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Abstract
Generalized Category Discovery (GCD) aims to
identify both known and novel categories in un-
labeled data by leveraging knowledge from old
classes. However, existing methods are limited
to non-graph data; lack theoretical foundations to
answer When and how known classes can help
GCD. We introduce the Graph GCD task; provide
the first rigorous theoretical analysis of paramet-
ric GCD. By quantifying the relationship between
old and new classes in the embedding space us-
ing the Wasserstein distance W , we derive the
first provable GCD loss bound based on W . This
analysis highlights two necessary conditions for
effective GCD. However, we uncover, through a
Pairwise Markov Random Field perspective, that
popular graph contrastive learning (GCL) meth-
ods inherently violate these conditions. To ad-
dress this limitation, we propose SWIRL, a novel
GCL method for GCD. Experimental results val-
idate our (theoretical) findings and demonstrate
SWIRL’s effectiveness.

1. Introduction
Graph machine learning (GML) (Wu et al., 2021b; Liu
et al., 2022a) has made notable strides in many fields like
recommendation systems (Pal et al., 2020) and financial risk
management (Motie & Raahemi, 2024). Traditional GML
assumes all categories are known during training, limiting
its ability to handle unknown new classes during testing in
real-world open-world scenarios. Prior solutions, such as
Graph Open-set Recognition (Wu et al., 2021a; Zhang et al.,
2023a; 2024), detect and reject nodes from unseen classes,
while Graph Novel Category Discovery (GNCD) (Jin et al.,
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2024; Hou et al., 2024) aims to identify and label novel
classes. However, GNCD assumes only new-class samples
during testing, which is often unrealistic. We introduce
Graph Generalized Category Discovery (GGCD), which
addresses both old and new-class nodes during testing.

Compared to GGCD, Visual GCD (VGCD) has made sig-
nificant progress. VGCD methods consist of two main
parts: contrastive learning (CL) and classification. Based
on the classifier type, VGCD can be divided into: 1) non-
parametric methods, such as Vanilla GCD (Vaze et al., 2022),
which use classifiers like Semi-Supervised K-means (SS-
KM); 2) parametric GCD methods, such as SimGCD (Wen
et al., 2023), that use parametric classifiers like MLPs. Re-
gardless of the method or data type, a common consensus
is that leveraging knowledge from old classes aids in distin-
guishing new classes. However, the theoretical mechanisms
behind this consensus are unclear, motivating our research:

Question 1: When and how do old classes help (paramet-
ric) generalized category discovery on graphs?

Despite empirical progress, the theoretical foundations of
GCD remain limited. Chiaroni et al. (2023) proposed maxi-
mizing the mutual information between representations and
classifier predictions. Rastegar et al. (2024) derived and
minimized an upper bound on the Kullback-Leibler (KL) di-
vergence between the predicted distribution p̂(ŷi = ŷj) and
the true one p(yi = yj) over all (i, j) pairs. Both theories
fail to elucidate the intrinsic role of old-class knowledge
in new-class discovery and lack related provable GCD loss
bounds, due to the lack of formal analysis of the relationship
between old and new classess and its impact on GCD.

Intuitively, when the embeddings of old classes l and l′

are well-separated, distinguishing between new classes u
and u′ can be achieved by aligning their embeddings with
those of l and l′, respectively. Specifically, The closer the
predictions for u are to those for l, and for u′ to l′, the
more effectively the knowledge for differentiating l and l′

transfers to u and u′. Formally, we quantify this relation-
ship, considering both embeddings and labels, using the
Wasserstein distance W between the joint (embedding, la-
bel) distributions of old and new classes. Following the
common practice of replacing discrete metrics with differ-
entiable surrogate losses, we define a surrogate loss Eq. 5
that faithfully reflects GCD performance. We then derive
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an upper bound for this loss based on W . Analyzing the
influence of W on this upper bound reveals that effective
GCD requires constraining the global structure of categories
in the embedding space. However, mainstream graph con-
trastive learning (GCL) methods mainly optimize pairwise
local structures, failing to impose these global constraints.
Our theoretical analysis using Pairwise Markov Random
Field (PMRF) confirms this limitation. Additionally, GCN
(Kipf & Welling, 2017) encoders’ smoothing effect mixes
categories, also disrupting the global structure. To address
these, we propose SWIRL, a new GCL method that provides
improved control over the relationships among categories in
the embedding space. Our main contributions are:

1. We introduce the GGCD task for graph data and adapt
multiple VGCD methods for GGCD.

2. We define a GCD loss, quantify the relationship be-
tween old and new classes using Wasserstein distance,
and then develop the first provable GCD loss upper
bound theory (Theorem 3.5), answering Question 1.

3. We identify the negative impact of the GCN encoder
on GCD, and provide the first PMRF-based analysis of
GCL, revealing the undesired randomness of category
relations in the embedding space (Theorem 4.3).

4. We propose SWIRL, a new GCL method for GGCD.

5. We validate all (theoretical) analyses on synthetic
datasets and demonstrate SWIRL’s effectiveness on
real-world graphs.

2. Graph GCD Preliminaries
We formulate the GGCD problem, design GGCD baselines,
and define a loss that faithfully reflects GCD performance.

2.1. GGCD Problem Formulation

Given an n-node attributed graph G = (A,X), where A ∈
A := {0, 1}n×n is the binary adjacency matrix and X ∈
Rn×d denotes the node features, Aij = 1 means nodes i and
j are linked and the feature vector of node i is given by xi :=
[X]i: ∈ X . The node-level dataset D = (A, {(xi, yi)}ni=1)
is partitioned into two parts: 1) the labeled subset DL =
(A, {(xi, yi)}nL

i=1), consisting of nodes from Co known old
classes L = {l1, l2, . . . , lCo}; and 2) the unlabeled subset
DU of nodes without labels. In GCD, the unlabeled nodes
belong to C distinct categories C = L ∪ U , where U =
{u1, u2, . . . , uCn

} denotes the new classes. We adapt the
transductive setting (Vaze et al., 2022) to graphs such that
all edges and node features are accessible during training
but only the labels of nodes from DL are known. In testing,
the nodes from old classes are expected to be accurately

classified, while those from new classes should be grouped
into clusters that represent distinct new classes.

2.2. Adapting VGCD Baselines to Graphs

For node-level graph tasks, embedding graph information
into the embeddings z allows subsequent processing to rely
only on z. Thus, we can adapt VGCD methods to graphs by
replacing the CL module with GCL, leaving the classifier
design unchanged. The adaptation details is in Appendix B.

2.3. The Surrogate Loss for GCD Performance

The performance of GCD is primarily evaluated by: 1) semi-
supervised classification accuracy on old-class data, and 2)
clustering accuracy on new-class data. GNN encoders can
inject graph structure information into embeddings and thus
deduce the embedding dataset Dz = {(zi,yi)}ni=1. The
conditionals of the data from the old class l and the new
class u are separately denoted by pl = p(z|y = l) = p(z|yl)
and pu = p(z|y = u) = p(z|yu), where yl,yu ∈ YC ={
y ∈ RC

≥0 |
∑C

c yc = 1
}

are respectively the unique label
vectors of class l ∈ L and u ∈ U . The label distribution
within old/new/all classes is denoted as pL(c)/pU (c)/p(c).

Old Capability. For the whole old class data, the population
classification loss of (parametric) classifier h reads

LL(h) =
∑
l∈L

pL(l)Ez∼p(z|yl)L(h(z),y
l), (1)

where L : YC×YC → R measures the discrepancy between
two label distributions. During training, only the empirical
version p̂l of pl is available, leading to the empirical loss
L̂L(h). L can also quantify the similarity between two
hypotheses h and h∗, given the data from the class set C

EC =
∑
c∈C

p(c)Ez∼pc
L(h(z), h∗(z)), (2)

where p(c) is the label distribution of all data from C.

New Capability. For the new-class nodes (zi, yi) from
class u, the predicted labels ŷ = argmaxi yi may not match
the true one u. Thus, we use a clustering loss instead of a
classification loss to distinguish new classes.

LU (h) =
∑
u∈U

pU (u)Ep(z|u)Ep(z+|u)L(h(z), h(z
+)) + αF (3)

F =
∑
u̸=u′

pU (u)pU (u′)Ep(z|u)Ep(z−|u′)

[
−L(h(z), h(z−))

]
,

where the first term attracts the intra-class samples, F repels
the inter-class ones, and α > 0 scales the repulsion force.

Considering both old and new capability leads to the loss

LG
te(h) = βLL(h) + LU (h), β > 0. (4)
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Optimizing Eq. (4) may lead to a trivial GCD solution:
Suppose Cn = Co and all old-class samples are predicted
perfectly, i.e., LL(h) = 0. Without loss of generality, as-
sume that all nodes from the new class u1 = Co + 1 are all
predicted as l1 = 1, those from u2 = Co + 2 are predicted
as l2 = 2, and so on. In this case, LU (h) = 0, leading
to LG

te(h) = 0. But we cannot distinguish new-class data
from old-class data (Reject Capability). To resolve this
issue, the expected prediction h̄U = EpU (z,y)h(z) across all
new-class data should be supported only on U . Thus, we
have to minimize the KL-divergence between h̄U and pU (c),
yielding the final GCD loss of classifier h.

Lte(h) = βLL(h) + LU (h) + γDKL(pU (c)∥h̄U ), γ > 0 (5)

3. Understand Parametric GCD Classifiers
Using the classifier h and the embedding dataset induced
by GNN encoders, we have defined the GCD loss Eq. (5).
Addressing Question 1 involves investigating how the the
old-and-new relationship influences Old/New/Reject capa-
bilities. We reflect this relationship with the old-and-new
Wasserstein distance, and analyze its impact on GCD.

3.1. Quantify the Old-and-new Relationship

To investigate the relationship between old and new classes
using both embedding and label information, we introduce
the joint Wasserstein distance in Definition 3.1.

Definition 3.1. The Wasserstein distance between two joint
probability distributions p1 = pU (z1, u) and p2 = pL(z2, l)
over the metric space (Z × C, Dλ) is given by

Wλ(p1, p2) = inf
π∈Π

∫
Dλ [(z1, u), (z2, l)] dπ [(z1, u); (z2, l)] ,

where Dλ [(z1, u), (z2, l)] = λD(z1, z2) + L(yu,yl) is
the cost of transporting (z1, u) to (z2, l), λ > 0 weights the
embedding distance, and Π(p1, p2) is the set of couplings
over (Z × C)2 such that

∫
Z
∫
L π [(z1, u); (z2, l)] dz2dl =

p1 and
∫
Z
∫
U π [(z1, u); (z2, l)] dz1du = p2 .

3.2. The Assumptions of Our GCD Theory

We present and discuss the assumptions used in this work.

Assumption 3.2. The embedding space is bounded ∥z∥ ≤
Bz and h is Lipschitz such that L(h(z1), h(z2)) ≤ S.

Assumption 3.2 requires that embeddings are bounded and
the classifier is Lipschitz. The boundedness can be met by
bounding the spectral norms of encoder weights (Tang &
Liu, 2023) and normalizing the input node features (Verma
& Zhang, 2019). The Lipschitz continuity, which depends
on the spectral norms of h’s weights (Virmaux & Scaman,
2018), is a common assumption in neural network analysis
(Redko et al., 2022; Khromov & Singh, 2023).

Assumption 3.3. The loss function L(·, ·) : YC×YC → R+

satisfies the triangle inequality and is r-Lipschitz (r>0) w.r.t.
the first argument. That is

|L(y1,y3)− L(y2,y3)| ≤ rL(y1,y2). (6)

Losses such as MSE, MAE and Jensen–Shannon distance
(Englesson & Azizpour, 2021) satisfies Assumption 3.3 but
Cross Entropy (CE) DCE does not. Nevertheless, the equiv-
alence of MSE and CE has been demonstrated empirically
(Hui & Belkin, 2020) and theoretically (Zhou et al., 2022).
Thus, our theory, based on Assumption 3.3, is expected
to also hold when L = DCE , as further evidenced by our
illustrative experiments involving CE (Sec.s 3.4 and 4.3).
Assumption 3.4. Given distributions p1(z1) and p2(z2),
h : Z → YC is said ϕ(λ)-Lipschitz transferable if

Pr
π(p1,p2)

{L(h(z1), h(z2)) > λD(z1, z2)} ≤ ϕ(λ), λ > 0 (7)

where ϕ : R → [0, 1], L and D denote the respective met-
rics in YC and Z , and π(p1, p2) is the joint distribution of
(z1, z2) coupled by p1(z1) and p2(z2).

Assumption 3.4 ensures that, under different distributions,
the classifier’s output typically does not change by more
than λ-times the input variation. If this property does not
hold, the predictions for new-class nodes will be almost
unaffected by the old-class knowledge (embedded in the
classifier weights). This contradicts the GCD’s motivation
of discovering new classes by leveraging old knowledge.
Therefore, Assumption 3.4 is essential for the tractability of
GCD problems when employing parametric GCD methods.

3.3. The GCD Loss Upper Bound Theorem

Under these assumptions, we analyze the influence of W on
the GCD loss Eq. (5), leading to Theorem 3.5.

Theorem 3.5 (The GCD Loss Upper Bound Theory). Let
Assumptions 3.2, 3.3 and 3.4 hold and h∗be the optimal
hypothesis that minimizes the GCD loss Eq. (5). Let
nL =

∑
l nl and nU =

∑
u nu be the total numbers of

old and new class samples, respectively. And suppose that
the dataset is class-balanced. Then there exists, c′ and n1,
such that for nU > n1, nL > n1, and all λ > 0, Lte(h) is
bounded as, with probability at least 1− δ − ω (δ, ω > 0),

Lte(h) ≤αF + (2 + β)L̂L(h
∗) + 2W rλ(p̂U (z, y), p̂L(z, y))

+
γ

b
DKL(PC∥h̄) + 2EU + EL + TG, (8a)

TG =(2 + β)

√
S2

2n′
L
ln

2

ω

+ 2

[
rSϕ(λ) +

√
2

c′
log

2

δ

(
1
√
nU

+
1
√
nL

)]
,
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where b = Pr(y ∈ U), PC is the uniform distribution over
C, h̄ = Ep(z,y)h(z) is the expected prediction over both the
old and new data, and p̂L(z, y) and p̂U (z, y) are respec-
tively the empirical old and new joint distributions. W rλ

is hereafter abbreviated as W . n′
L is the number of old-

class training samples while nL/nU is the total number of
old-/new-class samples in the whole embedding dataset Dz .

In the bound Eq. (8a), L̂L(h
∗) indicates the (old-class)

training classification loss of the optimal GCD solution
h∗. EL/EU represents the deviation between any h and
h∗ on the old-/new-class distribution. L̂L(h

∗) with EL
corresponds to Old Capability. F reflects h’s ability to
distinguish new classes. F plus EU corresponds to New Ca-
pability under the constraint of old-class data. DKL(PC∥h̄)
corresponds to Reject Capability. The old-and-new distri-
bution discrepancy W rλ(p̂U (z, y), p̂L(z, y)) (abbreviated
as W later) can influence all three Capabilities, as elabo-
rated later. TG summarizes all the sample complexity terms.

To provide an intuitive interpretation of Theorem 3.5, we
present in Appendix E.2 an example with a total of four
classes: two old classes (cats and trucks) and two new
classes (lions and sports cars). Fig. 5 illustrates the re-
lationships between these classes and their impact on the
Wasserstein distance between old-class and new-class data.

Implications of Theorem 3.5
Remark 3.6. W in Theorem 3.5 describes the relationship
between old and new classes, and should be small to bound
the GCD loss. A small W implies that the categories with
closer semantic relations (i.e., smaller label distances in YC )
should also be more proximate in Z , according to the joint-
distribution-style Definition 3.1. That is pushing new classes
towards those old classes semantically closer to them.
Remark 3.7. When considering W in isolation, Remark 3.6
encourages a small W . However, a too small value implies
that the new-class data entirely collapse into old classes,
which degrades Reject, and then New and Old Capabili-
ties. This aligns with Theorem 3.5: when new classes are
mixed into old ones, DKL(PC∥h̄) in Eq. (8a) increases
substantially, causing the bound to rise even W decreases.
Remark 3.8. Theorem 3.5 justifies Entropy Regularization
(ER) (Assran et al., 2022; Wen et al., 2023), which pushes
the expected prediction h̄ uniformly distributed across C,
appears as DKL(PC∥h̄) in the upper bound Eq. (8a). This
term, according to Proposition 3.9, upper bounds the reject
term DKL(pU (c)∥h̄U ) in the GCD loss Eq. (5).

Proposition 3.9. If PU , PC ∈ YC are uniform distributions
over U and C respectively, and the data distribution is class-
balanced, then it follows that

DKL(PU∥h̄U )) ≤
1

b
DKL(PC∥h̄), (9)

where b = Pr(y ∈ U) =
∑

y∈U
∫
Z p(z, y)dz, h̄ =

Ep(z,y)h(z), and DKL(PC∥h̄) is minimized when the en-
tropy H(h̄) = −

∑
c∈C h̄(c) log h̄(c) is maximized.

3.4. Illustrative Experiments

To validate the above remarks, particularly the impact of
W , we conducted a series of experiments. Specifically,
we compared the performance of an MLP classifier across
multiple embedding datasets with varying W values to
investigate how the old-and-new relationship affects the
Old/New/Reject Capabilities, thereby addressing Question
1. Since Theorem 3.5 focuses on the classification phase af-
ter obtaining embeddings, we use only the CE and ER losses
to train the final MLP classifier on the synthetic embedding
datasets. This setup allows us to isolate the effects of repre-
sentation learning and elucidates the embedding properties
required for a parametric classifier to achieve strong GCD
performance.

Synthetic Embedding Datasets. We generate three 2D
embedding datasets Dz

1 , Dz
2 , and Dz

3 , as shown in Fig. 1a-
1c. Each dataset contains eight classes/clusters, with four
inner clusters representing new classes (centroids labeled as
✖, ✖, ✖, ✖) and four outer clusters representing old classes
(centroids labeled as ★, ★, ★, ★). The dataset generation
models and hyperparameters are provided in Appendix G.3.
From Dz

1 to Dz
3 , the relative distances between old and new

class centroids progressively decrease (i.e., W1 > W2 >
W3), reflecting different old-and-new relationships.

Verify Remark 3.6: Large W Undermines GCD. In Dz
1

(Fig. 1a), new classes are mixed and are closer to each other
than to old classes, resulting in a large W1. By increasing the
distances between new classes while reducing the relative
distance between new and old classes, we obtain Dz

2 (Fig.
1b), where W2 < W1. As stated in Remark 3.6, a decrease
in W implies that the distance between new classes and
their adjacent old classes becomes smaller, which allows
more of the distinguishing features between old classes to
transfer to the new classes. From Dz

1 to Dz
2 , ✖ moves closer

to ★, ✖ to ★, ✖ to ★ , and ✖ to ★. As a result, the New
Capability in Dz

2 outperforms that in Dz
1 : as shown in Fig.

1e, Reject ACC1 remains nearly unchanged, while New
RACC improves by about 7 points.

Verify Remark 3.7: Too Small W Undermines GCD. By
further reducing the relative distance between new and old
classes from Dz

2 , new-class data move even closer to the old
classes, resulting in Dz

3 (Fig. 1c) with a smaller Wasserstein
distance W3 < W2. Although the new and old classes are
now closer, the overlap between the data of new and old

1All evaluation metrics are formally defined and discussed in
Appendix G.1, where we refine the conventional GCD metrics
towards more faithful GCD evaluation.
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Figure 1: (a-c) The datasets and the decision boundaries (marked by background colors) of MLPs trained with the CE+ER
criterion. (d) The decision boundary of MLP trained with CE and without ER on Dz

2 . (e) The GCD performance.

classes counteracts the benefits of the reduced W , and the
performance does not improve as it did in the transition from
Dz

1 to Dz
2 . This overlap leads to more misclassifications,

where new-class samples are predicted as old classes and
vice versa (Remark 3.7), which is reflected in a significant
drop in Reject ACC. As shown in Fig. 1e, Reject ACC inDz

3

drops significantly compared to Dz
2 , and both New RACC

and Old RACC also decline due to the confusion between
new and old classes.

Verify Remark 3.8: Entropy Regularization Matters.
In Dz

2 , when ER is removed, as noted in Remark 3.8, all
new-class data are predicted as old classes as shown by the
decision boundary in Fig. 1d, resulting in a complete loss
of New Capability in Fig. 1e.

3.5. Main Takeaway: Two Lessons

Theorem 3.5 provides an upper bound for the GCD loss.
Analyzing this bound implies that, for effective GCD per-
formance, the embeddings induced by the GNN encoder
should satisfy Lesson 1: a sufficiently small old-and-new
Wasserstein distance W discussed in Remark 3.6; Lesson 2:
limited overlap between new and old classes (i.e., a not too
small W ) discussed in Remarks 3.7 and 3.8.

4. GCL Loses Category Semantic Relations
The small W in Lesson 1 requires that for a pair of old and
new classes (u, l) that are closer than another pair (u, l′) in
the category semantic space YC , the embeddings of u and
l should be much closer than those of (u, l′). That is, the
embedding distances between classes, i.e., the Category Em-
bedding Relations, should align with the Category Semantic
Relations in YC . Lesson 2 implies that there should be a
certain distance kept between the embeddings of old and
new classes. Both lessons impose constraints on the cate-
gory embedding relations. However, we find that the GCL
methods in the parametric GCD baselines (e.g., SimGCD)
inherently fail to satisfy these constraints, as revealed by the
PMRF interpretation of GCL (Sec. 4.1) and the smoothing
effect of GCN encoder (Sec. 4.2).

4.1. GCL Framework Violates Lesson 1

PMRF View of GCL Framework Inspired by Tan et al.
(2023), we encode the similarity relations among all raw and
possibly augmented nodes using B ∈ [0, 1]N×N , where Bij

is the chance of nodes i and j being sampled as a positive
pair under data augmentation. As a form of human prior in
GCL, the augmentation should align B with human cogni-
tion of node relations and guide the model to approximate
B. In the raw space X , approximating B through simple
similarity computations is challenging. However, a good
encoder f can produce an embedding space Z , where B can
be effectively approximated by the node embedding relation
matrix K ∈ RN×N

≥0 , where Kij = k(zi, zj) is induced by a
simple kernel function k(·, ·) in the embedding space Z .

We follow the coupling framework from Assel et al. (2022),
and treat the embeddings as observations of a Pairwise
Markov Random Field (PMRF) defined on a graph W ∈
{0, 1}N×N , with each category corresponding to a graph
connected component (CC). According to spectral graph
theory (Chung, 1997), the Laplacian L of this graph has
a null-space kerL of rank C, and the orthogonal comple-
ment (kerL)⊥. A signal Z ∈ RN×d can be decomposed as
Z = Z0 + Z1, where Z0 and Z1 are the projections onto
the subspaces S0 = (kerL)⊗Rd and S1 = (kerL)⊥⊗Rd,
respectively. For a node i in class c, Z0,i is the mean embed-
ding of all nodes in class c, enabling Z0 to model the global
category positions, while Z1 captures the relative positions
of nodes within their respective CCs (aka clusters).

The conditional measures on the orthogonal subspaces
S0 and S1, denoted pε(Z0|W) (parameterized by ε >
0) and pk(Z1|W) (based on kernel k), are orthogonal.
Their product defines the joint measure p(Z|W) on S =
S0 ⊕ S1. Introducing a graph prior p(W;π) parameter-
ized by π, the posterior of subgraph conditional on node
embeddings, reads p(W|Z) ∝ p(W;π)p(Z|W). Mini-
mizing InfoNCE loss amounts to minimizing the cross-
entropy DCE(p(WX ;B)∥p(W|Z)). Here, p(WX ;B) ∝
ΩD(WX)

∏
(i,j)∈[N ]2 B

WX,ij

ij is the distribution of sub-
graphs sampled from B, where each subgraph WX is
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sampled with one random augmentation step. ΩD(W) ≜∏
i I(Wi+ = 1) filters out the subgraphs where any node i

has more than one outgoing edges, aligning with the single-
positive-sample manner in GCL methods such as GRACE.

Theorem 4.1. Minimizing InfoNCE loss is equivalent to
minimizing the cross entropy DCE(p(WX ;B)∥p(W|Z))
between the subgraph distribution p(WX ;B), which de-
pends on data augmentation, and the subgraph posterior
p(W|Z) in the PMRF.

Apart from InfoNCE loss, SupCon loss is also common.
It utilizes augmentations of known same-class samples as
extra positive samples. If each node i has mi known same-
class nodes; then, one augmentation step can yield a sub-
graph satisfying ΩF (W) ≜

∏
i I(Wi+ ≤ mi). Since aug-

mentations of different nodes are independent, this process
is equivalent to independently sampling mi times subgraphs
satisfying ΩD(W). From this, we reach Corollary 4.2.

Corollary 4.2. Minimizing SupCon loss is equivalent to
minimizing the cross-entropy between subgraph distribu-
tions stated in Theorem 4.1 excepet the subgraphs here are
contrained by ΩF (W) instead of ΩD(W).

The GCL Framework Loses Category Semantic Rela-
tion The above presents a more refined treatment of the
embedding space than Tan et al. (2023), exposing a critical
limitation not achievable using existing contrastive learning
theorems (Huang et al., 2022; Hu et al., 2022; Tan et al.,
2023; Parulekar et al., 2023; Waida et al., 2023; Ge et al.,
2024). Specifically, the embedding relations (i.e., distances)
between categories are random and thus not aligned with
the (either known or unknown) category semantic relations
in YC , violating Lesson 1. The point lies in the degeneracy
of the conditional distribution on the PMRF constructed in
the embedding space: the variance of the distribution con-
trolling the global category positions Z0 becomes infinite
under the equivalences stated in Theorem 4.1 and Corol-
lary 4.2. Theorem 4.3 summaries this uncontrollability of
Category Embedding Relations in GCL.

Theorem 4.3. The InfoNCE or SupCon loss optimization is
equivalent to minimizing DCE(p(WX ;B)∥p(W|Z)) when
the conditional distribution of category centers pε(Z0|W)
diffuse uninformatively.

4.2. GCL Encoder Violates Two Lessons

Besides the GCL framework, GCNs (Kipf & Welling, 2017),
widely used as GCL encoders, have the smoothing effect
(Rusch et al., 2023) that can lead to undesired category
embedding relations. The first issue occurs when a new
class u is connected to other neighboring new classes u′,
and local smoothness pulls them closer together, pushing
them relatively further from old classes. This results in
an increase in the old-and-new Wasserstein distance W ,

(a) D1, W x
1 = .33 (b) D1, Seed=2050 (c) D1, Seed=800

(d) D3, W x
3 = .19 (e) D3, Seed=2050 (f) D3, Seed=800

Figure 2: (a,d) The CSBM graphs; (b,c,e,f) the embedding
space learned by GCL with the InfoNCE+SupCon criterion.

violating Lesson 1. The second issue arises when a new
class u is considerably linked to an adjacent old class l,
causing the node embeddings of u to collapse into those of
l due to local smoothness. This violates Lesson 2.

4.3. Illustrative Experiments

Synthetic CSBM Graphs (Deshpande et al., 2018) are
widely used to evaluate graph learning methods. We gener-
ate two CSBM graphs, D1 and D3, by first generating node
features and labels like Dz

1 and Dz
3 (in Sec. 3.4), and then

constructing graph structures with intra-class and inter-class
connection probabilities. See Appendix G.4 for details. The
main challenges in D1 and D3 are, respectively, distinguish-
ing: 1) new classes u and u′; 2) old class l and new class u.

Verify Theorem 4.3. Figs. 2a and 2d illustrate D1 and D3.
Figs. 2b and 2e show the embedding spaces learned with
GRACE, using InfoNCE and SupCon losses, while exclud-
ing other components of SimGCD. To showcase the ran-
domness of category embedding relations/distances stated
in Theorem 4.3, we run the experiments with different ran-
dom seeds, resulting in Figs. 2c and 2f. Comparing Figs.
2b and 2c for D1, ★ and ★ have roughly swapped global
positions, while the relative positions of ★, ✖, and ✖ have
also changed markedly. Specifically, in Fig. 2c, ★ is more
distant from ✖ and ✖ than in Fig. 2b. For D3, from Fig.
2e to 2f, the original clockwise arrangement of (★, ✖) →
(★, ✖) → (★, ✖) → (★, ✖) is disrupted. The distances
D(★, ✖) and D(★, ✖), get very small. Furthermore, we
find that triangles formed by the embedding centers of any
three classes exhibit substantial deformation in both D1 and
D3 when the seeds are changed.
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(a) D1, W1 = .42,
SimGCD

(b) D1, W g
1 = .47,

SimGCD-GPR
(c) D1, W s

1 = .29,
SWIRL (Ours)

(d) D3, W3 = .15,
SimGCD

(e) D3, W g
1 = .27,

SimGCD-GPR
(f) D3, W s

1 = .35,
SWIRL (Ours)

Figure 3: The embedding space learned by different GCD
methods. Backgournd colors mark the decision boundaries.

Verify the impact of GCN encoder on GCD. Sec. 4.2
discusses the impact of the GCN encoder’s smoothing effect
on GCD. To reveal this effect, we replace GCN with GPR
(Chien et al., 2021) that can escape from local smoothness,
denoted as SimGCD-GPR. In D1, new classes are highly
mixed, with an even greater degree of mixing observed in
the SimGCD representation space (Fig. 3a). After replacing
the encoder with GPR, the reduction in local smoothness
results in increased embedding distances between the new
classes (Fig. 3b). In D3, the mixing of old and new classes
prevents SimGCD from distinguishing ★ and ✖, ★ and ✖,
★ and ✖, and ★ and ✖ (Fig. 3d). This issue is mitigated by
SimGCD-GPR that uses non-smooth GPR (Fig. 3e).

5. Proposed SWIRL for Parametric GCD
Sec. 3 presents two lessons outlining the conditions for good
GCD performance that embeddings should satisfy. Sec. 4
reveals that the GCL module in the adapted SimGCD strug-
gles to meet these conditions about category embedding
relations. In this section, we propose Semantic-aWare dIla-
tion contRastive Learning (SWIRL), a novel GCL method
for parametric GGCD, following Lessons 1 and 2.

The Category Relation Speculation via Prototypes. To
adhere to Lessons 1 and 2 regarding category relations,
estimating these relations without relying on the labels of
new-class nodes is essential. To achieve this, we utilize
SS-KM on the node embeddings averaged over two aug-
mentation views to obtain K prototypes P = {s1, . . . , sK}
and the node-to-prototype assignments. Among these, the
first Co prototypes O = {s1, . . . , sCo} correspond to the

clusters of Co old classes, while the remaining ones repre-
sent unknown clusters. Typically, we set K > Co to model
the embedding space in a fine-grained manner. For a node i,
it is assigned to prototype s(i), and the prototype index is
id[s(i)] ∈ [1 : K]. The prototype relations are then used as
a surrogate for category relations.

Representation Learning with Category-Semantic-
Aware Dilation. SWIRL employs the SWIRL loss, an
instance-to-prototype contrastive loss that leverages proto-
type relations. It follows Lessons 1 and 2 by controlling the
repulsion force (and consequently the distances) between
classes. Unlike InfoNCE or SupCon, which uniformly re-
pel all negative samples, SWIRL applies differentiated re-
pulsion. Specifically, we set six levels of repulsion force,
denoted as t6 < t5 < t4 < t3 < t2 < t1. On Lesson 2:
To prevent mixing between adjacent categories, for a node
i assigned to s(i) ∈ O, the supervision signals from old
classes make these assignments relatively reliable. There-
fore, we apply (i) the smallest repulsion force t6 between
i and s(i), and (ii) the largest force t1 between i and all
other old prototypes. For a node j assigned to s(j) /∈ O,
since these assignments are less reliable than those for old
prototypes, we apply (iii) a moderately low repulsion force
t5 between j and s(j), and (iv) a moderately high repulsion
force t2 between j and all other new prototypes. On Lesson
1: To prevent large Wasserstein distances between old and
new classes, the separation between these classes should
remain moderate. Therefore, we apply (v) a low repulsion
force t4 to each pair of a new-class node and an old proto-
type. Similarly, (vi) we apply a moderately strong repulsion
force t3 between each old-class node and a new prototype.
Finally, the loss for an (either raw or augmented) node i is

LSW (i) = − log
r(i, id[s(i)])e−D(zi,s(i))∑K

k r(i, k)e−D(zi,sk)
, (10)

where r(i, k) : [1 : 2n] × [1 : K] → [t1 : t6] chooses the
force level according to the above designs.

The overall loss of SWIRL. The core of SWIRL lies in
aligning the category relations in the learned embedding
space, as much as possible, with the Category Embedding
Relations advocated by Lessons 1 and 2. After obtaining the
clusters and the node-to-prototype assignments (i.e., pseudo-
labels) through SS-KM, we push away different clusters
with varying repulsion forces based on these pseudo-labels
and their confidence levels that depend on how much old
class prototypes O = {s1, . . . , sCo} are involved in. The
varying repulsion forces are implemented by, as explained in
Sec. C.2, applying a weight r(i, k) to the scores of negative
(sample, prototype) pairs. Specifically, we define six levels
of repulsion forces 0 < t6 < t5 < t4 < t3 < t2 < t1 for
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the SWIRL loss.

LSW =−
2n∑
i=1

log
r(i, id[s(i)])e−D(zi,s(i))∑K

k r(i, k)e−D(zi,sk)
(11)

r(i, k) =



exp(t6sD(zi, s
k)) , s(i) = sk ∈ O

exp(t1sD(zi, s
k)) , s(i) ∈ O ̸= sk ∈ O

exp(t3sD(zi, s
k)) , s(i) ∈ O ̸= sk /∈ O

exp(t4sD(zi, s
k)) , s(i) /∈ O ̸= sk ∈ O

exp(t5sD(zi, s
k)) , s(i) /∈ O = sk /∈ O

exp(t2sD(zi, s
k)) , s(i) /∈ O ̸= sk /∈ O

where s > 0 controls the scale of repulsion force, id[s(i)] is
the prototype index of node i’s prototype s(i). Since LSW

primarily emphasizes the global structure in the embed-
ding space and may neglect the preservation of local struc-
tures, we adopt a weighted combination of the InfoNCE
loss LNCE and the SWIRL loss as the total representation
learning objective. Furthermore, following SimGCD, we in-
corporate the Entropy Regularization (ER) loss on all nodes
and apply the Cross Entropy (CE) loss on those labeled
(old-class) nodes. The overall training loss for SWIRL is

LSW = (1− α2)(LNCE + β1LSW + α1LER) + α2LCE ,

where α1, α2 > 0 are the weights shared with SimGCD,
and β1 > 0 is an additional hyperparameter for SWIRL.
The impact of varying β1 is analyzed in Appendix G.7.

Complexity analysis. The complete training procedure of
SWIRL is summarized in Alg. 1. The SS-KM algorithm,
which is executed every t epochs, has a space complexity of
O(nd+Kd) and a time complexity of O(nKId), where I
is the number of SS-KM iterations and n, K, and d represent
the number of samples, prototypes, and embedding dimen-
sion, respectively. When amortized over all epochs, its
per-epoch cost reduces to O(nKId/t). Meanwhile, LSW

contributes a time complexity of O(nKd) per epoch, domi-
nated by the computation of similarities between samples
and prototypes, while requiring O(nK) space for storing
similarity matrices. Let T be the training epochs. Overall,
SWIRL results in a total time complexity of O(TnKd), as-
suming a small constant I/t, and an overall space complex-
ity of O(nK + nd), which is significantly more efficient
than the O(n2d) complexity of LNCE , making the extra
overhead from LSW negligible.

5.1. Illustrative Experiments: SWIRL excels SimCGD

To evaluate whether SWIRL can establish desired cate-
gory embedding relations, we conducted experiments on the
CSBM graphs D1 and D3 introduced in Sec. 4.3. As shown
in Figs 3c and 3f, SWIRL learns more discriminative embed-
dings. On D1, the old-and-new Wasserstein distance W s

1 of
SWIRL’s representation space is substantially smaller than

Table 1: The performance on CSBM graphs D1 and D3.
SWIRL denotes SWIRL-GCN.

D1 HRScore Old RACC New RACC Reject ACC

SimGCD 68.22 99.58 51.88 99.79
SimGCD-GPR 77.18 99.79 62.92 99.48
SWIRL-GPR 87.72 100.0 78.13 98.54

SWIRL 96.24 97.29 95.21 98.54

D3 HRScore Old RACC New RACC Reject ACC

SimGCD 64.76 98.96 48.12 73.75
SimGCD-GPR 88.77 98.12 81.04 90.52
SWIRL-GPR 82.39 96.88 71.67 89.58

SWIRL 94.03 95.83 92.29 97.81

(a) SWIRL-GPR (b) SWIRL-GCN

Figure 4: The representation spaces learned with different
GNN encoders on D3. (a) Low intra-cluster cohesion blurs
the inter-cluster boundaries. (b) High intra-cluster cohesion
facilitates inter-cluster separability.

that in SimGCD, satisfying Lesson 1. On D3, SWIRL ef-
fectively separates all adjacent old-and-new category pairs,
resulting in a larger old-and-new Wasserstein distance W s

3

than SimGCD, satisfying Lesson 2. And as shown in Table
1, SWIRL-GCN outperforms the others on both datasets.

SWIRL with GPR encoders. Unlike SWIRL-GCN, which
consistently benefits CGN across datasets, SWIRL-GPR out-
performs SimGCD-GPR on D1 but underperforms on D3.
To investigate this discrepancy, we visualize the representa-
tion space of SWIRL-GPR on D3 in Fig. 4. It shows signifi-
cantly weaker intra-cluster cohesion compared to SWIRL-
GCN. Low intra-cluster cohesion hampers the formation
of clear inter-cluster separations and decision boundaries,
leading to GCD failure. We attribute this issue to both the
GPR encoder and SWIRL’s emphasis on information from
distant nodes/spaces beyond local neighborhoods, which
neglects local structural cues and weakens cluster compact-
ness. Moreover, prior work (Chen et al., 2023) has noted
that GPRs are inherently difficult to train with current GCL
methods. Therefore, we recommend using GCN instead of
GPR with SWIRL.
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Table 2: Mean and standard deviation of performance (%) on real-world graph datasets. The best metric is in bold.

Datasets Metrics GCN SS-KM UNO+ VanillaGCD SimGCD SWIRL (Ours)

Cora

HRScore 6.88±10.76 3.65±0.0 30.47±17.04 62.40±6.59 53.14±20.3 64.53±4.63

Old RACC 92.22±0.69 54.79±0.0 91.78±0.87 84.55±4.85 77.10±7.48 85.70±2.47
New RACC 3.87±6.18 1.89±0.0 19.34±12.0 49.80±7.63 44.41±19.82 52.03±6.02
Reject ACC 40.56±6.93 37.44±0.0 56.76±12.77 84.10±1.26 77.42±18.33 88.16±1.97

Citeseer

HRScore 0.00±0.00 39.90±0.0 41.48±10.98 65.35±6.10 46.36±3.72 55.62±3.03

Old RACC 69.91±1.72 48.41±0.0 51.50±7.61 65.23±1.74 59.91±2.83 55.95±3.88
New RACC 0.00±0.00 33.93±0.0 37.61±13.76 66.36±11.20 38.04±4.97 55.32±2.35
Reject ACC 44.00±0.00 63.20±0.0 74.32±15.4 83.16±4.94 78.78±2.39 84.62±0.61

Wiki

HRScore 15.39±3.99 25.11±0.0 50.97±6.38 51.32±1.27 46.51±5.10 52.93±2.72

Old RACC 74.47±0.71 44.35±0.0 64.88±5.04 56.32±1.87 75.05±0.42 57.52±2.91
New RACC 8.64±2.43 17.51±0.0 43.11±9.96 47.20±2.13 33.91±5.55 49.03±2.87
Reject ACC 65.31±2.85 58.00±0.0 77.51±3.41 72.79±2.61 74.98±2.34 75.19±1.51

A-Photo

HRScore 55.83±1.32 50.37±0.0 76.72±5.12 66.16±3.15 67.13±8.60 77.62±4.27

Old RACC 91.15±1.11 65.97±0.0 85.54±2.57 88.36±3.37 89.55±1.99 90.08±3.16
New RACC 40.24±1.22 40.74±0.0 69.98±8.57 52.93±3.31 54.58±11.48 68.33±5.66
Reject ACC 82.78±1.00 71.29±0.0 91.72±2.77 94.98±1.56 91.51±6.55 93.80±0.33

A-Computers

HRScore 32.94±15.56 27.43±0.0 49.68±7.66 56.88±3.79 32.38±2.81 61.46±4.54

Old RACC 77.61±0.99 44.14±0.0 73.87±4.16 70.82±3.18 29.71±6.78 85.34±8.79
New RACC 21.99±11.03 19.92±0.0 38.11±9.41 47.56±3.97 38.71±9.04 48.32±4.48
Reject ACC 78.47±5.21 60.89±0.0 81.46±3.44 78.83±3.30 52.56±4.02 88.38±2.24

6. Experiments on Real-world Graph Datasets
We now evaluate all GGCD methods on real-world graphs.

6.1. Experimental Setup

Datasets and Split. We created node-level GGCD datasets
based on five existing datasets: Cora, Citeseer, Wiki, A-
Computers, and A-Photo. For Cora and Citeseer, we used
the public splits, while for the other three datasets, The
entire node set is stratified into train, validation, and test
subsets in a 2:2:6 ratio. In each dataset, the first C//2
classes are designated as old classes, while the remaining
classes are considered new classes. The old-class nodes in
the training set form DL, while all other nodes constitute
DU . During testing, predictions are made for all nodes
in DU , with performance evaluated specifically on nodes
that also belong to the test set. See Appendix G for the
evaluation protocol and implementation details.

6.2. The GGCD Performance

Our primary goal is to develop a theoretical understanding
of Parametric GCD. Beyond the theoretical contributions,
our simple yet effective method, SWIRL, shows strong
empirical performance. Our comparisons include several
GGCD methods adapted from VGCD, such as Vanilla GCD,
SimGCD, UNO+, SS-KM, and GCN. Among these, SS-KM
directly predicts node features, while GCN incorporates an
additional ER loss alongside the cross-entropy loss. As
shown in Table 2, SWIRL achieves a significantly higher

overall performance, measured by HRScore, compared to its
competitors. Notably, on the largest dataset, A-computers,
SWIRL outperforms all baselines across all metrics. On
Citeseer, while SWIRL still lags behind Vanilla GCD, it
substantially outperforms other parametric GCD methods,
i.e., SimGCD and UNO+. These results highlight SWIRL’s
effectiveness and the importance of understanding paramet-
ric GCD performance for developing better methods.

7. Conclusions
We introduce the Generalized Graph Category Discovery
(GGCD) task and develop several baselines. We provide the
first theoretical answer to the core GCD question: "When
and how do old classes help (parametric) generalized cate-
gory discovery on graphs?" Using the Wasserstein distance
W between the joint (embedding, label) distributions of old-
and new-class nodes, we quantify their relationship and its
impact on GCD. Theorem 3.5 formalizes this, offering a
provable GCD loss upper bound dependent on W and identi-
fying the necessary category embedding relation conditions
for low GCD loss. We proceed to analyze GCL methods that
employ InfoNCE-style losses, which are commonly used
in parametric GCD baselines, through the lens of PMRF
and the smoothing effect of GCNs. Our analysis reveals
that such GCL methods often fail to meet the conditions for
low GCD loss. To address this, we propose SWIRL, a new
GCL method that controls the category embedding relations.
Experiments on synthetic and real graph datasets validate
our theoretical analysis and confirm SWIRL’s effectiveness.
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A. Related Work
A.1. Visual Generalized Category Discovery (VGCD)

The Generalized Category Discovery (GCD) task was first introduced by Vaze et al. (2022) for visual image data (Krizhevsky,
2009; Deng et al., 2009; Tan et al., 2019; Krause et al., 2013; Wah et al., 2011). Concurrently, Cao et al. (2021) proposed the
same setting under the name open-world semi-supervised learning. The GCD problem is a composite task that involves (i)
semi-supervised classification of known-class samples and (ii) clustering of novel-class samples. Thus, it is closely related

16



Towards Understanding Parametric Generalized Category Discovery on Graphs

to both semi-supervised learning (Yang et al., 2023) and (deep) clustering (Lloyd, 1982; Xie et al., 2016; Lu et al., 2022;
Ren et al., 2025).

Vaze et al. (2022) developed a simple yet robust Visual GCD (VGCD) method, Vanilla GCD, which first learns image
representations through semi-supervised contrastive learning using SimCLR (Chen et al., 2020) and SupCon (Khosla et al.,
2020), followed by clustering these representations using a Semi-Supervised K-Means (SS-KM) classifier. SS-KM enforces
old-class samples with known labels to be assigned to their corresponding old-class clusters, enabling both classification for
old classes and cluster-based discovery of novel classes. Subsequent research has evolved along two main directions. The
first direction aims to enhance the representation learning component while maintaining a non-parametric classifier. The
second direction investigates replacing the non-parametric SS-KM, which is inefficient for mini-batch inference, with a
parametric classifier, such as a prototype-based classifier.

Non-parametric VGCD Methods. In GCD, contrastive learning is employed for representation learning, with the key
challenges being the construction of positive and negative sample pairs and the selection of an appropriate pretext task.
Subsequent methods primarily focus on improving these aspects.

DCCL (Pu et al., 2023) constructs a graph adjacency matrix based on sample embeddings and applies InfoMap (Rosvall &
Bergstrom, 2008) for clustering on the graph to obtain conceptual labels. It then computes cluster centroids for each concept
and performs contrastive learning at both the instance-to-concept and instance-to-instance levels. After representation
learning, SS-KM is used to obtain the final results. PromptCAL (Zhang et al., 2023b) builds K-Nearest-Neighbors (KNN)
graphs in the embedding space and determines edge weights by counting the number of shared KNN neighbors between two
nodes. It then applies graph diffusion to capture long-range sample relationships. Using predefined edge weight thresholds
and labeled data, it constructs a binary affinity graph G, where endpoints of edges in G are treated as positive pairs, while
all other sample pairs serve as negative pairs for additional contrastive loss. SS-KM is used to generate the final results
after representation learning. To address the GCD problem without prior knowledge of the number of categories, Zhao et al.
(2023) proposed a parametric semi-supervised clustering variant of Gaussian Mixture Model (GMM), GPC, which alternates
between contrastive representation learning and category number estimation. Upon completion of training, both the encoder
and cluster centers are obtained. During inference, classification is performed by identifying the nearest cluster center.
Inspired by the human categorization system, Rastegar et al. (2023) propose InfoSieve, a representation learning method that
seeks optimal hierarchical sample encoding in the embedding space. SS-KM is used for final clustering. For fine-grained
semantic distinction tasks, Rastegar et al. (2024) further introduce SelEx, a representation learning method designed to
mitigate the disruption of fine-grained semantics caused by data augmentation while providing flexible hierarchical category
semantic structures.

Parametric VGCD Methods. Without additional constraints, a parametric MLP classifier tends to assign new-class test
samples to the most similar old class, resulting in a severe bias towards old classes. Therefore, in parametric GCD, beyond
improving representation learning, appropriately handling the classifier’s class preference is equally crucial.

Wen et al. (2023) investigated why parametric classifiers underperform compared to the non-parametric SS-KM and
identified bias towards old classes as the key issue. To mitigate this bias, they introduced Entropy Regularization (ER), which
encourages the model’s overall prediction distribution to align with a uniform class distribution. Their method, SimGCD,
was the first parametric classifier to surpass Vanilla GCD. (Chiaroni et al., 2023) proposed InfoMax, which maximizes
the mutual information between embeddings and a prototype classifier’s prediction distribution. They incorporated known
labeled samples into a parametric mutual information maximization objective with a weighting factor λ. To address class
imbalance in long-tail distributions, they further designed a strategy for selecting λ. Cao et al. (2024) observed that in
later training stages, SimGCD may misclassify old-class samples as new classes, leading to a bias towards new classes. To
counteract this, they introduced LegoGCD, which identifies potential known samples in unlabeled data and applies entropy
regularization to stabilize their predictions.

The methods mentioned above construct positive and negative sample pairs and apply contrastive loss following SimCLR
and SupCon, without leveraging the rich semantic information embedded in old-class sample labels and representations.
As a result, they struggle to generate high-quality pseudo-labels for training the classification head and encoder. Several
methods aim to address this.

GCA (Otholt et al., 2024) employs unsupervised clustering to form many small local clusters and then aggregates these
clusters into target classes using provided labels and neighborhood relations. The aggregated results facilitate the construction
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of positive and negative pairs, which are then used to train the encoder f and MLP classifier h with binary cross-entropy
loss on every pairs. Unlike non-parametric methods, GCA requires clustering on the entire dataset only during training to
generate pseudo-labels, while at inference, it efficiently supports mini-batch predictions using only the classifier h. Vaze et al.
(2023) tested SimGCD on the more challenging Clever4 dataset and found that it performed poorly on new classes, which
they attributed to the low quality of pseudo-labels assigned to new-class samples. Inspired by Mean-Teacher semi-supervised
learning (Tarvainen & Valpola, 2017) , they introduced µGCD, a parametric GCD method designed to be more robust
to noisy labels (of new-class samples). SPTNet (Wang et al., 2023) introduced trainable visual prompts combined with
fine-tuning model parameters to fully exploit the capabilities of pre-trained visual models and better adapt to the GCD task.
All three methods—GCA, µGCD, and SPTNet—incorporate uniform label distribution as a prior to mitigate bias towards
old classes.

Current Limitations. While these methods have achieved success, their design and evaluation have primarily focused on
image datasets, overlooking the widely prevalent graph data. To address this gap, we introduce the node-level Graph GCD
task and establish multiple baseline methods. More importantly, existing GCD methods have not thoroughly investigated the
mechanism by which knowledge from old categories facilitates novel category discovery. In a related task, Novel Category
Discovery (NCD), Sun et al. (2023) proposed NSCL, a graph-theoretically inspired representation learning algorithm, and
analyzed the intrinsic mechanisms of novel category discovery from the perspective of spectral contrastive learning theory
(HaoChen et al., 2021). However, GCD is much more complex than NCD, as it involves not only distinguishing novel
categories but also ensuring accurate classification of old-class sample. Furthermore, existing GCD methods differ from
NSCL, making its theoretical framework inadequate to answer the fundamental question: "When and how do old classes
help generalized category discovery?" In this work, we systematically address this question in the context of parametric
GCD. Since different methods employ diverse representation learning modules, we aim for generalizable conclusions
by conducting a theoretical analysis of classifier performance within the embedding spaces induced by encoders. After
establishing the necessary embedding conditions for good GCD performance, we further examine whether the learned
embeddings from graph representation learning modules satisfy these conditions. Taken together, these efforts represent our
first systematic attempt to answer: "When and how do old classes help (parametric) generalized category discovery (on
graphs)?"

A.2. Open-world Graph Learning

In real-world applications, deployed models frequently encounter novel categories that were unseen during training. This
challenge, inherent to open-world machine learning, has been extensively studied in non-graph data (Parmar et al., 2023; Zhu
et al., 2024). Existing non-graph approaches for handling novel categories can be broadly classified into three paradigms.
1) Open-Set Recognition (OSR): Accurately classifies known-class samples while assigning all unknown-class samples
to a single "unknown" category (Bendale & Boult, 2016; Zhang & Patel, 2017; Perera & Patel, 2019; Zhang et al., 2020;
Vaze et al., 2021; Zhou et al., 2021; Yang et al., 2022; Huang et al., 2023a). 2) Novel Category Discovery (NCD): Clusters
unknown-class samples into distinct novel categories (Han et al., 2019; Zhong et al., 2021; Han et al., 2022; Li et al., 2023;
Troisemaine et al., 2023). 3) Generalized Category Discovery (GCD): Simultaneously classifies known-class samples and
clusters unknown-class samples, reviewed in Sec. A.1.

However, progress in open-world graph learning remains limited. 1) Graph OSR: Wu et al. (2021a) introduced OpenWGL,
the first transductive OSR model for static graphs, while Zhang et al. (2022) proposed OSSC, an OSR model for discrete-time
dynamic graphs. The G2Pxy model (Zhang et al., 2023a) addresses inductive OSR on static graphs. More recently, Zhang
et al. (2024) handled inductive graph OSR tasks in the presence of in-distribution samples with incorrect labels. 2) Graph
NCD: Jin et al. (2024) proposed ORAL, the first transductive Graph NCD method for static graphs. Hou et al. (2024)
introduced NC-NCD, a two-stage training framework where only labeled old-class nodes are available in the first stage,
and only unlabeled new-class nodes are available in the second stage. Although NC-NCD considers all classes during
testing, its staged training paradigm inherently leaks side information about the distinction between old and new categories,
making it a less challenging task than GCD, where the ability to distinguish old and new categories is crucial. 3) Other
Open-World Graph Learning Tasks: Xu et al. (2024) explored Open-World Graph Active Learning, where the model selects
the most valuable nodes for labeling upon the appearance of novel-category nodes and then retrains accordingly. Galke et al.
(2021); Liu et al. (2021); Feng et al. (2023) studied Continual Learning on Evolving Graphs, where OSR, NCD, and GCD
information is incrementally revealed to the model, making catastrophic forgetting the key challenge.

We follow the transductive setting (Vaze et al., 2022), focus on the GCD tasks for static graphs, and extend multiple VGCD
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baselines to graph data.

B. Details of GGCD Baselines Adapted from VGCD
VGCD methods can generally be broken down into two parts: 1) contrsative learning to train an encoder f , and 2)
classification with a semi-supervised classifier h that can be either non-parametric (e.g., SS-KM) or parametric (e.g., MLP).
For graph adaptation, we focus on the representation learning part, because effective GNN encoders can encode graph
structural information into node embeddings, making the explicit use of structures not mandatory in the classification part.

There are numerous graph contrastive learning methods available (Liu et al., 2022a; Zhu et al., 2020; Xia et al., 2022; Liu
et al., 2022c; Huang et al., 2023b; Liu et al., 2022b; Deng et al., 2025). However, to minimize modifications to the VGCD
method while deriving the GGCD baselines, we select GRACE, which is most similar to SimCLR, as the foundation for the
graph representation part.

B.1. Adapting SimCLR and SupCon for Graphs

SimCLR→ GRACE: The representation learning part of VGCD methods is typically build upon SimCLR (Chen et al.,
2020). The popular graph contrastive learning (GCL) method GRACE (Zhu et al., 2020) directly extends SimCLR to graph
data by proposing the graph data augmentations and using GNN encoders. Two graph views G1 and G2 are generated from
the input graph G = (A,X) by applying augmentations like edge dropping, node feature masking, or subgraph sampling. A
shared GNN encoder f : (A,X )→ Z maps nodes in each augmented view to embeddings. For a node u, its representation
in G1 and G2 is separately given by:

z(1)u =
[
Z(1)

]
u
= [f (A1,X1)]u , z(2)u =

[
Z(2)

]
u
= [f (A2,X2)]u . (12)

Without loss of generality, we concatenate these two views into Z =

[
Z(1)

Z(2)

]
such that the positive sample of node i is

j =

{
i+ n if i comes from view 1
i− n if i comes from view 2

.

That is zj = zi+n = z
(2)
i if i ≤ n and zj = zi−n = z

(1)
i−n if n < i ≤ 2n . Then the InfoNCE loss LNCE (Gutmann &

Hyvärinen, 2010) is used to train f . In terms of cosine similarity cos(·, ·), this loss encourages the alignment of the same
node’s embeddings across different views while separating those of different nodes.

LNCE(i) = LNCE(zi, zj) = − log
exp {cos(zi, zj)/τ}∑2n
l=1 exp {cos(zi, zl)/τ}

, τ > 0 (13)

And the loss over all nodes is

LNCE =

2n∑
i=1

LNCE(i) = −
2n∑
i=1

log
exp {cos(zi, zj)/τ}∑2n
l=1 exp {cos(zi, zl)/τ}

, τ > 0. (14)

SupCon→ GRACE-SC: Since SupCon (Khosla et al., 2020) differs from SimCLR solely in its use of labels to construct
positive and negative pairs, it can be easily adapted to graphs by building on GRACE. We replace the InfoNCE loss in
GRACE with the SupCon loss

LSC(i) = LSC(zi, zj) =
−1
mi

∑
j∈S(i)\i

log
exp {cos(zi, zj)/τ}∑2n
l=1 exp {cos(zi, zl)/τ}

, (15)

LSC =

2n∑
i=1

LSC(i) = −
2n∑
i=1

1

mi

∑
j∈S(i)\i

log
exp {cos(zi, zj)/τ}∑2n
l=1 exp {cos(zi, zl)/τ}

(16)

where S(i) includes all augmented nodes with the same label as node i, and mi is the cardinality of the set S(i) \ i. We
refer to this SupCon adaptation as GRACE-SC.
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B.2. Adapting VGCD Methods for Graphs

Vanilla GCD (Vaze et al., 2022) uses SimCLR and SupCon for representation learning, and then Semi-Supervised
K-means (SS-KM) for label assignment. SS-KM utilizes the known old-class nodes to derive old-class centroids and
enforces the assignment of these nodes to their respective old-class centroids. Unlabeled nodes are subsequently clustered
following the standard K-means algorithm. Adaptation: We replace SimCLR and SupCon with GRACE and GRACE-SC
introduced in Sec. B.1. All other components remain unchanged. The total training loss is

LV anillaGCD = (1− α2)LNCE + α2LSC , α2 > 0.

UNO+ (Fini et al., 2021; Vaze et al., 2022) extends the self-supervised CL method SwAV (Caron et al., 2020) to the
semi-supervised GCD task. It employs a parametric classifier to predict old and new class labels for each augmented view.
A cost matrix is then constructed based on the predictions to solve the Optimal Transport (OT) assignment, where the
assignment of one view serves as pseudo-labels for the other view. Adaptation: Data augmentation follows GRACE, with
f(·) replaced by a GCN. All other components remain unchanged.

SimGCD (Wen et al., 2023) adopts the representation learning methods in Vanilla GCD while replacing SS-KM with a
parametric prototype classifier. The classifier provides predictions for two views, and then the prediction for every view is
distilled as the pseudo-label to the other view. This approach is Self-Distillation (SD) (Assran et al., 2022) with the SD loss

LSD(i) = LCE(hj ,hi)

LSD =

2n∑
i=1

LSD(i) =

2n∑
i=1

DCE(hj ,hi). (17)

For the labeled samples, SimGCD employs the Cross Entropy (CE) loss

LCE =
∑
i∈DL

DCE(yi,hi). (18)

Additionally, SimCGD utilizes the Entropy Regularization (ER) loss LER (Assran et al., 2022) on the entire D to mitigate
the bias towards old classes , which becomes popular later in VGCD (Vaze et al., 2023; Wang et al., 2023).

LER = −H(h̄) =

C∑
c=1

[
h̄
]
c
log
[
h̄
]
c

(19)

h̄ =
1

2n

∑
i∈2n

hi (20)

Finally, the training objective for SimGCD is

LSimGCD = (1− α2)(LNCE + LSD + α1LER) + α2(LSC + LCE), α1, α2 > 0. (21)

Adaptation: We replace SimCLR and SupCon with GRACE and GRACE-SC introduced in Sec. B.1. All other components
remain unchanged.

After adapting these VGCD methods for graph data, the GNN encoder (e.g., GCN) maps the graph data into the embedding
space, i.e., f : (A,X )→ Z . And the final prediction is made by the parametric or non-parametric classifier h : Z → YC ,
where YC is the set of all probability distributions over C categories, i.e., YC =

{
y ∈ RC

≥0 |
∑C

c yc = 1
}

. Unless otherwise
specified, in the following content, we will refer to the adapted versions of VGCD baselines for graph datasets directly by
their original names. For instance, the adapted version of SimGCD will still be referred to as SimGCD.

C. More Details of the Proposed GCL Method, SWIRL
C.1. The Total Loss and Full Procedure of SWIRL
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Algorithm 1 The full procedure of SWIRL
Input Data: The graph G = (A,X) with E edges and d0 node feature dimensions; The full node set D =
(A, {(xi, yi)}ni=1); The labeled subset DL = (A, {(xi, yi)}nL

i=1) of C0 old classes; The unlabeled subset DU of nodes from
all C > C0 classes.
Model: The GCN encoder f : (A,X )→ Z and the MLP classifier h : Z → YC
Common Hyperparameters: The edge drop rate pe and the feature drop rate px in data augmentation module; The training
epochs T ; The loss weights α1 = 2. and α2 = 0.35.
SWIRL Hyperparameters: The prototype number K ≥ C; The repulsion force scale s; The weight β1 of the SWIRL loss.
Output: The predicted labels for all unlabeled nodes.

1: while t < T do
2: Perform SS-KM on Z̄ to get K prototypes {s1, . . . , sK}, which include Co old prototypes O = {s1, . . . , sCo}.
3: Based on Z, compute LSWIRL with Eq. (11), LNCE with Eq. (14), LER with Eq. (19), and LCE with Eq. (18).
4: Compute the total training loss LSWIRL = (1− α2)(LNCE + β1LSWIRL + α1LER) + α2LCE .
5: Backward to update f and h.
6: t← t+ 1.
7: end while
8: Set the model (f and h) to ’eval’ mode and make predictions.

C.2. The Gradients of InfoNCE-style Loss with Pair Weights

Our SWIRL loss can be viewed as a weighted InfoNCE-style loss. Here, we analyze the impact of the weight r(i, k) on the
gradient of the loss function w.r.t. the pairwise distance between samples, i.e., the repulsion force.

Lw = − log
exp {−D(zi, zj)/τ}∑2n

k=1 r(i, k) exp {−D(zi, zk)/τ}

=
D(zi, zj)

τ
+ log

(
2n∑
k=1

r(i, k) exp {−D(zi, zk)/τ}

)
, τ > 0

Differentiating Lw with respect to the positive-pair distance D(zi, zj) leads to

∂Lw

∂D(zi, zj)
=

1

τ
− r(i, j) exp{−D(zi, zj)/τ}

τ
∑2n

k=1 r(i, k) exp{−D(zi, zk)/τ}
. (22)

Similarly, we get the gradient w.r.t. the negative-pair distance D(zi, zk)

∂Lw

∂D(zi, zk)
= − r(i, k) exp {−D(zi, zk)/τ}

τ
∑2n

k′=1 r(i, k
′) exp {−D(zi, zk′)/τ}

. (23)

Denote by p(k|i) the softmaxed weighted similarity

p(k|i) = r(i, k) exp {−D(zi, zk)/τ}∑2n
k=1 r(i, k

′) exp {−D(zi, zk′)/τ}
,

then we get

∂Lw

∂D(zi, zj)
=

1− p(j|i)
τ

(24)

∂Lw

∂D(zi, zk)
= −p(k|i)

τ
. (25)

For positive-pair (i, j)

• When increasing r(i, j) and thus p(j|i), the positive-pair distance gets a smaller gradient magnitude as Eq. (24) and
the attraction is slowed down.

• Conversely, decreasing r(i, j) causes a stronger attraction force that brings i and j together.
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For negative-pair (i, k)

• When increasing r(i, k) and thereby p(k|i), the negative-pair distance gets a larger gradient magnitude as Eq. (25) and
the repulsion is accelerated.

• Conversely, decreasing r(i, k) leads to a weaker repulsion force.

D. Some Proof Auxiliaries
D.1. Auxiliaries for Theorems on Parametric GCD Classifiers in Sec. 3

Theorem D.1 (Bolley et al. (2007), Theorem 2.1). Let µ be a probability measure in the metric space (Z, D(·, ·)) that
admits a square-exponential moment. That is for any z2 ∈ Z∫

eαD
2(z1,z2)dµ(z1) < +∞,

or equivalently µ satisfies the Talagrand inequality T1(c) : W1(η, µ) ≤
√

2
cH(η|µ), c > 0 (Djellout et al., 2004), where

W1(η, µ) is the Wassersteom distance. Denote by µ̂ := 1
n

∑N
i=1 δzi

the corresponding empirical measure defineded on a
sample of independent variables {zi}Ni=1 drawn from µ. Then, for any d′ > dim(Z) and c′ < c, there exists a constant N0

determined only by c′, d′, and some square-expoential moment of µ, such that for any ε > 0 and N ≥ N0 max
(
ε−(d′+2), 1

)
Pr [W1(µ, µ̂) > ε] ≤ exp

(
−c′

2
Nε2

)
. (26)

And by setting exp
(
− c′

2 Nε2
)
= δ, it follows that with probability at least 1− δ,

W1(µ, µ̂) ≤
√

2

Nc′
ln

1

δ
. (27)

Theorem D.2. Given a hypothesis h : Z → SC that outputs a prediction in a |C|-dimensional simplex (i.e., non-negative
entries summing to 1), we denote the loss on one sample (zi,yi) that adheres to Assumption 3.2 by Li = L(zi,yi). Let the
empirical mean loss on n samples {zi,yi}ni=1 and the generalization loss respectively be

R̂(h) =
1

n

n∑
i=1

Li =
1

n

n∑
i=1

L(zi,yi)

R(h) = E(z,y)L(z,y).

Then it holds that for ε > 0, Pr
{
|R̂(h)−R(h)| ≥ ε

}
≤ 2 exp(−2nε2/S2). And with probability at least 1− δ,

R(h) ≤ R̂(h) +

√
S2

2n
ln

2

δ
. (28)

Proof. The loss Li is bounded in [0, S] according to Assumption 3.2. Directly applying Hoeffding’s Inequality finishes the
proof, similar to Corollary 2.10 in (Mohri et al., 2018). Ineq. (28) is obtained by setting 2 exp(−2nε2/S2) = δ.

Lemma D.3. If L(·, ·) is a convex function w.r.t. one input parameter given the other fixed, then it follows that

Ez∼puEz−∼pu′L(h(z), h(z
−)) ≥ L(Ez∼puh(z),Ez−∼pu′h(z

−)).
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Proof. Since L is a convex function, we have, according to Jensen’s inequality, that

Ez∼puEz−∼pu′L(h(z), h(z
−)) =

∫
z

pu(z)

∫
z−

pu(z
−)L(h(z), h(z−))dzdz− (29a)

=

∫
z

pu(z)dz

∫
z−

pu(z
−)L(h(z), h(z−))dz− (29b)

≥
∫
z

pu(z)L(h(z),E(h(z−)))dz (29c)

≥ L(E(h(z)),E(h(z−))). (29d)

Lemma D.4. Given a ϕ(λ)-Lipschitz transferable hypothesis h (Assumption 3.4), the union of regions where the transferable
Lipschitzness does not hold is denoted by

Ω := {(z1, z2) : L(h(z1), h(z2)) ≤ λD(z1, z2)} ,

where λ > 0, D(·, ·) is a metric in Z and L(·, ·) satisfies Assumptions 3.3 and 3.2. Then it holds that∫
(Z×C)2

kL(h(z1), h(z2))dπ((z1, u), (z2, l)) ≤ kSϕ(λ) +

∫
(Z×C)2

kλD(z1, z2)dπ((z1, u), (z2, l)). (30)

Proof. In the following proof, Ineq. (31a) comes from that L(h(z1), h(z2)) is bounded by S in the region (Z ×Z) \Ω (see
Assumption 3.2). Ineq. (31b) is due to the definition of the region Ω, which admits the transferable Lipschitzness defined in
Assumption (3.4). Ineq. (31c) is the result of non-negativity of a norm D.∫

(Z×C)2
kL(h(z1), h(z2))dπ((z1, u), (z2, l))

=

∫
Z

∫
Z
kL(h(z1), h(z2))

∫
C

∫
C
π((z1, u), (z2, l))dz1dudz2dl

=

∫
Z

∫
Z
kL(h(z1), h(z2))dz1dz2

∫
C

∫
C
π(z1, z2)π(u, l|z1, z2)dudl

=

∫
Z×Z

kL(h(z1), h(z2)π(z1, z2)dz1dz2

=

∫
(Z×Z)\Ω

kL(h(z1), h(z2)π(z1, z2)dz1dz2 +

∫
Ω

kL(h(z1), h(z2)π(z1, z2)dz1dz2

≤ k

∫
(Z×Z)\Ω

Sπ(z1, z2)dz1dz2 +

∫
Ω

kL(h(z1), h(z2)π(z1, z2)dz1dz2 (31a)

≤ kS

∫
(Z×Z)\Ω

π(z1, z2)dz1dz2 +

∫
Ω

kλD(z1, z2)π(z1, z2)dz1dz2 (31b)

= kSϕ(λ) +

∫
Ω

kλD(z1, z2)π(z1, z2)dz1dz2

≤ kSϕ(λ) +

∫
Z×Z

kλD(z1, z2)π(z1, z2)dz1dz2 (31c)

= kSϕ(λ) +

∫
(Z×C)2

kλD(z1, z2)dπ((z1, u), (z2, l)) (31d)

Lemma D.5. Given a function h∗ : Z → YC and two joint distributions p(z1, u) and p(z2, l) over the space Z × C, the
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following expectation about L : YC × YC → R≥0 over the coupling distribution π((z1, u), (z2, l)) hold.

∫
(Z×C)2

[
L(h∗(z1),y

u)− L(h∗(z2),y
l)
]
dπ((z1, u), (z2, l))

=

∫
Z×C

p(z1, u)L(h
∗(z1),y

u)d(z1, u)−
∫
Z×C

p(z2, l)L(h
∗(z2),y

l)d(z2, l)

Proof. The proof is substantially based on the definition of coupling, which reads that p(z1, u) and p(z2, l) are two marginal
distributions of it. ∫

(Z×C)2

[
L(h∗(z1),y

u)− L(h∗(z2),y
l)
]
dπ((z1, u), (z2, l)) (32a)

=

∫
(Z×C)2

L(h∗(z1),y
u)dπ((z1, u), (z2, l))−

∫
(Z×C)2

L(h∗(z2),y
l)dπ((z1, u), (z2, l)) (32b)

=

∫
(Z×C)2

L(h∗(z1),y
u)π((z1, u), (z2, l))d(z1, u)d(z2, l)

−
∫
(Z×C)2

L(h∗(z2),y
l)π((z1, u), (z2, l))d(z1, u)d(z2, l) (32c)

=

∫
Z×C

π((z1, u), (z2, l))d(z2, l)

∫
Z×C

L(h∗(z1),y
u)d(z1, u)

−
∫
Z×C

π((z1, u), (z2, l))d(z1, u)

∫
Z×C

L(h∗(z2),y
l)d(z2, l) (32d)

=

∫
Z×C

p(z1, u)L(h
∗(z1),y

u)d(z1, u)−
∫
Z×C

p(z2, l)L(h
∗(z2),y

l)d(z2, l). (32e)

D.2. Auxiliaries for Theorems on (Graph) Contrastive Learning Presented in Sec. 4

Theorem D.6 (Assel et al. (2022); Theorem 1). The Pairwise Markov Random Field (PMRF) on the graph Wis with the
unnormalized density function

fk(Z,W)→
∏

(i,j)∈[N ]2

k(zi − zj)
Wij .

Let each category correspond to a graph connected component, then Z ∈ RN×d can be orthogonally decomposed into
S0 = (kerL) ⊗ Rd and S1 = (kerL)⊥ ⊗ Rd, where L is the graph Laplacian matrix of W. If k is λRd-integrable and
bounded above λRd almost everywhere, then fk(Z,W) is λS1

-integrable.

Lemma D.7 (Tan et al. (2023); Lemma 2.4). Suppose the space X is constructed by M spaces X = X1 ×X2 × · · · × XM .
On the m-th subspace there are probability distributions Pm and Qm over Xm. Then the cross entropy between the joint
distributions P = P1 ⊗ P2 ⊗ · · · ⊗ PM and Q = Q1 ⊗Q2 ⊗ · · · ⊗QM can be decomposed into all subspaces

DCE(P∥Q) ≜ −Ex∼P logQ(x) =

M∑
m=1

DCE(Pm∥Qm).

Lemma D.8. If k is shift invariant kernel, then fk(Z,W) is not integrable on S0.
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Proof. With the shift property of k, we readily get

fk(Z1,W) = fk(Z− Z0,W)

=
∏

(i,j)∈[N ]2

k(zi − z0,i, zj − z0,j)
Wij

=
∏

(i,j)∈[N ]2

k(zi − z0,i, zj − z0,i)
Wij (33)

=
∏

(i,j)∈[N ]2

k(zi, zj)
Wij = fk(Z,W),

where Eq. (33) is because that k(zi − z0,i, zj − z0,i)
Wij ̸= 1 only when j is from the same category as i (i.e., z0,i = z0,j).

In contrast, if they are from different classes (and hence clusters), k(zi − z0,i, zj − z0,j)
Wij = 1 contributes nothing to the

density function. Such invariance and non-negativity of fk makes it not integrable on S0.

E. Proofs of Theorems on Parametric GCD Classifiers in Sec. 3
E.1. Proof of GCD Upper Bound in Theorem 3.5

Theorem E.1 (Restate Theorem 3.5). Let Assumptions 3.2, 3.3 and 3.4 hold and h∗be the optimal hypothesis that minimizes
the GCD loss Eq. (5). Let nL =

∑
l nl and nU =

∑
u nu be the total numbers of old and new class samples, respectively.

Then there exists, c′ and n1, such that for nU > n1, nL > n1, and all λ > 0, Lte(h) is bounded as, with probability at least
1− δ − ω (δ, ω > 0),

Lte(h) ≤αF + (2 + β)L̂L(h
∗) + 2W rλ(p̂U (z, y), p̂L(z, y))

+
γ

b
DKL(PC∥h̄) + 2EU + EL + TG,

TG =(2 + β)

√
S2

2n′
L
ln

2

ω

+ 2

[
rSϕ(λ) +

√
2

c′
log

2

δ

(
1
√
nU

+
1
√
nL

)]
,

where b = Pr(y ∈ U), PC is the uniform distribution over C, h̄ = Ep(z,y)h(z) is the expected prediction over both the old
and new data, and p̂L(z, y) and p̂U (z, y) are respectively the empirical old and new joint distributions. W rλ is hereafter
abbreviated as W . n′

L is the number of old-class training samples while nL/nU is the total number of old-/new-class
samples in the whole embedding dataset Dz .

Proof. We first expand the GCD loss

Lte(h) = βLL(h) + LU (h)︸ ︷︷ ︸
LG

te(h

+γDKL(pU (c)∥h̄U ), β, γ > 0, (35)

and then bound the consequent components. By finding the upper bounds for these components, we successfully connect the
old-class and new-class data with the Wasserstein distance between joint (embedding, label) distributions.
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Step 1 We first tackle LG
te(h), leaving the entropy regularization to later.

LG
te(h) =βLL(h) + LU (h) (36a)

=β
∑
l∈L

pL(l)Ez∼pl
L(h(z),yl) +

∑
u∈U

pU (u)Ez∼puEz+∼pu
L(h(z), h(z+)) (36b)

− α
∑
u∈U

pU (u)
∑
u ̸=u′

pU (u
′)Ez∼puEz−∼pu′L(h(z), h(z

−)) (36c)

≤
∑
u∈U

pU (u)
[
Ez∼puEz+∼pu

L(h(z), h∗(z)) + L(h∗(z), h∗(z+)) + L(h∗(z+), h(z+))
]

(36d)

+ α
∑
u∈U

pU (u)
∑
u ̸=u′

pU (u
′)
[
−Ez∼pu

Ez−∼pu′L(h(z), h(z
−))
]

︸ ︷︷ ︸
F1:The repulsion force between new classes

+β
∑
l∈L

pL(l)Ez∼pl
L(h(z),yl) (36e)

=2
∑
u∈U

pU (u)Ez∼puL(h(z), h
∗(z)) +

∑
u∈U

pU (u)Ez∼puEz+∼pu
L(h∗(z), h∗(z+)) (36f)

+ αF1 + β
∑
l∈L

pL(l)Ez∼pl
L(h(z),yl) (36g)

≤2

EU : The estimation error on new class data︷ ︸︸ ︷∑
u∈U

pU (u)Ez∼pu
L(h(z), h∗(z))+β

EL: The estimation error on old class data︷ ︸︸ ︷∑
l∈L

pL(l)Ez∼pl
L(h(z), h∗(z))+αF1 (36h)

+ (2 + β)
∑
l∈L

pL(l)Ez∼pl
L(h∗(z),yl)︸ ︷︷ ︸

RL(h∗): The old class error of h∗

(36i)

+
∑
u∈U

pU (u)Ez∼pu
Ez+∼pu

L(h∗(z), h∗(z+))︸ ︷︷ ︸
The attraction within new classes

−2
∑
l∈L

pL(l)Ez∼pl
L(h∗(z),yl)

︸ ︷︷ ︸
T1: The interplay between old and new classes

(36j)

=2EU + EL + αF1 + (2 + β)RL(h
∗) + T1 (36k)

Step 2 Now we further cope with RL(h
∗).

Like classical generalization bound on single hypothesis (Mohri et al., 2018), we relate our bound with the empirical loss
R̂L(h

∗) =
∑

l∈L p̂L(l)Ez∼p̂l
L(h∗(z),yl) by applying Theorem D.2 to RL(h

∗). Then with probability at least 1− ω, we
have

RL(h
∗) ≤ R̂L(h

∗) +

√
S2

2nL
ln

2

ω
. (37)

Step 3 We investigate the interplay between old and new classes T1, which is the core of this work. To simplify the symbols,
we abbreviate pL(l) to p(l), pU (u) to p(u), pU (z, u) to p(z, u), pL(z, l) to p(z, l).

Ineq. (38c) comes from the triangle inequality of norm.

Eq. (38h) is a consequence of that the coupling π((z1, u), (z2, l)) between p(z1, u) and p(z2, l) (i.e., joint distribution of
(z1, u) and (z2, l)) is defined to have the marginals p(z1, u) and p(z2, l). Thus we can recover Eq. (38g), given any or the
optimal coupling π minimizing the final bound, as stated in Lemma (D.5).

To simplify the process and enhance understanding, we slightly abuse notation by replacing the summation symbol over u
and l with the integral symbol. Note that this substitution does not affect the overall correctness of the reasoning logic as the
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expectation operator is linear.

T1 =
∑
u∈U

p(u)Ez∼puEz+∼pu
L(h∗(z), h∗(z+))− 2

∑
l∈L

p(l)Ez∼pl
L(h∗(z),yl) (38a)

=
∑
u∈U

p(u)

∫
L(h∗(z), h∗(z+))pu(z)pu(z

+)dzdz+ − 2
∑
l∈L

p(l)

∫
L(h∗(z),yl)pl(z)dz (38b)

≤
∑
u∈U

p(u)

∫ ∫ [
L(h∗(z),yu) + L(yu, h∗(z+))

]
pu(z)pu(z

+)dzdz+ − 2
∑
l∈L

p(l)

∫
L(h∗(z),yl)pl(z)dz (38c)

=
∑
u∈U

p(u)

[∫
L(h∗(z),yu)pu(z)dz+

∫
L(yu, h∗(z+)pu(z

+)dz+
]
− 2

∑
l∈L

p(l)

∫
L(h∗(z),yl)pl(z)dz (38d)

=2

[∑
u∈U

p(u)

∫
L(h∗(z),yu)pu(z)dz−

∑
l∈L

p(l)

∫
L(h∗(z),yl)pl(z)dz

]
(38e)

=2

[∑
u∈U

p(u)

∫
L(h∗(z),yu)p(z|u)dz−

∑
l∈L

p(l)

∫
L(h∗(z),yl)p(z|l)dz

]
(38f)

=2

[∫
u∈U

∫
Z
L(h∗(z1),y

u)p(z1, u)dz1du−
∫
l∈L

∫
Z
L(h∗(z2),y

l)p(z2, l)dz2dl

]
(38g)

=2

∫
(Z×C)2

[
L(h∗(z1),y

u)− L(h∗(z2),y
l)
]
dπ((z1, u), (z2, l)) (38h)

=2

∫
(Z×C)2

[
L(h∗(z1),y

u)− L(h∗(z2),y
u) + L(h∗(z2),y

u)− L(h∗(z2),y
l)
]
dπ((z1, u), (z2, l)) (38i)

≤2
∫
(Z×C)2

[
|L(h∗(z1),y

u)− L(h∗(z2),y
u)|+

∣∣L(h∗(z2),y
u)− L(h∗(z2),y

l)
∣∣] dπ((z1, u), (z2, l)) (38j)

≤2
∫
(Z×C)2

[
rL(h∗(z1), h

∗(z2)) +
∣∣L(h∗(z2),y

u)− L(h∗(z2),y
l)
∣∣] dπ((z1, u), (z2, l)) (38k)

≤2

[
rSϕ(λ) +

∫
(Z×C)2

[
rλD(z1, z2) +

∣∣L(h∗(z2),y
u)− L(h∗(z2),y

l)
∣∣] dπ((z1, u), (z2, l))] (38l)

≤2

[
rSϕ(λ) +

∫
(Z×C)2

[
rλD(z1, z2) + L(yu,yl)

]
dπ((z1, u), (z2, l))

]
(38m)

=2
[
rSϕ(λ) +W rλ

1 (p(z, u), p(z, l))
]

(38n)

Ineq. (38k) is because of the r-Lipschitzness of the discrepancy function L in its first argument (Assumption 3.3).

Ineq. (38l) holds owing to Assumption 3.4 and Assumption 3.2, which lead to the term rSϕ(λ) that covers the sample space
regions violating the transferable Lipschitzness claimed in Assumption 3.4. A detailed explanation about this can be found
in Lemma (D.4). W rλ

1 (p̂U (z, y), p̂L(z, y))

Ineq. (38m) follows from the triangle inequality of L. W rλ
1 (p(z, u), p(z, l)) is the discrepancy between the underlying

distributions, which can be only estimated via the empirical distributions p̂(z, u) and p̂(z, l).

Eq. (38n) is given by Definition 3.1. According to Theorem D.1, it holds that with probability at least 1− δ

T1 ≤ 2
[
rSϕ(λ) +W rλ

1 (p̂(z, u), p̂(z, l)) +W rλ
1 (p(z, u), p̂(z, u)) +W rλ

1 (p(z, l), p̂(z, l)
]

= 2

[
rSϕ(λ) +W rλ

1 (p̂(z, u), p̂(z, l)) +

√
2

c′
log

2

δ

(
1
√
nU

+
1
√
nL

)]
︸ ︷︷ ︸

The estimated interplay between old and new classes

. (39a)

Here the first inequality is because Wasserstein distance is a valid metric and hence satisfies the triangle inequality. And
the second equality is obtained by setting the probability thresholds in Theorem D.1 to δ/2 for W rλ

1 (p(z, u), p̂(z, u)) and
W rλ

1 (p(z, l), p̂(z, l).
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(a) (b) (c) (d) (e)

Figure 5: An illustrative example of Theorem 3.5 with 2 new classes and 2 new classes. The GCD loss upper bound for
all other cases is higher than that of case (c). (a) Poor knowledge transfer: The lion is far from cat, and sports cars are far
from truck. The blue segment (cat-truck distance) cannot constrain lion-sports car separation. (b) Unconstrained new-class
separation: Though new classes (lion, sports cars) may naturally separate, this distance is not unconstrained by old-class
knowledge. (c) Ideal case: Semantically related old-new classes (e.g., cat-lion, truck–sports car) cluster appropriately.
(d) Misaligned semantics: Global representation distances resemble (c), but semantically incoherent (e.g., cat near sports
cars). Thus, the old-new Wasserstein distance (Def. 3.1) is significantly higher. (e) Loss of reject capability: New classes
(lion/sports cars) overly overlap with old classes (cat/truck). While Wasserstein distance is small, the model fails to reject
ambiguous samples (old vs. new class), leading to a large DKL(PC∥h̄) in Eq. (8a).

Step 4 The probabilistic inequalities (39a) and (37) are then combined. According to the Boole–Fréchet inequalities
(Hailperin, 1986), we have, with probability at least 1− ω − δ,

T1 +RL(h
∗) ≤ The sum of two upper bounds.

Substituting the upper bounds of T1and RL(h
∗) into Eq. (36k) reaches the upper bound on LG

te(h).

Step 5 In sequel, the upper bound on γDKL(pU (c)∥h̄U ) given in 3.9 is substituted into Eq. 35, which finishes the proof.

E.2. An Illustrative Example of Theorem 3.5

Suppose we have a total of four categories: two old classes (cats and trucks) and two new classes (lions and sports cars).
After training on feature-label paired data from the two old classes, the classifier has already achieved strong discriminative
performance in distinguishing between the old classes (cats and trucks). In the representation space learned using InfoNCE
and SupCon contrastive losses, the representations of cats and trucks are also well-separated.

At this stage, in the representation space derived by the encoder, there may exist five typical relationship patterns between
old and new classes, as illustrated in Fig. 5. Among these, the third scenario (Fig. 5c) best aligns with human intuition, and
it corresponds to the smallest upper bound of the GCD loss in Theorem 3.5 . The other scenarios represent undesirable cases
that we aim to avoid. Notably, Fig. 5d may be easily confused with Fig. 5c; however, in Fig. 5d , semantically similar old
and new classes are actually not adjacent, which contradicts our intuition and results in a larger GCD loss upper bound.

E.3. The Proof of Entropy Regularization Trick in Proposition 3.9

Proposition E.2 (Restate Proposition 3.9). If PU , PC ∈ YC are uniform distributions over U and C respectively, and the
data distribution is class-balanced, then it follows that

DKL(PU∥h̄U )) ≤
1

b
DKL(PC∥h̄), (40)

where b = Pr(y ∈ U), h̄ = Ep(z,y)h(z), and DKL(PC∥h̄) is minimized when the entropy H(h̄) = −
∑

c∈C h̄(c) log h̄(c) is
maximized.

Proof. For the entire underlying data dsitribution p(z, y), we introduce a binary random variable t to indicate whether data
originates from an old or new category. By definition, p(t = 0) = a and p(t = 1) = 1− a represent the proportions of new
and old category data, respectively. We can then decompose the distribution as

p(z, y) = p(z, y|t = 0)p(t = 0) + p(z, y|t = 1)p(t = 1)

= apU (z, y) + (1− a)pL(z, y),
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leading to the expansion of h̄ below.

h̄ = Ep(z,y)h(z) (41a)
= Ep(z,y,t)h(z) (41b)

= a
∑
u∈U

∫
Z
pU (z, y)h(z)dz+ (1− a)

∑
l∈L

∫
Z
pL(z, y)h(z)dz (41c)

= aEpU (z,y)h(z) + (1− a)EpL(z,l)h(z) (41d)
= ah̄u + (1− a)h̄l (41e)

Since the data distribution is class-balanced, a = Cn/C and 1− a = Co/C. And current parameteric GCD methods (Wen
et al., 2023; Vaze et al., 2023) rarely misclassify old class samples as belonging to new classes, so for any c ∈ U , h̄l(c) = 0.
With this at hand, we readily get that

DKL(PC∥h̄) =
∑
y∈U

PC(y) log
PC(y)

ah̄u(y) + (1− a)h̄l(y)
+
∑
y∈L

PC(y) log
PC(y)

h̄(y)
(42a)

=
∑
y∈U

1

C
log

1
C

ah̄u(y)
+DKL(PC∥h̄|L) (42b)

=
∑
y∈U

1

C
log

1

Cnh̄u(y)
+DKL(PC∥h̄ | L) (42c)

=
∑
y∈U

a

Cn
log

1

Cnh̄u(y)
+DKL(PC∥h̄ | L) (42d)

= aDKL(PU∥h̄u) +DKL(PC∥h̄ | L). (42e)

As DKL(PC∥h̄ | L) ≥ 0, it follows that

DKL(PU∥h̄u) ≤
1

a
DKL(PC∥h̄).

Because PC is a uniform distribution, the minimizer of DKL(PC∥h̄) is a uniform distribution, which, is the maximizer of
the entropy H(h̄) (Thomas & Joy, 2006).

F. Proofs of Theorems on (Graph) Contrastive Learning Presented in Sec. 4
F.1. Proof of Theorem 4.1

Theorem F.1 (Restate Theorem 4.1). Minimizing InfoNCE loss is equivalent to minimizing the cross-entropy between the
subgraph distribution p(WX ;B), which depends on data augmentation, and the subgraph posterior distribution p(W|Z).

Proof. The InfoNCE loss is usually formulated as

LNCE(zi, zj) = − log
exp {cos(zi, zj)/τ}∑
k exp {cos(zi, zk)/τ}

, (43)

where ziand zj are the i-th and j-th rows of the embedding feature matrix Z, τ > 0 is the temperature, and cos(·, ·) is the
cosine similarity. To compare DCE(p(WX ;B)∥p(W|Z)) with it, we need to get a more detailed form of this cross entropy.

The unornalized density function of PMRF in Z .

For probabilistic modeling, we introduce one unnormlaized density function based on a kernel k for the PMRF in Z .

fk(Z,W)→
∏

(i,j)∈[N ]2

k(zi − zj)
Wij . (44)
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In a PMRF, the dependencies among random variables are restricted to variable pairs (i.e., (i, j)). As a result, the
unnormalized density can naturally be modeled as a product form over all variable pairs. Here, a shift-invariant kernel
k(zi, zj) = k(zi−zj) is used, aligning with the shift-invariant Gaussian kernel in InfoNCE, indicating that the relationships
between variables depend solely on their relative positions. Intuitively, larger edge weights Wij and higher node similarity
k(zi − zj) correspond to higher subgraph scores, making such subgraphs more likely to appear.

The density function of the projection on S1 = (kerL)⊥ ⊗ Rd.

According to Theorem D.6, fk(Z,W) is integrable on S1 = (kerL)⊥ ⊗ Rd. Thus a valid distribution p(Z1|W) on the the
measure space (S1,B(S1), λS1) is accessible, where B(S1) is Borel σ-algebra on S1 and λS1 is the Lebesgue measure on
S1.

Pr(dZ1|W) = p(Z1|W)λS1
(dZ1) =

1

Ck(W)
fk(Z1,W)λS1

(dZ1)

Ck(W) =

∫
fk(Z1,W)dλS1

The density function of the projection on S0 = (kerL)⊗ Rd.

Unlike the previous case, if k is a shift-invariant kernel (i.e., as in InfoNCE), fk(Z1,W) is not integrable on S0, as
demonstrated in Lemma D.8. A new valid distribution density is thus required on the subspace S0. To address this, we design
a Borel function fε(·,W) : RN×d → R+ (ε > 0) that satisfies the following three conditions for validity and applicability:

• For any Z ∈ RN×d, fε(Z,W) = fε(Z0,W). This ensures the function depends only on the projection of Z onto S0
(i.e., Z0) rather than the entirety of Z.

• For any nonzero positive real number ε ∈ R+, fε(·,W) is integrable on S0.

• As ε → 0, fε(·,W) → 1. This allows fε to become increasingly flexible, even modeling scenarios where all
information is entirely lost (i.e., when the function takes the constant value of 1 everywhere)

With this at hand, we define the distribution p(Z0|W) on measure space (S0,B(S0), λS0).

Pr(dZ0|W) = p(Z0|W)λS0
(dZ0) =

1

Ck(W)
fε(Z0,W)λS0

(dZ0)

Cε(W) =

∫
fk(Z0,W)dλS0

The density function of the projection on the entire space S.

Since S0 is orthogonal to S1, it holds that the product measure on S = S0 ⊕ S1 is the product of two measures respectively
defined on S0 and S1

Pr(dZ|W) = Pr(dZ0|W) Pr(dZ1|W)

=
1

Ck(W)
fε(Z0,W)λS0

(dZ0)
1

Ck(W)
fk(Z1,W)λS1

(dZ1)

=
1

Cεk(W)
fε(Z,W)fk(Z,W)λS(dZ) (45)

= p(Z|W)λS(dZ),

where Cεk(W) absorbs the normalization constants of two subspace conditionals, and Eq. (45) is due to fε(Z,W) =
fε(Z0,W) and the shift invariant property of fk(Z1,W) = fk(Z,W).

The prior distribution of W.

Similar to Definition 2 in (Assel et al., 2022), we introduce the prior distribution for W that depends on π ∈ RN×N
+ .

ε

Pr
D,k

(W;π) ∝ Cεk(W)ΩD(W)
∏

(i,j)∈[N ]2

π
Wij

ij ,
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where the kernel k should satisfies the conditions in Theorem D.6 and ΩD(W) ≜
∏

i I(Wi+ = 1) is to filter out subgraphs
not consistent with InfoNCE loss, i.e., those subgraphs with more than one outgoing edges for any node.

The posterior distribution of W.

With likelihood and prior, we have the posterior of W

Pr(W|Z) ∝ Pr(Z|W)
ε

Pr
D,k

(W;π)

=
1

Cεk(W)
fε(Z,W)fk(Z,W)

ε

Pr
D,k

(W;π)

∝ fε(Z,W)fk(Z1,W)ΩD(W)
∏

(i,j)∈[N ]2

π
Wij

ij

= fε(Z,W)ΩD(W)
∏

(i,j)∈[N ]2

π
Wij

ij

∏
(i,j)∈[N ]2

k(zi − zj)
Wij

−−−→
ε→0

ΩD(W)
∏

(i,j)∈[N ]2

[πijk(zi − zj)]
Wij (46)

Denote the sample space of W as SW ≜
{
W ∈ {0, 1}N×N | ∀(i, j) ∈ [N ]2,Wii = 0

}
, we can normalize Eq. (46) to

Pr(W|Z) =
∏

(i,j)∈[N ]2 [πijk(zi − zj)]
Wij I(Wi+ = 1)∑

W∈SW

∏
(i,j)∈[N ]2 [πijk(zi − zj)]

Wij I(Wi+ = 1)

=

∏
(i,j)∈[N ]2 [πijk(zi − zj)]

Wij I(Wi+ = 1)∏
i∈[N ]

∑
l∈[N ] πilk(zi − zl)

=
∏

i∈[N ]

(∏
j∈[N ] [πijk(zi − zj)]

Wij I(Wi+ = 1)∑
l∈[N ] πilk(zi − zl)

)
︸ ︷︷ ︸

The distribution of each row Wi

(47)

=
∏

(i,j)∈[N ]2

(
πijk(zi − zj)∑

l∈[N ] πilk(zi − zl)

)Wij

I(Wi+ = 1). (48)

The distribution characterized by Eq. (48) actually has the properties that the rows of W are all independent and the i-th
row follows the multinomial distribution

Wi
⊥∼ p(Wi|Z) =M

1,

[
πijk(zi − zj)∑

l∈[N ] πilk(zi − zl))

]
j∈[N ]

 , (49)

where the vector in parentheses is the i-th row of π ⊙K divided by the corresponding row sum and K is the pairwise
relation matrix induced by kernel k in Z .

The cross entropy between the posterior of W and p(WX ;B) that depends on the data augmentation strategy.

Consider the subgraph distribution in the input space. Methods like SimCLR (Chen et al., 2020) and GRACE (Zhu et al.,
2020) perform augmentation as sampling subgraph WX from the human prior encoded in B, and the out-degrees of all
nodes in WX are equal to 1, aligned with the a single positive sample setting in GRACE. When both Bij and Wij are
large, nodes i and j are more similar and should form a positive pair. To meet this requirement, the subgraph distribution is
designed as follows

p(WX ;B) ∝
∏
i

I(WX,i+ = 1)
∏

(i,j)∈[N ]2

B
WX,ij

ij

Let the sample space of WX be SW ≜
{
W ∈ {0, 1}N×N | ∀(i, j) ∈ [N ]2,Wii = 0

}
, we can normalized the above
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distribution

p(WX ;B) =

∏
(i,j)∈[N ]2 B

WX,ij

ij I(WX,i+ = 1)∑
WX∈SW

∏
(i,j)∈[N ]2 B

WX,ij

ij I(WX,i+ = 1)

=

∏
(i,j)∈[N ]2 B

WX,ij

ij I(WX,i+ = 1)∏
i∈[N ]

∑
l∈[N ] Bil

=
∏

i∈[N ]

(∏
j∈[N ] B

WX,ij

ij I(WX,i+ = 1)∑
l∈[N ] Bil

)
︸ ︷︷ ︸

The distribution of each row WX,i

=
∏

(i,j)∈[N ]2

(
Bij∑

l∈[N ] Bil

)WX,ij

I(WX,i+ = 1),

which means

WX,i
⊥∼ p(WX,i;B) =M

1,

[
Bij∑

l∈[N ] Bil

]
j∈[N ]

 . (50)

Now, let us formalize the cross-entropy. Since each row of W is independent, we have p(W|Z) =
∏

i∈[N ] p(Wi|Z).
Similarly, during data augmentation, the sampling of positive samples for each instance i is independent, leading to
p(WX ;B) =

∏
i∈[N ] p(WX,i;B). Consequently, the difference between matrix distributions can be decomposed row-wise

according to Lemma D.7.

DCE(p(WX ;B)∥p(W|Z)) =
N∑
i=1

DCE(p(WX,i;B)∥p(Wi|Z))

=

N∑
i=1

DCE(Pi∥Qi)

= −
N∑
i=1

N∑
j ̸=i

Pij logQij

= −
N∑
i=1

N∑
j ̸=i

Bij∑
l∈[N ] Bil

log
πijk(zi − zj)∑

l∈[N ] πilk(zi − zl)
(51)

If the parameter π = 1 for the prior of W and k is the Gaussian kernel, then Eq. (51) retrieves the famous InfoNCE loss.

DCE(p(WX ;B)∥p(W|Z)) = −
N∑
i=1

N∑
j ̸=i

Bij∑
l∈[N ] Bil

log
exp {cos(zi, zj)/τ}∑

l∈[N ] exp {cos(zi, zl)/τ}
,

where Bij∑
l∈[N] Bil

is the probability of sampling j as the positive sample for i, and the − log
exp{cos(zi,zj)/τ}∑

l∈[N] exp{cos(zi,zl)/τ} is the

InfoNCE loss on positive pair (i, j).

F.2. Proof of Corollary 4.2

Corollary F.2 (Restate Theorem 4.2). Minimizing SupCon loss is equivalent to minimizing the cross-entropy stated in
Theorem 4.1.

Proof. The overall proof approach is similar to the equivalence proof between InfoNCE and DCE(p(WX ;B)∥p(W|Z))
(Theorem 4.1). The key difference lies in how multiple positive pairs introduced by label information are handled.
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It is noted that the out-degree of each node in the sampled subgraph does not exceed mi. If no duplicate nodes are sampled,
the out-degree equals mi; otherwise, it is less than mi. For node i, the augmentations of mi same-class samples are
independent of each other. Thus, under the SupCon setting, the current distribution of each row of W can be expressed as

psc(WX,i;B) =

mi∏
r=1

p(WX,i;B)

psc(Wi|Z) =

mi∏
r=1

p(Wi|Z),

where p(WX,i;B) and p(Wi;Z) correspond to Eq. (50) and Eq. (49), respectively. Consequently, under the SupCon
setting, Eq. (51) (with the prior parameter π = 1) becomes

DCE(p(WX ;B)∥p(W|Z)) =
N∑
i=1

DCE(psc(WX,i;B)∥psc(Wi|Z))

=

N∑
i=1

mi∑
r=1

DCE(p(WX,i;B)∥p(Wi|Z)) (52)

= −
N∑
i=1

mi∑
r=1

N∑
j ̸=i

Pij logQij

= −
N∑
i=1

mi∑
r=1

N∑
j ̸=i

Bij∑
l∈[N ] Bil

log
k(zi − zj)∑

l∈[N ] k(zi − zl))


︸ ︷︷ ︸

A

, (53)

where Eq. (52) is due to Lemma D.7 and A can be regarded as the population SupCon loss for anchor node i. Denote by
jr the positive node sampled in the r-th augmentation step. Then according to the non-negativity of cross entropy and
− log

k(zi−zjr )∑
l∈[N] k(zi−zl))

, it follows that

DCE(p(WX ;B)∥p(W|Z)) ≥ −
N∑
i=1

mi∑
r=1

log
k(zi − zjr )∑

l∈[N ] k(zi − zl))

≥ −
N∑
i=1

1

mi

mi∑
r=1

log
k(zi − zjr )∑

l∈[N ] k(zi − zl))
,

which exactly coincides with the empirical SupCon loss (Khosla et al. (2020); Eq. (2) ) for anchor node i.

F.3. Proof of Theorem 4.3

Theorem F.3 (Restate Theorem 4.3). The InfoNCE or SupCon loss optimization is equivalent to minimizing
DCE(p(WX ;B)∥p(W|Z)) when the conditional distribution of category centers pε(Z0|W) diffuse uninformatively.

Proof. In the proof of Theorem F.1, the equivalence condition between InfoNCE loss optimization and the minimization
of DCE(p(WX ;B)∥p(W|Z)) is that the distribution pε(Z0|W) diffuses uninformatively. The proof of Corollary F.2
follows a similar process to that of Theorem F.1, where the equivalence condition between SupCon loss optimization and the
minimization of DCE(p(WX ;B)∥p(W|Z)) is also that the distribution pε(Z0|W) diffuses uninformatively. Therefore,
Theorem 4.3 holds.

G. Supplementary Details of the Experiments
G.1. Evaluation Protocol

The Conventional VGCD metrics The standard evaluation protocol used in VGCD (Vaze et al., 2022) employs clustering
accuracy to measure the overall performance (All ACC), new-class performance (New ACC) and old-class performance
(Old ACC).
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Let W = [wij ] be the C × C confusion matrix, where wij is the count of samples with true label j and predicted label
i. Clustering Accuracy is computed by solving a linear sum assignment (LSA) problem (Lovasz, 1986; Crouse, 2016),
mapping each ground truth c to a predicted label a(c) to maximize correct predictions among n (test) nodes.

All ACC = max
a

1

n

C∑
c=1

Wa(c),c (54)

New ACC and Old ACC are computed as

New ACC =

∑
u∈U Wa(u),u∑

u∈U
∑C

c=1 Wc,u

(55)

Old ACC =

∑
l∈L Wa(l),l∑

l∈L
∑C

c=1 Wc,l

(56)

The Rectified GCD metrics We argue that the traditional GCD metrics introduced above fail to account for the adverse
effects of confusion between known and novel categories. Under no circumstances should novel categories be mapped to
known categories, as such incorrect mappings violate the core objective of the GCD task: ensuring that known categories
are accurately identified as their true labels while distinguishing novel categories. Therefore, we contend that traditional
metrics do not fully and faithfully reflect the performance of GCD. Regarding the old-class performance, the LSA within C
may assign true old classes to new classes, which is undesirable. Hence, we adopt the conventional classification accuracy
as a rectified version.

Old RACC =

∑
l∈L Wl,l∑

l∈L
∑C

c=1 Wc,l

(57)

Respecting the new-class performance, the computation of New ACC may result in cases where a true old class l is assigned
to a new label u, violating the intended separation of known and novel categories expected in GCD. To address this, we
propose a Rectified Clustering Accuracy (RACC) metric to better evaluate the performance on novel categories. Without
loss of generality, assume the first Co classes are the old categories and the remaining are the new categories. We extract
the bottom-right Co × Co submatrix W(new) of the confusion matrix W, which corresponds to the confusion among new
categories. Based on W(new), we solve the Linear Sum Assignment (LSA) problem within the new categories, mapping
each ground truth new label u to a predicted new label b(u). The Rectified metric is then defined as

New RACC = max
b

1∑C
u=Co+1

∑C
c=1 Wc,u

C−Co∑
u=1

[
W(new)

]
b(u),u

. (58)

It is important to note that when novel-class samples are misclassified as old classes, W(new) loses many samples and∑C−Co

u=1

[
W(new)

]
b(u),u

decreases significantly, resulting in a low New RACC. This makes New RACC a more faithful
reflection of performance on novel categories in the GCD context compared to New ACC. Given that performance on both
known and novel categories is critical for GCD, and the harmonic mean penalizes large disparities between values, we
replace All ACC with the Harmonic mean of Old RACC and New RACC Scores (HRScore), to evaluate the overall GCD
performance:

HRScore =

{
0 if Old RACC=0 or New RACC=0

2
1

Old RACC + 1
New RACC

otherwise
(59)

Reject ACC is computed by merging all "old classes" into a single class (Known) and all "new classes" into another class
(Unknown), constructing a 2× 2 confusion matrix W(r) and calculating the proportion of the sum of its diagonal elements
to the total sum of all elements.

Reject ACC =

∑2
i=1 W

(r)
i,i∑2

i=1

∑2
j=1 W

(r)
i,j

(60)

G.2. Hardware and Software Environment

The experiments were carried out across two different systems. The first system runs Ubuntu 22.04 and is equipped with
an RTX 4090 GPU (24GB), an Intel i7-12700 CPU, and 64GB of RAM. The second system, which uses Ubuntu 20.04,
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features an RTX 4090 GPU (24GB), dual Intel Xeon Gold 6240C processors, and 126GB of RAM. Both systems have the
same Conda environment, which includes PyTorch 2.5 (Paszke et al., 2017) and PyG 2.5 (Fey & Lenssen, 2019), all built on
CUDA 12.1.

G.3. Experimental Details for GCD Upper Bound Theory (Sec. 3.4)

Synthetic Node Embedding Datasets In the 2D plane, we generate a square with radius r1, placing its four vertices
µc(c ∈ [1 : 4]) as the centroids of four new classes along the coordinate axes. Then, centered at S1, we generate another
square S2 with radius r2 (> r1), and use its vertices µc(c ∈ [5 : 8]) as the centroids of four old classes. For each class
c, we sample 200 points from N (µc, σ

2
cI) as the sample embeddings. By controlling r1, σc, and r1/r2, we control the

confusion between new and old classes. We generate three embedding datasets Dz
1 ∼ Dz

3 , shown in Fig. 1a-1c, where the
corresponding Wasserstein distances satisfy W1 > W2 > W3, and the centroids of the new (✖) and old (★) classes are
marked by (✖, ✖, ✖, ✖) and (★, ★, ★, ★), respectively.

Specifically, for these three embedding datasets, the raw data is generated with the following settings: for all new classes,
σ2
c = 15, and for old classes, σ2

c = 10. The other parameters for each dataset are as follows:

• For Dz
1 : r1 = 8, r1/r2 = 0.5.

• For Dz
2 : r1 = 16, r1/r2 = 1 .

• For Dz
3 : r1 = 16, r1/r2 = 2.

Subsequently, all data undergoes Z-Score Normalization to ensure consistency in numerical ranges across datasets. The
entire node set is stratified into training, validation, and test subsets in a 2:2:6 ratio, which are subsequently used for training
and evaluation, as described in Sec. 6.1. Note that the old classes are designed to be easily distinguishable due to the large
inter-class distances. This enables us to focus on understanding how the old-and-new relationship impacts GCD, with
excluding the influence of mixing old classes.

Model and Training Setup In the experiments on synthetic node embedding datasets, the setup is as follows:

• Classifier: A 2-layer MLP classifier with an input dimension of 2, a hidden layer dimension of 24, and an output
dimension equal to the number of classes (8).

• Training Loss: The model is trained using Cross-Entropy (CE) loss on labeled samples and Entropy Regularization
(ER) on all samples. The overall training objective is LMLP = (1− α2)LER + α2LCE , where α2 = 0.35.

• Optimization: We train the model for 1000 epochs using the Adam optimizer (Kingma & Ba, 2017) with a learning
rate of 0.01.

We report the performance with the model weights from the final training epoch. The main results are shown in Fig. 1e. To
ensure consistency, the model parameters are initialized with the same weights at the start of training for each dataset.

G.4. Experimental Details for GCL Theory (Sec. 4.3)

Synthetic CSBM Graph Datasets In the 2D plane, we first generate node features and labels following the process
described for Dz

1 and Dz
3 in Sec. G.3. Next, intra-class nodes are connected using a Bernoulli distribution with a probability

of p = 0.05, while inter-class nodes are connected with a probability of q = 0.001, resulting in the adjacency matrix. This
procedure produces the CSBM (Deshpande et al., 2018) graph datasets D1 and D3, whose details are summarized in Table 3.
For each dataset, the entire node set is stratified into training, validation, and test subsets in a 2:2:6 ratio, which are then
used for training and evaluation, as described in Sec. 6.1.

Model and Training Setup for Verifying Theorem 4.3 Theorem 4.3 discusses the uncontrollability of the global structure
between categories in the node embedding space learned through InfoNCE and SupCon losses. To validate this theorem, we
train an encoder using GRACE and GRACE-SC. The setup is as follows:

• Encoder: The 2-layer GCN encoder has input, hidden, and output dimensions of 2, 36, and 2, respectively.
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Table 3: The statistics of CSBM graphs. W x is the Wasserstein distance between old and new classes in the input node
feature space.

Dataset #Nodes #Edges #Features #Classes #Old Classes Homophily Ratio W x

D1 1600 18014 2 8 4 0.88 0.33
D3 1600 18356 2 8 4 0.89 0.19

• Augmentation: The graph data augmentation module randomly drops 20% of the edges and injects Gaussian noise
with a standard deviation of 0.2 and a mean of zero into the node features.

• Training Loss: The training loss is a weighted combination of InfoNCE and SupCon losses, i.e., LGCL = (1 −
α2)LNCE + α2LSC , and we set α2 = 0.35.

• Optimization: The model is trained over 1000 epochs using the Adam optimizer, set at a learning rate of 0.01.

After training, we utilize the GCN encoder to generate embeddings for all nodes and visualize them. Figs 2b and 2c show
the embedding spaces obtained on the dataset D1 using random seeds 2050 and 800, respectively, under the same model
weight initialization. Figs. 2e and 2f present the results on D3. The analysis in Sec. 4.3 confirms the randomness of global
structure.

Model and Training Setup for Verifying the impact of GCN encoder on GCD Sec. 4.2 examines the impact of the
GCN encoder’s smoothing effect on GCD, focusing on the undesired mixing of categories. While replacing the GCN
encoder with an MLP in a control experiment eliminates the effects of GCN’s local smoothing, it completely discards graph
structural information, which would distort the contrastive results. Therefore, we opt for the high-pass GNN, GPR (Chien
et al., 2021), which preserves structural information while escaping from the local smoothing effect2. The setup is:

• Encoder: The 2-layer GCN encoder has input, hidden, and output dimensions of 2, 36, and 2, respectively. The GPR
encoder is chained by two parts: the first is a 2-layer MLP feature extractor with dimensions (2, 36, 2) that output X′;
the second is a GPR convolution layer formulated as Z =

∑10
k=0 θk

(
(D+ I)−1/2(A+ I)(D+ I)−1/2

)k
X′, where

D is the degree matrix of A and θk is initialized with Personal Page Rank (Jeh & Widom, 2003).

• Classifier: The MLP classifier has input, hidden, and output dimensions of 2, 24, and 2, respectively.

• Augmentation: The graph augmentation process involves randomly removing 20% of edges and adding zero-mean
Gaussian noise with a standard deviation of 0.2 to node features.

• Training Loss: The training loss is LSimGCD = (1 − α2)(LNCE + LSD + α1LER) + α2(LSC + LCE). We set
α2 = 0.35 and α1 = 2, as is commonly done by default in many baselines (Vaze et al., 2022; Wen et al., 2023).

• Optimization: Training involves 1000 epochs with the Adam optimizer, employing a learning rate of 0.01.

G.5. Experimental Details for SWIRL on Synthetic CSBM Graphs (Sec. 5.1)

SWIRL is a novel GCL method, inspired by the GCD theory for understanding parametric GCD methods (Theorem 3.5)
and designed to enhance the GCL module in the baseline parametric GCD method, SimGCD. To visually demonstrate that
SWIRL learns an embedding space more beneficial for GCD—one that better aligns with the embedding conditions Lessons
1 and 2 derived from Theorem 3.5—we conduct comparative experiments on the CSBM graphs D1 and D3, evaluating
SimGCD, SimGCD-GPR, and SWIRL. The learned embedding spaces for the three methods are shown in Fig. 3, with the
metrics presented in Table 1. For SimGCD and SimGCD-GPR, the experimental setup is as described in Sec. G.4. The
setup for SWIRL is as follows:

• Encoder: The 2-layer GCN encoder has input, hidden, and output dimensions of 2, 36, and 2, respectively.

2By analyzing the learned GPR coefficients from our experiments, we found that the two GPR encoders on D1 and D3 effectively act
as high-pass graph filters, distinguishing them from the low-pass and locally smoothing nature of GCN.
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• Classifier: The MLP classifier has 2 dimensions for the input layer, 24 dimensions for the hidden layer, and 2
dimensions for the output layer.

• Augmentation: The graph data augmentation component randomly removes 20% of the edges and introduces Gaussian
noise with a mean of zero and a standard deviation of 0.2 into the node features.

• Training Loss: The training loss is LSW = (1− α2)(LNCE + β1LSW + α1LER) + α2LCE . We set α2 = 0.35 and
α1 = 2, which are commonly used values in many baseline models (Vaze et al., 2022; Wen et al., 2023), and choose
β1 = 20.

• Optimization: We use the Adam optimizer with a learning rate of 0.01 to train the model for 1000 epochs.

G.6. Experimental Details for Real-world Experiments (Sec. 6)

Real-world Graph Datasets We consider public graph datasets: Cora, Citeseer (Sen et al., 2008), Wiki (Cao et al., 2016),
Amazon-Photo (A-Photo), and Amazon-Computers (A-Computers) (Shchur et al., 2019). The statistics of these graphs
are summarized in Table 4. For each real-world graph dataset, we use the same hyperparameter settings and conduct five
experiments with different random seeds (20, 21, 22, 23, 24), reporting the mean and standard deviation of the results.

Table 4: The data statistics of the used real-world graph datasets.

Dataset #Nodes #Edges #Features #Classes #Old Classes #New Classes Homophily Ratio

Cora 2485 5069 1433 7 3 4 0.81
Citeseer 2110 3668 3703 6 3 3 0.74

Wiki 2405 23192 4973 17 8 9 0.61
Amazon-Photo 7650 238162 745 8 4 4 0.83

Amazon-Computers 13752 491722 767 10 5 5 0.78

Implementation Details We begin by provide additional GGCD details uncovered earlier, and then provide the hyper-
parameter values or the search space in Table 5. For each method, we use Optuna (Akiba et al., 2019) to perform 40
optimization runs, with the Old RACC on the validation node set as the objective for hyperparameter search. Note that since
only the old classes are known, we cannot use the New RACC or HRScore on validation set to guide the hyperparameter
search. Additionally, we employ early stopping for each experimental run. If the validation Old RACC does not improve for
2
3Max Epochs consecutive epochs, training is terminated immediately. This approach not only reduces experimental costs
but also accounts for findings by Wen et al. (2023), which suggest that prolonged training can degrade Old Capability.

• SS-KM (Vaze et al., 2022): The baseline directly applies SS-KM to the node features, utilizing the K-means++
initialization strategy for cluster centroids (Arthur & Vassilvitskii, 2007). The number of clusters is set to the number of
categories C, the distance metric is Euclidean distance. The maximum number of iterations max iter=200, the number
of centroid reinitializations n init=10 , and the convergence check condition is tolerance=1e-6.

• GCN (Kipf & Welling, 2017): The output layer dimension of the GCN baseline is set to the total number of classes C.
Since the Cross-Entropy (CE) loss can only leverage the supervision from the Co old classes, it is unable to handle
novel categories, making it an ineffective baseline. Therefore, we incorporate an Entropy Regularization (ER) loss and
optimize the objective

LGCN = (1− 0.35) · 4LER + 0.35LCE .

• Vanilla GCD (Vaze et al., 2022): We use the Graph adaptation variant from Sec. B. Specifically, we first perform
semi-supervised contrastive training based on GRACE and GRACE-SC to obtain the GCN encoder, and then apply
SS-KM to make predictions based on the encoder’s output. The number of clusters for SS-KM is set to the number
of categories C, with K-means++ initialization and the following parameters: tolerance = 1e-5, max iter = 100, and
n init = 1. The training objective is

LV anillaGCD = (1− 0.35)LNCE + 0.35LSC , α2 > 0.
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• UNO+ (Fini et al., 2021; Vaze et al., 2022): The optimal transport problem is solved using Sinkhorn (Cuturi, 2013)
to compute the optimal node-to-prototype probability pseudo-label matricesZ(1) and Z(2) for the view embeddings
Z(1) and Z(2). For old-class nodes with known labels, their pseudo-labels are forcibly replaced with the corresponding
one-hot vectors of the true labels. Then, a low-temperature cross-entropy loss is applied to supervise the predictions
from the other view. The loss function is

LUNO+ =
α2

2

n∑
u=1

DCE(
[
Q(2)

]
u
,
[
Z(1)

]
u
) +DCE(

[
Q(1)

]
u
,
[
Z(2)

]
u
).

• SimGCD (Wen et al., 2023): The original version of SimGCD, designed for VGCD, uses a prototype classifier.
However, we found that a two-layer MLP generally performs better on graph data, particularly on the CSBM graph
datasets D1 and D3 that we generated. The training loss for SimGCD is

LSimGCD = (1− 0.35)(LNCE + LSD + 2LER) + 035(LSC + LCE).

• SWIRL (Ours): SWIRL is a novel Graph Contrastive Learning (GCL) method designed for Parametric GGCD. Unlike
the classic Parametric method SimGCD, SWIRL eliminates the use of Self Distillation (SD) and SupCon losses, while
retaining the InfoNCE loss to optimize the local structure of the embedding space. The SWIRL loss is introduced
to regulate the global structure. The number of clusters used in the SS-KM for computing the SWIRL loss is set to
K(> C), with tolerance = 1e-4, max iter = 20, and n init = 1. The training loss for SWIRL is

LSW = (1− 0.35)(LNCE + β1LSW + 2LER) + 0.35LCE .

Table 5: Hyperparameters of GGCD methods and the corresponding values or search spaces

Common Hyperparameters
Group Hyperparameter Value or Search Space

Optimization

Learning Rate [0.001, 0.005, 0.01, 0.05, 0.1]
Dropout [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]

Weight Decay [0.0, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3, 1e-2]
Max Epochs [200, 400, 800]

Neural Network Arch.

GCN Encoder Layer [2, 3, 4]
GCN Encoder Activation ["relu", "prelu"]

Hidden Dim. [64, 128, 256, 512, 1024]
MLP Projector Layer 2
MLP Classifier Layer 2

Graph Augmentation Edge Removal Rate [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
Feature Masking Rate [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6]

Losses

InfoNCE Loss Temp. τ [0.1:1.5], step=0.1
SupCon Loss Temp. 0.07

ER Loss Temp. 0.1
ER Weightα1 2

Supervised Loss Weight α2 0.35
Some Specific Hyperparameters

Group Hyperparameter Value or Search Space

SimGCD

SD Loss Teacher Temp. 0.04
SD Loss Student Temp. 0.1

SD Loss Warmup Teacher Temp. 0.07
SD Loss Warmup Epochs 30

GCN ER Loss Weightα1 4

UNO+
Temp. 0.1

Sinkhorn Num Iterations 3
Sinkhorn Epsilon 0.05

SWIRL

SWIRL Loss Weight β1 [1, 50]
Repulsion Force Scale s [0.00001, 0.0001, 0.001, 0.01]

Repulsion Force Degree t1 : t6 ti = 1 + 0.1i
Prototype Number K [20, 200]
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Figure 6: The hyperparameter sensitivity of our SWIRL on the CSBM graph D1, where the challenge is distinguishing new
classes. Each row corresponds to a GCD metric, while each column represents a different value of the SWIRL loss weight
β1. At each position, the heatmap visualizes how the number of prototypes K and the repulsion force scale s jointly impact
the GCD metric values. In each heatmap, the maximum value is highlighted with a blue box, and the minimum value is
highlighted with a green box.

G.7. Hyperparameter Analysis for SWIRL on Synthetic CSBM Graphs

SWIRL has three key hyperparameters to tune: β1, s, and K. To analyze their impact on SWIRL, we conduct experiments
on the synthetic CSBM graphs D1 and D3 described in Sec. G.4. The results of the hyperparameter grid search on these
datasets are presented in Fig. 6 and Fig. 7, respectively. For each hyperparameter, we select six discrete values from the
search space defined in Table 5, resulting in a total of 216 experiments (6 × 6 × 6 grid search). To comprehensively illustrate
the relationship between hyperparameters and various GCD metrics, we organize the visualization using faceted plots based
on four GCD metrics and six values of β1. Within each heatmap, we show the effects of s and K on GCD performance.

For D1, the primary challenge is distinguishing different novel categories. As shown by Fig. 6, the second and fourth rows
of the heatmaps indicate that the three hyperparameters have little impact on Old RACC and Reject ACC. When the number
of prototypes is low (i.e., K = 8), SWIRL likely fails to adequately approximate the global structure, making it difficult
to regulate the true global structure simply by increasing the SWIRL loss weight β1. Since global structure is crucial for
leveraging old-class knowledge in novel category discovery, both HRScore (first row) and New RACC (third row) exhibit
a clear downward trend for K = 8 as β1 increases. Conversely, when the number of prototypes is large (i.e., K = 100),
the model approximates the global structure more effectively. As the regulation strength increases from left to right, New
RACC (third row) and HRScore (first row) improve significantly. This suggests that when distinguishing novel categories is
the primary challenge, a larger number of prototypes should be used alongside a higher SWIRL loss weight β1.

For D3, the key challenge is distinguishing closely related known and novel categories. As displayed in Fig. 7, the first
and fourth rows reveal that as β1 increases, placing more emphasis on global structure, Reject ACC and HRScore decline
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Figure 7: The hyperparameter sensitivity of our SWIRL on the CSBM graph D3, where the challenge is distinguishing
between adjacent new and old classes. Each row corresponds to a GCD metric, while each column represents a different
value of the SWIRL loss weight β1. At each position, the heatmap visualizes how the number of prototypes K and the
repulsion force scale s jointly impact the GCD metric values. In each heatmap, the maximum value is highlighted with a
blue box, and the minimum value is highlighted with a green box.

significantly. This is likely due to overemphasizing global structure, which constrains instance-level discrimination between
similar known and novel category nodes, making them harder to distinguish. To validate this hypothesis, we visualize
the embedding space and decision boundaries from the experiment with β1 = 50, s = 0.01 and K = 100 in Fig. 8. The
visualization clearly shows that many old-class nodes are misclassified as novel categories, confirming that when the primary
challenge is distinguishing adjacent known and novel categories, a smaller SWIRL loss weight β1 should be used.

Across both D1 and D3, we observe that the optimal results are rarely achieved when s = 0. This demonstrates the
effectiveness of SWIRL’s distinct design, six levels of repulsion force, compared to other instance-to-prototype contrastive
losses. Finally, identifying the primary challenge in a target dataset is non-trivial. Since this work primarily focuses on
parametric GGCD theory and its validation, addressing this more practical issue is left for future research.
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Figure 8: The learned embedding space of SWIRL on the CSBM graph D3, with β1 = 50, s = 0.01 and K = 100.
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