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Abstract001

Large Language Models (LLMs) have achieved002

remarkable advancements in natural language un-003

derstanding, yet their mammoth size coupled with004

substantial training and inference costs can make005

them difficult to use in environments with limited006

resources. To address both memory and efficiency007

concerns, post-training unstructured sparsity tech-008

niques have emerged focusing on developing opti-009

mal pruning criteria to eliminate redundant weights010

while maintaining performance. However, these011

approaches often rely on manually crafted prun-012

ing criteria, leading to sub-optimal solutions due to013

heuristic oversimplifications. Therefore, we intro-014

duce LLM-Guider, a language-guided symbolic for-015

mula optimization framework that seeks to discover016

optimal pruning criteria through a transparent and017

systematic process. LLM-Guider comprises three018

interrelated stages: example selection, formula gen-019

eration, and formula evaluation, which collectively020

enable the efficient exploration of the formula021

space. In addition, LLM-Guider enables incorpora-022

tion of intuition, domain and mathematical knowl-023

edge through role prompts, hints and in-context024

examples. We also extend the standard set of aggre-025

gation strategies over calibration dataset, resulting026

in never-seen-before pruning metrics. Through ex-027

tensive experiments, we demonstrate that formulas028

discovered through LLM-Guider is able to find for-029

mulas, which outpeform established baselines.030

1 Introduction031

Large Language Models (LLMs) have demon-032

strated remarkable natural language understand-033

ing and generation abilities with unprecedented034

accuracy and depth. The impressive performance035

of LLMs can be largely attributed to their scale,036

which depends on model parameters, dataset size,037

and amount of compute used for training (Kaplan038

et al., 2020). The scaling laws have enabled the039

development of large models such as GPT-175B 040

(Brown et al., 2020) and beyond, boasting hundreds 041

of billions of parameters. Although this has led to 042

the emergence of new abilities in LLMs (Wei et al., 043

2022), the associated extraordinary training and 044

inference costs pose major challenges for practi- 045

cal use, especially in resource-constrained settings. 046

In order to address both memory and efficiency 047

concerns, multiple model compression methods 048

such as sparsity, quantization, and knowledge dis- 049

tillation have been proposed in the literature (Zhu 050

et al., 2024). Model sparsity, either structured or 051

unstructured, essentially focuses on pruning redun- 052

dant weights while balancing performance versus 053

model size trade-off. As model sparsity involves 054

either training from random initialization (Hoang 055

et al., 2023), retraining (Chen et al., 2023a), or 056

extensive iterative pruning (Tanaka et al., 2020), 057

post-training sparsity approaches (Sun et al., 2024; 058

Zhang et al., 2024; Dong et al., 2024; Frantar and 059

Alistarh, 2023) have become increasingly popular. 060

The essence of post-training unstructured spar- 061

sity techniques involves the development of an op- 062

timal pruning criterion that quantifies the signif- 063

icance of each weight, subsequently eliminating 064

those weights that exhibit the lowest significance 065

scores. A vast majority of approaches proposed 066

in the literature require manual crafting of prun- 067

ing criterion by utilizing weight magnitude (Cheng 068

et al., 2024), activations (Sun et al., 2024; Zhang 069

et al., 2024), and first/second order gradient in- 070

formation (Das et al., 2024; Dong et al., 2024). 071

Moreover, development of these approaches relies 072

heavily on the domain knowledge and inductive 073

biases of the researchers, thus requiring extensive 074

trial and error experimentation. In addition, these 075

heuristic approaches are susceptible to oversim- 076

plifications often leading to locally sub-optimal 077

solutions. Therefore, symbolic formula optimiza- 078

tion (e.g., (Dong et al., 2024; Chen et al., 2024; 079

Ruan et al., 2024)) has been gaining ground as 080
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it explores the search space more efficiently us-081

ing search algorithms. PrunerZero (Dong et al.,082

2024) is one such post-training unstructured spar-083

sity technique that employs a genetic algorithm084

to discover new symbolic formulas, outperform-085

ing manually crafted ones. Although genetic algo-086

rithms possess significant optimization capabilities,087

they focus primarily on the evolutionary process,088

but there’s ample opportunity to enhance them by089

leveraging large language models, which have ab-090

sorbed vast mathematical knowledge and intuitions091

and by dynamically tuning their behavior through092

natural language instructions.093

Given the paramount importance of designing094

an optimal pruning criterion, we ask whether it is095

possible to develop a transparent, well-reasoned,096

language-guided discovery process leveraging the097

remarkable abilities of state-of-the-art LLMs. Lan-098

guage, a meticulously structured and codified form099

of human communication, uniquely characterizes100

human evolution, facilitating the preservation and101

exchange of ideas. Emulating humans, LLMs102

trained on high-quality data can store a vast amount103

of scientific knowledge, endowing them with the104

ability to write high-quality code, solve complex105

reasoning problems, and utilize tools out-of-the-106

box or in a zero-shot manner (Abhimanyu Dubey,107

2024). The abilities of LLMs go far beyond stan-108

dard information retrieval: they enable dynamic109

reasoning, which includes learning from evaluated110

examples (Brown et al., 2020) and external context111

(Lewis et al., 2021). With these capabilities, LLMs112

have already been successfully used to guide the113

discovery process in fields such as reward model-114

ing (Ma et al., 2024) and preference optimization115

(Lu et al., 2024). Search algorithms, particularly116

those guided by LLMs, possess reasoning abilities117

along with mathematical and coding skills, ren-118

dering them indispensable for uncovering novel119

solutions and circumventing the local minima that120

frequently hinder heuristic methods.121

To this end, we introduce LLM-Guider, a generic122

language-guided symbolic formula optimization123

framework aimed at discovering optimal pruning124

criterion for post-training unstructured sparsity in125

LLMs. LLM-Guider operates through three dis-126

tinct yet interrelated stages: In the Example Selec-127

tion stage, we identify the most promising k-shot128

seed formulas based on a predefined policy. The129

subsequent Formula Generation stage leverages the130

capabilities of LLMs, geared with customized hints131

and k-shot examples, to produce novel symbolic 132

formulas tailored to our pruning objectives. Finally, 133

in the Formula Evaluation stage, these generated 134

formulas are rigorously assessed for their effective- 135

ness in enhancing model sparsity while balancing 136

the performance trade-off, with the highest-scoring 137

formulas fed back into the generation pool for it- 138

erative refinement. Unlike genetic algorithms, this 139

structured approach not only enables the dynamic 140

exploration of the formula space but also allows for 141

the integration of domain-specific insights through 142

sampled hints, ensuring that our generated formu- 143

las are both novel and relevant. Our contributions 144

are as follows: 145

• We propose LLM-Guider, a generic language- 146

guided symbolic formula optimization frame- 147

work, tailored for discovering optimal pruning 148

criterion for post-training unstructured spar- 149

sity in LLMs. With minimal modifications, 150

LLM-Guider can be re-oriented towards other 151

applications that involve structured discovery 152

of symbolic formulas. 153

• We conduct extensive analysis on post- 154

training unstructured sparsity benchmarks and 155

show that formulas discovered through LLM- 156

Guider outperform considered baselines. 157

• Unlike genetic algorithms, LLM-Guider en- 158

ables the incorporation of domain and math- 159

ematical knowledge through hints and in- 160

context examples. We also extend the aggre- 161

gation strategies over the calibration dataset, 162

resulting in never-seen-before novel pruning 163

metrics. 164

2 Related Work 165

2.1 Sparsity in LLMs 166

Deep neural networks are typically dense and over- 167

parameterized, leading to enormous computation 168

and memory costs. Sparsity has emerged as a lead- 169

ing approach to a creation of more efficient mod- 170

els that function within high-dimensional feature 171

spaces, while simultaneously reducing represen- 172

tational complexity by utilizing only a subset of 173

dimensions at a given time (Hoefler et al., 2021). 174

There are two main forms of sparsity: structured 175

and unstructured sparsity. Structured sparsity fo- 176

cuses on removing larger structures, which for 177

LLMs includes layers (Men et al., 2024), atten- 178

tion heads (Venkataramanan et al., 2023), neurons, 179
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weight blocks, N:M-structures, embeddings, and180

hidden dimensions (Liu et al., 2023; Xia et al.,181

2024; Zhou et al., 2021). On the other hand, un-182

structured sparsity prunes individual weights with-183

out regard to their structural grouping. Unstruc-184

tured sparsity is usually associated with an impor-185

tance matrix, which ranks the weights based on186

certain criteria. To compute concrete importance187

scores, a small calibration dataset drawn from the188

training distribution is first passed through the un-189

pruned model; for each weight, we collect local190

statistics for activations and gradients, aggregate191

them using aggregation functions over the calibra-192

tion set, and feed those aggregated features into193

the pruning formula under test—producing per-194

weight scores that are then sorted and thresholded195

to achieve the target sparsity.196

Different unstructured sparsity algorithms vary197

in how they compute this weight importance ma-198

trix and which input parameters they depend on.199

Standard magnitude pruning (Cheng et al., 2024)200

uses the absolute weight magnitude for pruning201

decisions, based on the intuition that weights with202

smaller magnitudes contribute less to the network’s203

output. However, the outcome of neural network204

is not solely decided by the weight magnitudes.205

Even when a weight has a small magnitude, it can206

significantly contribute to the result if amplified207

by a large activation. To this end, WANDA (Sun208

et al., 2024) and RIA (Zhang et al., 2024) pro-209

posed activation-based unstructured sparsity crite-210

rion leveraging the fact that output activations de-211

pend on both weight and input values. Additionally,212

methods like GBLM-Pruner (Das et al., 2024) and213

Pruner-Zero (Dong et al., 2024) incorporate gradi-214

ents into the pruning decision, often outperforming215

activation-based methods. Large gradients indicate216

that the network is learning and is sensitive to pa-217

rameter changes. SparseGPT (Frantar and Alistarh,218

2023) goes one step further and uses the Hessian219

matrix approximation using activations, which is220

used both in pruning and optimal recovery. The key221

to designing effective unstructured sparsity algo-222

rithms lies in defining an appropriate weight impor-223

tance formula / pruning metric. Research suggests224

that we can move beyond traditional approaches225

based solely on heuristics, instead leveraging a mix-226

ture of inputs to achieve optimal performance. This227

shift allows us to redefine the process as a search228

over possible formulas, enabling a more nuanced229

and data-driven approach to weight importance.230

2.2 Symbolic formula optimization 231

While there is some clarity regarding what an ef- 232

fective sparsity formula should depend on, the spe- 233

cific symbolic formula remains an area of active 234

research. Most works focus on manually crafting 235

weight importance formulas based on heuristics 236

(Dong et al., 2024). However, these heuristic ap- 237

proaches are prone to oversimplifications and can 238

result in locally sub-optimal solutions. Therefore, 239

it is a common practice to use global model-based 240

approaches that explore the search space efficiently 241

using search algorithms. For example, PrunerZero 242

(Dong et al., 2024) employs genetic algorithms 243

to discover unstructured sparsity formulas, which 244

have outperformed existing heuristic-based meth- 245

ods. Similarly, the successful application of genetic 246

algorithms led to the discovery of the Lion opti- 247

mizer (Chen et al., 2023b). Reinforcement learn- 248

ing has also been used to discover novel neural 249

network architectures (Zoph and Le, 2017) and 250

activation functions (Ramachandran et al., 2017). 251

With recent breakthroughs in language modelling, 252

LLMs have been readily used for language guided 253

search process. For instance, LLM-guided search 254

found code functions for reinforcement learning 255

rewards in Eureka (Ma et al., 2024). A similar ap- 256

proach was also used to discover novel alignment 257

formulas in (Lu et al., 2024). Search algorithms, 258

in general and LLMs in particular entail tremen- 259

dous potential for the discovery of novel solutions 260

while avoiding local minima arising from heuristic 261

approaches. Search algorithms, particularly those 262

guided by LLMs, possess reasoning abilities along 263

with mathematical and coding skills, making them 264

valuable assets in discovering novel solutions while 265

avoiding local minima that often challenge heuris- 266

tic approaches. 267

2.3 Prompting 268

LLMs effectively learn the nuances of token distri- 269

butions, significantly improving their capability to 270

tackle a diverse array of tasks during training (Wei 271

et al., 2022). However, to fully optimize LLM per- 272

formance, it is necessary to use inference-time op- 273

timization techniques, applied after the model has 274

been trained. Inference-time optimization involves 275

both enhancing the prompt itself and employing 276

techniques that solve problems using a multi-step 277

approach. Role prompts (Kong et al., 2024) al- 278

low the LLM to adjust its style and focus on spe- 279

cific target tasks. Additionally, K-shot prompting 280
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(Brown et al., 2020) enables models to learn from281

in-context information and generate output based282

on examples. Progressive hints in prompts (Zheng283

et al., 2023) have also been shown to enhance the284

reasoning abilities of LLMs. A common practice285

is to decompose problems into a Chain of Thought286

(CoT) (Wei et al., 2023), which allows the model to287

solve complex tasks step-by-step. Furthermore, the288

Reflection approach (Schulhoff et al., 2024) is often289

used to assess and improve generated responses. To290

go beyond the sequential nature of CoT, the Tree291

of Thoughts (ToT) (Yao et al., 2023) introduces292

a combination of parallel and sequential genera-293

tion. To optimize LLM usage during inference, it is294

beneficial to enhance prompts with hints and cues295

for additional in-context information. Single-turn296

prompting under-performs compared to multi-step297

approaches, which effectively decompose prompts298

and verify each step’s outcome. In conclusion, com-299

plex tasks require advanced prompting techniques300

for optimal results.301

3 Methodology302

LLM-Guider is a generic symbolic formula opti-303

mization framework that operates through three304

distinct stages: k-shot example selection, formula305

generation, and evaluation. It leverages the capabil-306

ities of a large language model (LLM) to efficiently307

explore the formula space. In the subsequent sub-308

sections, we provide detailed descriptions of each309

component within our framework.310

3.1 Example selection311

3.1.1 Search Space Design312

The search space design serves as the foundation313

for LLM-guided formula discovery. The search314

space is composed of weights, activations, and gra-315

dients, combined with operations that define the316

pruning metrics. Weight magnitudes are derived317

from the target LLM while activations and gradi-318

ents are aggregated over a small calibration dataset319

to capture the required input statistics. Table 1320

provides an overview of extended list of aggrega-321

tion strategies over the calibration dataset. LLM-322

Guider treats these strategies as input variables and323

autonomously determines which operations to use324

when generating the symbolic formulas through325

iterative refinement. Unless constrained by hints,326

the operations over these input variables are not set327

explicitly.328

The pruning metric defines the importance of329

weights in a model, determining which are retained 330

or pruned under a predefined sparsity threshold. 331

These formulas are represented as code with a pre- 332

defined header, ensuring seamless integration and 333

execution during the evaluation process. This cod- 334

ing approach also mitigates format conversion is- 335

sues, promoting consistency and efficiency. 336

3.1.2 K-Shot Example Selection 337

Seed formulas are essential for initializing the prun- 338

ing metric discovery process. They provide a struc- 339

tured foundation for subsequent LLM-guided ex- 340

ploration by defining initial examples. Seed formu- 341

las are provided upfront as code, including classical 342

magnitude pruning and custom formulas that com- 343

bine weights, activations and gradients. These for- 344

mulas are evaluated to obtain initial performance 345

scores. By serving as a reliable starting point, seed 346

formulas guide LLMs to generate meaningful prun- 347

ing metrics and uphold a consistent response for- 348

mat like the role of correct examples in few-shot 349

learning. 350

K-shot examples are an integral component of 351

the LLM-guided framework. As they are included 352

in the prompt, they enable in-context learning, 353

supporting reasoning and iterative improvement. 354

These examples form the foundation of each gen- 355

eration, helping the model build upon past suc- 356

cesses and avoid previous failures. Each genera- 357

tion relies on k-shot examples, as described in (Liu 358

et al., 2021), to enhance performance and draw con- 359

clusions based on previously evaluated attempts. 360

Specifically: 361

• Generation References: Each new genera- 362

tion references examples from the pool of past 363

attempts. 364

• Evaluation Scores: Examples are paired with 365

their evaluation scores, providing clear in- 366

sights into what strategies worked and which 367

failed. 368

• Selection Strategies: The process for select- 369

ing k-examples includes: 370

– Randomly selecting and expanding past 371

node 372

– Selecting best node 373

– Using the node from the previous evalua- 374

tion and iteratively expanding it 375

– Selecting the top-n individual genera- 376

tions with the best scores to form a con- 377

text. 378
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Figure 1: Overview of LLM-Guider, a generic framework for symbolic formula optimization, tailored for discovering
optimal pruning criterion for post-training unstructured sparsity in LLMs: In the Example Selection stage, we
identify the most promising k-shot seed formulas based on a predefined policy. The subsequent Formula Generation
stage leverages the capabilities of LLMs, geared with customized hints and k-shot examples, to produce novel
symbolic formulas tailored to our pruning objectives. In the Formula Evaluation stage, these generated formulas are
rigorously assessed and the highest-scoring formulas fed back into the generation pool for iterative refinement.

Category Names

Weights W

Activations Amean, AM2 , Asum_squares, Asum_abs, Amin, Amax, Amean_abs, Amean_squared, Avariance, Astd

Gradients Gmean, GL1, GL2, GM2 , Gsum_gradients, Gsum_abs_gradients, Gsum_gradients_squared, Gmean_gradients, Gmean_abs_gradients, Gmean_gradients_squared, Gvariance, Gstd

Table 1: An exhaustive list of input variables employed in the search space design of LLM-Guider. More explanation
on these can be found in Appendix B.

Initially, no prior generations exist to select as379

examples. Following existing work (Chen et al.,380

2024), an initial pool of predefined examples is381

created and evaluated. In our approach, we employ382

a single Wanda (Sun et al., 2024) seed formula383

that simultaneously integrates both weights and384

activations.385

Through carefully managed k-shot example se-386

lection, the framework achieves a balance between387

exploration of new possibilities and refinement of388

high-performing approaches. This balance ensures389

efficient and effective formula discovery, leverag-390

ing prior knowledge while encouraging innovation.391

3.2 LLM-Based Symbolic Formula392

Generation393

Unstructured sparsity operates by applying a mask394

over weights. To enhance this process, an LLM395

is employed to generate new weight importance 396

matrices through prompting. The LLM leverages 397

prior knowledge and dynamic reasoning to create 398

novel sparsity formulas. 399

The prompts used to guide the LLM consist of 400

the following structured parts: 401

• Role Prompt: Defines the task’s context to 402

focus the LLM on pruning objectives. 403

• Instruction Prompt: Provides formula objec- 404

tives, emphasizing interpretability and detail- 405

ing available variables (e.g., weights, activa- 406

tions, and gradients aggregations). For each 407

variable, the size of its corresponding tensor is 408

explicitly provided, ensuring the LLM can ap- 409

propriately handle and process the input data. 410

• k-Shot Examples: Supplies selected past 411
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evaluations, enabling reasoning over previ-412

ously successful attempts.413

• Hints: Offers domain-specific guidance414

such as normalization or variable constraints.415

These are sampled from a predefined pool us-416

ing strategies like uniform or weighted sam-417

pling and are included as textual parts of the418

prompt.419

The LLM combines its internal knowledge with420

external hints and reasoning over k-shot exam-421

ples to dynamically generate innovative and effec-422

tive sparsity formulas. By integrating structured423

prompts and leveraging both static and dynamic424

knowledge sources, the LLM serves as a central425

tool for discovering novel sparsity formulas. This426

approach ensures adaptability and precision in tai-427

loring pruning strategies to specific tasks.428

When symbolic formulas are generated in natu-429

ral language by the LLM, there is no guarantee that430

the resulting code will compile or execute correctly.431

This introduces a need for a robust validation and432

refinement process to ensure the correctness of the433

formulas. Validation begins by running the gen-434

erated formulas in an evaluation environment. If435

execution fails, a debugging phase is triggered.436

The LLM mimics human debugging by verify-437

ing tensor sizes step-by-step. It augments the initial438

code with a detailed walk through of tensor sizes439

to identify inconsistencies or unsupported opera-440

tions. Once inconsistencies are detected, the LLM441

attempts to fix the issues using the gathered size442

information. This process is repeated for a prede-443

fined number of attempts to validate and correct444

the formulas efficiently.445

The iterative validation and refinement process446

ensures the correctness of LLM-generated formu-447

las. By systematically identifying and resolv-448

ing errors, this approach guarantees reliable sym-449

bolic pruning metrics, even when initially created450

through natural language.451

3.3 Formula evaluation452

Having generated a candidate formula, the next453

step is to evaluate its performance so that LLM-454

Guider can quantify its effectiveness.455

In our framework, we execute evaluation in three456

sequential steps. We begin by applying the selected457

symbolic formula to our precomputed statistics on458

weights, activations, and gradients, which yields a459

binary mask indicating which parameters to keep460

and which to remove. Using this mask, we prune 461

the language model by zeroing out the designated 462

weights, producing a leaner version of the network 463

without any additional fine-tuning. Finally, we 464

assess the pruned model’s quality by running it on 465

the WikiText-2 test set and recording its perplexity. 466

Once a formula has been evaluated and its perfor- 467

mance recorded, it is added to the k-shot example 468

pool for the next generation. This cycle of formula 469

generation, evaluation, and example selection re- 470

peats until the predefined number of iterations has 471

been completed. 472

4 Discovered formulas 473

Our framework introduces novel pruning met- 474

rics derived through extensive experimentation on 475

SmolLM2 model, described in details Appendix 476

A. Specifically, it discovered two effective pruning 477

formulas: 478

1. Best-performing formula: This metric com- 479

bines normalization of activations, average 480

gradients, and gradient variability, hypothe- 481

sizing that parameters with higher gradient 482

variability play critical roles in optimization. 483

It was found using by modifying LLM-Guider 484

baseline configuration with diversity hints 485

I = W ⊙
[(

Amean−Amin
Amax−Amin+ϵ

)
G⊤

mean+Gmean_abs

]
⊙ Gstd 486

2. Second-best formula: This formulation em- 487

phasizes gradient variability weighted by pa- 488

rameter magnitudes, capturing critical gradi- 489

ent variations essential for robust generaliza- 490

tion across models. 491

I = |W | ⊙Gstd (1) 492

Traditional pruning methods typically rely on 493

mean or magnitude-based norms of activations and 494

gradients, potentially overlooking parameters ex- 495

hibiting small but significant variability. In con- 496

trast, our proposed metrics explicitly incorporate 497

statistical aggregates such as gradient standard de- 498

viation and activation variability, capturing param- 499

eter importance more effectively. However, it is 500

important to note that metrics specifically tailored 501

to individual models may risk overfitting, thereby 502

diminishing their generalization capabilities. 503
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Interestingly, the best-performing formula can be504

interpreted as a generalized version of the second-505

best performing one, as it adds an additional factor506

to the multiplication. This observation suggests507

that, while the LLM was capable of discovering508

a formula with a simple structure, it also demon-509

strated the ability to refine and extend it into a more510

complex and effective form.511

5 Experiments512

5.1 Evaluation Setup513

We evaluate the effectiveness of LLM-guided514

search using a single model family. Specifically,515

we employ SmolLM2-135M (Allal et al., 2025), a516

lightweight language model designed for computa-517

tionally efficient experimentation. We use GPT-4o518

mini for formula generation. Model performance519

is assessed across two primary benchmarks. For520

language modeling, we report perplexity on the521

WikiText2 test set (Merity et al., 2016). For zero-522

shot generalization, we evaluate using EleutherAI’s523

LM Harness framework, which includes a diverse524

set of tasks: ARC Challenge (Clark et al., 2018),525

ARC Easy (Clark et al., 2018), BoolQ (Clark et al.,526

2019), OpenBookQA (Mihaylov et al., 2018), RTE527

(Wang et al., 2019), Winogrande (Sakaguchi et al.,528

2019), and HellaSwag (Zellers et al., 2019).529

LLM-Guider is designed to search for optimal530

symbolic formulas, with 100 generations evaluated531

per run. Our empirical studies, using greedy search,532

led to the framework configuration in Appendix D.533

The process takes approximately 1.5 hours on a534

single A100 GPU.535

To compute pruning metrics at each iteration, we536

rely on weights, activations, and gradients. Multi-537

ple statistical measures for these components are538

precomputed, as detailed in the Appendix B. We539

used a fixed set of 128 calibration samples to pre-540

compute statistics, following the Wanda approach541

(Sun et al., 2024), which ensures that the unstruc-542

tured sparsity stabilizes at optimal levels. During543

each iteration, an importance matrix is computed544

on the basis of these statistics and pruning is ap-545

plied based on sparsity ratio of 0.5. Similarly to546

previous work, we use the first fragment of the C4547

dataset (Raffel et al., 2023) for evaluation.548

5.2 Baselines549

We evaluated the performance of our approach550

against several established pruning methods, each551

taking advantage of different combinations of552

weights, activations, and gradients to compute 553

pruning metrics. Specifically, we compare with 554

standard magnitude pruning, Wanda (Sun et al., 555

2024), which incorporates both weights and acti- 556

vations, PrunerZero (Dong et al., 2024), a state- 557

of-the-art method based on weights and gradients, 558

and SparseGPT (Frantar and Alistarh, 2023), which 559

uses Hessian information and error propagation to 560

update weights. We also include the dense (un- 561

pruned) model corresponding to a sparsity ratio of 562

0 as an additional baseline. These diverse baselines 563

serve as strong reference points, allowing us to as- 564

sess the effectiveness of our LLM-guided search 565

in achieving greater sparsity while preserving com- 566

petitive model performance. 567

5.3 Language Modeling 568

Language modeling using perplexity allows for as- 569

sessing how well a language model predicts a given 570

sequence of text. Lower perplexity indicates that 571

the model assigns higher probabilities to the correct 572

words, meaning that it has a better understanding of 573

the language and generates a more fluent, coherent 574

text. 575

Based on the results in Table 2, LLM-Guider 576

outperforms all other methods that do not require 577

weight updates. Furthermore, it significantly nar- 578

rows the performance gap with SparseGPT, the 579

only algorithm that utilizes weight updates. This 580

trend aligns with findings from the Pruner-Zero ex- 581

periment conducted on OPT models, which showed 582

that SparseGPT remains competitive with Pruner- 583

Zero due to its ability to update weights. Notably, 584

the same experiment also demonstrated that the 585

performance difference between these methods be- 586

comes more pronounced in models with smaller 587

parameter counts. 588

Method Weight Update Perplexity ↓

LLM-Guider ✗ 30.99
Magnitude ✗ 536.44
Wanda ✗ 31.66
Pruner-Zero ✗ 33.09

SparseGPT ✓ 30.83

Table 2: Comparison to state-of-the-art methods for
SmolLM2-135M using WikiText-2 perplexity with spar-
sity ratio 0.5

7



Method arc_challenge arc_easy boolq hellaswag openbookqa rte winogrande Mean ↑

Dense 26.11 ± 1.28 54.12 ± 1.02 42.91 ± 0.87 34.94 ± 0.48 22.00 ± 1.85 51.26 ± 3.01 51.62 ± 1.40 40.42 ± 1.42

LLM Guider (Best) 20.73 ± 1.18 44.07 ± 1.02 62.42 ± 0.85 29.82 ± 0.46 16.80 ± 1.67 57.04 ± 2.98 51.22 ± 1.40 40.30 ± 1.37
LLM Guider (Second) 21.08 ± 1.19 43.90 ± 1.02 62.35 ± 0.85 29.82 ± 0.46 16.40 ± 1.66 56.32 ± 2.99 51.22 ± 1.40 40.16 ± 1.37
PrunerZero 19.03 ± 1.15 44.19 ± 1.02 56.73 ± 0.87 29.81 ± 0.46 15.60 ± 1.62 54.51 ± 3.00 49.88 ± 1.41 38.54 ± 1.36
Wanda 20.65 ± 1.18 43.10 ± 1.02 60.92 ± 0.85 29.94 ± 0.46 15.20 ± 1.61 51.26 ± 3.01 51.14 ± 1.40 38.89 ± 1.36
SparseGPT 20.82 ± 1.19 41.67 ± 1.01 57.89 ± 0.86 30.56 ± 0.46 17.00 ± 1.68 52.71 ± 3.01 50.83 ± 1.41 38.78 ± 1.37
Magnitude 19.37 ± 1.15 35.56 ± 0.98 38.01 ± 0.85 26.78 ± 0.44 13.20 ± 1.52 54.51 ± 3.00 50.59 ± 1.41 34.00 ± 1.34

Table 3: Accuracies (%) of SmoLM2-135M for 7 zero-shot tasks with unstructured 50% sparsity.

5.4 Zero-shot evaluation589

We conducted extensive experiments to evaluate590

our model across a comprehensive suite of zero-591

shot commonsense reasoning tasks. As detailed in592

Table 3, evaluation performance varied consider-593

ably across tasks. Notably, on benchmarks such as594

BoolQ, RTE, and WinoGrande, our method demon-595

strated a clear advantage over baseline approaches.596

With an overall mean accuracy of 40.30%, our ap-597

proach significantly surpasses the Wanda baseline598

(38.89%) and compares favorably with the Dense599

model (40.42%). These findings underscore that600

pruning based on a calibration dataset yields robust601

improvements in downstream performance.602

6 Conclusions603

In this work, we introduced LLM-Guider, a604

language-guided symbolic formula optimization605

framework designed to discover novel pruning met-606

rics for post-training unstructured sparsity in large607

language models. Our approach leverages the ad-608

vanced reasoning and coding capabilities of mod-609

ern LLMs by combining domain-specific hints, k-610

shot examples, and iterative refinement to generate611

and validate effective symbolic formulas.612

Through extensive experiments on SmolLM2-613

135M, we demonstrated that the formulas dis-614

covered by LLM-Guider outperform traditional615

methods such as magnitude pruning, Wanda, and616

PrunerZero—achieving lower perplexity and com-617

petitive zero-shot performance without requiring618

weight updates. Detailed ablation studies further619

highlighted the impact of key components such as620

seed formula selection, generation strategy, and621

tailored hint configurations, confirming that even622

minimal human guidance can significantly enhance623

the discovery process.624

Our best-performing formula, which integrates625

normalized activation statistics, average gradients,626

and gradient variability, underscores the benefit of627

incorporating richer statistical aggregates beyond628

standard mean-based approaches. Overall, LLM- 629

Guider not only advances the state-of-the-art in 630

unstructured sparsity but also establishes a trans- 631

parent and systematic methodology for symbolic 632

optimization in neural networks. 633

Limitations 634

With extensive experiments and analysis, we show 635

that LLM-Guider framework can successfully find 636

a state-of-the-art solution in the SmolLM2-135M 637

model at 50% sparsity. This highlights the potential 638

of language guided search for automating sparsity- 639

aware optimization. Applying our method to dif- 640

ferent model sizes or pruning levels may require 641

re-running the framework to find an optimal solu- 642

tion tailored to each specific configuration. Future 643

work could explore what factors enable solutions to 644

transfer across models and sparsity levels, helping 645

reduce the need for full recalibration. 646
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A Ablations 841

LLM Guider framework consists of multiple variable parts including seed formula, k-shot generation 842

strategy, role prompt and hints. In this section we run multiple ablations on baseline to find the most 843

impactful decisions. Each of ablation is run of 100 generations, using 128 calibration samples with 844

sparsity ratio 0.5 and SmolLM2-135M-Instruct (Allal et al., 2025) as model. Each generation denotes one 845

complete selection–generation–evaluation loop. We repeat experiment over 3 seeds. 846

First, we begin by investigating the effect of different seed formulas. We consider rules that utilize 847

weights, activations, and gradients. Empirically, we have found that the activation-based metric, Wanda, 848

outperforms other options. The most unstable runs occur when using the magnitude formula alone. Our 849

results from Table 4 indicate that formulas combining at least two of the three components—weights, 850

activations, and gradients—significantly outperform using magnitude alone. Additionally, incorporating 851

PrunerZero into the magnitude formula leads to notable improvements in evaluation metrics. Among all the 852

metrics tested, Wanda is mathematically the most complex, as it involves matrix and row multiplications, 853

whereas other approaches rely on simpler element-wise operations. We hypothesize that this added 854

complexity enables the framework to generate more effective formulas. 855

Seed formulas Best Perplexity Mean Perplexity

Wanda (baseline) 31.02 31.74 ± 1.01
Magnitude + PrunerZero 31.02 32.69 ± 2.89

PrunerZero 31.30 35.10 ± 6.59
Magnitude + Wanda + PrunerZero 31.03 39.58 ± 7.49

Magnitude 31.30 82.67 ± 85.82

Table 4: Comparison of seed formulas for LLM-Guider init on SmolLM2-135M (WikiText-2, sparsity 0.5)

We analyze the impact of different generation strategies based on Table 5. Specifically, we evaluate 856

best node selection, random node selection, selection of top individual generations, and a uniform strategy 857

that combines best, random, and previous nodes. An effective generation strategy should allow the LLM 858

to explore both high-quality and diverse solutions. Our results indicate that, under the tested conditions, 859

diversity plays a crucial role. Notably, random node generation slightly outperforms the best node selection 860

strategy, highlighting the importance of exploration in addition to exploitation. 861

Generation Strategy best_metric mean_metric

Best Node (baseline) 31.02 31.74 ± 1.01
Random Node 31.02 31.54 ± 0.90

Top 8 Individual Generations 31.02 35.73 ± 8.17
Uniform (Best, Random, Previous Node) 31.50 33.71 ± 2.25

Table 5: Comparison of generation strategies

Role prompting is the technique to tune style of the reponse. In our experiments from Table 6 we have 862

found that using role prompt did not improve generation results. We hyphotesize that style of response is 863

not that important for task of unstructured sparsity formula generation. 864

Use role prompt Best Perplexity Mean Perplexity

✓ (baseline) 31.02 31.74 ± 1.01
✗ 31.02 31.44 ± 0.74

Table 6: Ablation on role prompt
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Hints are part of the framework that allows for the most flexibility and enhancements. As observed865

in Table 7, in our experimental regime, the strongest results were achieved by limiting the number of866

variables that the LLM uses. When it comes to top-generation diversity, only hints allowed improvements867

over the best metrics; however, they were unstable in repetitive runs. This indicates that the usage of868

limiting hints was critical for stability, whereas adding hints that promote variety was beneficial for869

improving the best metrics. Notably, the selection of hints focusing on complexity or employing complex870

operations, such as matrix multiplication alone, performed the poorest.871

Hint Configuration Best Perplexity Mean Perplexity

Baseline 31.02 31.74 ± 1.01
Diversity Hints 30.99 36.54 ± 5.46
Limiting Hints 31.02 31.21 ± 0.16

Domain-specific 32.04 32.54 ± 0.48
Inspiration Hints 34.31 35.31 ± 1.20
Reflection Hints 32.70 36.60 ± 6.25

Diversity and Limiting 31.30 34.31 ± 2.76
Reflection and Limiting 31.30 35.75 ± 7.71

Reflection and Domain-specific 31.02 36.19 ± 5.48
Complexity Hints 31.30 168.14 ± 234.32

Matrix Multiplication Hints 36.93 288.08 ± 217.70
Matrix Operations Correctness Hints 41.93 203.53 ± 273.89

Table 7: Ablation comparing effectiveness of different hint configurations

We studied the impact of retries during the debugging phase. This experiment demonstrates the872

effectiveness of debugging in improving formula generation. Our results, as shown in Table 8, indicate873

that including debugging retries enhances formula generation. This is a natural conclusion, as it leads to a874

higher number of correctly generated formulas. However, in our study, the impact was particularly visible875

when up to five retries were performed for each generation.876

Number of Retries Best Perplexity Mean Perplexity

0 31.02 31.38 ± 0.41
2 (baseline) 31.02 31.74 ± 1.01

5 31.02 31.21 ± 0.16

Table 8: Performance comparison on number of retries during debugging

B Inputs877

Below, we provide an extensive list of variables used in LLM-Guider. These variables collectively define878

the search space for the LLM to find an optimal pruning metric that effectively sparsifies the target LLM879

with minimal loss in performance.880

Weights W : Weights of the model.881

Activations882

• Amean: Mean of the activations across batches.883

• AM2 : Accumulated sum of squared differences from the mean (used for calculating variance).884

• Asum_squares: Sum of squares of the activations along the batch dimension.885

• Asum_abs: Sum of absolute values of the activations along the batch dimension.886

• Amin: Minimum value of the activations across batches.887

• Amax: Maximum value of the activations across batches.888
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• Amean_abs: Mean of the absolute values of the activations along the batch dimension. 889

• Amean_squared: Mean of the squared values of the activations along the batch dimension. 890

• Avariance: Variance of the activations, computed from the accumulated sum of squared differences 891

M2. 892

• Astd: Standard deviation of the activations, computed as the square root of the variance. 893

Gradients 894

• Gmean: Mean of the gradients across batches. 895

• GL1: L1 norm of the gradients across batches. 896

• GL2: L2 norm of the gradients across batches. 897

• GM2 : Accumulated sum of squared differences from the mean (used for calculating variance). 898

• Gsum_gradients: Sum of gradients along the batch dimension. 899

• Gsum_abs_gradients: Sum of absolute values of the gradients along the batch dimension. 900

• Gsum_gradients_squared: Sum of squares of the gradients along the batch dimension. 901

• Gmean_gradients: Mean of the gradients along the batch dimension. 902

• Gmean_abs_gradients: Mean of the absolute values of the gradients along the batch dimension. 903

• Gmean_gradients_squared: Mean of the squared gradients along the batch dimension. 904

• Gvariance: Variance of the gradients, computed from the accumulated sum of squared differences M2. 905

• Gstd: Standard deviation of the gradients, computed as the square root of the variance. 906

C Baseline Pruning Metrics 907

1. Magnitude Pruning 908

The pruning score for each weight is 909

Sij =
∣∣Wij

∣∣ 910

where 911

• Wij is the weight of the connection from neuron j (input) to neuron i (output). 912

2. SparseGPT 913

SparseGPT approximates the influence of each weight via the inverse Hessian: 914

Sij =
W 2

ij[
(H−1)

]
ij

915

where 916

• H is the (approximate) Hessian matrix of the loss w.r.t. the weights. 917

• (H−1) denotes the diagonal of the inverse Hessian. 918
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3. Wanda919

Wanda scores combine weight magnitude with activation norm:920

Sij =
∣∣Wij

∣∣ × ∥Xj∥2921

where922

• Xj ∈ RN is the vector of activations at neuron j over a calibration dataset.923

• ∥ · ∥2 denotes the Euclidean norm.924

4. PrunerZero925

PrunerZero combines squared magnitude with scaled gradient magnitude:926

Sij = W 2
ij × σ

(
|Gij |

)
, σ(x) =

x−min(x)

max(x)−min(x)
927

where928

• Gij =
∂L

∂Wij
is the gradient of the loss L w.r.t. Wij .929

• σ(·) denotes min–max normalization applied across all absolute gradient values.930

D LLM-Guider Baseline931

Configuration Details
Number of Rounds 100

Number of Retries 2

Eureka Seed 0

Temperature 1

Use Role Prompt true

K Examples wanda

Sparsity Ratio 0.5

Number of Samples 128

Model HuggingFaceTB/SmolLM2-135M-Instruct

Evaluator Seed 0

Hint Sampler Type UniformSampler

Generation Strategy Sampler Type UniformGenerationStrategySampler

Generation Strategy Value Type BestNodeStrategy

Hint Options LimitVariablesHint (value: 2)
LimitVariablesHint (value: 3)
LimitVariablesHint (value: 4)
ComplementMatchingSizeHint
UnaryOperationsHint
TryDifferentHint
AlternativePerspectiveHint

Table 9: Configuration Table

14



E Hints 932

Hints Overview: This document provides a summary of the various hint types used to guide a problem- 933

solving process. The hints are organized into several categories that serve distinct purposes: generating 934

candidate solutions via ensemble reasoning, inspiring creative approaches, reflecting on previous attempts, 935

adjusting the complexity of approaches, imposing problem constraints, and addressing domain-specific 936

challenges. 937

Dynamic Hints 938

These hints use an internal LLM to dynamically generate multiple candidate solutions and refine them 939

through debate and synthesis. 940

• CandidateSelectionHint: Generates several candidate solutions for a given problem and then uses a 941

two-step process (first, detailed reasoning for each candidate; second, synthesis of the best solution) 942

to present the top candidate. This hint leverages step-by-step reasoning to help decide among multiple 943

possible approaches. 944

• DebateHint: Uses a debate format where opinions are generated from multiple historical figures (or 945

personas) about a problem. It then synthesizes these divergent views into a concise, best possible 946

solution. This hint is ideal when diverse perspectives might reveal hidden insights into the solution. 947

Inspiration Hints 948

These hints are designed to spark creativity by encouraging the solver to leverage domain-specific expertise 949

or past successful strategies, including a prompt for getting inspired by prior approaches. 950

• AlgebraHint: Invokes algebraic techniques and principles, helping the solver to explore a variety of 951

functions and relationships. 952

• GameTheoryHint: Draws on strategic decision-making principles from game theory, offering 953

insights into competitive or adversarial problem settings. 954

• RLRewardFunctionsHint: Utilizes ideas from reinforcement learning, specifically around optimiz- 955

ing reward functions, to enhance solution approaches. 956

Reflection Hints 957

These hints encourage self-assessment and iterative improvement by prompting the solver to reflect on 958

both successes and mistakes from prior attempts. 959

• ReflectAndAvoidErrorsHint: Advises reflecting on previous mistakes and learning from them to 960

prevent similar errors in future attempts. 961

• IdentifySuccessesHint: Encourages the solver to pinpoint what worked well in earlier attempts and 962

to replicate those successful strategies. 963

• CombineIdeasHint: Suggests merging two or more ideas to create a novel approach that benefits 964

from multiple insights. 965

• SeekDeeperInsightsHint: Prompts the solver to look beyond the obvious and uncover hidden 966

connections or deeper insights in the problem. 967

Complexity Hints 968

These hints help modulate the difficulty of the approach, suggesting strategies to simplify or to challenge 969

the solver with more rigorous methods. 970

• TryEasyHint: Suggests trying a simpler or more straightforward approach. 971
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• TryEasierHint: Recommends opting for an even simpler variant than before, reducing complexity972

further.973

• TryHardHint: Encourages the solver to explore a challenging strategy that might lead to more974

robust solutions.975

• TryHarderHint: Urges the solver to ramp up the challenge, trying an approach more difficult than976

previous attempts.977

Diversity Hints978

These descriptions are designed to provide clear guidance on how each hint supports diverse thinking and979

problem-solving techniques.980

• TryDifferentHint: Advises experimenting with a markedly different strategy compared to those981

used before, potentially uncovering a new pathway.982

• AlternativePerspectiveHint: Invites the solver to rethink the problem from a different angle,983

potentially revealing non-obvious solutions.984

Limiting Hints985

These hints impose specific constraints to ensure the solution remains within manageable or expected986

bounds.987

• LimitVariablesHint: Directs the solver to restrict the formula to exactly a given number of variables,988

ensuring simplicity or focus in the formulation.989

Sparsity Domain Specific Hints990

Aimed primarily at problems involving matrix operations or when matching output dimensions is critical,991

these hints are tailored specifically to the task at hand.992

• ComplementMatchingSizeHint: Advises a step-by-step approach: develop a novel formula, eval-993

uate its size against an expected matrix size, and only proceed if sizes match—otherwise, adjust994

operations accordingly.995

• MatrixMultiplicationHint: Recommends using matrix multiplication by listing potential compo-996

nents with their respective output shapes, ensuring that the final result meets the expected dimensions.997

• NormalizationHint: Suggests incorporating normalization techniques (e.g., Min-Max Scaling,998

Z-Score, L2 Norm, L1 Norm) to refine the solution.999

• ResultDimensionHint: Ensures that the final formula outputs a matrix or result with the precise1000

dimensions required by the problem.1001

• UnaryOperationsHint: Proposes using one or more unary operations (such as squaring, negation,1002

absolute value, logarithm, exponential, etc.) to adjust the result, emphasizing the importance of1003

adapting operations to meet the problem’s dimensional needs.1004

F Licenses1005

The datasets and tools used in this research are licensed as follows: WikiText is licensed under the Creative1006

Commons Attribution-ShareAlike 3.0 (CC BY-SA 3.0) License, allowing free use, modification, and1007

distribution, with the requirement for attribution and the condition that derivatives must be shared under1008

the same license. SmolLM2 is licensed under the Apache License 2.0, permitting free use, modification,1009

and distribution, including for commercial purposes, provided that attribution is given, a notice of changes1010

is included, and there is no warranty. C4 is licensed under the Open Data Commons Attribution License1011

(ODC-BY), allowing for free use, modification, and distribution, with the condition that attribution is1012
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provided and compliance with the terms of the original Common Crawl dataset is ensured. Additionally, 1013

EleutherAI’s LM Evaluation Harness is open-source software released under the MIT License, which 1014

permits free use, modification, and distribution, including for commercial purposes, with attribution 1015

required and no warranty. 1016
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