LLM-Guider: A Language-Guided Discovery of Symbolic Pruning Metrics
for Post-Training Sparsity in LLMs

Anonymous EMNLP submission

Abstract

Large Language Models (LLMs) have achieved
remarkable advancements in natural language un-
derstanding, yet their mammoth size coupled with
substantial training and inference costs can make
them difficult to use in environments with limited
resources. To address both memory and efficiency
concerns, post-training unstructured sparsity tech-
niques have emerged focusing on developing opti-
mal pruning criteria to eliminate redundant weights
while maintaining performance. However, these
approaches often rely on manually crafted prun-
ing criteria, leading to sub-optimal solutions due to
heuristic oversimplifications. Therefore, we intro-
duce LLM-Guider, a language-guided symbolic for-
mula optimization framework that seeks to discover
optimal pruning criteria through a transparent and
systematic process. LLM-Guider comprises three
interrelated stages: example selection, formula gen-
eration, and formula evaluation, which collectively
enable the efficient exploration of the formula
space. In addition, LLM-Guider enables incorpora-
tion of intuition, domain and mathematical knowl-
edge through role prompts, hints and in-context
examples. We also extend the standard set of aggre-
gation strategies over calibration dataset, resulting
in never-seen-before pruning metrics. Through ex-
tensive experiments, we demonstrate that formulas
discovered through LLM-Guider is able to find for-
mulas, which outpeform established baselines.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable natural language understand-
ing and generation abilities with unprecedented
accuracy and depth. The impressive performance
of LLMs can be largely attributed to their scale,
which depends on model parameters, dataset size,
and amount of compute used for training (Kaplan
et al., 2020). The scaling laws have enabled the

development of large models such as GPT-175B
(Brown et al., 2020) and beyond, boasting hundreds
of billions of parameters. Although this has led to
the emergence of new abilities in LLMs (Wei et al.,
2022), the associated extraordinary training and
inference costs pose major challenges for practi-
cal use, especially in resource-constrained settings.
In order to address both memory and efficiency
concerns, multiple model compression methods
such as sparsity, quantization, and knowledge dis-
tillation have been proposed in the literature (Zhu
et al., 2024). Model sparsity, either structured or
unstructured, essentially focuses on pruning redun-
dant weights while balancing performance versus
model size trade-off. As model sparsity involves
either training from random initialization (Hoang
et al., 2023), retraining (Chen et al., 2023a), or
extensive iterative pruning (Tanaka et al., 2020),
post-training sparsity approaches (Sun et al., 2024;
Zhang et al., 2024; Dong et al., 2024; Frantar and
Alistarh, 2023) have become increasingly popular.

The essence of post-training unstructured spar-
sity techniques involves the development of an op-
timal pruning criterion that quantifies the signif-
icance of each weight, subsequently eliminating
those weights that exhibit the lowest significance
scores. A vast majority of approaches proposed
in the literature require manual crafting of prun-
ing criterion by utilizing weight magnitude (Cheng
et al., 2024), activations (Sun et al., 2024; Zhang
et al., 2024), and first/second order gradient in-
formation (Das et al., 2024; Dong et al., 2024).
Moreover, development of these approaches relies
heavily on the domain knowledge and inductive
biases of the researchers, thus requiring extensive
trial and error experimentation. In addition, these
heuristic approaches are susceptible to oversim-
plifications often leading to locally sub-optimal
solutions. Therefore, symbolic formula optimiza-
tion (e.g., (Dong et al., 2024; Chen et al., 2024;
Ruan et al., 2024)) has been gaining ground as

it explores the search space more efficiently us-
ing search algorithms. PrunerZero (Dong et al.,
2024) is one such post-training unstructured spar-
sity technique that employs a genetic algorithm
to discover new symbolic formulas, outperform-
ing manually crafted ones. Although genetic algo-
rithms possess significant optimization capabilities,
they focus primarily on the evolutionary process,
but there’s ample opportunity to enhance them by
leveraging large language models, which have ab-
sorbed vast mathematical knowledge and intuitions
and by dynamically tuning their behavior through
natural language instructions.

Given the paramount importance of designing
an optimal pruning criterion, we ask whether it is
possible to develop a transparent, well-reasoned,
language-guided discovery process leveraging the
remarkable abilities of state-of-the-art LLMs. Lan-
guage, a meticulously structured and codified form
of human communication, uniquely characterizes
human evolution, facilitating the preservation and
exchange of ideas. Emulating humans, LLMs
trained on high-quality data can store a vast amount
of scientific knowledge, endowing them with the
ability to write high-quality code, solve complex
reasoning problems, and utilize tools out-of-the-
box or in a zero-shot manner (Abhimanyu Dubey,
2024). The abilities of LLMs go far beyond stan-
dard information retrieval: they enable dynamic
reasoning, which includes learning from evaluated
examples (Brown et al., 2020) and external context
(Lewis et al., 2021). With these capabilities, LLMs
have already been successfully used to guide the
discovery process in fields such as reward model-
ing (Ma et al., 2024) and preference optimization
(Lu et al., 2024). Search algorithms, particularly
those guided by LLMs, possess reasoning abilities
along with mathematical and coding skills, ren-
dering them indispensable for uncovering novel
solutions and circumventing the local minima that
frequently hinder heuristic methods.

To this end, we introduce LLM-Guider, a generic
language-guided symbolic formula optimization
framework aimed at discovering optimal pruning
criterion for post-training unstructured sparsity in
LLMs. LLM-Guider operates through three dis-
tinct yet interrelated stages: In the Example Selec-
tion stage, we identify the most promising k-shot
seed formulas based on a predefined policy. The
subsequent Formula Generation stage leverages the
capabilities of LLMs, geared with customized hints

and k-shot examples, to produce novel symbolic
formulas tailored to our pruning objectives. Finally,
in the Formula Evaluation stage, these generated
formulas are rigorously assessed for their effective-
ness in enhancing model sparsity while balancing
the performance trade-off, with the highest-scoring
formulas fed back into the generation pool for it-
erative refinement. Unlike genetic algorithms, this
structured approach not only enables the dynamic
exploration of the formula space but also allows for
the integration of domain-specific insights through
sampled hints, ensuring that our generated formu-
las are both novel and relevant. Our contributions
are as follows:

* We propose LLM-Guider, a generic language-
guided symbolic formula optimization frame-
work, tailored for discovering optimal pruning
criterion for post-training unstructured spar-
sity in LLMs. With minimal modifications,
LLM-Guider can be re-oriented towards other
applications that involve structured discovery
of symbolic formulas.

* We conduct extensive analysis on post-
training unstructured sparsity benchmarks and
show that formulas discovered through LLM-
Guider outperform considered baselines.

* Unlike genetic algorithms, LLM-Guider en-
ables the incorporation of domain and math-
ematical knowledge through hints and in-
context examples. We also extend the aggre-
gation strategies over the calibration dataset,
resulting in never-seen-before novel pruning
metrics.

2 Related Work
2.1 Sparsity in LLMs

Deep neural networks are typically dense and over-
parameterized, leading to enormous computation
and memory costs. Sparsity has emerged as a lead-
ing approach to a creation of more efficient mod-
els that function within high-dimensional feature
spaces, while simultaneously reducing represen-
tational complexity by utilizing only a subset of
dimensions at a given time (Hoefler et al., 2021).
There are two main forms of sparsity: structured
and unstructured sparsity. Structured sparsity fo-
cuses on removing larger structures, which for
LLMs includes layers (Men et al., 2024), atten-
tion heads (Venkataramanan et al., 2023), neurons,

weight blocks, N:M-structures, embeddings, and
hidden dimensions (Liu et al., 2023; Xia et al.,
2024; Zhou et al., 2021). On the other hand, un-
structured sparsity prunes individual weights with-
out regard to their structural grouping. Unstruc-
tured sparsity is usually associated with an impor-
tance matrix, which ranks the weights based on
certain criteria. To compute concrete importance
scores, a small calibration dataset drawn from the
training distribution is first passed through the un-
pruned model; for each weight, we collect local
statistics for activations and gradients, aggregate
them using aggregation functions over the calibra-
tion set, and feed those aggregated features into
the pruning formula under test—producing per-
weight scores that are then sorted and thresholded
to achieve the target sparsity.

Different unstructured sparsity algorithms vary
in how they compute this weight importance ma-
trix and which input parameters they depend on.
Standard magnitude pruning (Cheng et al., 2024)
uses the absolute weight magnitude for pruning
decisions, based on the intuition that weights with
smaller magnitudes contribute less to the network’s
output. However, the outcome of neural network
is not solely decided by the weight magnitudes.
Even when a weight has a small magnitude, it can
significantly contribute to the result if amplified
by a large activation. To this end, WANDA (Sun
et al., 2024) and RIA (Zhang et al., 2024) pro-
posed activation-based unstructured sparsity crite-
rion leveraging the fact that output activations de-
pend on both weight and input values. Additionally,
methods like GBLM-Pruner (Das et al., 2024) and
Pruner-Zero (Dong et al., 2024) incorporate gradi-
ents into the pruning decision, often outperforming
activation-based methods. Large gradients indicate
that the network is learning and is sensitive to pa-
rameter changes. SparseGPT (Frantar and Alistarh,
2023) goes one step further and uses the Hessian
matrix approximation using activations, which is
used both in pruning and optimal recovery. The key
to designing effective unstructured sparsity algo-
rithms lies in defining an appropriate weight impor-
tance formula / pruning metric. Research suggests
that we can move beyond traditional approaches
based solely on heuristics, instead leveraging a mix-
ture of inputs to achieve optimal performance. This
shift allows us to redefine the process as a search
over possible formulas, enabling a more nuanced
and data-driven approach to weight importance.

2.2 Symbolic formula optimization

While there is some clarity regarding what an ef-
fective sparsity formula should depend on, the spe-
cific symbolic formula remains an area of active
research. Most works focus on manually crafting
weight importance formulas based on heuristics
(Dong et al., 2024). However, these heuristic ap-
proaches are prone to oversimplifications and can
result in locally sub-optimal solutions. Therefore,
it is a common practice to use global model-based
approaches that explore the search space efficiently
using search algorithms. For example, PrunerZero
(Dong et al., 2024) employs genetic algorithms
to discover unstructured sparsity formulas, which
have outperformed existing heuristic-based meth-
ods. Similarly, the successful application of genetic
algorithms led to the discovery of the Lion opti-
mizer (Chen et al., 2023b). Reinforcement learn-
ing has also been used to discover novel neural
network architectures (Zoph and Le, 2017) and
activation functions (Ramachandran et al., 2017).
With recent breakthroughs in language modelling,
LLMs have been readily used for language guided
search process. For instance, LLM-guided search
found code functions for reinforcement learning
rewards in Eureka (Ma et al., 2024). A similar ap-
proach was also used to discover novel alignment
formulas in (Lu et al., 2024). Search algorithms,
in general and LLMs in particular entail tremen-
dous potential for the discovery of novel solutions
while avoiding local minima arising from heuristic
approaches. Search algorithms, particularly those
guided by LLMs, possess reasoning abilities along
with mathematical and coding skills, making them
valuable assets in discovering novel solutions while
avoiding local minima that often challenge heuris-
tic approaches.

2.3 Prompting

LLMs effectively learn the nuances of token distri-
butions, significantly improving their capability to
tackle a diverse array of tasks during training (Wei
et al., 2022). However, to fully optimize LLM per-
formance, it is necessary to use inference-time op-
timization techniques, applied after the model has
been trained. Inference-time optimization involves
both enhancing the prompt itself and employing
techniques that solve problems using a multi-step
approach. Role prompts (Kong et al., 2024) al-
low the LLM to adjust its style and focus on spe-
cific target tasks. Additionally, K-shot prompting

(Brown et al., 2020) enables models to learn from
in-context information and generate output based
on examples. Progressive hints in prompts (Zheng
et al., 2023) have also been shown to enhance the
reasoning abilities of LLMs. A common practice
is to decompose problems into a Chain of Thought
(CoT) (Wei et al., 2023), which allows the model to
solve complex tasks step-by-step. Furthermore, the
Reflection approach (Schulhoff et al., 2024) is often
used to assess and improve generated responses. To
go beyond the sequential nature of CoT, the Tree
of Thoughts (ToT) (Yao et al., 2023) introduces
a combination of parallel and sequential genera-
tion. To optimize LLM usage during inference, it is
beneficial to enhance prompts with hints and cues
for additional in-context information. Single-turn
prompting under-performs compared to multi-step
approaches, which effectively decompose prompts
and verify each step’s outcome. In conclusion, com-
plex tasks require advanced prompting techniques
for optimal results.

3 Methodology

LLM-Guider is a generic symbolic formula opti-
mization framework that operates through three
distinct stages: k-shot example selection, formula
generation, and evaluation. It leverages the capabil-
ities of a large language model (LLLM) to efficiently
explore the formula space. In the subsequent sub-
sections, we provide detailed descriptions of each
component within our framework.

3.1 Example selection
3.1.1 Search Space Design

The search space design serves as the foundation
for LLM-guided formula discovery. The search
space is composed of weights, activations, and gra-
dients, combined with operations that define the
pruning metrics. Weight magnitudes are derived
from the target LLM while activations and gradi-
ents are aggregated over a small calibration dataset
to capture the required input statistics. Table 1
provides an overview of extended list of aggrega-
tion strategies over the calibration dataset. LLM-
Guider treats these strategies as input variables and
autonomously determines which operations to use
when generating the symbolic formulas through
iterative refinement. Unless constrained by hints,
the operations over these input variables are not set
explicitly.

The pruning metric defines the importance of

weights in a model, determining which are retained
or pruned under a predefined sparsity threshold.
These formulas are represented as code with a pre-
defined header, ensuring seamless integration and
execution during the evaluation process. This cod-
ing approach also mitigates format conversion is-
sues, promoting consistency and efficiency.

3.1.2 K-Shot Example Selection

Seed formulas are essential for initializing the prun-
ing metric discovery process. They provide a struc-
tured foundation for subsequent LLM-guided ex-
ploration by defining initial examples. Seed formu-
las are provided upfront as code, including classical
magnitude pruning and custom formulas that com-
bine weights, activations and gradients. These for-
mulas are evaluated to obtain initial performance
scores. By serving as a reliable starting point, seed
formulas guide LLMs to generate meaningful prun-
ing metrics and uphold a consistent response for-
mat like the role of correct examples in few-shot
learning.

K-shot examples are an integral component of
the LLM-guided framework. As they are included
in the prompt, they enable in-context learning,
supporting reasoning and iterative improvement.
These examples form the foundation of each gen-
eration, helping the model build upon past suc-
cesses and avoid previous failures. Each genera-
tion relies on k-shot examples, as described in (Liu
et al., 2021), to enhance performance and draw con-
clusions based on previously evaluated attempts.
Specifically:

* Generation References: Each new genera-
tion references examples from the pool of past
attempts.

* Evaluation Scores: Examples are paired with
their evaluation scores, providing clear in-
sights into what strategies worked and which
failed.

* Selection Strategies: The process for select-
ing k-examples includes:

— Randomly selecting and expanding past
node

— Selecting best node

— Using the node from the previous evalua-
tion and iteratively expanding it

— Selecting the top-n individual genera-
tions with the best scores to form a con-
text.

Seed formulas

Seed1

Formula 1 ->10.3

Seed Formula
Evaluation

Seed2

Formula 2 ->10.9

\4

l Gen5 | Formula 7 ->10.0

Y

K shot formula selection (5th iteration)

Random/Best

Node Previous Node

Gen5

Selected
variant

Individual
Generations

Seed1

lSeedZ

Gen5

Formula evaluation

Perplexity
Evaluation

Pruned
LLM

LLM

Final formula

&

K-shot examples for Gen7

Seed2

Formula 2 ->10.9

Gen1

Formula 3 -> 10.1

Gen2

Formula 4 -> 10.3

Formula generation

Prompt

LLM
Formula
Generation

A

Validation »

Final formula

Role prompt

Problem description

K-shot examples

Instruction

Pruning T
formula

‘I' Hint

| Debugging I

Figure 1: Overview of LLM-Guider, a generic framework for symbolic formula optimization, tailored for discovering
optimal pruning criterion for post-training unstructured sparsity in LLMs: In the Example Selection stage, we
identify the most promising k-shot seed formulas based on a predefined policy. The subsequent Formula Generation
stage leverages the capabilities of LL.Ms, geared with customized hints and k-shot examples, to produce novel
symbolic formulas tailored to our pruning objectives. In the Formula Evaluation stage, these generated formulas are
rigorously assessed and the highest-scoring formulas fed back into the generation pool for iterative refinement.

Category ‘ Names
Weights ‘I/V

Activations ‘ Amean; A2, Asum,squares: Asum_abs, Amin, Amax; Amean_abs Amean,squareds Avariance; Astd

Gradients | Gumean, GL1, GL2, Gar2, Gsum_gradients; Gisum_abs_gradientss Gisum_gradients_squared; Gimean_gradientss Gimean_abs_gradients; Gmean_gradients_squared; Ghariance; Gt

Table 1: An exhaustive list of input variables employed in the search space design of LLM-Guider. More explanation
on these can be found in Appendix B.

Initially, no prior generations exist to select as
examples. Following existing work (Chen et al.,
2024), an initial pool of predefined examples is
created and evaluated. In our approach, we employ
a single Wanda (Sun et al., 2024) seed formula
that simultaneously integrates both weights and
activations.

Through carefully managed k-shot example se-
lection, the framework achieves a balance between
exploration of new possibilities and refinement of
high-performing approaches. This balance ensures
efficient and effective formula discovery, leverag-
ing prior knowledge while encouraging innovation.

3.2 LLM-Based Symbolic Formula
Generation

Unstructured sparsity operates by applying a mask
over weights. To enhance this process, an LLM

is employed to generate new weight importance
matrices through prompting. The LLM leverages
prior knowledge and dynamic reasoning to create
novel sparsity formulas.

The prompts used to guide the LLM consist of
the following structured parts:

* Role Prompt: Defines the task’s context to
focus the LLM on pruning objectives.

* Instruction Prompt: Provides formula objec-
tives, emphasizing interpretability and detail-
ing available variables (e.g., weights, activa-
tions, and gradients aggregations). For each
variable, the size of its corresponding tensor is
explicitly provided, ensuring the LLM can ap-
propriately handle and process the input data.

* k-Shot Examples: Supplies selected past

evaluations, enabling reasoning over previ-
ously successful attempts.

* Hints: Offers domain-specific guidance
such as normalization or variable constraints.
These are sampled from a predefined pool us-
ing strategies like uniform or weighted sam-
pling and are included as textual parts of the
prompt.

The LLM combines its internal knowledge with
external hints and reasoning over k-shot exam-
ples to dynamically generate innovative and effec-
tive sparsity formulas. By integrating structured
prompts and leveraging both static and dynamic
knowledge sources, the LLM serves as a central
tool for discovering novel sparsity formulas. This
approach ensures adaptability and precision in tai-
loring pruning strategies to specific tasks.

When symbolic formulas are generated in natu-
ral language by the LLM, there is no guarantee that
the resulting code will compile or execute correctly.
This introduces a need for a robust validation and
refinement process to ensure the correctness of the
formulas. Validation begins by running the gen-
erated formulas in an evaluation environment. If
execution fails, a debugging phase is triggered.

The LLM mimics human debugging by verify-
ing tensor sizes step-by-step. It augments the initial
code with a detailed walk through of tensor sizes
to identify inconsistencies or unsupported opera-
tions. Once inconsistencies are detected, the LLM
attempts to fix the issues using the gathered size
information. This process is repeated for a prede-
fined number of attempts to validate and correct
the formulas efficiently.

The iterative validation and refinement process
ensures the correctness of LLM-generated formu-
las. By systematically identifying and resolv-
ing errors, this approach guarantees reliable sym-
bolic pruning metrics, even when initially created
through natural language.

3.3 Formula evaluation

Having generated a candidate formula, the next
step is to evaluate its performance so that LLM-
Guider can quantify its effectiveness.

In our framework, we execute evaluation in three
sequential steps. We begin by applying the selected
symbolic formula to our precomputed statistics on
weights, activations, and gradients, which yields a
binary mask indicating which parameters to keep

and which to remove. Using this mask, we prune
the language model by zeroing out the designated
weights, producing a leaner version of the network
without any additional fine-tuning. Finally, we
assess the pruned model’s quality by running it on
the WikiText-2 test set and recording its perplexity.

Once a formula has been evaluated and its perfor-
mance recorded, it is added to the k-shot example
pool for the next generation. This cycle of formula
generation, evaluation, and example selection re-
peats until the predefined number of iterations has
been completed.

4 Discovered formulas

Our framework introduces novel pruning met-
rics derived through extensive experimentation on
SmolLM2 model, described in details Appendix
A. Specifically, it discovered two effective pruning
formulas:

1. Best-performing formula: This metric com-
bines normalization of activations, average
gradients, and gradient variability, hypothe-
sizing that parameters with higher gradient
variability play critical roles in optimization.
It was found using by modifying LLM-Guider
baseline configuration with diversity hints

I =Wo [(M)Glean‘i'c;’mean_abs © Gstd

max —Amin+€

2. Second-best formula: This formulation em-
phasizes gradient variability weighted by pa-
rameter magnitudes, capturing critical gradi-
ent variations essential for robust generaliza-
tion across models.

I =|W|0O G ey

Traditional pruning methods typically rely on
mean or magnitude-based norms of activations and
gradients, potentially overlooking parameters ex-
hibiting small but significant variability. In con-
trast, our proposed metrics explicitly incorporate
statistical aggregates such as gradient standard de-
viation and activation variability, capturing param-
eter importance more effectively. However, it is
important to note that metrics specifically tailored
to individual models may risk overfitting, thereby
diminishing their generalization capabilities.

Interestingly, the best-performing formula can be
interpreted as a generalized version of the second-
best performing one, as it adds an additional factor
to the multiplication. This observation suggests
that, while the LLM was capable of discovering
a formula with a simple structure, it also demon-
strated the ability to refine and extend it into a more
complex and effective form.

S Experiments

5.1 Evaluation Setup

We evaluate the effectiveness of LLM-guided
search using a single model family. Specifically,
we employ SmolLM2-135M (Allal et al., 2025), a
lightweight language model designed for computa-
tionally efficient experimentation. We use GPT-40
mini for formula generation. Model performance
is assessed across two primary benchmarks. For
language modeling, we report perplexity on the
WikiText2 test set (Merity et al., 2016). For zero-
shot generalization, we evaluate using EleutherAI’s
LM Harness framework, which includes a diverse
set of tasks: ARC Challenge (Clark et al., 2018),
ARC Easy (Clark et al., 2018), BoolQ (Clark et al.,
2019), OpenBookQA (Mihaylov et al., 2018), RTE
(Wang et al., 2019), Winogrande (Sakaguchi et al.,
2019), and HellaSwag (Zellers et al., 2019).

LLM-Guider is designed to search for optimal
symbolic formulas, with 100 generations evaluated
per run. Our empirical studies, using greedy search,
led to the framework configuration in Appendix D.
The process takes approximately 1.5 hours on a
single A100 GPU.

To compute pruning metrics at each iteration, we
rely on weights, activations, and gradients. Multi-
ple statistical measures for these components are
precomputed, as detailed in the Appendix B. We
used a fixed set of 128 calibration samples to pre-
compute statistics, following the Wanda approach
(Sun et al., 2024), which ensures that the unstruc-
tured sparsity stabilizes at optimal levels. During
each iteration, an importance matrix is computed
on the basis of these statistics and pruning is ap-
plied based on sparsity ratio of 0.5. Similarly to
previous work, we use the first fragment of the C4
dataset (Raffel et al., 2023) for evaluation.

5.2 Baselines

We evaluated the performance of our approach
against several established pruning methods, each
taking advantage of different combinations of

weights, activations, and gradients to compute
pruning metrics. Specifically, we compare with
standard magnitude pruning, Wanda (Sun et al.,
2024), which incorporates both weights and acti-
vations, PrunerZero (Dong et al., 2024), a state-
of-the-art method based on weights and gradients,
and SparseGPT (Frantar and Alistarh, 2023), which
uses Hessian information and error propagation to
update weights. We also include the dense (un-
pruned) model corresponding to a sparsity ratio of
0 as an additional baseline. These diverse baselines
serve as strong reference points, allowing us to as-
sess the effectiveness of our LLM-guided search
in achieving greater sparsity while preserving com-
petitive model performance.

5.3 Language Modeling

Language modeling using perplexity allows for as-
sessing how well a language model predicts a given
sequence of text. Lower perplexity indicates that
the model assigns higher probabilities to the correct
words, meaning that it has a better understanding of
the language and generates a more fluent, coherent
text.

Based on the results in Table 2, LLM-Guider
outperforms all other methods that do not require
weight updates. Furthermore, it significantly nar-
rows the performance gap with SparseGPT, the
only algorithm that utilizes weight updates. This
trend aligns with findings from the Pruner-Zero ex-
periment conducted on OPT models, which showed
that SparseGPT remains competitive with Pruner-
Zero due to its ability to update weights. Notably,
the same experiment also demonstrated that the
performance difference between these methods be-
comes more pronounced in models with smaller
parameter counts.

Method Weight Update Perplexity |
LLM-Guider X 30.99
Magnitude X 536.44
Wanda X 31.66
Pruner-Zero X 33.09
SparseGPT v 30.83

Table 2: Comparison to state-of-the-art methods for
SmolLM2-135M using WikiText-2 perplexity with spar-
sity ratio 0.5

Method arc_challenge arc_easy boolq hellaswag openbookqa rte winogrande Mean 1
Dense 26.11 £ 1.28 54.12 +1.02 42.91 £ 0.87 34.94 £ 0.48 22.00 £ 1.85 51.26 £ 3.01 51.62 £ 1.40 40.42 £ 1.42
LLM Guider (Best) ~ 20.73 £ 1.18 44.07 £ 1.02 62.42 £ 0.85 29.82 £ 0.46 16.80 & 1.67 57.04 +2.98 51.22 + 1.40 40.30 + 1.37

LLM Guider (Second) 21.08 + 1.19 43.90 £ 1.02 62.35 £ 0.85 29.82 £ 0.46 16.40 &= 1.66 56.32 +2.99 51.22 + 1.40 40.16 + 1.37

PrunerZero
Wanda

SparseGPT
Magnitude

19.03 £ 1.15 44.19 + 1.02 56.73 £ 0.87 29.81 £ 0.46 15.60 & 1.62 54.51 + 3.00 49.88 £ 1.41 38.54 £+ 1.36
20.65 £ 1.18 43.10 £ 1.02 60.92 4 0.85 29.94 £ 0.46 15.20 &= 1.61 51.26 £ 3.01 51.14 &+ 1.40 38.89 £ 1.36
20.82 £ 1.19 41.67 £ 1.01 57.89 4 0.86 30.56 £ 0.46 17.00 & 1.68 52.71 £ 3.01 50.83 &+ 1.41 38.78 £ 1.37
19.37 £ 1.15 35.56 £ 0.98 38.01 = 0.85 26.78 £ 0.44 13.20 & 1.52 54.51 £ 3.00 50.59 + 1.41 34.00 £+ 1.34

Table 3: Accuracies (%) of SmoLM2-135M for 7 zero-shot tasks with unstructured 50% sparsity.

5.4 Zero-shot evaluation

We conducted extensive experiments to evaluate
our model across a comprehensive suite of zero-
shot commonsense reasoning tasks. As detailed in
Table 3, evaluation performance varied consider-
ably across tasks. Notably, on benchmarks such as
BoolQ, RTE, and WinoGrande, our method demon-
strated a clear advantage over baseline approaches.
With an overall mean accuracy of 40.30%, our ap-
proach significantly surpasses the Wanda baseline
(38.89%) and compares favorably with the Dense
model (40.42%). These findings underscore that
pruning based on a calibration dataset yields robust
improvements in downstream performance.

6 Conclusions

In this work, we introduced LLM-Guider, a
language-guided symbolic formula optimization
framework designed to discover novel pruning met-
rics for post-training unstructured sparsity in large
language models. Our approach leverages the ad-
vanced reasoning and coding capabilities of mod-
ern LLMs by combining domain-specific hints, k-
shot examples, and iterative refinement to generate
and validate effective symbolic formulas.

Through extensive experiments on SmolLM?2-
135M, we demonstrated that the formulas dis-
covered by LLM-Guider outperform traditional
methods such as magnitude pruning, Wanda, and
PrunerZero—achieving lower perplexity and com-
petitive zero-shot performance without requiring
weight updates. Detailed ablation studies further
highlighted the impact of key components such as
seed formula selection, generation strategy, and
tailored hint configurations, confirming that even
minimal human guidance can significantly enhance
the discovery process.

Our best-performing formula, which integrates
normalized activation statistics, average gradients,
and gradient variability, underscores the benefit of
incorporating richer statistical aggregates beyond

standard mean-based approaches. Overall, LLM-
Guider not only advances the state-of-the-art in
unstructured sparsity but also establishes a trans-
parent and systematic methodology for symbolic
optimization in neural networks.

Limitations

With extensive experiments and analysis, we show
that LLM-Guider framework can successfully find
a state-of-the-art solution in the SmolLM2-135M
model at 50% sparsity. This highlights the potential
of language guided search for automating sparsity-
aware optimization. Applying our method to dif-
ferent model sizes or pruning levels may require
re-running the framework to find an optimal solu-
tion tailored to each specific configuration. Future
work could explore what factors enable solutions to
transfer across models and sparsity levels, helping
reduce the need for full recalibration.

References

Abhinav Pandey Ab-hishek Kadian Ahmad Al-Dahle
Aiesha Letman Akhil Mathur Alan Schelten Amy
Yang Angela Fan et al. Abhimanyu Dubey, Abhi-
nav Jauhri. 2024. The llama 3 herd of models.

Loubna Ben Allal, Anton Lozhkov, Elie Bak-
ouch, Gabriel Martin Bldzquez, Guilherme Penedo,
Lewis Tunstall, Andrés Marafioti, Hynek Kydlicek,
Agustin Piqueres Lajarin, Vaibhav Srivastav, Joshua
Lochner, Caleb Fahlgren, Xuan-Son Nguyen, Clé-
mentine Fourrier, Ben Burtenshaw, Hugo Larcher,
Haojun Zhao, Cyril Zakka, Mathieu Morlon, Colin
Raffel, Leandro von Werra, and Thomas Wolf. 2025.
Smollm2: When smol goes big — data-centric training
of a small language model.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,

http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2502.02737
http://arxiv.org/abs/2502.02737
http://arxiv.org/abs/2502.02737

Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Tianyi Chen, Luming Liang, DING Tianyu, Zhihui Zhu,
and Ilya Zharkov. 2023a. Otov2: Automatic, generic,
user-friendly. In International Conference on Learn-
ing Representations.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real,
Kaiyuan Wang, Yao Liu, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V.
Le. 2023b. Symbolic discovery of optimization algo-
rithms.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real,
Kaiyuan Wang, Hieu Pham, Xuanyi Dong, Thang Lu-
ong, Cho-Jui Hsieh, Yifeng Lu, et al. 2024. Symbolic
discovery of optimization algorithms. Advances in
neural information processing systems, 36.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi.
2024. A survey on deep neural network pruning-
taxonomy, comparison, analysis, and recommenda-
tions.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge.

Rocktim Jyoti Das, Mingjie Sun, Liqun Ma, and
Zhiqgiang Shen. 2024. Beyond size: How gradients
shape pruning decisions in large language models.

Peijie Dong, Lujun Li, Zhenheng Tang, Xiang Liu,
Xinglin Pan, Qiang Wang, and Xiaowen Chu. 2024.
Pruner-zero: Evolving symbolic pruning metric from
scratch for large language models.

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-
sive language models can be accurately pruned in
one-shot.

Duc NM Hoang, Shiwei Liu, Radu Marculescu, and
Zhangyang Wang. 2023. Revisiting pruning at ini-
tialization through the lens of ramanujan graph. In
The Eleventh International Conference on Learning
Representations.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dry-
den, and Alexandra Peste. 2021. Sparsity in deep
learning: Pruning and growth for efficient inference
and training in neural networks. The Journal of Ma-
chine Learning Research, 22(1):10882—11005.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models.

Aobo Kong, Shiwan Zhao, Hao Chen, Qicheng Li, Yong
Qin, Ruiqi Sun, Xin Zhou, Enzhi Wang, and Xiao-
hang Dong. 2024. Better zero-shot reasoning with
role-play prompting.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen tau Yih, Tim Rock-
tdaschel, Sebastian Riedel, and Douwe Kiela. 2021.
Retrieval-augmented generation for knowledge-
intensive nlp tasks.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,
Yuandong Tian, Christopher Re, and Beidi Chen.
2023. Deja vu: Contextual sparsity for efficient llms
at inference time.

Chris Lu, Samuel Holt, Claudio Fanconi, Alex J.
Chan, Jakob Foerster, Mihaela van der Schaar, and
Robert Tjarko Lange. 2024. Discovering preference
optimization algorithms with and for large language
models.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-
An Huang, Osbert Bastani, Dinesh Jayaraman, Yuke
Zhu, Linxi Fan, and Anima Anandkumar. 2024. Eu-
reka: Human-level reward design via coding large
language models.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang,
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng
Chen. 2024. Shortgpt: Layers in large language
models are more redundant than you expect.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2023. Exploring the limits
of transfer learning with a unified text-to-text trans-
former.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le.
2017. Searching for activation functions.

Kai Ruan, Ze-Feng Gao, Yike Guo, Hao Sun, Ji-Rong
Wen, and Yang Liu. 2024. Discovering symbolic
expressions with parallelized tree search. arXiv
preprint arXiv:2407.04405.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2019. Winogrande: An adver-
sarial winograd schema challenge at scale.

http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2302.06675
http://arxiv.org/abs/2302.06675
http://arxiv.org/abs/2302.06675
http://arxiv.org/abs/2308.06767
http://arxiv.org/abs/2308.06767
http://arxiv.org/abs/2308.06767
http://arxiv.org/abs/2308.06767
http://arxiv.org/abs/2308.06767
http://arxiv.org/abs/1905.10044
http://arxiv.org/abs/1905.10044
http://arxiv.org/abs/1905.10044
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/2311.04902
http://arxiv.org/abs/2311.04902
http://arxiv.org/abs/2311.04902
http://arxiv.org/abs/2406.02924
http://arxiv.org/abs/2406.02924
http://arxiv.org/abs/2406.02924
http://arxiv.org/abs/2301.00774
http://arxiv.org/abs/2301.00774
http://arxiv.org/abs/2301.00774
http://arxiv.org/abs/2301.00774
http://arxiv.org/abs/2301.00774
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2308.07702
http://arxiv.org/abs/2308.07702
http://arxiv.org/abs/2308.07702
http://arxiv.org/abs/2005.11401
http://arxiv.org/abs/2005.11401
http://arxiv.org/abs/2005.11401
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2310.17157
http://arxiv.org/abs/2310.17157
http://arxiv.org/abs/2310.17157
http://arxiv.org/abs/2406.08414
http://arxiv.org/abs/2406.08414
http://arxiv.org/abs/2406.08414
http://arxiv.org/abs/2406.08414
http://arxiv.org/abs/2406.08414
http://arxiv.org/abs/2310.12931
http://arxiv.org/abs/2310.12931
http://arxiv.org/abs/2310.12931
http://arxiv.org/abs/2310.12931
http://arxiv.org/abs/2310.12931
http://arxiv.org/abs/2403.03853
http://arxiv.org/abs/2403.03853
http://arxiv.org/abs/2403.03853
http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1809.02789
http://arxiv.org/abs/1809.02789
http://arxiv.org/abs/1809.02789
http://arxiv.org/abs/1809.02789
http://arxiv.org/abs/1809.02789
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1710.05941
http://arxiv.org/abs/1907.10641
http://arxiv.org/abs/1907.10641
http://arxiv.org/abs/1907.10641

Sander Schulhoff, Michael Ilie, Nishant Balepur, Kon-
stantine Kahadze, Amanda Liu, Chenglei Si, Yin-
heng Li, Aayush Gupta, HyoJung Han, Sevien Schul-
hoff, Pranav Sandeep Dulepet, Saurav Vidyadhara,
Dayeon Ki, Sweta Agrawal, Chau Pham, Gerson
Kroiz, Feileen Li, Hudson Tao, Ashay Srivastava,
Hevander Da Costa, Saloni Gupta, Megan L. Rogers,
Inna Goncearenco, Giuseppe Sarli, Igor Galynker,
Denis Peskoff, Marine Carpuat, Jules White, Shya-
mal Anadkat, Alexander Hoyle, and Philip Resnik.
2024. The prompt report: A systematic survey of
prompting techniques.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter.
2024. A simple and effective pruning approach for
large language models.

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and
Surya Ganguli. 2020. Pruning neural networks with-
out any data by iteratively conserving synaptic flow.
Advances in neural information processing systems,
33:6377-63809.

Shashanka Venkataramanan, Amir Ghodrati, Yuki M.
Asano, Fatih Porikli, and Amirhossein Habibian.
2023. Skip-attention: Improving vision transformers
by paying less attention.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
Glue: A multi-task benchmark and analysis platform
for natural language understanding.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. 2022. Emer-
gent abilities of large language models.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi
Chen. 2024. Sheared llama: Accelerating language
model pre-training via structured pruning.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence?

Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao,
Lu Hou, and Carlo Cannistraci. 2024. Plug-and-play:
An efficient post-training pruning method for large
language models.

Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo
Li, and Yu Li. 2023. Progressive-hint prompting
improves reasoning in large language models.

10

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie
Zhang, Kun Yuan, Wenxiu Sun, and Hongsheng Li.
2021. Learning n:m fine-grained structured sparse
neural networks from scratch.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping
Wang. 2024. A survey on model compression for
large language models.

Barret Zoph and Quoc V. Le. 2017. Neural architecture
search with reinforcement learning.

http://arxiv.org/abs/2406.06608
http://arxiv.org/abs/2406.06608
http://arxiv.org/abs/2406.06608
http://arxiv.org/abs/2306.11695
http://arxiv.org/abs/2306.11695
http://arxiv.org/abs/2306.11695
http://arxiv.org/abs/2301.02240
http://arxiv.org/abs/2301.02240
http://arxiv.org/abs/2301.02240
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/2206.07682
http://arxiv.org/abs/2206.07682
http://arxiv.org/abs/2206.07682
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2310.06694
http://arxiv.org/abs/2310.06694
http://arxiv.org/abs/2310.06694
http://arxiv.org/abs/2305.10601
http://arxiv.org/abs/2305.10601
http://arxiv.org/abs/2305.10601
http://arxiv.org/abs/1905.07830
http://arxiv.org/abs/1905.07830
http://arxiv.org/abs/1905.07830
https://doi.org/10.20944/preprints202310.1487.v2
https://doi.org/10.20944/preprints202310.1487.v2
https://doi.org/10.20944/preprints202310.1487.v2
https://doi.org/10.20944/preprints202310.1487.v2
https://doi.org/10.20944/preprints202310.1487.v2
http://arxiv.org/abs/2304.09797
http://arxiv.org/abs/2304.09797
http://arxiv.org/abs/2304.09797
http://arxiv.org/abs/2102.04010
http://arxiv.org/abs/2102.04010
http://arxiv.org/abs/2102.04010
http://arxiv.org/abs/2308.07633
http://arxiv.org/abs/2308.07633
http://arxiv.org/abs/2308.07633
http://arxiv.org/abs/1611.01578
http://arxiv.org/abs/1611.01578
http://arxiv.org/abs/1611.01578

A Ablations

LLM Guider framework consists of multiple variable parts including seed formula, k-shot generation
strategy, role prompt and hints. In this section we run multiple ablations on baseline to find the most
impactful decisions. Each of ablation is run of 100 generations, using 128 calibration samples with
sparsity ratio 0.5 and SmolLM2-135M-Instruct (Allal et al., 2025) as model. Each generation denotes one
complete selection—generation—evaluation loop. We repeat experiment over 3 seeds.

First, we begin by investigating the effect of different seed formulas. We consider rules that utilize
weights, activations, and gradients. Empirically, we have found that the activation-based metric, Wanda,
outperforms other options. The most unstable runs occur when using the magnitude formula alone. Our
results from Table 4 indicate that formulas combining at least two of the three components—weights,
activations, and gradients—significantly outperform using magnitude alone. Additionally, incorporating
PrunerZero into the magnitude formula leads to notable improvements in evaluation metrics. Among all the
metrics tested, Wanda is mathematically the most complex, as it involves matrix and row multiplications,
whereas other approaches rely on simpler element-wise operations. We hypothesize that this added
complexity enables the framework to generate more effective formulas.

Seed formulas ‘ Best Perplexity Mean Perplexity

Wanda (baseline) 31.02 31.74 £ 1.01

Magnitude + PrunerZero 31.02 32.69 +2.89
PrunerZero 31.30 35.10 £ 6.59

Magnitude + Wanda + PrunerZero 31.03 39.58 +7.49
Magnitude 31.30 82.67 + 85.82

Table 4: Comparison of seed formulas for LLM-Guider init on SmolLM2-135M (WikiText-2, sparsity 0.5)

We analyze the impact of different generation strategies based on Table 5. Specifically, we evaluate
best node selection, random node selection, selection of top individual generations, and a uniform strategy
that combines best, random, and previous nodes. An effective generation strategy should allow the LLM
to explore both high-quality and diverse solutions. Our results indicate that, under the tested conditions,
diversity plays a crucial role. Notably, random node generation slightly outperforms the best node selection
strategy, highlighting the importance of exploration in addition to exploitation.

Generation Strategy ‘ best_metric mean_metric

Best Node (baseline) 31.02 31.74+1.01

Random Node 31.02 31.54+£0.90

Top 8 Individual Generations 31.02 3573 +£8.17

Uniform (Best, Random, Previous Node) 31.50 33.71+£2.25

Table 5: Comparison of generation strategies

Role prompting is the technique to tune style of the reponse. In our experiments from Table 6 we have
found that using role prompt did not improve generation results. We hyphotesize that style of response is
not that important for task of unstructured sparsity formula generation.

Use role prompt ‘ Best Perplexity Mean Perplexity

v (baseline) 31.02 31.74 + 1.01
X 31.02 31.44 £ 0.74

Table 6: Ablation on role prompt

11

Hints are part of the framework that allows for the most flexibility and enhancements. As observed
in Table 7, in our experimental regime, the strongest results were achieved by limiting the number of
variables that the LLM uses. When it comes to top-generation diversity, only hints allowed improvements
over the best metrics; however, they were unstable in repetitive runs. This indicates that the usage of
limiting hints was critical for stability, whereas adding hints that promote variety was beneficial for
improving the best metrics. Notably, the selection of hints focusing on complexity or employing complex
operations, such as matrix multiplication alone, performed the poorest.

Hint Configuration| Best Perplexity Mean Perplexity

Baseline 31.02 31.74 £ 1.01

Diversity Hints 30.99 36.54 £ 5.46

Limiting Hints 31.02 31.21 £ 0.16
Domain-specific 32.04 32.54 £0.48

Inspiration Hints 34.31 35.31 £ 1.20

Reflection Hints 32.70 36.60 £ 6.25

Diversity and Limiting 31.30 3431 +£2.76
Reflection and Limiting 31.30 3575+ 17.71
Reflection and Domain-specific 31.02 36.19 + 5.48
Complexity Hints 31.30 168.14 4 234.32

Matrix Multiplication Hints 36.93 288.08 + 217.70
Matrix Operations Correctness Hints 41.93 203.53 £ 273.89

Table 7: Ablation comparing effectiveness of different hint configurations

We studied the impact of retries during the debugging phase. This experiment demonstrates the
effectiveness of debugging in improving formula generation. Our results, as shown in Table 8, indicate
that including debugging retries enhances formula generation. This is a natural conclusion, as it leads to a
higher number of correctly generated formulas. However, in our study, the impact was particularly visible
when up to five retries were performed for each generation.

Number of Retries ‘ Best Perplexity Mean Perplexity

0 31.02 31.38 £0.41
2 (baseline) 31.02 31.74 £ 1.01
5 31.02 31.21 £0.16

Table 8: Performance comparison on number of retries during debugging

B Inputs

Below, we provide an extensive list of variables used in LLM-Guider. These variables collectively define
the search space for the LLM to find an optimal pruning metric that effectively sparsifies the target LLM
with minimal loss in performance.

Weights W: Weights of the model.
Activations
¢ Anean: Mean of the activations across batches.
e Ajr2: Accumulated sum of squared differences from the mean (used for calculating variance).
* Agum_squares: Sum of squares of the activations along the batch dimension.
* Aqm_abs: Sum of absolute values of the activations along the batch dimension.
¢ Anin: Minimum value of the activations across batches.

¢ Anax: Maximum value of the activations across batches.

12

* Amean_abs: Mean of the absolute values of the activations along the batch dimension.
* Amean_squared: Mean of the squared values of the activations along the batch dimension.

* Ayariance: Variance of the activations, computed from the accumulated sum of squared differences
M?2.

* Agq: Standard deviation of the activations, computed as the square root of the variance.
Gradients

* Gmean: Mean of the gradients across batches.

* (GL1: L1 norm of the gradients across batches.

¢ GG12: L2 norm of the gradients across batches.

* Gpr2: Accumulated sum of squared differences from the mean (used for calculating variance).

* Gsum_gradients: Sum of gradients along the batch dimension.

* Gisum_abs_gradients: Sum of absolute values of the gradients along the batch dimension.

* Gsum_gradients_squared: Sum of squares of the gradients along the batch dimension.

* Gmean_gradients: Mean of the gradients along the batch dimension.

* Gmean_abs_gradients: Mean of the absolute values of the gradients along the batch dimension.

* Gmean_gradients_squared: Mean of the squared gradients along the batch dimension.

* Glyariance: Variance of the gradients, computed from the accumulated sum of squared differences M 2.

* (Gyq: Standard deviation of the gradients, computed as the square root of the variance.

C Baseline Pruning Metrics

1. Magnitude Pruning

The pruning score for each weight is
Sij = ‘VVU’
where

* W;; is the weight of the connection from neuron j (input) to neuron ¢ (output).

2. SparseGPT

SparseGPT approximates the influence of each weight via the inverse Hessian:

where
* H is the (approximate) Hessian matrix of the loss w.r.t. the weights.

 (H~') denotes the diagonal of the inverse Hessian.

13

3. Wanda

Wanda scores combine weight magnitude with activation norm:
Sij = [Wii| x I1X;ll2
where
e X € RY is the vector of activations at neuron j over a calibration dataset.
* |l - |2 denotes the Euclidean norm.

4. PrunerZero

PrunerZero combines squared magnitude with scaled gradient magnitude:

x — min(x)

Sij = WZ X O’(|Gij’), O’(J?) =

max(x) — min(z)
where

* Gijj = % is the gradient of the loss £ w.r.t. W;.

* o(-) denotes min—max normalization applied across all absolute gradient values.

D LLM-Guider Baseline

Configuration Details

Number of Rounds 100
Number of Retries 2
Eureka Seed

Temperature

Use Role Prompt true

K Examples wanda
Sparsity Ratio 0.5
Number of Samples 128

Model

HuggingFaceTB/SmolLM2-135M-Instruct

Evaluator Seed

0

Hint Sampler Type

UniformSampler

Generation Strategy Sampler Type

UniformGenerationStrategySampler

Generation Strategy Value Type

BestNodeStrategy

Hint Options

LimitVariablesHint (value: 2)

LimitVariablesHint (value: 3)

LimitVariablesHint (value: 4)

ComplementMatchingSizeHint

UnaryOperationsHint

TryDifferentHint

AlternativePerspectiveHint

Table 9: Configuration Table

14

E Hints

Hints Overview: This document provides a summary of the various hint types used to guide a problem-
solving process. The hints are organized into several categories that serve distinct purposes: generating
candidate solutions via ensemble reasoning, inspiring creative approaches, reflecting on previous attempts,
adjusting the complexity of approaches, imposing problem constraints, and addressing domain-specific
challenges.

Dynamic Hints

These hints use an internal LLLM to dynamically generate multiple candidate solutions and refine them
through debate and synthesis.

* CandidateSelectionHint: Generates several candidate solutions for a given problem and then uses a
two-step process (first, detailed reasoning for each candidate; second, synthesis of the best solution)
to present the top candidate. This hint leverages step-by-step reasoning to help decide among multiple
possible approaches.

* DebateHint: Uses a debate format where opinions are generated from multiple historical figures (or
personas) about a problem. It then synthesizes these divergent views into a concise, best possible
solution. This hint is ideal when diverse perspectives might reveal hidden insights into the solution.

Inspiration Hints
These hints are designed to spark creativity by encouraging the solver to leverage domain-specific expertise
or past successful strategies, including a prompt for getting inspired by prior approaches.

» AlgebraHint: Invokes algebraic techniques and principles, helping the solver to explore a variety of
functions and relationships.

* GameTheoryHint: Draws on strategic decision-making principles from game theory, offering
insights into competitive or adversarial problem settings.

* RLRewardFunctionsHint: Utilizes ideas from reinforcement learning, specifically around optimiz-
ing reward functions, to enhance solution approaches.

Reflection Hints

These hints encourage self-assessment and iterative improvement by prompting the solver to reflect on
both successes and mistakes from prior attempts.

* ReflectAndAvoidErrorsHint: Advises reflecting on previous mistakes and learning from them to
prevent similar errors in future attempts.

* IdentifySuccessesHint: Encourages the solver to pinpoint what worked well in earlier attempts and
to replicate those successful strategies.

* CombineldeasHint: Suggests merging two or more ideas to create a novel approach that benefits
from multiple insights.

* SeekDeeperlInsightsHint: Prompts the solver to look beyond the obvious and uncover hidden
connections or deeper insights in the problem.

Complexity Hints

These hints help modulate the difficulty of the approach, suggesting strategies to simplify or to challenge
the solver with more rigorous methods.

* TryEasyHint: Suggests trying a simpler or more straightforward approach.

15

* TryEasierHint: Recommends opting for an even simpler variant than before, reducing complexity
further.

* TryHardHint: Encourages the solver to explore a challenging strategy that might lead to more
robust solutions.

* TryHarderHint: Urges the solver to ramp up the challenge, trying an approach more difficult than
previous attempts.

Diversity Hints

These descriptions are designed to provide clear guidance on how each hint supports diverse thinking and
problem-solving techniques.

* TryDifferentHint: Advises experimenting with a markedly different strategy compared to those
used before, potentially uncovering a new pathway.

* AlternativePerspectiveHint: Invites the solver to rethink the problem from a different angle,
potentially revealing non-obvious solutions.

Limiting Hints
These hints impose specific constraints to ensure the solution remains within manageable or expected
bounds.

» LimitVariablesHint: Directs the solver to restrict the formula to exactly a given number of variables,
ensuring simplicity or focus in the formulation.

Sparsity Domain Specific Hints

Aimed primarily at problems involving matrix operations or when matching output dimensions is critical,
these hints are tailored specifically to the task at hand.

* ComplementMatchingSizeHint: Advises a step-by-step approach: develop a novel formula, eval-
uate its size against an expected matrix size, and only proceed if sizes match—otherwise, adjust
operations accordingly.

* MatrixMultiplicationHint: Recommends using matrix multiplication by listing potential compo-
nents with their respective output shapes, ensuring that the final result meets the expected dimensions.

* NormalizationHint: Suggests incorporating normalization techniques (e.g., Min-Max Scaling,
Z-Score, L2 Norm, L1 Norm) to refine the solution.

* ResultDimensionHint: Ensures that the final formula outputs a matrix or result with the precise
dimensions required by the problem.

* UnaryOperationsHint: Proposes using one or more unary operations (such as squaring, negation,
absolute value, logarithm, exponential, etc.) to adjust the result, emphasizing the importance of
adapting operations to meet the problem’s dimensional needs.

F Licenses

The datasets and tools used in this research are licensed as follows: WikiText is licensed under the Creative
Commons Attribution-ShareAlike 3.0 (CC BY-SA 3.0) License, allowing free use, modification, and
distribution, with the requirement for attribution and the condition that derivatives must be shared under
the same license. SmolLM?2 is licensed under the Apache License 2.0, permitting free use, modification,
and distribution, including for commercial purposes, provided that attribution is given, a notice of changes
is included, and there is no warranty. C4 is licensed under the Open Data Commons Attribution License
(ODC-BY), allowing for free use, modification, and distribution, with the condition that attribution is

16

provided and compliance with the terms of the original Common Crawl dataset is ensured. Additionally,
EleutherAI’s LM Evaluation Harness is open-source software released under the MIT License, which
permits free use, modification, and distribution, including for commercial purposes, with attribution
required and no warranty.

17

