prediction of the next token involves only operations on this hidden state
and the new token, which enhances inference efficiency. To overcome the limitation of RNNs, which
cannot be trained in parallel, S4 [13, 14] leverages its linearity, enabling it to adopt a convolutional
form during training, facilitating parallel computation. Consequently, SSMs are highly efficient and
have demonstrated success in numerous long-sequence tasks [13, 14]. Recently, a new series of SSM
models, Mamba (Mamba-I [10] and Mamba-II [3]), have achieved Transformer-level performance in
language modeling. Although numerous SSM-based models exist, we primarily focus on the deep S4
model and Mamba. The deep S4 model, serving as the foundational architecture, readily extends
its properties to other variants, while Mamba has emerged as one of the most popular SSM-based
models.

Consequently, we expect fine-tuning these pretrained SSMs for downstream tasks will become a
crucial problem in the near future. While fine-tuning the entire model is expensive and inefficient,
numerous Parameter-Efficient Fine-Tuning (PEFT) methods [16, 17, 18, 23, 24, 26, 27, 43] have been
developed for efficient adaptation under resource constraints. Notably, most popular PEFT methods
fall into two categories: (i) prompt-based tuning, which involves modifying the input sequence [23]
or tuning the sequence at each layer [24]; and (ii) parameter-based tuning, which directly updates the
model parameters, such as LoRA [18], which modifies the weight matrices, and BitFit [43], which
updates only the bias terms.

Despite the success that existing PEFT methods have achieved in adapting Transformer-based models,
their efficacy in adapting SSM-based models remains largely unexplored, leaving many interesting
questions open. For instance, are existing popular PEFT methods still effective for SSM-based
models? If they are applicable, what is the optimal way to apply these methods to SSM-based models,
and which parameters should be updated? If not, can we develop variants specifically tailored for
SSMs that perform better? To answer these questions, to the best of our knowledge, we conduct the
first comprehensive study of PEFT on SSM-based models, both theoretically and empirically.

To the best of our knowledge, we are the first to benchmark existing PEFT methods on SSM-based
models. Through extensive experiments, we demonstrate that (Finding 1) prompt-based PEFT
methods are no longer effective for SSM-based models, and (Finding 2) LoRA remains effective
on SSM-based models. Meanwhile, the two major components of SSM-based models are the SSM
module, which functions analogously to attention in Transformers, and linear projection matrices,
which are similar to feed-forward layers. We next investigate which part of the model is more effective
for applying PEFT. We empirically find that (Finding 3) applying LoRA to linear projection matrices
without modifying the SSM module is already effective, while the most effective linear projection
matrices differ depending on the dataset. Notably, Findings 1 and 3 are supported by our theoretical
analysis. While LoRA is not effective for tuning SSM modules, theoretically, tuning additional SSM
modules increases expressivity. Finally, we analyze the architecture of SSM-based models using the
theoretical framework of Giannou et al. [8] and Zeng and Lee [44]. We show that, in addition to
applying LoRA to linear projection matrices, Selectively updating the channel and state Dimensions
of SSM modules further enhances performance. We dub this method as SDLoRA, the first PEFT
method tailored for SSM-based models. Through extensive experiments, we observe that (Finding 4)
SDLoRA outperforms LoRA alone in fine-tuning SSM-based models.

2 Related Works

State Space Models (SSMs). Linear State-Space Layers (LSSL) represent one of the earliest
SSM layers utilized in deep learning, functioning as continuous-time, recurrent, and convolutional
models [12]. LSSL employs HiPPO theory [11] to initialize the state matrix A, enabling the capture
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of long dependencies. However, LSSL is computationally expensive, limiting its practical application.
Gu et al. [14] introduced Structured State Space Models (S4), which optimize computation efficiency
by employing a structured state matrix A. Gupta et al. [15] proposed DSS, which simplifies the model
by using a diagonal matrix for A and empirically demonstrated that it suffices to achieve performance
comparable to S4. Further, Gu et al. [13] provided a theoretical explanation for the effectiveness of
the diagonal state matrix A in DSS and introduced S4D, which offers various initialization methods
for A. Subsequently, the diagonal structure of the state matrix A has been adopted in follow-up
methods [10]. Despite differences in optimization algorithms, we refer to S4 and its close variants,
including DSS and S4D, collectively as S4. This terminology encompasses models that maintain the
standard discrete-time SSM form with a diagonal state matrix.

Despite of the remarkable performance of SSMs on certain tasks of sequence modeling, SSMs still
showed worse performance than Transformers on language modeling. Fu et al. [6] transitioned from
synthetic language modeling tasks to real language modeling tasks with SSMs. They proposed H3,
which is inspired by Linear Attention [21], introducing both diagonal SSM and shift SSM. Recently,
Mamba [3, 10] escaped from linear time invariance (LTI) modeling by introducing input-dependent
terms and achieved better performance than Transformer on language modeling. Furthermore, several
hybrid models [25, 31] tried to exploit the advantages of both SSMs and Transformers.

Parameter-Efficient Fine-Tuning (PEFT). Due to the increase in model size, PEFT methods have
gained increasing popularity as they achieve good performance while being much more efficient
compared to full model updating [16, 17, 18, 23, 24, 26, 27, 43]. Most of the existing popular PEFT
methods fall into two categories: (i) prompt-based methods [23, 24, 26, 27], and (ii) parameter tuning
methods [5, 18, 41, 43]. Common prompt-based methods include prompt tuning [23], and prefix-
tuning [24]. Prompt tuning prepends a sequence of learnable virtual tokens, which are continuous
vectors. Prefix-tuning further expands on Prompt tuning by prepending tokens across the model’s
depth, making it more powerful. Therefore, our analysis of prompt-based methods’ limitations
will focus on prefix-tuning, with the findings also applicable to the other prompt-based methods.
Conversely, parameter tuning methods, which originated from traditional transfer learning practices,
typically involve freezing the initial layers and only tuning the last few layers [5, 41]. In recent years,
more effective and innovative parameter tuning approaches have emerged [18, 43]. The widely used
Low-Rank Adaptation (LoRA) updates a subset of parameters (e.g., attention layers of a Transformer)
in a low-rank manner. BitFit [43], focuses on tuning only the bias terms of a pretrained model. In
Sec. A, we provide a more detailed description of these baseline methods.

Numerous efforts have been made to theoretically understand existing PEFT methods. For prompt-
based methods, Wang et al. [40], Petrov et al. [33], and Oymak et al. [30] have theoretically analyzed
the effectiveness and limitations of prompt tuning and prefix-tuning for Transformer-based models.
For LoRA, Zeng and Lee [44] explored its expressive power by demonstrating that even a randomly
initialized model can be adapted to match any smaller target model using LoRA. Some of our
theoretical analysis draws upon the framework established by Zeng and Lee [44]. Jang et al. [20]
conducted a theoretical exploration of LoRA within the neural tangent kernel (NTK) regime.

3 Preliminaries of State Space Models

Scalar-input Scalar-output SSM. The initial SSM is derived from a specific continuous system
that maps a one-dimensional function or signal x(t) ∈ R to y(t) ∈ R via an H-dimensional latent
state h(t) ∈ RH , as described in (1). In (1), input transition vector B ∈ RH×1 indicates the input’s
impact on the state of the system, state matrix A ∈ RH×H characterizes the system’s internal
state dynamics, and the output mapping vector C ∈ R1×H relates the state to the output y(t).2

h′(t) = Ah(t) +Bx(t)

y(t) = Ch(t)
(1)

ht = Aht−1 +Bxt,

yt = Cht

(2)
K = (CB,CAB, . . . ,CA

t−1
B),

(y1, . . . , yt) = (x1, . . . , xt) ∗K
(3)

To adapt SSMs for deep learning, the continuous parameters (A,B) are transformed into discrete
counterparts (A,B) using a learnable step size ∆ ∈ R. An example of a discretization rule is the
zero-order hold, which defines A = exp(∆A),B = (∆A)−1(exp(∆A)− I) ·∆B.

2Note that B,C are vectors. We use bold capital letters to remain consistent with existing works [10, 14].
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The discrete-time SSM is formulated as (2). For efficient and parallelizable training, the output y of a
length-N input x in the discrete-time SSM can be computed with a long convolution, as detailed in
(3). This convolution operation can be efficiently computed in the frequency domain with FFT.

Vector-input Vector-output SSM. Many deep learning tasks, such as language modeling, often
use multi-channel inputs. When the input and output are vectors, denoted as x,y ∈ RD, separate
SSMs are used for each of the D input channels. As such, a superscript (d) is introduced to indicate
parameters specific to each channel when necessary. This notation may be omitted for simplicity.

Structured State Space Sequence Model (S4). S4 introduced by Gu et al. [14] represents one
of the earliest applications of SSMs in deep learning. It features a diagonal structure for the state
matrix A, a design theoretically validated by Gu et al. [14] and practically implemented through its
subsequent variants, DSS [15] and S4D [13].

Deep S4 Layer. Since S4 lacks non-linearity and operates with independent channels, a position-
wise linear layer and a non-linear activation function are integrated into the deep S4 layer, facilitating
information mixing across channels and introducing non-linearity. Furthermore, a residual connection
from the input to the output of S4 is introduced. Let ⊗ represent the element-wise product, and S4(·)
denote the S4 mechanism, where the output of each channel is computed according to (3) using its
own convolutional kernel K

(d)
. While the subtle details such as the activation functions may vary

slightly from the previous studies [13, 14], for the theoretical analysis in this paper, we define the
deep S4 layer as below. The output of a deep S4 layer is then formulated as:

yt = ReLU(W · S4t(x1, . . . ,xt) + β + u⊗ xt), (4)

where W ∈ RD×D and β ∈ RD represent the linear projection matrix and bias, respectively, and u ∈
RD is the coefficient of the residual connection. Note that in a deep S4 layer, the trainable parameters
are SSM parameters (A(d),B(d),C(d),∆(d)) across D channels with A(d) being diagonal and the
parameters (W ,β) for the linear layer and u for the residual connection.

Selective State Space Models (S6). A key property of all SSMs mentioned above is linear time
invariance (LTI), where model dynamics remain constant over time. However, LTI models face
significant limitations: their constant dynamics fail to selectively extract relevant information from
the context or influence the hidden state in an input-dependent manner. The S6 model, proposed by
Gu and Dao [10], addresses these limitations by making its parameters input-dependent.

In particular, at each time step t, given the input xt ∈ RD, they introduce input-dependency to step
size ∆t = (∆

(1)
t , . . . ,∆

(D)
t )⊤ ∈ RD, input transition vectors Bt ∈ RH×1 and the output mapping

vectors Ct ∈ R1×H via linear projection:

∆t = softplus(W∆xt + β∆), Bt = WBxt, Ct = WCxt,

whereas the diagonal state matrices A(1), . . . ,A(D) remain input-independent. Note that W∆ ∈
RD×D is implemented via a rank-r low-rank parameterization, denoted by W∆ = W∆,↑W∆,↓,
where W∆,↑ ∈ RD×r and W∆,↓ ∈ Rr×D, which is a common method for reducing compute
overheads [38, 39]. To summarize, the trainable parameters in S6 include state matrices A(d)

across D channels, parameters W∆,↑,W∆,↓ and β∆ for computing ∆t, and weight matrices
WB,WC ∈ RH×D for computing Bt,Ct. The state matrices and the input transition vectors of S6
are then discretized according to A

(d)

t = exp(∆
(d)
t A(d)),B

(d)

t = ∆
(d)
t Bt. In contrast to S4, where

B
(d)

varies independently across channels, the differences in B
(d)

in S6 are solely due to the scalar
∆

(d)
t . Additionally, S6 uses the same Ct for all channels at each time step t, unlike S4, which has

unique C(d) for each channel.

Mamba. Similar to the Transformer block, which consists of attention and linear layers, the Mamba
block proposed by Gu and Dao [10] features an S6 module, a point-wise 1D causal convolution
layer (Conv1d) for token mixing, linear layers — including input (Win) and output (Wout) projection
layers and a gated MLP. Mamba, primarily allocating its parameters in Win and Wout, is inspired by
H3 [6].
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4 Benchmarking PEFT Methods on SSM-based Models

In this section, we examine the effectiveness of popular PEFT methods when applied naively to
SSM-based models, specifically Mamba (130M and 1.4B).

Experiment Setup. We consider two main categories of PEFT methods: parameter-based and
prompt-based. From each category, we evaluate two representative methods. For parameter-based
methods, we select BitFit [43] and LoRA [18]. For prompt-based methods, we choose prefix-
tuning [24] and prompt tuning [23]. For BitFit, fine-tuning is performed on all bias terms present
in the Mamba architecture, specifically the biases of the Conv1d and the linear projection layer of
step size ∆. For prefix-tuning, we adopted the huggingface implementation [28] to construct a MLP,
employing the overparameterization technique to ensure stable optimization.

We consider five datasets spanning diverse domains: the GLUE natural language understanding
benchmark [37], the DART RDF-to-text generation benchmark [29], the Spider text-to-SQL genera-
tion benchmark [42], and CIFAR-10 for computer vision tasks [22]. A more detailed introduction
of the datasets considered in this paper is provided in Sec. B. Notably, prefix-tuning requires sub-
stantially more parameters than other PEFT methods, as it employs a multilayer perceptron at each
layer to project a fixed sequence into soft tokens for training stability. For all other PEFT methods,
we constrain the trainable parameters to fewer than 0.5% for language tasks and 1% for vision
tasks, ensuring a fair comparison. The higher allowance for vision tasks accommodates the need
for extensive fine-tuning for new modalities. Consequently, LoRA adapters are applied exclusively
to linear projection matrices, leaving the SSM modules unchanged to comply with these parameter
constraints.

Results. Table 1 presents our results. Parameter-based PEFT methods generally outperform prompt-
based methods significantly, despite using the same number of trainable parameters—except for
prefix-tuning, which underperforms despite using more parameters. LoRA consistently achieves the
best performance across all tasks and metrics, occasionally surpassing full fine-tuning while tuning
less than 1% of parameters. We provide the full experimental results, including detailed results of
subtasks on GLUE and Spider, in Sec. C.2.

These findings above raise two critical questions: (i) Why do existing prompt-based PEFT methods
lose effectiveness when applied to SSM-based models? (ii) Can LoRA achieve better performance
when applying on both linear projection matrices and SSM modules? To address these questions, we
conduct both theoretical analysis and further empirical studies on prompt-based PEFT methods and
LoRA in the context of SSMs.

Dataset GLUE DART SAMSum Spider CIFAR-10
Metric (↑) Avg. Score METEOR BLEU R1 R2 RL Acc. Acc.

Prompt Tuning 63.8 66.2 39.8 50.1 25.6 41.6 43.6 30.4
Prefix-Tuning 68.6 66.6 42.5 50.6 26.5 42.1 39.7 41.0

BitFit 76.8 67.0 43.7 50.3 25.7 41.9 48.4 44.4
LoRA (Linear Projection Matrices) 80.5 70.4 49.1 50.9 27.0 42.3 57.5 61.1
Full Fine-Tuning 80.5 71.0 51.8 51.2 27.3 42.9 66.2 60.0

Table 1: Benchmarking popular Parameter-Efficient Fine-Tuning (PEFT) methods on five
real-world datasets. R1/R2/RL stand for ROUGE-1/2/L. For all PEFT methods except prefix-tuning,
we report the best results for cases where fewer than 0.5% of parameters are tunable for language
tasks and fewer than 1% for vision tasks (i.e., CIFAR-10) after comprehensive hyperparameter search.
Prefix-tuning is an exception, as it requires training a multilayer perceptron at each layer to project a
fixed sequence into soft tokens for training stability, consuming more trainable parameters than our
threshold. Bold numbers indicate outperformance over all PEFT methods, while underlined numbers
indicate outperformance over full fine-tuning.
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4.1 Limitations of Applying Existing Prompt-based Methods on SSMs

This part addresses our first question arised in this section: Why do existing prompt-based PEFT
methods lose effectiveness when applied to SSM-based models? We approach this by establishing an
upper bound on the performance of existing prompt-based PEFT methods.

A key feature of SSMs is their next-token prediction mechanism, which relies solely on the current
token and hidden states, without considering previous tokens directly. The hidden states encapsulate
all information from preceding tokens. Consequently, prepending tokens to an SSM is functionally
equivalent to tuning the initial state, as demonstrated by the following proposition. The formal version
and proof of Proposition 1 are presented in Sec. C.3.

Proposition 1 (Informal: Expressivity of Prefix-Tuning on SSMs). The maximum expressiveness
achievable via prefix-tuning on SSMs is equivalent to the expressiveness of solely tuning the initial
hidden state h0.

To evaluate the performance of initial state tuning, we conducted experiments on the GLUE bench-
mark, comparing prompt-tuning, prefix-tuning, initial state tuning, and LoRA across seven GLUE
tasks. Table 2 presents our findings. The results demonstrate that initial state tuning generally
outperforms prefix-tuning, corroborating our analysis. However, LoRA significantly surpasses initial
state tuning in performance. These observations lead us to conclude that the limitations of initial state
tuning inherently constrain the potential of existing prompt-based methods, preventing them from
outperforming LoRA in the context of SSM-based models. While the reason for the underperfor-
mance of initial state tuning is unclear, we identify explaining it as an interesting direction for future
research. Nevertheless, we propose a plausible explanation. We hypothesize that SSM’s exclusive
reliance on hidden states, without direct access to previous tokens or states, severely restricts the
impact of initial state tuning, particularly for long sequences. This aligns with the findings of Fu et al.
[6], which demonstrate SSM’s limitations in recalling older tokens.

Task RTE MRPC CoLA SST-2 QNLI QQP MNLI Avg. Score
Prompt Tuning 56.0 71.6 12.0 89.4 76.8 79.6 61.5 63.8
Prefix-Tuning 69.5 75.7 43.4 91.5 83.4 83.1 35.6 68.6
Initial State Tuning 66.8 75.1 52.4 92.4 86.4 86.1 78.5 76.8

LoRA (Linear Projection Matrices) 70.4 82.8 60.6 92.4 88.4 87.7 81.5 80.5

Table 2: Comparison of prompt-tuning, prefix-tuning, initial state tuning, and LoRA on seven
tasks from the GLUE benchmark. We report the Matthews correlation (↑) for CoLA, overall
(matched and mismatched) accuracy (↑) for MNLI, and accuracy for other tasks. Initial State Tuning
and LoRA are constrained to use less than 0.5% trainable parameters. Bold numbers indicate
the best performance across all three methods, while underlined numbers show the highest score
among prompt-based methods (prefix-tuning and initial state tuning). Initial state tuning outperforms
prefix-tuning and prompt-tuning on five out of seven tasks, while LoRA consistently outperforms all
prompt-based methods.

4.2 Optimal Application of LoRA in SSM-based Models

In our previous experiments, we applied LoRA exclusively to linear projection matrices. However,
SSM-based models typically comprise various modules, including S4 (convolution layer), S6, and
multiple distinct linear projection matrices. To investigate the impact of applying LoRA to different
components, we conduct a comprehensive study across five datasets.

Model Mamba-130M Mamba-1.4B
Dataset Params. (%) GLUE DART CIFAR-10 Params. (%) SAMSum Spider
Metric (↑) Avg. Score METEOR BLEU Acc. R1 R2 RL Acc.

SSM Modules .92 79.3 69.9 50.8 44.0 .46 50.5 26.4 42.2 56.3
Linear Projection Matrices 1.02 80.5 71.2 49.2 62.8 .51 50.8 26.9 42.8 54.7
Both 1.92 80.2 71.0 49.5 60.4 .97 50.8 26.6 42.7 56.4

Table 3: For LoRA, targeting only the linear projection matrices yields better performance than
applying it to all modules in Mamba. Consistent rank is maintained across all three methods.
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We examine LoRA’s performance when applied to SSM modules and linear projection matrices
separately, as well as in combination. For linear projections, we test LoRA on all possible matrices.
For SSM modules, we apply LoRA to all weight matrices (e.g., weight matrices of input-dependent
step size ∆) in SSM modules. For the state transition matrices A, given their diagonal structure for
each channel, we treat them as vectors, concatenate the channels into a matrix, and apply LoRA. The
results are presented in Table 3. We observe that applying LoRA to linear projection matrices achieves
superior performance on six out of eight metrics. Interestingly, additional tuning of SSM modules
lead to decreased performance in some cases. This suggests that LoRA might not be well-suited for
tuning SSM modules, while being highly effective for linear projection matrices.

To further elucidate this concept, we present the following lemma, which examines a simplified model
architecture consisting of S6 with a linear input projection matrix at each layer. We demonstrate that
fine-tuning the projection matrix Win encompasses the expressivity of fine-tuning the parameters
WB , WC , and W∆,↑.

Lemma 2 (Expressivity of Fine-Tuning Projection Matrices). Consider an S6 with an ad-
ditional linear input projection matrix Win. Denote the input-dependent SSM parameters
{{A(d)

n }Dd=1,Bn,Cn}Nn=1 as θ(·; {A(d)}Dd=1,WB,WC ,W∆,↑,W∆,↓,Win). For any given WB ,
WC , and W∆,↑, there exists a Ŵin such that for any input sequences X ∈ RD×N ,

θ(X; {A(d)}Dd=1,WB,WC ,W∆,↑,W∆,↓) = θ(X; {A(d)}Dd=1,WB,WC ,W∆,↑,W∆,↓, Ŵin).

We expand upon this section in Sec. C.4, where we provide more detailed statements of the above
assertion and its corresponding proofs. Additionally, we empirically examine applying LoRA to
different weight matrices of Mamba, which incorporates multiple linear projection matrices in each
layer, including output projection matrices Wout after the S6 module and input projection matrices
Win before the gating and convolutional layer. Our experiment results, however, reveal that applying
LoRA to different matrices achieves similar performance, as detailed in Sec. C.4.

5 Dimension Selection for Tuning State-Space Models

In Sec. 4.2, we demonstrate the efficacy of LoRA in fine-tuning linear projection matrices. Theoreti-
cally, fine-tuning all components should offer greater expressive power. However, Table 3 indicates
that applying LoRA to SSM modules might paradoxically decrease performance. Therefore, we aim
to develop an algorithm specifically tailored for tuning SSM modules. To achieve this, we first seek
to understand the relative importance of different parameters within SSM modules.

5.1 Understanding the Roles of State Matrix A, Input Transition Vector B, and Output
Mapping Vector C for a Single Channel in S4 Modules

Problem Setting. Inspired by Zeng and Lee [44]’s theoretical analysis of LoRA’s expressive power,
we adopt a similar framework to explore the expressive potential of various parameters in the S4
model. Specifically, we assume a target model that performs well on the intended task and a frozen
model, which may be either pretrained or randomly initialized. Our goal is to identify a parameter-
efficient method to update the frozen model so that it becomes functionally equivalent to the target
model. In alignment with Zeng and Lee [44], we assume that the frozen model’s capacity is equal
to or exceeds that of the target model. This assumption is based on two main considerations: (i)
analytical tractability, which necessitates that the frozen model must have the potential to match the
functionality of the target model, and (ii) a practical rationale, given that the models typically used in
practice are often overparameterized. Assume that both the target model and the frozen model are
S4, with the target model having a hidden state dimension H⋆ and the frozen model having a hidden
state dimension H ≥ H⋆. Meanwhile, suppose that all the hidden dimensions of both models are
valid, meaning that none of the parameter elements are zero. The target model, frozen model, and the
updated model after tuning the parameters on the frozen model can be formulated using discretized
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parameters A,B,C as follows:

(Target model) f⋆(x)n =
∑n

m=1
C⋆A

m−n

⋆ B⋆xm, where diag(A⋆),B⋆,C⋆ ∈ RH⋆ ,

(Frozen model) f0(x)n =
∑n

m=1
CA

m−n
Bxm, where diag(A),B,C ∈ RH ,

(Updated model) f̂(x)n =
∑n

m=1
ĈÂ

m−n

B̂xm, where diag(Â), B̂, Ĉ ∈ RH .

Parameter Efficiency Analysis on S4. Let PH denote the set of all H ×H permutation matrices.
Given this formulation, we present our first analysis of parameter efficiency for the S4 model in the
following lemma. This analysis is based on the parameters after necessary discretization (A,B,C).

Lemma 3 (Essential Discretized Parameter Set for S4). Consider the parameters after discretization,
i.e., A,B,C. To achieve functional equivalence between the updated model and the target model,
i.e., f̂ ≡ f⋆, it is sufficient to tune the following number of parameters:

minP∈PH

eliminating redundant dimensions︷ ︸︸ ︷∥∥∥[P⊤(diag(A)⊗B ⊗C⊤)
]
(H⋆+1):H

∥∥∥
0
+

aligning used dimensions with target model︷ ︸︸ ︷∥∥∥[P⊤AP
]
1:H⋆,1:H⋆

−A⋆

∥∥∥
0︸ ︷︷ ︸

aligning the state matrix

+
∥∥∥[P⊤(B ⊗C⊤)

]
1:H⋆

−B⋆ ⊗C⊤
⋆

∥∥∥
0︸ ︷︷ ︸

aligning input-output interactions

.

This lemma highlights the significance of identifying essential hidden state dimensions. The term∥∥∥[P⊤(diag(A)⊗B ⊗C⊤)
]
(H⋆+1):H

∥∥∥
0

underscores the importance of excluding redundant di-
mensions. This can be achieved by either directly removing these dimensions from the state matrix
A, or by updating B or C to ensure that only the selected hidden state dimensions are utilized during
the input transition or output mapping phases. Once redundant dimensions are filtered out, tuning
only the essential dimensions is sufficient to align the updated model with the target model. Proofs
and further details are provided in Sec. D.1.

5.2 SSM Dimension Selection Algorithm

Inspired by Lemma 3, we introduce the Dimension Selection algorithm to construct adapters on SSMs
for fine-tuning. This algorithm first selects unimportant dimensions and sets them to zero, filtering
out irrelevant information based on Lemma 3. For enhanced parameter efficiency, we then update
only the most important channels and state dimensions within these selected subsets. Regardless of
other selections, we consistently tune the coefficients of residual connections and biases in linear
projections, as these components contain a negligible number of parameters. However, we will later
demonstrate that in practice, tuning residual connections and biases is unnecessary. The detailed
pseudo-code is presented in Alg. 1. Given that tuning C alone is as effective as tuning both B
and C for S4 [15], subsequent discussions on S4 will focus solely on C, excluding {B(d)}Dd=1 for
simplicity, without loss of generality.

We refer to our method as SDLoRA. This approach extends beyond applying LoRA to linear
projection matrices by Selectively updating certain subset of channels and states Dimensions, which
are chosen by Alg. 1. Our analysis considers cases where each input token xt ∈ X , with X ∈ RD

bounded, and the input sequence length is finite. The following theorem elucidates the expressive
capacity of SDLoRA on deep S4 models. For proof and additional details, refer to Sec. D.2.

Theorem 4 (Expressive Power of SDLoRA on Deep S4 Models). Consider a D-dimensional input
sequence. Assume that the linear layers in the model have linear activation functions. Using SDLoRA,
any deep S4 model with H hidden states per channel and L layers can be updated to accurately
present any target deep S4 model without residual connections, having a reduced hidden state
dimension H⋆ < H , and fewer layers L⋆ < L. This can be achieved by selectively fine-tuning at
most ⌈DL⋆/L⌉ channels, H⋆ hidden states on SSM modules, applying rank-⌈ L

L⋆ ⌉ updates on linear
projection matrices and updating residual connections and biases at each layer, while additionally
fully fine-tuning the linear projection matrix of the last layer only.

This theorem demonstrates that a larger pretrained model requires selecting fewer channels and
hidden states at each layer. Furthermore, if the target task is less complex — evidenced by a smaller
target model with fewer layers L⋆ and hidden states H⋆ — the number of channels and hidden
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Algorithm 1: Dimension Selection Algorithm for S4
Input: Dataset D, warmup epochs E0, train epochs E, number of layers L, total channels D,

total states H , initial state sparsity β0, initial channel sparsity α0, state update fraction β,
channel update fraction α

Output: Model adapter

/* Warmup Epochs */
1 Update SSM modules using D for E0 epochs;
/* Setup Adapters */

2 for l = 1 to L do
/* Set dimensions as zero */

3 Sort channels based on magnitude of A
(d)

at each channel;
4 Set final (1− β0)D as zero by letting C(d) = 0, denote non-zero channels as set D;
5 for d ∈ D do
6 Sort states based on magnitude of Ā(d)

h at each state dimension;
7 Set final (1− α0)H as zero by letting corresponding C

(d)
h = 0, denote non-zero states as

set H;
/* Unfreeze dimensions */

8 Sort non-zero channels D based on magnitude of parameter changes at each channel;
9 Denote first β|D| as D′;

10 for d ∈ D′ do
11 Sort non-zero state dimensions based on magnitude of parameter changes;
12 Construct adapter to update first α|H| states at d-th channel;

/* Include Residual Connections and Bias */
13 Construct adapter for all residual connections and bias;

states needed is also reduced. This finding aligns with the theoretical analysis of LoRA presented in
Zeng and Lee [44], which shows that larger pretrained models require fewer learnable parameters
(referred to as “lower rank” in their context) during fine-tuning, especially for simpler tasks. Although
this theorem is constrained by the assumptions of linear activations and the absence of residual
connections in the target model, while also requiring fully fine-tuning the linear project matrix of last
layer, our findings have broader implications. Our following experimental results suggest that these
findings generalize beyond these restrictions.

5.3 Empirical Evaluation on Deep S4 Models

In this experiment, we seek to validate the theoretical guarantees for SDLoRA under more general
conditions, including residual connections in the target model and ReLU activations in both frozen
model and target model, without full fine-tuning the linear projection matrix of the last layer. Ad-
ditionally, we assess SDLoRA’s empirical performance on both synthetic and real datasets. More
experiment setup details are provided in Sec. D.3.

0 25 50 75 100
1

2

3

M
SE

Frozen
LoRA (Proj)
LoRA (S4+Proj)
SDLoRA
Full Fine-Tuning

# Trainable Parameters (%)
Figure 1: Approximation error of PEFT methods
on deep S4 models for synthetic experiments.

Method # Params (%) Accuracy
Frozen 0.00 73.9

LoRA (Proj) 16.00 77.6
LoRA (S4+Proj) 15.52 77.6
SDLoRA 11.17 78.0
Full Fine-Tuning 100.00 77.6

Table 4: Accuracy comparison between SDLoRA
and LoRA on deep S4 models for CIFAR-10 [22].

Synthetic Dataset. For the synthetic dataset, we employ a regression setting to validate our
theoretical results. (Experiment Setting) We randomly initialize two models: a one-layer deep S4

9



model as the target and a four-layer deep S4 model as the frozen model. The task is to update the
frozen model to match the functionality of the target model. We generate an input sequence X of
length 200 and dimension 64, with values uniformly drawn from integers between 0 and 9. This input
is then processed through the target model to obtain the corresponding outputs. These input-output
pairs are used to train the frozen model over 500 iterations using the Mean Squared Error (MSE) loss.

(Results) Figure 1 displays the MSE, averaged across all tokens, plotted against the trainable pa-
rameters of different methods. We observe that by using only ≈ 28% of the total parameters of the
frozen S4 model, SDLoRA closely approximates the performance of the target S4 model, achieving
results comparable to full fine-tuning, thereby substantiating our theorem. Meanwhile, we observe
that SDLoRA outperforms both the approach of applying LoRA solely to linear projection matrices
and the approach of applying LoRA to both the S4 module and linear projection matrices. In this
latter approach, the diagonal vectors of state matrices A(d), input transition vectors B(d) and output
mapping vectors C(d) are naively concatenated across D channels into three D ×H matrices before
low-rank updates are applied. In Sec. D.3, we also evaluate an extension of SDLoRA that performs
sparse tuning on the linear projection matrices by updating only the columns corresponding to the
channels selected by Alg.1, instead of applying LoRA. This extension shows promising results.

CIFAR-10. Previous work [4] demonstrates that large language models can be fine-tuned for image
classification tasks. Here, we consider the this challenging task of adapting SSMs for computer
vision. In this experiment, we conduct experiments on the CIFAR-10 dataset [22]. We employ an
eight-layer deep S4 model with a hidden state dimension of 16 and a model dimension of 64. Since
pretrained deep S4 models are not available, we simulate a pretrained scenario by fully updating
the model for 50 epochs first, then subsequently evaluating the PEFT methods over an additional 5
epochs. The results, as reported in Table 4, indicate that SDLoRA outperforms LoRA with fewer
trainable parameters.

5.4 Empirical Evaluation on Mamba

Lastly, we conduct experiments on pretrained Mamba models. We consider four datasets, using
Mamba-130M for GLUE and DART, and Mamba-1.4B for SAMSum and Spider. We evaluate three
configurations each for LoRA and SDLoRA, applying LoRA to distinct parameter subsets and varying
SDLoRA’s state freeze ratios while maintaining a 99% channel freeze ratio. In this experiment, we
allow channels and states to learn directly from the datasets without manually setting any to zero. We
then select a LoRA-rank such that all configurations have a similar number of trainable parameters
for a fair comparison. Residual connections and biases are frozen in this experiment. All reported
values represent averages across three simulations, with learning rates independently selected for
each simulation. For more details, please see Sec. D.4. The experimental results are reported in
Table 5. The results demonstrate that SDLoRA outperforms LoRA alone for fine-tuning the SSM
even when 99% of the channels are frozen. This result underscores the efficacy of SDLoRA.

Model Mamba-130M Mamba-1.4B

Method Params
(%)

GLUE DART Params
(%)

SAMSum Spider
Avg. Score (↑) BLEU (↑) METEOR (↑) R1 (↑) R2 (↑) RL (↑) Acc. (↑)

Val Test Val Test Val Test Val Test Val Test Val Test Val Test

LoRA
.3178 80.71 78.74 50.44 41.27 70.00 65.84 .1594 51.59 50.56 27.66 26.49 42.87 42.22 82.08 61.19
.3600 80.79 79.39 51.03 42.02 70.16 66.18 .1810 51.61 51.03 28.15 26.81 43.18 42.36 83.52 62.64
.3883 80.39 79.49 50.70 41.55 69.83 65.98 .1947 51.48 50.90 27.90 26.63 43.26 42.41 82.98 59.25

SDLoRA
.3492 80.93 79.75 51.45 42.37 70.45 66.60 .1760 51.63 50.90 27.97 26.86 43.32 42.52 84.36 62.57
.3498 81.05 79.16 51.47 43.85 70.46 66.38 .1761 51.61 50.76 28.02 26.65 43.38 42.29 84.48 59.96
.3509 80.67 78.73 51.54 42.56 70.45 66.45 .1764 51.74 50.86 28.08 26.54 43.39 42.19 84.19 61.25

Table 5: Performance comparison between SDLoRA and LoRA on pretrained Mamba models.
Bold numbers indicate the best performance for each task. Underlined numbers indicate that the
model outperforms all models fine-tuned via the alternative method for the same task (e.g., SDLoRA
outperforms all LoRA methods, or vice versa). On Mamba-130M, we compare the performance of
SDLoRA and LoRA on GLUE [37] and DART [29] benchmarks. On Mamba-1.4B, we compare
performance of SDLoRA and LoRA on SAMSum [9] and Spider [42] benchmarks. R1, R2, and RL
represent ROUGE-1, ROUGE-2, and ROUGE-L, respectively.
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6 Conclusion & Discussion
In this paper, we present the first study on the performance of PEFT methods applied to SSM-based
models. Our evaluation of existing PEFT methods provides valuable insights and guidelines for future
researchers to parameter-efficiently fine-tune SSM-based models to other domains. Moreover, we take
a first step in establishing a theoretical framework for studying PEFT methods on SSM-based models.
Furthermore, we introduce SDLoRA, the first PEFT method specifically tailored for SSM-based
models, which outperforms existing methods.

While our work offers numerous valuable insights, some limitations exist. Theoretically, our guar-
antees for SDLoRA are limited to linear activations and require full fine-tuning of the last layer.
However, our experiments demonstrate that SDLoRA does not suffer from these limitations in prac-
tice. Removing such restrictions for SDLoRA in theory or developing new PEFT methods under more
general theoretical cases is an interesting future direction. Additionally, our theory only demonstrates
that updating a subset of channels and states is sufficient, without providing guidance on optimal
selection. Our channel and state selection, based on a warmup stage and parameter magnitude, may
not be optimal. Further investigation into the impact of channel/state selection and development of
improved dimension selection algorithms presents an interesting avenue for future work. Lastly, our
work primarily focuses on SSM-based models. Studying PEFT methods on SSM-Transformer hybrid
models [25, 31], is an interesting future direction.
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A In-depth Introduction of Baselines

In this section, we provide a more detailed description of the baseline methods.

LoRA [18]. LoRA (Low-Rank Adaptation) focuses on fine-tuning large models by freezing most
of the pretrained parameters and injecting trainable low-rank matrices into each layer of the Trans-
former’s architecture. The intuition behind using low-rank matrices comes from linear algebra, where
a large matrix can be closely approximated by the product of two smaller matrices. The number of
trainable parameters can be controlled with the rank of the low-rank matrices. LoRA also uses a
scaling parameter (LoRA alpha) for the weight matrices to control the balance of the original model
weights and LoRA weights during training. After fine-tuning, LoRA weights can be merged with the
original model weights, introducing no additional inference overhead.

Prompt Tuning [23]. Prompt tuning freezes all model weights and prepends a trainable soft prompt
to the input prompt. The soft prompt consists of trainable virtual tokens, which are continuous. At
inference time, prompt tuning introduces an inference overhead based on the number of virtual tokens
used.

Prefix-Tuning [24]. Prefix-tuning also prepends trainable tokens to the input like prompt tuning but
injects separate prefixes in every layer. For each Transformer layer, prefix-tuning prepends trainable
embeddings to the attention’s K and V matrix. The authors have found that directly training these
prefixes can lead to unstable training, so they propose to over-parameterize them with a large MLP to
increase training stability. After training, the MLP can be dropped. Like prompt tuning, prefix-tuning
introduces an inference overhead, scaling linearly with the number of trainable embeddings.

BitFit [43]. BitFit is a simple but effective PEFT method that freezes all model weights except
the bias terms, consequently greatly reducing the number of trainable parameters. As no additional
parameters are added, no inference overhead occurs.

B Details of Datasets

In this paper, we consider five datasets across three domains: (i) Natural Language Understanding
(NLU), represented by GLUE [37]; (ii) Natural Language Generation (NLG), including SAMSum [9],
Spider [42] and DART [29]; and (iii) Computer Vision (CV), represented by CIFAR-10 [22].

GLUE [37]. The GLUE (General Language Understanding Evaluation) benchmark is a collection
of datasets used for training, evaluating, and analyzing natural language understanding models
across a range of diverse tasks. The benchmark includes nine sentence- or sentence-pair language
understanding tasks that require various features of understanding, such as sentiment analysis,
linguistic acceptability, semantic textual similarity, and question answering. We use seven datasets
from the GLUE benchmark (RTE, MRPC, CoLA, SST-2, QNLI, QQP, MNLI) where the model has to
choose between two or three (for MNLI) different choices for the respective task. Except for CoLA,
we evaluate all used datasets with the accuracy metric. For CoLA, Matthews correlation is employed.

SAMSum [9]. SAMSum is a dataset for dialogue summarization research, comprising approxi-
mately 16,000 synthetic text conversations with accompanying summaries. Created by English-fluent
linguists, these exchanges simulate real-world digital communications across various topics and styles.
The conversations range from informal to formal, incorporating elements like slang and emoticons to
reflect authentic messaging patterns. Each dialogue is paired with a concise, third-person summary,
capturing its essential content. This structure makes SAMSum particularly useful for developing and
evaluating automated summarization systems capable of processing conversational text.

Spider [42]. Spider is a large-scale, complex, and cross-domain semantic parsing and text-to-SQL
dataset. It contains about 10,000 annotated SQL queries, distributed across 200+ databases, each with
multiple tables. We follow Scholak et al. [34] and use about 7,000 examples for training and about
1,000 examples for validation, where we ignore sequences longer than 1536 tokens. The dataset
consists of English question and SQL query pairs, which cover a wide range of SQL operations
including SELECT, WHERE, COUNT, GROUP BY, ORDER BY, JOIN, and more. Given an English
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Data Size (Train) Size (Val) Size (Test) Max. seq. len. #Epochs Mamba Size Metrics

GLUE

RTE 1992 498 277 291 10 130M Accuracy

MRPC 2934 734 408 105 10 130M Accuracy

CoLA 6840 1711 1043 47 10 130M Matthews corr.

SST-2 53879 13470 872 68 10 130M Accuracy

QNLI 83794 20949 5463 602 10 130M Accuracy

QQP 291076 72770 40430 316 3 130M Accuracy

MNLI 314161 78541 19647 425 3 130M Accuracy

Spider 5543 1375 1034 1412 10 1.4B, 2.8B Accuracy

SAMSum 14732 818 819 1174 10 1.4B ROUGE

DART 62659 2768 5097 491 10 130M METEOR, BLEU

CIFAR-10 40000 10000 10000 1730 5 130M Accuracy

Table 6: Datasets and models for our experiments. For each dataset, we report the number of
training, validation, and test samples, maximum sequence length, training epochs, model size, and
evaluation metric used.

question and an SQL database scheme, the task for the model is to translate the English question into
an appropriate SQL statement. Evaluation is performed via accuracy where the output is considered
as correct if the model’s predicted SQL query and the included GT SQL query give the same result
when executed on the database. The dataset additionally categorizes each query into easy (25%),
medium (40%), hard (20%), and extra hard (15%) based on the complexity of the required SQL
statement. For evaluation, we report the execution accuracy of all categories.

DART [29]. The DART (DAta Record to Text) benchmark is a large-scale, structured dataset de-
signed for RDF-to-text (Resource Description Framework-to-text) generation with 80,000+ instances.
The DART benchmark is composed of a collection of structured data triples and corresponding text
summaries which are organized into different categories. The task of the DART benchmark is to
generate natural language summaries that correctly represent the given structured data inputs. DART
is typically evaluated with METEOR and BLEU.

CIFAR-10 [22]. The CIFAR-10 (Canadian Institute For Advanced Research) dataset is a collection
of images that are commonly used to train machine learning and computer vision algorithms. It
is one of the most widely used datasets for image classification. The CIFAR-10 dataset contains
60,000 (50,000 for training, 10,000 for validation) 32×32 color images in 10 different classes. The
10 different classes are: airplane, car, bird, cat, deer, dog, frog, horse, ship, and truck. There are 6,000
images of each class. For training, we center crop each image to 24×24 pixels and flatten each image
to a string, with a total of 24×24×3 words, where each word is a number between 0-255 representing
the respective pixel value. Although CIFAR-10 is a dataset for computer vision, previous work [4]
showed that Transformers can be adapted to the vision domain from the language domain, and we
tested this ability on the state-space model.

The dataset characteristics, including our train, validation and test set sizes, sequence lengths, and
number of epochs, are summarized in Table 6.

C Details of Sec. 4: Benchmarking PEFT Methods on SSM-based Models

In this section, we provide a comprehensive experimental setup, proofs and further discussion of
theoretical results, and more detailed experimental outcomes.

C.1 Experiment Setup

For each dataset, we choose the model size of Mamba depending on how challenging the dataset is
and perform a small grid search for one epoch on a subset of the data (1k-2k instances) with learning
rates {4× 10−1, 2× 10−1, 1× 10−1, ..., 1× 10−5} to find the optimal learning rate of each PEFT
method. Afterward, we train the best setting for each PEFT method on the full data for several epochs
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(Table 6) using an NVIDIA RTX 3090 GPU for the 130M model and an NVIDIA A100 for the larger
1.4B and 2.8B models in mixed precision (BF16). We only report the validation metric of the best
epoch during training (early stopping) in our results. We fine-tune the Mamba models [10] pretrained
from Pile [7] with AdamW with a linear learning rate decay schedule. For LoRA we set rank to 8,
alpha to 8, and dropout to 0.1 for all experiments. For evaluating NLG tasks, we employ beam search
with five beams and a maximum beam length of 1024.

C.2 Extended Results on Benchmarking Existing PEFT Methods

We present comprehensive fine-tuning results for the GLUE benchmark [37], DART dataset [29],
SAMSum dataset [9] and Spider dataset [42] in Table 7, Table 8, Table 9 and Table 10, respectively.
These experimental results encompass various LoRA implementations (on different weight matrices
and modules) and provide more fine-grained results across all subtasks.

Layer Method # Params (%) RTE MRPC CoLA SST-2 QNLI QQP MNLI Avg.
Pretrained 0.00 46.9 67.9 0.0 52.4 50.5 36.8 32.3 41.0

All All Full 100.00 71.1 80.6 63.2 92.2 87.4 87.9 80.8 80.5
LoRA 1.92 69.9 80.9 61.4 91.9 88.4 87.6 81.1 80.2

Prompt
Prompt Tuning 16 tokens 0.01 56.0 71.6 12.0 89.4 76.8 79.6 61.5 63.8

Prefix-Tuning 1 token (no MLP) 0.03 67.5 75.7 43.4 91.5 83.4 83.1 35.6 68.6

Bias β∆, Conv1d BitFit 0.06 69.5 80.4 54.7 92.0 86.2 85.3 77.2 77.9

linear projection matrices

All LoRA 1.02 70.0 82.4 57.7 93.3 88.7 88.7 82.5 80.5

Win,x LoRA 0.34 70.4 82.1 57.4 91.7 88.3 87.7 81.2 79.8

Win,z LoRA 0.34 70.0 82.4 58.1 92.4 87.3 87.3 80.4 79.7

Win,x,Win,z LoRA 0.68 70.4 84.3 62.4 92.5 88.6 88.3 81.7 81.2

Wout LoRA 0.34 70.4 82.8 60.6 92.4 88.4 87.7 81.5 80.5

S6

All Full 4.31 69.7 78.9 59.1 91.5 88.1 87.5 80.5 79.3
LoRA 0.92 66.1 78.7 57.8 90.8 87.8 86.9 79.8 78.3

A Full 0.46 68.2 82.1 54.2 90.9 86.4 87.9 79.4 78.4

WB,WC ,W∆,↓
Full 2.28 69.7 77.0 55.8 91.4 85.4 85.0 76.8 77.3
LoRA 0.69 67.9 78.9 48.8 91.4 86.9 85.8 78.6 76.9

W∆,↑
Full 1.40 66.1 75.2 56.7 91.1 86.2 87.1 78.5 77.3
LoRA 0.23 67.1 79.9 55.1 90.9 52.7 86.6 78.7 73.0

Conv1d Full 0.14 68.2 78.4 57.9 91.1 86.0 86.0 78.0 77.9

Others D, LayerNorm Full 0.04 65.3 79.2 40.3 91.1 83.9 86.0 67.0 73.3

Table 7: Full experimental results on the GLUE [37] benchmark. We report accuracy (↑) for
RTE, MRPC, SST-2, QNLI, QQP, and MNLI tasks. CoLA performance is measured using Matthews
Correlation Coefficient (↑). Mamba-130M is employed in this experiment. In each Mamba block,
Win,x and Win,z are input projections that preprocess the input for SSM modules and the gating
branch, respectively. Wout denotes the output projection after the gating mechanism. WB and WC

are weight matrices for computing input-dependent Bn and Cn. W∆,↓ and W∆,↑ represent down
and up projections of low-rank weight matrices in the linear layer computing input-dependent step
size ∆n. β∆ represents the bias in this linear layer. D denotes the weight of residual connections.

C.3 Limitations of Applying Prompt-based Methods on SSMs

We provide the formal version of Proposition 1 and its corresponding proof here. We start by
introducing the necessary notations. Denote the space of S4 mechanisms with D channels as
FS4,D. Let H0 = (h

(1)
0 ,h

(2)
0 , . . . ,h

(D)
0 ) ∈ RH×D represent the initial hidden state, and X =

(x1,x2, . . . ,xN ) ∈ RD×N denote the input sequence. The output of the S4 mechanism is represented

as f(X;H0). Furthermore, for d-th channel, let state transition matrix A
(d)

= diag (a
(d)
1 , · · · , a(d)H )

and input transition vector B
(d)

= (b1, · · · , bH)⊤, where d = 1, . . . , D. For any vector v ∈ Rn, we
use vi:j ∈ Rj−i to denote the subvector of v containing elements from i ∈ N+ to j ∈ N+, where
i < j. Similarly, for any matrix M ∈ Rm×n, we use Mi1:j1,i2:j2 to denote the submatrix containing
rows i1 ∈ N+ to j1 ∈ N+ and columns i2 ∈ N+ to j2 ∈ N+, where i1 < j1, i2 < j2.

Proposition 5 (Formal Version of Proposition 1). Let f ∈ FS4,D be an S4 mechanism. Consider
prefix-tuning that prepends a sequence P = (p1, . . . ,pM ) ∈ RD×M to the input sequence X =
(x1,x2, . . . ,xN ) ∈ RD×N . For any prefix P ∈ RD×M , there exists an initial hidden state H⋆

0 ∈
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Layer Method # Params (%) METEOR BLEU

All All Full 100.00 71.0 51.8
LoRA 1.92 71.0 49.5

Prompt
Prompt Tuning 64 tokens 0.04 66.2 39.8

Prefix-Tuning 64 tokens 22.69 66.6 42.5

Bias β∆, Conv1d BitFit 0.06 67.0 43.7

linear projection matrices

All LoRA 1.02 71.2 49.2

Win,x LoRA 0.34 70.3 48.9

Win,z LoRA 0.34 70.4 49.1

Win,x,Win,z LoRA 0.68 70.9 49.5

Wout LoRA 0.34 70.7 47.0

S6

All Full 4.31 70.3 48.7
LoRA 0.92 69.9 50.8

A Full 0.46 69.3 48.1

WB,WC ,W∆,↓
Full 2.28 70.1 50.0
LoRA 0.69 68.8 48.0

W∆,↑
Full 1.40 69.6 47.2
LoRA 0.23 68.9 47.0

Conv1d Full 0.14 68.6 47.9

Others D, LayerNorm Full 0.04 67.0 44.2

Table 8: Full experimental results on the DART [29] benchmark. We report METEOR (↑)
and BLEU (↑) scores. Mamba-130M is utilized in this experiment. In each Mamba block, Win,x
and Win,z are input projections that preprocess the input for SSM modules and the gating branch,
respectively. Wout denotes the output projection after the gating mechanism. WB and WC are
weight matrices for computing input-dependent Bn and Cn. W∆,↓ and W∆,↑ represent down and
up projections of low-rank weight matrices in the linear layer computing input-dependent step size
∆n. β∆ represents the bias in this linear layer. D denotes the weight of residual connections.

Layer Method # Params (%) R1 R2 RL

All All Full 100.00 51.2 27.3 42.9
LoRA 0.97 50.8 26.6 42.7

Prompt
Prompt Tuning 64 tokens 0.01 50.1 25.6 41.6

Prefix-Tuning 64 tokens 12.81 50.6 26.5 42.1

Bias β∆, Conv1d BitFit 0.03 50.3 25.7 41.9

linear projection matrices

All LoRA 0.51 50.8 26.9 42.8

Win,x LoRA 0.17 49.8 25.4 41.2

Win,z LoRA 0.17 50.0 26.1 41.7

Win,x,Win,z LoRA 0.34 50.9 27.0 42.3

Wout LoRA 0.17 49.9 25.4 41.5

S6

All Full 4.46 51.1 26.9 42.2
LoRA 0.46 50.5 26.4 42.2

A Full 0.23 50.1 25.9 41.7

WB,WC ,W∆,↓
Full 2.29 50.5 26.0 41.8
LoRA 0.35 50.4 26.0 41.8

W∆,↑
Full 1.85 50.3 25.7 41.6
LoRA 0.12 50.2 25.4 41.3

Conv1d Full 0.07 50.1 25.7 41.9

Others D, LayerNorm Full 0.02 49.6 24.8 41.1

Table 9: Full experimental results on the SAMSum [9] benchmark. R1, R2, and RL represent
ROUGE-1 (↑), ROUGE-2 (↑), and ROUGE-L (↑), respectively. Mamba-1.4B is utilized in this
experiment. In each Mamba block, Win,x and Win,z are input projections that preprocess the input
for SSM modules and the gating branch, respectively. Wout denotes the output projection after the
gating mechanism. WB and WC are weight matrices for computing input-dependent Bn and Cn.
W∆,↓ and W∆,↑ represent down and up projections of low-rank weight matrices in the linear layer
computing input-dependent step size ∆n. β∆ represents the bias in this linear layer. D denotes the
weight of residual connections.
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Layer Method # Params (%) All Easy Medium Hard Extra

All All Full 100.00 66.2 84.3 69.5 53.4 43.4
LoRA 0.97 56.4 76.2 57.0 47.7 34.3

Prompt
Prompt Tuning 64 tokens 0.01 43.6 65.3 42.4 33.3 25.3

Prefix-Tuning 64 tokens 12.81 39.7 65.7 38.6 31.0 15.1

Bias β∆, Conv1d BitFit 0.03 51.3 74.2 50.9 43.1 26.5

linear projection matrices

All LoRA 0.51 54.7 75.0 55.6 46.0 31.3

Win,x LoRA 0.17 60.8 76.6 63.5 52.9 38.6

Win,z LoRA 0.17 46.3 68.5 45.7 36.8 24.7

Win,x,Win,z LoRA 0.34 57.5 77.4 58.7 45.4 37.3

Wout LoRA 0.17 61.8 81.9 65.2 45.4 39.8

S6

All Full 4.46 56.7 76.6 57.8 46.0 34.9
LoRA 0.46 56.3 75.0 56.5 50.6 33.7

A Full 0.23 51.1 71.4 52.5 42.5 25.9

WB,WC ,W∆,↓
Full 2.29 47.2 72.2 46.9 35.6 22.9
LoRA 0.35 55.0 73.8 56.7 44.3 33.7

W∆,↑
Full 1.85 56.8 77.0 59.4 43.7 33.1
LoRA 0.12 58.0 78.6 59.4 48.9 33.1

Conv1d Full 0.07 53.2 74.6 52.9 43.7 31.9

Others D, LayerNorm Full 0.02 49.6 70.6 50.4 40.2 25.9

(a) Comprehensive experimental results on Spider using Mamba-1.4B.

Layer Method # Params (%) All Easy Medium Hard Extra

All All Full 100.00 71.8 87.5 73.5 63.8 51.8
LoRA 0.80 70.9 90.7 74.0 58.6 45.8

Prompt
Prompt Tuning 64 tokens 0.01 50.7 75.4 53.8 37.4 19.3

Prefix-Tuning 1 token 10.82 45.1 75.0 45.1 32.2 13.9

Bias β∆, Conv1d BitFit 0.02 59.9 82.3 60.8 52.9 31.3

linear projection matrices

All LoRA 0.42 58.2 74.6 58.3 51.7 40.4

Win,x LoRA 0.14 66.7 87.9 67.7 56.9 42.8

Win,z LoRA 0.14 65.4 86.7 68.8 54.6 35.5

Win,x,Win,z LoRA 0.28 65.2 89.1 67.3 51.7 38.0

Wout LoRA 0.14 67.0 87.1 69.1 52.9 46.4

S6

All Full 4.44 65.7 81.9 68.8 58.0 41.0
LoRA 0.38 63.9 86.3 68.2 49.4 34.3

A Full 0.19 56.6 77.0 58.1 46.0 33.1

WB,WC ,W∆,↓
Full 2.27 58.8 79.0 61.0 50.6 31.3
LoRA 0.29 60.3 82.7 63.0 46.6 33.7

W∆,↑
Full 1.91 62.2 82.3 65.7 51.7 33.7
LoRA 0.10 62.2 80.2 66.6 49.4 36.7

Conv1d Full 0.06 62.5 81.9 66.1 51.1 35.5

Others D, LayerNorm Full 0.02 51.0 71.0 51.1 42.5 29.5

(b) Comprehensive experimental results on Spider using Mamba-2.8B.

Table 10: Full experimental results on Spider [42] dataset. We report the accuracy (↑) for Spider
and its subsets. We consider two models in our experiments: Mamba-1.4B and Mamba-2.8B. In
each Mamba block, Win,x and Win,z are input projections that preprocess the input for SSM modules
and the gating branch, respectively. Wout denotes the output projection after the gating mechanism.
WB and WC are weight matrices for computing input-dependent Bn and Cn. W∆,↓ and W∆,↑
represent down and up projections of low-rank weight matrices in the linear layer computing input-
dependent step size ∆n. β∆ represents the bias in this linear layer. D denotes the weight of residual
connections.
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Layer Method # Params (%) Accuracy
Pretrained 0.00 0.08

All All Full 100.00 59.96
LoRA 1.92 60.35

Bias β∆, Conv1d BitFit 0.06 44.40

linear projection matrices

All LoRA 1.02 62.79

Win,x LoRA 0.34 53.49

Win,z LoRA 0.34 58.15

Win,x,Win,z LoRA 0.68 61.04

Wout LoRA 0.34 52.04

S6

All Full 4.31 55.51
LoRA 0.92 43.96

A Full 0.46 61.21

WB,WC ,W∆,↓
Full 2.28 49.51
LoRA 0.69 52.27

W∆,↑
Full 1.40 34.54
LoRA 0.23 56.49

Conv1d Full 0.14 55.65

Others D, LayerNorm Full 0.04 58.09

Table 11: Full experimenal results on the CIFAR-10 [22] dataset. We report accuracy (↑). Mama-
130M is utilized in this experiment. In each Mamba block, Win,x and Win,z are input projections
that preprocess the input for SSM modules and the gating branch, respectively. Wout denotes the
output projection after the gating mechanism. WB and WC are weight matrices for computing
input-dependent Bn and Cn. W∆,↓ and W∆,↑ represent down and up projections of low-rank
weight matrices in the linear layer computing input-dependent step size ∆n. β∆ represents the bias
in this linear layer. D denotes the weight of residual connections.

RH×D such that the output of S4 after prefix-tuning and that after initial state tuning are identical,
i.e., f(X;H⋆

0 ) ≡ f([P ,X];H0)1:D,M+1:M+N for all X ∈ RD×N .

Furthermore, assume that
∏

0≤i<j≤H(a
(d)
j − a

(d)
i ) ̸= 0 and

∏H
k=1 b

(d)
k ̸= 0 for all channels d =

1, . . . , D. Then the converse (i.e., for any H0 ∈ RH×D, there exists a P ⋆ ∈ RD×M such that
f([P ⋆,X];H0)1:D,M+1:M+N ≡ f(X;H⋆

0 ) for all X ∈ RD×N ) holds if and only if M ≥ H .

Proof of Proposition 5. Given that operations in S4 are independent across all channels, we can,
without loss of generality, consider the case where the number of channels D = 1. Consequently,
we can simplify our notation: the initial hidden states H0 ∈ RH×D become h0 ∈ RH , the input
sequence X ∈ RD×N becomes x ∈ RN , and the prefix P ∈ RD×M becomes p ∈ RM . We omit
the superscript (d) denoting the channel index. To differentiate between the hidden states and output
of prefix-tuned S4 (i.e., f([P ,X];H0)1:D,M+1:M+N ) and initial state tuned S4 (i.e., f(X;H⋆

0 )),
we introduce superscripts “PT” and “IST” respectively. The “PT” superscript denotes hidden states
and output of S4 after prefix-tuning, while “IST” indicates those after initial state tuning.

We divide the proposition into two statements:

1. For any prefix p ∈ RM , there exists an initial hidden state h⋆
0 ∈ RH such that the out-

put of S4 after prefix-tuning and that after initial state tuning are identical, i.e., f(x;h⋆
0) ≡

f([p,x];h0)M+1:N+M for all x ∈ RN .

2. Furthermore, assume that
∏

0≤i<j≤H(aj − ai) ̸= 0 and
∏H

k=1 bk ̸= 0. Then the converse (i.e.,
for any h0 ∈ RH , there exists a p⋆ ∈ RM such that f([p⋆,x];h0)M+1:N+M ≡ f(x;h⋆

0) for all
x ∈ RN ) holds if and only if M ≥ H .
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We will first prove the first statement and then proceed to prove the second statement.

Statement 1. The recurrent computation formulation of S4 in (2) implies that for each position i,
the output yi depends solely on the previous hidden state hi−1 and the current input xi. Thus, to
demonstrate that f(x;h⋆

0) ≡ f([p,x];h0)M+1:N+M for all x ∈ RN , it suffices to show that the
hidden state for predicting output yIST

1 equals that for predicting output yPT
M+1, where yIST

1 and yPT
M+1

are outputs corresponding to the input x1 for initial state tuning and prefix-tuning, respectively. In
other words, it is sufficient to show that the initial state of initial-state-tuned model hIST

0 = h⋆
0 is

equal to the (M + 1)-th hidden state of prefix-tuned model hPT
M+1 =

∑M
m=1 A

M−m
Bpm. When

this equality holds, the subsequent hidden states and outputs for both versions of S4 will be identical,
as the input sequence from that point onward is the same. Therefore, We prove the first statement by
letting

h⋆
0 =

M∑
m=1

A
M−m

Bpm.

Statement 2. We aim to investigate the conditions under which there exists a h⋆
0 ∈ RH such that

for any p ∈ RM , f([p⋆,x];h0)M+1:N+M ̸= f(x;h⋆
0). This is equivalent to demonstrating the

existence of h⋆
0 ∈ RH such that

h⋆
0 ̸=

M∑
m=1

A
M−m

Bpm, for all p ∈ RM .

This condition can be further reformulated as

RH \ span(A
M
B,A

M−1
B, . . . ,B) ̸= ∅,

which is equivalent to
span(A

M
B,A

M−1
B, . . . ,B) ⊊ RH . (5)

To determine when this condition holds, we analyze three distinct cases: (i) M < H , (ii) M = H ,
and (iii) M > H .

(Case 1: When M < H). In this scenario, it is obvious that (5) holds. The existence of such a h⋆
0

is guaranteed because the dimension of the span is at most M , which is strictly less than H . This
choice of h⋆

0 ensures that it cannot be represented as a linear combination of the vectors in the span,
thereby establishing the inequality.

(Case 2: When M = H). In this scenario, span(A
M
B,A

M−1
B, . . . ,B) = RH if and only if

(A
M
B,A

M−1
B, . . . ,B) are linearly independent. Note that

det(A
M
B,A

M−1
B, . . . ,B) = det(A

M
,A

M−1
, . . . ,1)

H∏
k=1

bk, (6)

where

det(A
M
,A

M−1
, . . . ,1) = det


aH−1
1 · · · a21 a1 1

aH−1
2 · · · a22 a2 1

...
. . .

...
...

...
aH−1
H · · · a2H aH 1

 (Expand)

= (−1)
H(H−1)

2

H∏
0≤i<j≤H

(aj − ai). (Vandermonde matrix) (7)

Combining (6) and (7) yields

det(A
M
B,A

M−1
B, . . . ,B) = (−1)

H(H−1)
2

H∏
0≤i<j≤H

(aj − ai)

H∏
k=1

bk.
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Therefore, if and only if
∏

1≤i<j≤H(aj − ai) ̸= 0 and
∏H

k=1 bk ̸= 0, we have

det(A
M
B,A

M−1
B, . . . ,B) ̸= 0,

which is both necessary and sufficient for the linear independence of (A
M
B,A

M−1
B, . . . ,B), and

consequently, for the condition in (5) to be satisfied.

(Case 3: When M > H). The analysis presented in case 2 extends naturally to this scenario.

The combination of the three cases above completes the proof of statement 2.

C.4 Optimal Application of LoRA in SSM-based Models

Several studies [16, 19] present findings on Transformers, indicating that applying LoRA to linear
projection matrices yields performance comparable to or marginally superior to that of attention
layers. In contrast, our experimental results on SSMs reveal that applying LoRA to linear projection
matrices is more effective than applying it to S6 (see Table 3). To elucidate this phenomenon, we
examine the influence of updating linear projection matrices on the model’s output.

Notations. For the feasibility of the analysis, we consider a simplified SSM-based architecture
which only consists of the input projection matrix Win ∈ RD×D and the S6 module parameterized by
diagonal state transition matrices {A(d)}Dd=1 with A(d) ∈ RH×H , the weight matrices WB,WC ∈
RH×D for computing input-dependent input transition vectors Bn ∈ RH and output mapping
vectors Cn ∈ RH , the down and up projection matrices W∆,↓ ∈ RD×R,W∆,↑ ∈ RR×D (where
R is the rank) for low-rank weight matrices for computing the input-depdenent step size ∆n =

(∆
(1)
n , . . . ,∆

(D)
n ) ∈ RD, for n = 1, . . . , N . Define WS6 = [W⊤

B ,W⊤
C ,W⊤

∆,↑]
⊤ ∈ R(2H+R)×D.

In the Mamba implementation, WS6 is implemented as the weight matrix of a single linear layer,
referred to as x_proj in the codebase. Therefore, the parameters of the S6 can be formulated as

θ(·; {A}Dd=1,WS6,W∆,↓,Win) = {An,Bn,Cn}Nn=1.

Consider input sequence X = (x1, . . . ,xN ) ∈ RD×N . Let Z = (z1, . . . ,zN ) ∈ RD×N denote the
intermediate output after the input projection. The intermediate output at position n ∈ {1, . . . , N} is

zn = Winxn. (8)

Note that

Bn = WBzn, Cn = WCzn, ∆n = softplus(W∆,↑W∆,↓zn + β∆), (9)

and after discretization, we have

A
(d)

n = exp(∆(d)
n A(d)), Bn = ∆(d)

n Bn = ∆(d)
n WBzn. (10)

Combining (8), (9) and (10) yields

θ(X; {A}Dd=1,WS6,W∆,↓,Win) = {An,Bn,Cn}Nn=1, where (11)

A
(d)

n = exp(∆(d)
n A(d)), Bn = ∆(d)

n WBWinxn, Cn = WCWinxn,

∆n = softplus(W∆,↓W∆,↑Winxn + β∆).

Theoretical Analysis. In the following theorem, we demonstrate that applying LoRA exclusively
to Win is equivalent to applying it to WS6.
Lemma 6 (Detailed Version of Lemma 2). Consider a model consists of an S6 module augmented
with a linear input projection Win ∈ RD×D. For any fine-tuned model where only WS6 is updated to
W S6, there exists Ŵin such that updating only Win to Ŵin yields:

θ(X; {A(d)}Dd=1,W S6,W∆,↓,Win) = θ(X; {A(d)}Dd=1,WS6,W∆,↓, Ŵin) (12)

Proof of Lemma 6. In this proof, we use · to denote the corresponding notations for the model with
only WS6 updated, and use ·̂ to denote the corresponding notations for the model with only Win
updated.
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To demonstrate (12), it is sufficient, according to (11), to find Ŵin that satisfies the following
equations:

WCWin = WCŴin (13)

W∆,↑Win = W∆,↑Ŵin

WBWin = WBŴin.

Since WS6 =

[
WB

WC

W∆,↑

]
, the three conditions (13) can be written as

W S6Win = WS6Ŵin. (14)

By applying Singular Value Decomposition (SVD) to WS6 and
(
WS6 −W S6

)
Win, we obtain:

WS6 = U
[
Σ O(2H+R)×(D−2H−R)

]
V ⊤, (15)(

WS6 −W S6
)
Win = U ′ [Σ′ O(2H+R)×(D−2H−R)

]
V ′⊤,

where U ,U ′ ∈ R(2H+R)×(2H+R), Σ,Σ′ ∈ R(2H+R)×(2H+R), and V ,V ′ ∈ RD×D. The diagonal
elements of Σ and Σ′ are in decreasing order.

We let

Ŵin = V

[
Σ−1U⊤W S6Win

Q

]
, (16)

where Q ∈ R(D−2H−R)×D is an arbitrary matrix to be determined later. Plugging (15) and(16) back
to WS6Ŵin and simplifying results in

WS6Ŵin

= U
[
Σ O(2H+R)×(D−2H−R)

]
V ⊤V

[
Σ−1U⊤W S6Win

Q

]
((15) & (16))

= W S6Win, (Simplifying)

which demonstrates that (14) is satisfied and completes the proof.

D Details of Sec. 5: Selective Dimension Tuning

D.1 Understanding the Roles of State Matrix A, Input Transition Vector B, and Output
Mapping Vector C for a Single Channel in S4 Modules

Problem Setting. Inspired by Zeng and Lee [44]’s theoretical analysis of LoRA’s expressive power,
we adopt a similar framework to explore the expressive potential of various parameters in the S4
model. Specifically, we assume a target model that performs well on the intended task and a frozen
model, which may be either pretrained or randomly initialized. Our goal is to identify a parameter-
efficient method to update the frozen model so that it becomes functionally equivalent to the target
model. In alignment with Zeng and Lee [44], we assume that the frozen model’s capacity is equal
to or exceeds that of the target model. This assumption is based on two main considerations: (i)
analytical tractability, which necessitates that the frozen model must have the potential to match the
functionality of the target model, and (ii) a practical rationale, given that the models typically used in
practice are often overparameterized. Assume that both the target model and the frozen model are
S4, with the target model having a hidden state dimension H⋆ and the frozen model having a hidden
state dimension H ≥ H⋆. Meanwhile, suppose that all the hidden dimensions of both models are
valid, meaning that none of the parameter elements are zero. The target model, frozen model, and the
updated model after tuning the parameters on the frozen model can be formulated using discretized
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parameters A,B,C as follows:

(Target model) f⋆(x)n =

n∑
m=1

C⋆A
m−n

⋆ B⋆xm, where diag(A⋆),B⋆,C⋆ ∈ RH⋆ ,

(Frozen model) f0(x)n =

n∑
m=1

CA
m−n

Bxm, where diag(A),B,C ∈ RH ,

(Updated model) f̂(x)n =

n∑
m=1

ĈÂ
m−n

B̂xm, where diag(Â), B̂, Ĉ ∈ RH .

Parameter Efficiency Analysis on S4. Let PH denote the set of all H ×H permutation matrices.
Given this formulation, we present our first analysis of parameter efficiency for the S4 model in the
following lemma. This analysis is based on the parameters after necessary discretization (A,B,C).
Lemma 3 (Essential Discretized Parameter Set for S4). Consider the parameters after discretization,
i.e., A,B,C. To achieve functional equivalence between the updated model and the target model,
i.e., f̂ ≡ f⋆, it is sufficient to tune the following number of parameters:

minP∈PH

eliminating redundant dimensions︷ ︸︸ ︷∥∥∥[P⊤(diag(A)⊗B ⊗C⊤)
]
(H⋆+1):H

∥∥∥
0
+

aligning used dimensions with target model︷ ︸︸ ︷∥∥∥[P⊤AP
]
1:H⋆,1:H⋆

−A⋆

∥∥∥
0︸ ︷︷ ︸

aligning the state matrix

+
∥∥∥[P⊤(B ⊗C⊤)

]
1:H⋆

−B⋆ ⊗C⊤
⋆

∥∥∥
0︸ ︷︷ ︸

aligning input-output interactions

.

Proof of Lemma 3. The key idea of this proof is straightforward. To facilitate the analysis and update
the frozen model to be equivalent to the target model, we first equalize the number of hidden state
dimensions between the two models. This is achieved by expanding the target model’s A⋆, B⋆, and
C⋆ to match the H hidden state dimensions of the frozen model, padding the additional H −H⋆

dimensions with zeros.

Define ⊗ as the element-wise product. We can express the target model as:

f⋆(x)n =

n∑
m=1

[
C⋆ 0⊤] [A⋆ O

O O

]n−m [
B⋆

0

]
xm

=

n∑
m=1

diag

([
A⋆ O
O O

])n−m ([
C⊤

⋆
0

]
⊗

[
B⋆

0

])
xm

Consider any permutation matrix P ∈ PH . Applying P to permute the frozen model leaves the
model functionally unchanged:

f0(x)n =

n∑
m=1

CA
n−m

Bxm =

n∑
m=1

CP
(
P⊤AP

)n−m
P⊤Bxm

=

n∑
m=1

diag
(
P⊤AP

)n−m (
(P⊤C⊤)⊗ (P⊤B)

)
xm

Therefore, to make the updated model equivalent to the target model, we need to update P⊤AP

to align with
[
A⋆ O
O O

]
, and (P⊤C⊤)⊗ (P⊤B) to align with

[
C⊤

⋆
0

]
⊗

[
B⋆

0

]
. If they are already

matching or partially matched for certain entries, no updates are required for those entries; only the
unmatched entries need to be updated. Then, the required trainable parameters for this permutation
matrix P are:∥∥∥[P⊤(diag(A)⊗B ⊗C⊤)

]
(H⋆+1):H

∥∥∥
0
+
∥∥∥[P⊤AP

]
1:H⋆,1:H⋆

−A⋆

∥∥∥
0
+

∥∥∥[P⊤(B ⊗C⊤)
]
1:H⋆

−B⋆ ⊗C⊤
⋆

∥∥∥
0
.

Optimizing the permutation matrix P ∈ PH yields the desired results.

This lemma highlights the significance of identifying essential hidden state dimensions. The term∥∥∥[P⊤(diag(A)⊗B ⊗C⊤)
]
(H⋆+1):H

∥∥∥
0

underscores the importance of excluding redundant di-
mensions. This can be achieved by either directly removing these dimensions from the state matrix
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A, or by updating B or C to ensure that only the selected hidden state dimensions are utilized during
the input transition or output mapping phases. Once redundant dimensions are filtered out, tuning
only the essential dimensions is sufficient to align the updated model with the target model.

Furthermore, based on the lemma, the roles of the input transition vector B and C⊤ are nearly
identical, as they consistently appear together as the combined term B⊗C⊤, which is also discussed
in Gupta et al. [15]. Consequently, one could opt to tune either B or C exclusively or alternatively,
split the indices into two groups, tuning B for the first group and C for the second. Both vectors
indicate how information from different hidden state dimensions is integrated, whereas A plays a
distinct role, determining how the hidden states are stored.

In practice, instead of directly using the discretized parameters A,B,C, S4 is implemented using the
continuous parameters A,B,C with step size ∆. To provide further practical guidance on parameter
tuning, the following two lemmas analyze the parameter efficiency of continuous parameters under
different discretization methods: Two exemplary methods of discretization are bilinear and zero-order
hold (ZOH):

(Bilinear)
{
A = (I −∆/2A)−1(I +∆/2A)

B = (I −∆/2A)−1 ·∆B,
(ZOH)

{
A = exp(∆A)

B = (∆A)−1(exp(∆A)− I) ·∆B.
(17)

Lemma 7 (Essential Continuous Parameter Set for S4 with Bilinear Discritization). Consider the
parameters before discretization, i.e., A,B,C, and they are discretized via bilinear discretization.
To achieve functional equivalence between the updated model and the target model, i.e., f̂ ≡ f⋆, it is
sufficient to tune the following number of parameters:

minP∈PH

eliminating redundant dimensions︷ ︸︸ ︷∥∥∥[∆P⊤(diag(I +∆/2A)⊗B ⊗C⊤)
]
(H⋆+1):H

∥∥∥
0
+

aligning used dimensions with target model︷ ︸︸ ︷∥∥∥[P⊤AP
]
1:H⋆,1:H⋆

−A⋆

∥∥∥
0︸ ︷︷ ︸

aligning the state matrix

+
∥∥∥[P⊤(B ⊗C⊤)

]
1:H⋆

−B⋆ ⊗C⊤
⋆

∥∥∥
0︸ ︷︷ ︸

aligning input-output interactions

.

Proof of Lemma 7. Combining Lemma 3 and the Bilinear discretization method in (17) yields the
desired results.

Lemma 8 (Essential Continuous Parameter Set for S4 with ZOH Discritization). Consider the
parameters before discretization, i.e., A,B,C, and they are discretized via ZOH discretization. To
achieve functional equivalence between the updated model and the target model, i.e., f̂ ≡ f⋆, it is
sufficient to tune the following number of parameters:

minP∈PH

eliminating redundant dimensions︷ ︸︸ ︷∥∥∥[∆P⊤(diag(exp(∆A)− I)⊗B ⊗C⊤)
]
(H⋆+1):H

∥∥∥
0
+

aligning used dimensions with target model︷ ︸︸ ︷∥∥∥[P⊤AP
]
1:H⋆,1:H⋆

−A⋆

∥∥∥
0︸ ︷︷ ︸

aligning the state matrix

+
∥∥∥[P⊤(B ⊗C⊤)

]
1:H⋆

−B⋆ ⊗C⊤
⋆

∥∥∥
0︸ ︷︷ ︸

aligning input-output interactions

.

Proof of Lemma 8. Combining Lemma 3 and the ZOH discretization method in (17) yields the
desired results.

The insights provided by Lemma 7 and Lemma 8 are the same as those provided by Lemma 3. The
analysis here supports the second step of SDLoRA presented in Sec. 5.

D.2 Extension to Deep S4 Models

Our previous analysis focused on single-channel S4 models. We now expand our investigation to more
complex scenarios involving deep S4 models for both target and frozen architectures, incorporating
D channels and varying layer depths. In this section, we consider two PEFT methods: (i) Selective
Dimension Tuning (SDT) and (ii) SDLoRA. The key distinction between SDT and SDLoRA lies in
their treatment of linear projection matrices. SDT exclusively updates the columns of weight matrices
corresponding to the updatable channels identified through Alg. 1. In contrast, SDLoRA employs
LoRA to modify these matrices. It is worth noting that the linear projection matrix updates in SDT
are inherently low-rank, making it a specialized case of SDLoRA. Our analysis starts with SDT, and
it automatically applies to SDLoRA.
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In this analysis, we assume that each input token xt belongs to X , a bounded subset of RD, and that
the length of the input sequence is finite. Let the frozen model have L layers, and the target model
have L⋆ layers, where L ≥ L⋆. Similar to the technique used in Zeng and Lee [44] and Giannou et al.
[8]. The basic idea of updating the frozen model to match the functionality of the target model is to
utilize every ⌈L/L⋆⌉ layers of the frozen model to approximate every layer of the target model. We
start introducing this proof idea from the simplest case where L⋆ = 1, L = D. In this scenario, we
can simply choose one different channel to tune and maintain all other channels at zero at every layer.
The outputs from the various channels of the deep S4 layers are then combined through a residual
connection. This proof idea inspires us to perform channel selection and make use of the residual
connections, which is the first and third step of SDLoRA presented in Sec. 5. Building on this idea,
we present the following results for when the target model has only L⋆ = 1 layer, and L = D = 2.
Lemma 9. Consider a D-dimensional input sequence. Assume that the linear layers in the model
have linear activation functions. Using SDT, any deep S4 model with H hidden states per channel
and L layers can be updated to accurately present any target one-layer deep S4 model without
residual connections, having a reduced hidden state dimension H⋆ < H . Then this can be achieved
by selectively fine-tuning at most ⌈D/L⌉ channels, H⋆ hidden states, and residual connections at
each layer, while additionally fully fine-tuning the linear projection matrix of the last layer only.

Proof of Lemma 9. In this proof, we start by considering the case where L = D. In this case, we
update a single distinct channel for each layer while setting the other channels to zero. Essentially,
we modify the frozen model so that each layer corresponds to and functions as an individual channel
in the target model. To be more specific, we fully update the first channel in the first layer to match
the first channel of the target model, second channel in the second layer to match the second channel
of the target model, so on and so forth.

For the l-th layer of the frozen model , we append subscript l to all parameters of the deep S4 layer as
introduced in (4). For the d-th channel, corresponding notations are denoted with a superscript (d).
We define the t-th intermediate output token of the l-th deep S4 layer as zl,t ∈ RD. Additionally, the
updated S4 module in layer l is denoted as Ŝ4l, with Ŝ4l,t referring specifically to the sub-function
that outputs the t-th token. Therefore, for the t-th intermediate output token of the l-th deep S4 layer
of the updated model can be written as

zl,t = Ŵl · Ŝ4l,t(zl−1,1, . . . ,zl−1,t) + β̂l + ûl ⊗ zl−1,t

= Ŵl ·


Ŝ4

(1)

l,t (z
(1)
l−1,1, . . . , z

(1)
l−1,t)

...

Ŝ4
(D)

l,t (z
(D)
l−1,1, . . . , z

(D)
l−1,t)

+ β̂l + ûl ⊗ zl−1,t,

where Ŵl ∈ RD×D, β̂l ∈ RD are the updated weight and biases of the l-th layer of the frozen model,
and ûl ∈ RD is the updated residual connection weight of the frozen model.

For layers l < L = D. We follow the steps provided in Sec. 5 to update the l-th layer of the frozen
model such that it functionally equivalent to the l-th channel of the target model. For the reader’s
convinence, we restate our strategies here:

• (Channel Selection) Select D′ ≤ D (D′ = 1 here) important channels for making predictions.
Any channel d that is not utilized will have their corresponding C(d) set to zero, eliminating
the need to update parameters for A(d) and the d-th column of W . To be more specific, we let
C(d) = 0 for all d ̸= l in this scenario.

• (Hidden State Selection) Within the selected channels, select H ′ ≤ H important hidden states.
For any hidden state that is not used within a selected channel d, the corresponding element in
C(d) will be set to zero, thus eliminating the need to tune the corresponding element in A(d). To

be more specific, we can achieve Ŝ4
(l)

l,t (·) = S4
(l)
⋆,t(·) by Lemma 3.

• (Residual and Bias Tuning) Regardless of other selections, SDLoRA consistently tunes the coeffi-
cients of residual connections and biases in linear projections, as these components contain a negli-
gible number of parameters. In this scenario, we let β̂l = 0, ûl = [1 · · · 1︸ ︷︷ ︸

l−1 elements

0 1 · · · 1︸ ︷︷ ︸
D−l elements

]
⊤
.
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This construction yields

zl,t =
[
z
(1)
l−1,t . . . z

(l−1)
l−1,t S4

(l)
⋆,t(z

(l)
l,1, . . . , z

(l)
l,t ) z

(l+1)
l−1,t . . . z

(D)
l−1,t

]⊤
.

Consequently, only the l-th channel is active in the l-th layer, while all other layers function as identity
mappings, propagating the output of the preceding layer without modification.

For layer l = L = D. Based on the setup of the first L− 1 layers, we have

zL−1,t =
[
S4

(1)
⋆,t (x

(1)) · · · S4
(L−1)
⋆,t (x(L−1)) x(L)

]⊤
.

For the last layer, we let

ŴL = W⋆, β̂L = β⋆, ûL = 0,

Ŝ4
(L)

L,t (·) = S4
(L)
⋆,t (·), which can be achieved by Lemma 3.

It is easy to verify that the output of the updated frozen model is identical to the output of the target
model, i.e.,

yt = zL,t = W⋆

[
S4

(1)
⋆,t (x

(1)) · · · S4
(L−1)
⋆,t (x(L−1)) S4

(L)
⋆,t (x

(L))
]⊤

+ β⋆.

Thus far, we have demonstrated that the statement holds when L = D. This analysis can be readily
extended to cases where L ̸= D by tuning ⌈D/L⌉ channels at each layer. For example, when
L = D/2, we can tune two channels per layer using a construction similar to the one described above.
This generalization completes the proof.

Theorem 10 (Expressive Power of SDLoRA on Deep S4 Models). Consider a D-dimensional input
sequence. Assume that the linear layers in the model have linear activation functions. Using SDT, any
deep S4 model with H hidden states per channel and L layers can be updated to accurately present
any target deep S4 model without residual connections, having a reduced hidden state dimension
H⋆ < H , and fewer layers L⋆ < L. This can be achieved by selectively fine-tuning at most ⌈DL⋆/L⌉
channels, H⋆ hidden states, and residual connections at each layer.

Proof of Theorem 10. We update every ⌈D/L⌉ layers of the frozen model to approximate each layer
of the target model. By applying Lemma 9 iteratively to each set of ⌈D/L⌉ layers, we obtain the
desired result.

For reader’s convience, we restate the following statement presented in the main body again here.
Theorem 4 (Expressive Power of SDLoRA on Deep S4 Models). Consider a D-dimensional input
sequence. Assume that the linear layers in the model have linear activation functions. Using SDLoRA,
any deep S4 model with H hidden states per channel and L layers can be updated to accurately
present any target deep S4 model without residual connections, having a reduced hidden state
dimension H⋆ < H , and fewer layers L⋆ < L. This can be achieved by selectively fine-tuning at
most ⌈DL⋆/L⌉ channels, H⋆ hidden states on SSM modules, applying rank-⌈ L

L⋆ ⌉ updates on linear
projection matrices and updating residual connections and biases at each layer, while additionally
fully fine-tuning the linear projection matrix of the last layer only.

Proof of Theorem 4. Since SDT is a special case of SDLoRA, Theorem 10 directly implies the
desired statement.

SDLoRA for Mamba. In the Mamba model, the output mapping vector C is input-dependent,
making it unsuitable for direction modification. Therefore, we focus our channel and hidden state
selection solely on A. For any channels or hidden states that are not selected, we set the corresponding
elements of A to minimal values, effectively setting the associated entries in A to zero. For channels
and states that are updatable, we update the corresponding entries for A. However, since B(d) and
C(d) cannot be directly updated, we modify the corresponding weight matrices that compute these
vectors. Specifically, for updatable channels, we update the corresponding columns in WB and WC ;
for updatable states, we adjust the corresponding rows in these weight matrices.
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Figure 2: Performance comparison between various methods. SDT (Selective Dimension Tuning)
is compared to SDLoRA. Unlike SDLoRA, which applies LoRA to linear projection matrices, SDT
performs sparse tuning on linear projection matrices by updating only the columns corresponding to
channels selected via Alg. 1. Notably, SDT achieves superior performance, matching full fine-tuning
results while using only 25% of the parameters, and even surpassing full fine-tuning with more
parameters. Extending SDT to real datasets is considered a promising future direction for SDLoRA.

D.3 Experiments on Deep S4 Models

Synthetic. For selecting channels and hidden states, we initiate with a warmup learning rate between
1e− 2 and 1e− 3 and conduct 20 warmup iterations. Learning rates are adjusted between 5e− 2,
1e− 2, 5e− 3, and 1e− 3. We apply LoRA with ranks of 2 and 4 to the SSM and with ranks of 4,
8, and 16 to the linear projection matrices. Non-zero states are selected from the sets {4, 8}, and
non-zero channels from {8, 16}.

We additionally consider SDT (Selective Dimension Tuning), which is introduced in Sec. D.2, and
the results are visualized in Fig. 2. We observe that SDT even outperforms SDLoRA in this synthetic
experiments, demonstrating highly promising performance. Unfortunetly, we fail to make it work on
pretraned Mamba, and identify it as one of the promising future directions.

CIFAR-10 [22]. We adhere to the preprocessing steps for CIFAR-10 as outlined by Gu et al. [13].
The LoRA ranks for linear projection matrices are tuned among {1, 2, 4, 8, 16}, and for the S4
component, ranks are set from {1, 2, 4}. Non-zero states are chosen from {8, 12, 16}, and non-zero
channels from {48, 64}. A warmup phase includes 1 epoch with a learning rate of 1e− 2. For linear
projection matrices, LoRA ranks are explored at {2, 4, 8, 16}, and for the SSM, ranks at {2, 4, 8}.
All state dimensions are updated, and channel dimensions considered for updates are {4, 8, 16, 32}.

D.4 Experiments on Pretrained Mamba

Here, we provide more experiment details. Unless otherwise stated, our experiment setting is identical
to Sec. C.1. For LoRA, we consider three different LoRA configurations at each layer, involving
the following matrices which comprise most of the parameters: Wout (output linear projection),
WB,WC (weight matrices for computing input-dependent Bn,Cn), and W∆,↓,W∆,↑ (down and
up projection matrices of LoRA adapters for computing ∆). The three LoRA application methods are:
(i) Wout, WB,WC , and W∆,↓,W∆,↑; (ii) Wout,WB,WC and W∆,↓; and (iii) Wout and W∆,↑.
For SDLoRA, we set the channel freeze ratio at 99% across all scenarios. We select the state freeze
ratio α from the set 75%, 90%, 95% and apply LoRA exclusively to Wout to maintain a comparable
number of trainable parameters. Residual connections and bias are frozen in this experiment. For the
warmup, we employ 500 data batches to fully train the SSM modules prior to dimension selection,
except for the RTE task in GLUE, where we use 250 batches due to its limited dataset size. Note that
the parameters are reverted back after the warmup stage.

29


	Introduction
	Related Works
	Preliminaries of State Space Models
	Benchmarking PEFT Methods on SSM-based Models
	Limitations of Applying Existing Prompt-based Methods on SSMs
	Optimal Application of LoRA in SSM-based Models

	Dimension Selection for Tuning State-Space Models
	Understanding the Roles of State Matrix A, Input Transition Vector B, and Output Mapping Vector C for a Single Channel in S4 Modules
	SSM Dimension Selection Algorithm
	Empirical Evaluation on Deep S4 Models
	Empirical Evaluation on Mamba

	Conclusion & Discussion
	In-depth Introduction of Baselines
	Details of Datasets
	Details of Sec. 4: Benchmarking PEFT Methods on SSM-based Models
	Experiment Setup
	Extended Results on Benchmarking Existing PEFT Methods
	Limitations of Applying Prompt-based Methods on SSMs
	Optimal Application of LoRA in SSM-based Models

	Details of Sec. 5: Selective Dimension Tuning
	Understanding the Roles of State Matrix A, Input Transition Vector B, and Output Mapping Vector C for a Single Channel in S4 Modules
	Extension to Deep S4 Models
	Experiments on Deep S4 Models
	Experiments on Pretrained Mamba


