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ABSTRACT

Foundation Vision-Language Models (VLMs) excel across benchmarks yet re-
main vulnerable to adversarial attacks. While adversarial fine-tuning improves
robustness, attaining a desirable clean–robust performance trade-off typically re-
quires costly hyperparameter searches with multiple retraining runs. A promis-
ing alternative is to merge task vectors (i.e., parameter displacements from pre-
trained models) to balance accuracy and robustness without retraining. How-
ever, we find that naive task-vector merging produces a near-linear trade-off, as
it equally weights all coordinates and fails to distinguish weights that aid both
objectives from those that create conflicts. To overcome this limitation, we pro-
pose a prediction stability-aware merging framework that composes task vectors
from off-the-shelf naturally and robustly fine-tuned VLMs. Our key insight is that
prediction stability serves as a proxy for cross-objective compatibility, enabling
us to favor perturbation-invariant parameters while attenuating those with high
cross-objective impact. Specifically, we estimate per-parameter stability from gra-
dients under both objectives, building complementary masks that retain jointly
stable coordinates while suppressing counterpart-sensitive ones. We further re-
fine these masks along adversarial parameter trajectories, with steps weighted by
a prediction-sensitivity index. Our theoretical analysis shows that the masks prov-
ably contract first-order cross-objective interference, and the prediction criticality
index tracks curvature, biasing the merge toward flatter minima and better gen-
eralization. Extensive experiments across benchmarks and scenarios demonstrate
our method consistently achieves superior clean–robust trade-offs over prior ap-
proaches, with the learned balance transferring effectively to downstream tasks.

1 INTRODUCTION

Despite redefining multimodal learning across diverse tasks, foundation Vision-Language Models
(VLMs) like CLIP (Radford et al., 2021) remain alarmingly vulnerable under adversarial attacks
(Zhang et al., 2022; Zhao et al., 2023). Even subtle input perturbations can trigger huge performance
drops, undermining their reliability in practice and posing severe security risks (Huang et al., 2025).

Bridging the gap between natural performance and robustness is thus essential for the safe and
widespread deployment of VLMs. Previous efforts primarily focused on adversarial fine-tuning,
where adversarial examples are adaptively integrated into training to enhance robustness (Mao et al.,
2023; Schlarmann et al., 2024). However, extensive empirical evidence indicates that even increas-
ingly larger and advanced multimodal architectures continue to suffer from a persistent accuracy-
robustness trade-off (Wang et al., 2024). Rather than resolving this fundamental tension, most exist-
ing approaches rely on exhaustive hyperparameter searches and costly retraining to find acceptable
compromises, limiting the scalability and efficiency of robust VLM solutions.

Given recent progress in parameter-space model merging, which combines fine-tuned models with-
out joint training (Wortsman et al., 2022b; Ilharco et al., 2023), a compelling question arises: Can
model merging extend beyond similar tasks to reconcile the inherent conflict between natural perfor-
mance and adversarial robustness? However, our initial investigation reveals that vanilla task-vector
merging of the vision encoder in VLMs yields a near-linear clean–robust trade-off with no sweet
point, as empirically shown in Section 3.2. To gauge feasibility and diagnose the issue, we examine
directional compatibility by comparing gradients of the two objectives at the respective fine-tuned
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CLIP models. Figure 1 reports gradient sign agreement and gradient cosine similarity between nat-
ural and adversarial losses, where higher values indicate a more similar update direction to preserve
clean accuracy while improving robustness. To test whether any observed alignment is merely local,
we evaluate both local gradients (at the fixed parameters) and neighborhood gradients averaged
within an ℓ2-ball of radius ϵ, thereby probing stability under small parameter changes. Although
this analysis reveals a degree of alignment, it also shows that the alignment remains modest and
degrades with a larger attack radius, evidencing growing directional conflict and motivating a more
selective, stability-aware merging strategy over naive uniform addition.

Motivated by the need to resolve the parameter-level conflicts, we, for the first time, propose a
novel model merging framework based on task vectors (i.e., parameter differences between fine-
tuned and pre-trained models) derived from off-the-shelf naturally and adversarially fine-tuned
models, named PredIction STability-aware mOdeL mErging (PISTOLE), to reconcile nat-
ural performance and robustness without repeated fine-tuning by selectively fusing compatible
knowledge. Specifically, our PISTOLE estimates per-parameter stability under the natural and
robust objectives from gradient magnitudes and builds complementary, gradient-informed masks
that retain coordinates stable for both objectives while down-weighting those that the counterpart
would strongly change. These masks are applied to the respective task vectors prior to mixing.
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Figure 1: Gradient alignment on ImageNet between natu-
rally and adversarially fine-tuned CLIP: (a) sign agreement
and (b) cosine similarity for local gradients and neighbor-
hood gradients (aggregated within an ℓ2-ball) across pertur-
bation radius. Alignment degrades with attack strength, mo-
tivating selective (not uniform) parameter merging.

To better capture local loss-parameter
geometry, we refine the masks by ac-
cumulating gradients along adversar-
ial parameter trajectories, with steps
weighted by a prediction-sensitivity
index that quantifies how even small
parameter perturbations affect the
output. Furthermore, we provide the-
oretical analyses demonstrating that
these masks contract cross-objective
first-order interference and that the
sensitivity index tracks curvature,
steering the merge toward flatter,
more generalizable regions and yield-
ing a stronger clean–robust trade-off.

Through comprehensive experiments, we demonstrate that our PISTOLE consistently achieves state-
of-the-art trade-offs between natural performance and robustness compared to existing methods
across diverse datasets, architectures, and scenarios. Furthermore, we show that our obtained
accuracy-robustness trade-off effectively transfers to a spectrum of downstream vision-language
tasks, including captioning, visual question answering, hallucination mitigation, and reasoning, sim-
ply through a plug-and-play replacement of the vision encoder with the robustly merged encoder.

Our core contributions are summarized as follows:

1. We systematically explore the feasibility of parameter-level merging conflicting objectives (nat-
ural performance and robustness) via empirical gradient analyses.

2. To address this trade-off without costly fine-tuning, we introduce PISTOLE, a novel prediction
stability-aware model merging framework that leverages gradient-informed stability masks and
multi-step adversarial parameter perturbations for precise parameter re-weighting.

3. We provide theoretical analyses proving that PISTOLE identifies parameter-sensitive predictions
in high-curvature regions, guiding selective merging for improved accuracy-robustness trade-offs.

4. We conduct extensive experiments to demonstrate the efficacy and generalizability of PISTOLE
across tasks and scenarios, scaling without incurring additional fine-tuning costs.

2 RELATED WORKS

Trade-offs in foundation VLMs. Foundation VLMs (e.g., CLIP (Radford et al., 2021), LLaVA (Liu
et al., 2024), OpenFlamingo (Awadalla et al., 2023)) achieve strong zero-shot transfer via large-scale
image–text pre-training, yet core tensions constrain practical deployment: size vs. efficiency (Vasu
et al., 2025), specialization vs. generalization (Zang et al., 2024), and fairness (Luo et al., 2024).
Among these, the trade-off between adversarial robustness and natural performance remains partic-
ularly challenging, as gains in adversarial robustness often degrade clean performance, consistent
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with theory on competing objectives (Zhang et al., 2019). In this work, we target this trade-off in
foundation VLMs, seeking to enhance robustness while preserving much natural performance.

Parameter-space model merging. Beyond prediction ensembles (Yang et al., 2023), parameter
merging combines knowledge from VLMs without retraining (Wortsman et al., 2022b;a). A key ap-
proach leverages task vectors (i.e., parameter differences between fine-tuned and pre-trained VLMs)
(Ilharco et al., 2023; Ortiz-Jimenez et al., 2023), providing a flexible mechanism for merging knowl-
edge. Recent works like Ties-Merging (Yadav et al., 2023) proposed resolving interference between
merged models by identifying parameter conflicts, while AdaMerging (Yang et al., 2024) introduced
adaptive merging strategies for multi-task learning. These methods overlook parameter-space per-
turbations and local loss geometry. We thus complement this line by using gradient-informed masks
and adversarial parameter trajectories to account for sensitivity and curvature during merging.

Adversarial robustness of foundation VLMs. Adversarial robustness in VLMs remains a critical
problem, with recent works (Mao et al., 2023; Schlarmann et al., 2024) mainly pursuing adversarial
fine-tuning by integrating adversarial examples into training to bolster robustness. However, these
methods often erode clean accuracy and require heavy hyperparameter tuning and costly retraining,
limiting scalability. We instead merge off-the-shelf naturally and robustly fine-tuned VLMs via
task vectors, using gradient-informed stability masks and adversarial parameter trajectories to trace
gradient paths during merging, reconciling accuracy and robustness without additional fine-tuning.

3 PREDICTION STABILITY-AWARE MODEL MERGING

Below, we propose PISTOLE, the first task vector-based model merging method to address the
accuracy-robustness trade-off without costly adversarial fine-tuning, generalizing across tasks.

3.1 Background: ADVERSARIAL FINE-TUNING AND TASK VECTORS

CLIP. As a milestone of multimodal learning, CLIP (Radford et al., 2021) employs two modality-
specific encoders: an image encoder fθI : X →Rd and a text encoder fθT : T →Rd, whose outputs
reside in a shared d–dimensional embedding space. For an input image x and a set of class prompts
{t1, . . . , tC} constructed from templates (e.g., ‘‘This is a photo of [CLASS c]’’), the
prediction is obtained via the cosine similarity between the visual feature and each textual feature:

pc(x;θI,θT) =
exp

(
cos(fθI(x), fθT(tc))

)∑C
c′=1 exp

(
cos(fθI(x), fθT(tc′))

) , (1)

where exp(·) denotes the exponential function, and cos(·, ·) computes the cosine similarity between
two embeddings that have been ℓ2 normalized. The prediction vector w.r.t. the CLIP parameter set
θ=[θI,θT] across C categories is written as pθ(x) = [p1(x;θI,θT), . . . , pC(x;θI,θT)]

⊤.

Standard adversarial fine-tuning (TeCoA). In consistent with the standard adversarial training
paradigm (Madry et al., 2018), TeCoA (Mao et al., 2023) enhances CLIP robustness against ℓ∞-
norm adversarial attacks by solving the following minimax optimization problem:

min
θI

E(x,c)∼D

[
max

∥δ∥∞≤ϵ
LCE

(
pθ(x+ δ), ec

)]
, (2)

where ec = [1(c= 1), . . . ,1(c= C)]⊤∈ {0, 1}C is the one-hot label for class c, and LCE denotes
the cross-entropy loss. The inner maximization is approximated by the m-step Projected Gradient
Descent (PGD) (Calamai & Moré, 1987) on the negative loss function:

x̂(i+1)=ΠB(x,ϵ)

[
x̂(i)+α · sign

(
∇x̂(i)LCE

(
pθ(x̂

(i)), ec
))]

, (3)

initialized with x̂(0)=x+0.001 · N (0, I). Here, α represents the step size, sign(·) is the element-
wise sign function, and ΠB(x,ϵ)(·) denotes the projection onto the ℓ∞ ball of radius ϵ. Further details
of other adversarial fine-tuning approaches are in Appendix B.

Task vectors for multi-task adaptation. Given a downstream task Ti with data Di, fine-tuning
a pre-trained VLM θ0 yields task-specific parameters θi and the task vector (Ilharco et al., 2023)
(parameter displacement) τi = θi− θ0. Task vectors compose for vision encoders: for {τi}Mi=1, the
aggregate τadd=

∑M
i=1τi defines the merged model θadd = θ0 + λ · τadd, with the scalar λ tuned on

a validation set. This simple addition typically attains competitive performance across the M tasks.
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3.2 CAN VANILLA TASK-VECTOR ADDITION AID TRADE-OFF?
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Figure 2: Parameter-space ensembling
of pre-trained and fine-tuned CLIP.

Weight-space interpolation reveals an InD–shift sweet
point. Following WiSE-FT (Wortsman et al., 2022b), let
θ0 denote a pre-trained zero-shot VLM and θFT its VLM
fine-tuned on a reference (in-distribution, InD) dataset,
e.g., ImageNet. Evaluating on both the reference dis-
tribution and shifted distributions (e.g., natural variants
and subpopulations), the linear interpolation θWISE(λ) =
(1 − λ)θ0 + λθFT, λ ∈ [0, 1], typically traces a Pareto-
like curve with an interior λ⋆ that preserves high InD ac-
curacy while improving accuracy under distribution shift
(see Figure 2). This simple weight-space averaging with
a sweet point (improved trade-off) motivates viewing pa-
rameter operations (including task-vector arithmetic) as
a light-weight alternative to exhaustive hyperparameter
sweeps when balancing specialization to the reference data against generalization to shifted data.
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Figure 3: Parameter ensembling of nat-
urally and robustly fine-tuned CLIP.

Vanilla addition fails to balance natural performance
and adversarial robustness. Let θnat and θrob be natu-
rally and robustly (adversarially) fine-tuned models with
task vectors τnat=θnat−θ0 and τrob=θrob−θ0. Under the
naive interpolation θvan(λ)=θ0+(1−λ) τnat+λ τrob, λ∈
[0, 1], clean and adversarial accuracies vary almost lin-
early and antagonistically, producing a near straight line
between endpoints with no pronounced interior optimum
(Figure 3). The issue is equal weighting: it ignores which
coordinates align or conflict across objectives, so robust-
ness gains come by eroding clean accuracy at a roughly
constant rate. Gradient analyses (Figure 1) indicate that
compatible and conflicting directions co-exist, motivat-
ing a prediction stability–aware, selectively re-weighted
merge that preserves consensus coordinates while attenuating counterpart-sensitive ones.

3.3 GRADIENT-INFORMED STABILITY RE-WEIGHTING

Vanilla task vector merging typically treats all coordinates equally, reproducing the near-linear
clean–robust trade-off of θvan(λ). In contrast, Figure 1 shows only modest alignment that degrades
with attack strength, indicating a mix of compatible and conflicting coordinates across the natural
and adversarial objectives. We therefore build complementary masks that (i) preserve coordinates
the counterpart objective deems stable and (ii) attenuate coordinates where the counterpart exhibits
large gradient magnitude (i.e., it would strongly update those weights in an opposing direction).

Aggregated gradients and layer-wise scaling. Raw per-batch gradients are noisy and differ in
scale across layers; without normalization, a few high-variance tensors dominate the mask. We first
accumulate expected gradients for the two objectives and then normalize them per layer:

gnat=E(x,c)∼D
[
∇θnat LCE(pθnat(x), e(c))

]
, grob=E(x̂,c)∼D̂

[
∇θrob LCE(pθrob(x̂), e(c))

]
, (4)

where x̂ is an adversarial sample for θrob obtained by Eq. (3). For each objective index s∈{nat, rob}
and each layer l, let g(l)

s denote the gradient tensor of layer l. We define the per-layer normalization:

Norm
(
g(l)
s

)
=

∣∣g(l)
s

∣∣
max

(∣∣g(l)
s

∣∣)+ ε
∈ [0, 1]shape(g(l)

s ), g̃(l)
s = Norm

(
g(l)
s

)γ
, (5)

where small perturbation ε > 0 and temperature γ ∈ [0, 1] are to control dynamic range. Stacking
across layers yields g̃nat = concatl g̃

(l)
nat and g̃rob = concatl g̃

(l)
rob, both in [0, 1]d.

Complementary stability masks. Gradients generally indicate which coordinates each objective
would change, which means that large magnitudes flag parameters that are sensitive for that ob-
jective. To avoid reintroducing antagonism during merging, we suppress coordinates that the other

4
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(a) Naïve Linear Merge (b) PISTOLE

Inefficiency occurs
due to conflict in

gradients

Insight Conflicts shrink; shared
directions remain—alignment

improves.

Masks suppress conflicts: coordinates
where the other branch is sensitive get

down-weighted

Success

Masking

Standard Task Vector

Reweighted Task Vector

Figure 4: (a) Naive linear merge uniformly adds natural and robust task vectors, ignoring conflicts
and yielding a near-linear trade-off. (b) PISTOLE merges with complementary, gradient-informed
masks, suppressing conflicts and preserving shared directions for a better clean-robust balance.

fine-tuning objective wishes to change most, while preserving those it considers stable. Concretely,
for s∈{nat, rob} and each layer l, let g̃(l)

s ∈ [0, 1]shape be the normalized gradient magnitudes from
Eq. (5), and write g̃s = concatl g̃

(l)
s ∈ [0, 1]d. We convert these into complementary masks:

Mnat =
(
1− g̃rob

)κ
, Mrob =

(
1− g̃nat

)κ
, (6)

where κ≥ 1 sharpens selectivity. To guarantee a user-controlled stability budget, we apply a per-
layer quantile cap, Mnat,l ← min

(
Mnat,l, t

rob
q,l

)
and Mrob,l ← min

(
Mrob,l, t

nat
q,l

)
, where trob

q,l (resp.,
tnat
q,l) is the q-quantile of Mnat,l (resp., Mrob,l). This attenuates the layerwise top-q most counterpart-

sensitive coordinates, thereby upper-bounding first-order cross-objective interference.

Theorem 1. Let g0
nat := ∇θLnat(θ)

∣∣
θ=θ0

and g0
rob := ∇θLrob(θ)

∣∣
θ=θ0

. Let Mpre
nat :=

(
1− g̃rob

)κ
and Mpre

rob :=
(
1− g̃nat

)κ
be the uncapped complementary masks from Eq. (6), with κ ≥ 1 and

g̃s ∈ [0, 1]d defined by Eq. (5). For each layer l, let trob
q,l be the q-quantile of (Mpre

nat)l and tnat
q,l the

q-quantile of (Mpre
rob)l (empirical quantiles on layer entries).1 Define the capped masks layerwise

by (Mnat)l := min
(
(Mpre

nat)l, t
rob
q,l1

)
and (Mrob)l := min

(
(Mpre

rob)l, t
nat
q,l1

)
. Set ρnat := maxl t

nat
q,l and

ρrob :=maxl t
rob
q,l . Then for any δ ∈ Rd,∣∣⟨g0

nat, Mrob ⊙ δ⟩
∣∣ ≤ ρnat ∥g0

nat∥2 ∥δ∥2,
∣∣⟨g0

rob, Mnat ⊙ δ⟩
∣∣ ≤ ρrob ∥g0

rob∥2 ∥δ∥2. (7)

Moreover, if κ is increased (i.e., sharpening (1 − g̃)κ) or any of the layerwise caps tnat
q,l, t

rob
q,l are

decreased, the right-hand sides in Eq. (7) are monotone nonincreasing.

Proof. The full proof is provided in Appendix D.1.

Corollary 1 (Worst-case first-order contraction vs. uniform addition). For task vectors τnat = θnat−
θ0 and τrob = θrob − θ0,

∣∣⟨g0
nat, Mrob ⊙ τrob⟩

∣∣ ≤ ρnat ∥g0
nat∥2 ∥τrob∥2 ≤ ∥g0

nat∥2 ∥τrob∥2, and the
symmetric bound holds swapping (nat, rob). Hence, complementary masking contracts worst-case
cross-objective first-order interference by factors ρnat, ρrob ≤ 1 relative to unmasked mixing.

Theorem 1 formalizes a first-order non-interference guarantee: when any displacement is filtered
by the counterpart’s mask, the first-order increase of the other objective’s loss is bounded by a
tunable multiplicative factor ρ ≤ 1. The factors ρnat and ρrob depend only on layerwise caps
(through their maxima) and respond monotonically: larger κ (sharper masks) or tighter caps
reduce ρ and thus strengthen attenuation. Practically, this means masked combinations curve the
otherwise near-linear clean–robust trade-off of uniform addition by suppressing coordinates that
the counterpart objective marks as sensitive, while preserving jointly stable coordinates.

3.4 TRACING ADVERSARIAL PATHS IN PARAMETER SPACE

The complementary masks in Section 3.3 are built from single-point gradient magnitudes at
(θnat,θrob), which capture first-order instability but can miss nearby high-curvature pockets where
sensitivity spikes. To refine these stability estimates without retraining, we augment them with ad-
versarial parameter perturbation: we trace short parameter updating trajectories in a small neigh-
borhood of each fine-tuned solution and aggregate gradients along these paths. Intuitively, coordi-
nates that remain stable under worst-direction parameter nudges are safe to keep, whereas coordi-
nates of large gradients along these trajectories are fragile and should be attenuated during merging.

1Any standard definition of the empirical q-quantile with q ∈ (0, 1] suffices. We here consider that quantiles
are monotone under component-wise decreases.
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Adversarial parameter trajectories. For each objective s ∈ {nat, rob}, define the Frobenius ball
Vθs = {∆: ∥∆∥F ≤ η∥θs∥F } with radius factor η > 0. Starting from θ

(0)
s = θs, we perform K

projected gradient ascent steps in parameter space that follow locally worst-case directions:

θ(i+1)
s ← Πθs+Vθs

(
θ(i)
s + β u(i)

s

)
, u(i)

s :=
∇θLs

(
pθ(xs), e(c)

)∣∣
θ=θ

(i)
s∥∥∇θLs

(
pθ(xs), e(c)

)∣∣
θ=θ

(i)
s

∥∥
F
+ ϵ

, (8)

where β > 0 is the step size, and Πθs+Vθs
(·) projects onto Vθs

. We take xnat=x (clean inputs) and
xrob= x̂ (adversarial inputs), so that Lnat and Lrob are evaluated under their respective input regimes.

Path-integrated gradients. To calibrate the path-integrated gradients with local sensitivity, we in-
troduce the Prediction Criticality Index (PCI): a curvature-aware scalar that measures how fragile a
prediction is to small parameter-space perturbations. We use PCI to weight steps along the adver-
sarial parameter trajectories, so high-curvature (fragile) regions contribute more to the accumulated
gradient, while flat, confidence-saturated regions are deemphasized. Formally:
Definition 1 (Prediction Criticality Index (PCI)). Let θ∈Rd be the model parameters and p(x;θ)∈
[0, 1]C be the prediction for an input x. For a fixed radius factor η > 0, define the parameter-level
Frobenius perturbation ball Vθ := {∆ ∈ Rd : ∥∆∥F ≤ η∥θ∥F }. Given ∆ sampled isotropically
and with zero mean from Vθ (e.g., uniform in the hyperball). Its covariance is denoted as σ2Id,
where the per-coordinate second moment is σ2 := 1

dE∆∈Vθ
[∥∆∥22] =

η2∥θ∥2
F

d . The equality on the
right follows directly from the radius normalization for any isotropic, zero-mean law supported on
the ball Vθ. For the ground-truth class c ∈ {1, . . . , C}, we define PCI as follows:

PCI(x, c,θ) :=
∣∣∣E∆∈Vθ

[pc(x;θ +∆)−pc(x;θ)

pc(x;θ)

]∣∣∣. (9)

A large PCI w.r.t. clean/adversarial examples indicates that prediction confidence is highly sensi-
tive to small parameter changes (fragile knowledge), while a small value reflects robustness. We
therefore accumulate path-integrated gradients:

Gs := E(x,c)∼Ds

[
K∑
i=0

PCI(xs, c,θ) ∇θLs

(
pθ(xs), e(c)

)∣∣∣
θ=θ

(i)
s

]
, s ∈ {nat, rob}. (10)

We then normalize per layer as in Eq. (5) to obtain scores g̃path
s ∈ [0, 1]d, and form path-refined

complementary masks via Mpath
nat =

(
1 − g̃path

rob

)κ
, and Mpath

rob =
(
1 − g̃path

nat
)κ
, followed by the same

per-layer caps as in Section 3.3. The final merged displacement keeps the stable parts:

τ ∗(λ) = λ
(
Mpath

nat ⊙ τnat
)
+ (1− λ)

(
Mpath

rob ⊙ τrob
)
, θPISTOLE(λ) = θ0 + τ ∗(λ). (11)

Empirically, varying λ with θPISTOLE(λ) bends the clean–robust frontier beyond the near-linear
trade-off of uniform addition, yielding interior points that outperform naive mixing. Figure 4 is
an overview of our PISTOLE method compared with naive linear merging. See Appendix E for
pseudocode. We next formalize the curvature link that motivates our PCI-based weighting.
Theorem 2. Let PCI be defined as in Definition 1, where pc(x;θ)>0 is twice continuously differ-
entiable in a neighborhood of θ. Given Hc(θ) :=∇2

θpc(x;θ), for sufficiently small η, we have the
following approximation:

PCI(x, c,θ)=
σ2

2

Tr(Hc(θ))

pc(x;θ)
+O(σ3). (12)

Proof. The full proof is provided in Appendix D.2.

Theorem 2 reveals that the PCI is large when the prediction confidence lies in a region of large
Hessian trace (high curvature), whereas a small PCI characterizes flat, confidence–saturated
zones. High-PCI samples (i.e., those most sensitive to parameter perturbations) are up-weighted
in the accumulated gradients, directing the merge to address fragile prediction modes that would
otherwise dominate post-fusion error. The sensitivity masks suppress features that are unstable
in one model while retaining their more robust analogs in the other, fostering a synergistic blend
of natural performance and adversarial robustness.
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Table 1: Zero-shot accuracy of diverse adversarial learning methods evaluated on 14 datasets. Met-
rics: Clean, Robust (AutoAttack, ℓ∞-norm ϵ = 2/255) Accuracy, and Clean+Robust Sum.

Eval. Method Im
ag

eN
et

ST
L

10

C
IF

A
R

-1
0

C
IF

A
R

-1
00

St
an

f.C
ar

s

C
al

te
ch

10
1

O
xf

or
dP

et

Fl
ow

er
10

2

D
T

D

E
ur

oS
A

T

FG
V

C

PC
A

M

Im
ag

eN
et

-R

Im
ag

eN
et

-S

Average
C

le
an

Standard CLIP 74.90 99.31 95.20 71.08 77.91 83.29 93.21 79.17 55.21 62.65 31.77 52.01 87.86 59.61 73.08
TeCoA 80.00 95.40 86.88 61.64 44.45 80.33 80.78 51.83 45.43 23.48 15.00 58.39 79.40 58.77 61.56
PMG 77.84 96.92 90.25 64.97 58.23 83.34 86.45 58.46 46.49 28.04 20.64 49.99 83.18 57.62 64.46
FARE 72.96 98.28 90.24 67.78 66.80 85.65 89.75 65.13 50.43 16.54 22.83 50.02 83.75 56.86 65.50
TGA 80.26 96.83 88.07 60.86 49.81 81.54 81.11 51.49 45.96 30.30 14.22 49.95 80.20 58.89 62.11

PISTOLE 80.82 98.56 90.83 68.18 67.35 86.20 91.35 70.08 51.22 30.89 26.42 62.34 85.18 59.91 69.24

R
ob

us
t Standard CLIP 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.01 0.09 0.01

TeCoA 61.74 86.34 61.99 35.82 18.62 70.57 68.22 27.27 26.17 12.37 5.43 26.93 59.57 44.56 43.26
PMG 60.02 88.21 64.12 37.14 23.68 72.47 70.92 28.20 26.33 9.07 5.79 47.06 62.24 45.08 45.74
FARE 43.56 88.55 61.82 34.89 23.74 70.88 67.70 32.95 25.69 3.76 5.31 49.39 56.47 36.86 42.97
TGA 61.46 88.56 63.21 35.44 21.60 71.16 68.52 26.15 26.70 11.37 5.76 47.88 60.32 44.46 45.19

PISTOLE 61.89 89.09 66.71 39.83 28.36 72.83 71.30 33.42 28.84 11.02 6.61 48.32 63.03 45.85 47.65

Su
m

Standard CLIP 74.90 99.33 95.20 71.08 77.91 83.29 93.21 79.17 55.21 62.65 31.80 52.02 87.87 59.70 73.09
TeCoA 141.74 181.74 148.87 97.46 63.07 150.90 149.00 79.10 71.60 35.85 20.43 85.32 138.97 103.33 104.82
PMG 137.86 185.13 154.37 102.11 81.91 155.81 157.37 86.66 72.82 37.11 26.43 97.05 145.42 102.70 110.20
FARE 116.52 186.83 152.06 102.67 90.54 156.53 157.45 98.08 76.12 20.30 28.14 99.41 140.22 93.72 108.47
TGA 141.72 185.39 151.28 96.30 71.41 152.70 149.63 77.64 72.66 41.67 19.98 97.83 140.52 103.35 107.30

PISTOLE 142.71 187.65 157.54 108.01 95.71 159.03 162.65 103.50 80.06 41.91 33.03 110.66 148.21 105.76 116.89

Table 2: Average accuracy (%) of diverse CLIP
backbones with perturbation radius ϵ=2/255.

Backbone Method Clean Robust Sum

ViT-H/14

TeCoA 66.95 48.63 115.58
PMG 68.96 50.31 119.27
FARE 70.55 50.25 120.80
TGA 65.91 49.14 115.05

PISTOLE 73.61 52.45 126.06

ViT-B/32

TeCoA 48.83 25.75 74.58
PMG 49.71 26.98 76.69
FARE 56.68 29.30 85.98
TGA 57.54 31.15 88.69

PISTOLE 60.71 33.58 94.29

Table 3: Avg. accuracy (%) of diverse ϵ when
fine-tuning and testing w.r.t. CLIP w/ ViT-L.

Radius Method Clean Robust Sum

ϵ = 3/255

TeCoA 58.90 38.07 96.97
PMG 61.72 39.40 101.12
FARE 63.55 37.17 100.72
TGA 59.65 38.59 98.24

PISTOLE 65.09 40.57 105.66

ϵ = 4/255

TeCoA 56.25 32.53 88.78
PMG 58.82 33.87 92.69
FARE 60.26 32.02 92.28
TGA 56.76 32.86 89.62

PISTOLE 62.37 34.94 97.31

4 EXPERIMENTS

In this section, we compare our PISTOLE method with state-of-the-art adversarial fine-tuning ap-
proaches across different scenarios and downstream vision-language tasks.

Datasets. Task vectors are obtained by natural and adversarial fine-tuning on ImageNet-1k (Deng
et al., 2009). We report zero-shot classification on its test set plus 13 additional datasets, and assess
transfer on captioning, visual question answering, hallucination, etc. (details in Appendix C.1).

Implementation details. Unless stated otherwise, the base VLM is CLIP with a ViT-L/14 encoder,
following robust-CLIP practice (Mao et al., 2023; Schlarmann et al., 2024). The natural VLM is
trained by ERM on clean data; the robust VLM follows PMG (Wang et al., 2024) with 10-step
PGD (ℓ∞, ϵ = 2/255, step α = 1/255). We form task vectors (τnat, τrob) and merge them via
PISTOLE with default mixing λ = 0.2. Zero-shot robustness is measured with AutoAttack (Croce
& Hein, 2020). For downstream transfer, we replace the vision encoder in LLaVA-1.5-7B and
OpenFlamingo-9B with our merged encoder while keeping other components fixed. Evaluations
use adaptive attacks for fairness. Additional configurations appear in Appendix C.2.

4.1 MAIN RESULTS ON ZERO-SHOT CLASSIFICATION

Zero-shot classification. Table 1 summarizes clean and robust accuracies for CLIP ViT-L/14 on 14
evaluation sets. In addition to reporting each metric separately, we include a scalar trade-off score
Sum (Clean+Robust) to capture overall performance. PISTOLE delivers the strongest zero-shot
results, improving mean clean accuracy by ∼5% and mean robust accuracy by ∼5.8% over state-
of-the-art adversarial fine-tuning baselines. On in-distribution ImageNet, our trade-off is marginally
better than alternatives, which we attribute to the robust component obtained via PMG (Wang et al.,
2024) used in the merge. Section 4.3 further examines how substituting different robustly fine-tuned
VLM components can alter the relative trends.

Robustness generality across backbones. Beyond ViT-L/14, we evaluate our PISTOLE method
with ViT-H/14 and ViT-B/32 based on the clean/robust task vectors of the identical CLIP archi-
tecture. As summarized in Table 2, the method consistently surpasses previous adversarial VLM
learning approaches in both average clean and robust accuracy across the same 14 datasets.

Robustness across varying perturbation radius. We further stress-test robustness by increasing
the ℓ∞ budget beyond the default ϵ=2/255, considering ϵ∈3/255, 4/255 for both fine-tuning and
evaluation to ensure parity. Results in Table 3 indicate that our PISTOLE maintains its lead across
these stronger threat models in the zero-shot setting.
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Table 5: Zero-shot transfer on image captioning (CIDEr score) and VQA (accuracy %).

VLM Type Method
Image Captioning Visual Question Answering

COCO Flickr30k TextVQA VQAv2 Vizwiz
Clean Robust Sum Clean Robust Sum Clean Robust Sum Clean Robust Sum Clean Robust Sum

LLaVA 1.5

Standard CLIP 112.3 2.9 115.2 74.7 1.0 75.7 34.8 0.0 34.8 74.5 0.0 74.5 39.4 2.3 41.7
TeCoA 96.7 45.1 141.8 55.2 24.0 79.2 23.8 12.8 36.6 66.2 35.7 101.9 42.5 29.6 72.1
PMG 103.1 52.8 155.9 63.2 28.4 91.6 27.6 14.0 41.6 68.4 35.1 103.5 41.0 27.6 68.6
FARE 108.5 47.9 156.4 67.4 24.5 91.9 30.5 14.7 45.2 70.3 34.5 104.8 41.9 25.3 67.2
TGA 101.3 50.6 151.9 61.9 27.8 89.7 27.1 14.6 41.7 67.3 35.0 102.3 42.8 28.0 70.8

PISTOLE 110.6 54.9 165.5 72.8 30.5 103.3 33.1 16.0 49.1 73.7 36.9 110.6 44.5 32.3 76.8

OpenFlamingo

Standard CLIP 78.8 1.5 80.3 58.7 0.6 59.3 22.3 0.0 22.3 47.7 0.0 47.7 17.7 3.3 21.0
TeCoA 73.0 29.6 102.6 47.4 13.7 61.1 17.3 2.4 19.7 46.1 23.8 69.9 17.6 4.0 21.6
PMG 76.2 31.2 107.4 52.0 16.5 68.5 17.7 2.8 20.5 47.0 24.0 71.0 16.9 4.2 21.1
FARE 77.9 32.7 110.6 53.5 15.9 69.4 18.8 2.2 21.0 46.7 21.8 68.5 17.2 3.8 21.0
TGA 74.2 30.5 104.7 51.8 16.0 67.8 19.0 2.7 21.7 46.2 23.6 69.8 18.0 2.5 20.5

PISTOLE 80.7 34.0 114.7 57.2 16.9 74.1 21.2 4.1 25.3 47.8 24.9 72.7 19.4 5.7 25.1

Table 4: Average accuracy (%) w.r.t. different ϵ
for fine-tuning and testing (ViT-L) w/ LoRA.

Radius Method Clean Robust Sum

ϵ = 3/255

TeCoA 55.22 26.54 81.76
PMG 56.82 27.02 83.84
FARE 57.84 23.85 81.69
TGA 55.88 26.66 82.54

PISTOLE 59.47 29.35 88.82

ϵ = 4/255

TeCoA 49.84 19.87 69.71
PMG 52.08 20.07 72.15
FARE 53.20 19.09 72.29
TGA 51.13 19.83 70.96

PISTOLE 55.06 21.78 76.84

Task vector merging with the PEFT ex-
tension. To reduce the high computational
cost brought by full parameter fine-tuning,
Parameter-Efficient Fine-Tuning (PEFT) strate-
gies (e.g., LoRA (Hu et al., 2022) based on
learnable low-rank matrices for efficient adap-
tation) were typically paired with adversarial
fine-tuning. We thus extend prior adversarial
VLM learning methods and our task vector-
based merging approach with LoRA. We report
both clean and robust accuracy associated with
their sum for our LoRA-based PISTOLE method against other LoRA-enabled baselines in Table 4.
Even under this efficiency regime, our PISTOLE typically achieves the best trade-off.

4.2 ZERO-SHOT DOWNSTREAM TASK TRANSFER

Transfer to image captioning. We here evaluate zero-shot task transfer to image captioning by
swapping the vision encoder in LLaVA and OpenFlamingo with our PISTOLE-merged encoder. Ta-
ble 5 (Left) reports the CIDEr score (Vedantam et al., 2015) on COCO and Flickr30k. PISTOLE
attains the strongest scores on both clean inputs and under adversaries for a better trade-off, outper-
forming adversarial learning baselines. Qualitative visualizations are in Figure 6 (Appendix F).

Transfer to Visual Question Answering (VQA). Table 5 (Right) also summarizes VQA accu-
racy across three standard benchmarks. PISTOLE consistently increases the sum relative to prior
baselines, primarily by delivering sizable zero-shot robustness gains while keeping natural accuracy
essentially intact (and even higher on VizWiz). These results indicate a better accuracy–robustness
compromise in the zero-shot regime. Qualitative examples are in Figure 7 (Appendix F).

Table 6: POPE hallucination benchmark (F1-
score) with ViT-L using three sampling protocols.

Method POPE Sampling Avg. Score
Random Popular Adversarial

TeCoA 79.8 79.1 75.2 78.0
PMG 81.7 80.9 76.3 79.6
FARE 82.2 81.5 78.6 80.8
TGA 80.4 79.8 76.0 78.7

PISTOLE 84.6 83.7 80.8 83.0

Transfer to object hallucination. To probe
hallucination (i.e., erroneously recognizing ob-
jects that do not exist in inputs) (Sahoo et al.,
2024), we adopt the POPE benchmark (Li et al.,
2023) with its standard question-sampling pro-
tocols (Appendix C.3). Results in Table 6 indi-
cate that PISTOLE consistently lowers halluci-
nation rates versus competing adversarial learning schemes. We attribute this to our stability-aware
masking, which dampens over-confident, brittle features and favors parameters that remain reliable
under perturbations. Qualitative cases are in Figure 8 in Appendix F.

Table 7: CoT eval. (Acc.) using science question
answering for adversarial VLM learning (ViT-L).

Method Temperature Avg. Acc.
0.0 0.1 0.2

TeCoA 51.4 51.6 50.0 51.0
PMG 51.9 52.0 51.6 51.8
FARE 52.5 52.2 52.4 52.4
TGA 52.1 51.9 51.8 51.9

PISTOLE 54.1 53.9 54.2 54.1

Transfer to science question answering w/
Chain-of-Thought (CoT). We further assess
CoT reasoning on the ScienceQA benchmark
(Lu et al., 2022). Across multiple prompting
and VLM settings (Appendix C.3), our PIS-
TOLE method achieves the best overall ac-
curacy (Table 7), suggesting that stabilizing
the vision backbone from diverse knowledge
sources further improves the robustness and re-
liability of multi-step reasoning. Illustrative examples are provided in Figure 9 in Appendix F.

4.3 FURTHER ANALYSES (WHY PISTOLE IS EFFECTIVE)

In this section, we conduct a series of controlled ablations of our PISTOLE method and its compo-
nents to justify its effectiveness and generalizability across different scenarios.
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Table 8: Component ablations for PIS-
TOLE. We report mean clean and robust
accuracy (%) averaged on 14 datasets.

GISM PCI APT Clean Robust Sum
1 66.57 44.54 111.11
2 ✓ 67.78 45.69 113.47
3 ✓ ✓ 68.36 46.47 114.83
4 ✓ ✓ 67.64 47.11 114.75
4 ✓ ✓ ✓ 69.24 47.65 116.89

Effect of PISTOLE components. We here quantify the
contributions of three core modules in our PISTOLE: (i)
Gradient-Informed Stability Mask (GISM) in Eq. (6),
(ii) Re-weighting of Prediction Criticality Index (PCI) in
Definition 1, and (iii) Adversarial Parameter Trajectory
(APT) in Eq. (8). Table 8 reports zero-shot results aver-
aged over 14 classification benchmarks. As a reference,
the first row (baseline) applies vanilla task vector merging in θvan(·) in Section 3.2. Enforcing
stability masks simultaneously improves natural performance and robustness. Augmenting it with
PCI further lifts the trade-off by prioritizing fragile predictions. Incorporating adversarial parameter
trajectory improves robustness by refining sensitivity estimates beyond single-point gradients.

Table 9: Avg. performance (%) of our PISTOLE
with diverse task vectors for natural knowledge.

Natural Knowledge Source Clean Robust Sum
Pre-Trained (Zero-Shot) VLM 67.10 47.83 114.93

Naturally Fine-tuned VLM 69.24 47.65 116.89

Effect of natural knowledge components. We
vary the source of the “natural” task vector
while fixing the robust task vector in our PIS-
TOLE method. As shown in Table 9, replacing
the pre-trained (zero-shot) VLM with a natu-
rally fine-tuned one yields a stronger clean-robust trade-off. Intuitively, natural empirical risk min-
imization contributes task-calibrated shifts that better align with the robust objective’s consensus
direction, which our stability masks preserve while suppressing antagonistic coordinates.

Table 10: Avg. performance (%) of our PISTOLE with di-
verse task vectors for robust knowledge.

Robust Knowledge Source ImageNet Avg. 13 Datasets
Clean Robust Sum Clean Robust Sum

TeCoA 79.23 62.31 141.54 64.94 43.52 108.46
FARE 75.86 62.02 137.88 69.47 44.91 114.38

PMG (Our Setup) 80.82 61.89 142.71 68.35 46.55 114.90

Effect of robust knowledge compo-
nent. We ablate the source of the
robust task vector while fixing the
natural one, instantiating PISTOLE
with diverse adversarial fine-tuning
methods (summarized in Appendix
B). From Table 10, we observe a consistent pattern: TeCoA yields the strongest in-distribution (Im-
ageNet) robustness but transfers less favorably under shift, while FARE improves OOD robustness
yet lags on ImageNet. Our setup offers the most balanced performance, producing the best trade-off.
We attribute this to its prediction-regularized objective, which preserves features aligned with the
natural objective. Our stability masks retain these while suppressing antagonistic coordinates.
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Figure 5: Analyses of loss-parameter
curvature on ImageNet adversaries.

Curvature analyses. We quantify loss-parameter curva-
ture along the local update (gradient) direction for ad-
versarial inputs in Figure 5, which plots this directional
curvature while changing the merging weight λ. Vanilla
mixing exhibits consistently higher curvature, especially
at a larger radius, whereas PISTOLE lowers curvature
throughout, indicating a smoother, more stable landscape
under parameter nudges. We observe that λ = 0.2
(our operating point) attains the lowest curvature and si-
multaneously yields the best trade-off. This behavior
aligns with our theorems: PCI weighting prioritizes high-
curvature regions (Theorem 2), and the complementary
masks provably contract cross-objective first-order inter-
ference (Theorem 1), jointly steering the merge toward flatter, better-generalizing solutions.

Extended analyses. More analyses are in Appendix G, including task-vector re-weighting ablations,
hyperparameter analyses, and cost comparisons, all of which corroborate the efficacy of PISTOLE.

5 CONCLUSION

Motivated by our gradient-similarity analyses between natural and robust VLMs, we introduced
PISTOLE, a prediction stability–aware task-vector merging framework that composes off-the-shelf
natural and robust VLMs without retraining. PISTOLE forms complementary, gradient-informed
masks and refines them along adversarial parameter trajectories, weighting steps by a curvature-
linked prediction criticality index. Our theorems bound cross-objective interference and show that
this index tracks Hessian trace, explaining why the merge gravitates toward flatter, more general-
izable regions. Empirically, PISTOLE consistently improves the clean-robust trade-off across 14
datasets and scenarios, and transfers as a drop-in encoder to downstream tasks. Rigorous ablations
and curvature analyses validate each component and quantify its impact on the clean-robust frontier.
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ETHICS STATEMENT

This work studies model robustness and parameter-space merging for vision-language models. Our
experiments use publicly available datasets and model checkpoints under their original licenses.
No personally identifiable or sensitive data is introduced. We evaluate robustness with standard
adversarial attacks to stress-test models in a defensive setting. As with most robustness research,
there is potential dual use: insights that improve defenses could also inform stronger attacks. To
mitigate misuse, our paper reports evaluations and ablations strictly for benchmarking and does not
target real users or deployed systems. We encourage responsible release and deployment practices,
including clearly labeling merged checkpoints, documenting training/merging procedures, and re-
validating safety filters when models are adapted. From an environmental perspective, parameter-
space merging substantially reduces computational costs compared with repeated adversarial fine-
tuning. We are not aware of disparate-impact risks unique to our method beyond those inherited from
the underlying datasets and models. Nonetheless, we recommend auditing downstream applications
for distribution shift and fairness where appropriate.

REPRODUCIBILITY STATEMENT

We organize the paper and appendix to enable end-to-end replication using publicly available models
and datasets. Complete experimental configurations, including datasets, preprocessing, evaluation
splits, and attack settings, are centralized in Appendix C. Dataset coverage and zero-shot evaluation
suites are detailed in Appendix C.1. The task-vector construction and merging/evaluation protocol
(backbones, default hyperparameters, and attack parameters) appear in Appendix C.2, while down-
stream transfer setups for image captioning, VQA, object hallucination, and ScienceQA CoT are
specified in Appendix C.3. Theoretical assumptions and complete proofs are provided in Appendix
D. Hyperparameter choices, sensitivity studies, and search ranges are summarized in Appendix G.2.
Tables and figures in the main text refer back to these sections so that all reported clean and robust
accuracies can be reproduced under the stated configurations. We stress that our code and check-
points will be publicly available to facilitate independent verification and reuse.
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A APPENDIX SUMMARY

This appendix provides background on adversarial fine-tuning for VLMs (Section B), followed by
full experimental configurations (Section C). We then present the complete theoretical analyses (see
Section D) with the algorithmic specification of our PISTOLE method. We supply qualitative
visualizations of zero-shot transfer under clean and adversarial inputs (Section F). Extended studies
report ablations on re-weighting, hyperparameter sensitivity, computational cost comparisons, and
also the performance comparison with standard task vector merging approaches are listed in Section
G. Finally, we conclude with limitations and broader impact of our work in Section H with an LLM
usage declaration in Section I.

B DIVERSE ADVERSARIAL FINE-TUNING SCHEMES

Below, we provide details regarding adversarial fine-tuning schemes in the context of Vision-
Language Models (VLMs) for a more comprehensive background introduction.

TeCoA (Mao et al., 2023) [In-Distribution Robustness]. Given image-text pairs D, standard ad-
versarial fine-tuning (TeCoA) (Mao et al., 2023) is framed as a minimax optimization to improve
adversarial robustness of the CLIP models:

min
θI

E(x,c)∼D

[
max

∥δ∥∞≤ϵ
LCE

(
p(x+ δ),y(c)

)]
, (13)

PMG (Wang et al., 2024) [OOD Robustness]. Motivated by the inherent over-fitting of TeCoA
(Mao et al., 2023) with generalization degradation, PMG (Wang et al., 2024) leveraged the
prediction-level guidance from the vanilla pre-trained VLM with a regularization of clean samples
for the target model to conduct adversarial fine-tuning, as follows:

min
θI

E(x,c)∼D

[
max

∥δ∥∞≤ϵ
LCE

(
p(x+δ),y(c)

)
+ λ1 ·LKL(porig(x)∥p(x+δ))+λ2 ·LKL(p(x)∥p(x+δ))

]
,

(14)

where LKL represents the Kullback–Leibler divergence to align predictions, and porig denotes the
prediction of the vanilla pre-trained CLIP model (Radford et al., 2021). λ1 and λ2 are the corre-
sponding loss weighting factors.

FARE (Schlarmann et al., 2024) [OOD Robustness]. To enhance the robustness generalization
capability across diverse vision-language tasks, Schlarmann et al. (Schlarmann et al., 2024) pro-
posed an unsupervised adversarial fine-tuning approach, dubbed FARE, to adversarially optimize
feature-level discrepancies in an unsupervised scheme:

min
θI

E(x,c)∼D

[
max

∥δ∥∞≤ϵ

∥∥∥Forig(x)− F(x+ δ)
∥∥∥2
2

]
, (15)

where F(·) denotes the image encoder of the CLIP model for fine-tuning, while Forig(·) is the image
encoder of the vanilla pre-trained CLIP model as the frozen reference.

TGA (Yu et al., 2024) [In-Distribution Robustness]. Built on TeCoA (Mao et al., 2023), Text-
Guided Attention (TGA) adversarially fine-tunes the image encoder while aligning text-guided at-
tention maps, computed by correlating per-patch visual tokens with a frozen text embedding of the
class prompt (from the original CLIP). It (i) pulls the target model’s attention on adversarial images
toward the original model’s clean-image attention and (ii) keeps the target’s clean-image attention
close to the original, aiming to boost robustness with eroding marginal clean accuracy.

C FULL EXPERIMENTAL CONFIGURATIONS

This section details datasets used, task vector merging/evaluation settings, and downstream transfer
protocols used in our experiments and analyses with our PISTOLE method.
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C.1 DATASET DESCRIPTION

Following prior work on robust VLMs (Mao et al., 2023; Schlarmann et al., 2024), we train on the
ImageNet-1k training split (Deng et al., 2009) and report classification on the validation split (test
labels are unavailable). Zero-shot classification is further evaluated on 13 datasets covering:

• Natural objects: STL-10 (Coates et al., 2011), CIFAR-10/100 (Krizhevsky et al., 2009),
Caltech-101 (Fei-Fei et al., 2004).

• Fine-grained: Stanford Cars (Krause et al., 2013), Oxford-IIIT Pets (Parkhi et al., 2012),
Flowers-102 (Nilsback & Zisserman, 2008), FGVC-Aircraft (Maji et al., 2013).

• Textures: DTD (Cimpoi et al., 2014).

• Remote sensing: EuroSAT (Helber et al., 2019).

• Medical: PCAM (Veeling et al., 2018).

• Robustness variants: ImageNet-R (Hendrycks et al., 2021) and ImageNet-S (Wang et al., 2019).

We also assess zero-shot transfer on a series of downstream image–text understanding tasks: image
captioning on COCO (Lin et al., 2014) and Flickr30k (Plummer et al., 2015); Visual Question An-
swering (VQA) on TextVQA (Singh et al., 2019), VQAv2 (Goyal et al., 2017), and VizWiz (Gurari
et al., 2018); object hallucination evaluation via POPE (Li et al., 2023); and multimodal Chain-of-
Thought (CoT) reasoning on ScienceQA dataset (Lu et al., 2022).

C.2 IMPLEMENTATION DETAILS (ZERO-SHOT IMAGE CLASSIFICATION)

Default setup. Unless noted, we use CLIP (Radford et al., 2021) with a ViT-L/14 image encoder.
In line with standard task arithmetics (Ilharco et al., 2023), all the task vectors are the parameter
differences of the vision encoder between fine-tuned and pre-trained CLIP models. The natural
VLM is trained by Empirical Risk Minimization (ERM) on clean data, while the robust VLM follows
PMG (Wang et al., 2024). Adversarial examples are generated by 10-step PGD (Madry et al., 2018)
at ℓ∞ radius ϵ = 2/255 and step size α = 1/255. We form task vectors (τnat, τrob) and merge them
via PISTOLE with default mixing factor λ=0.2 (Eq. (11)) and the mask sharpness factor κ=2 (Eq.
(6)). Following adversarial weight training in single-modal architectures (Wu et al., 2020), we adopt
the adversarial parameter radius factor η=1×10−3 (Eq. (8)). For backbone studies (Table 2), we
consider both a large architecture CLIP ViT-H/14 and a lightweight one CLIP ViT-B/14. For fine-
tuning the CLIP models, we optimize with AdamW (Loshchilov & Hutter, 2019) (betas (0.9, 0.95)),
a cosine schedule with linear warm-up to 1×10−5 over 2 epochs. For PEFT experiments (Table 4),
we use the LoRA (Hu et al., 2022) scheme specifically on attention blocks. All experimental runs
and empirical analyses use eight NVIDIA H100 GPUs.

Evaluation protocol. Following prior adversarial VLM learning works (Mao et al., 2023; Schlar-
mann et al., 2024), we report clean accuracy and robust accuracy under AutoAttack (AA) (Croce
& Hein, 2020) with ϵ=2/255 unless specified. Note that AA is an ensemble adversarial attack of
diverse scenarios for practical reliability assessment. All the robustness evaluation results are based
on adaptive attacks for a fair comparison. Zero-shot classification follows the standard CLIP infer-
ence/evaluation protocol: cosine similarity between image features and class-prompt text features,
selecting the highest-scoring prediction index as the result.

C.3 DETAILS OF DOWNSTREAM TASK EXTENSIONS

For downstream vision-language task evaluations, we replace the ViT-L/14 vision encoder in
LLaVA-1.5-7B (Liu et al., 2024) and OpenFlamingo-9B (Awadalla et al., 2023) with our merged
encoder with a better clean-robust trade-off. Note that all other components remain fixed. Below,
we provide detailed explanations about each vision-language task and its corresponding setup.

Downstream task extension to image captioning. We evaluate the CIDEr score (Vedantam et al.,
2015) on COCO (Lin et al., 2014) and Flickr30k (Plummer et al., 2015) using LLaVA-1.5-7B and
OpenFlamingo-9B with our merged vision encoder swapped in. Adversarial examples are generated
with APGD (Croce & Hein, 2020) under an ℓ∞ perturbation budget of ϵ=2/255, running 100 steps
per image–reference pair following (Schlarmann et al., 2024). After each step, we recompute CIDEr
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and early-stop that example if the score falls below 10 (COCO) or 2 (Flickr30k). For reporting, we
apply the adversarial perturbation that achieved the lowest CIDEr score across references.

Downstream task extension to visual question answering. For evaluations, we report standard
Visual Question Answering (VQA) accuracy (Antol et al., 2015), selecting the five most frequent
answers among the ten annotations for each example. Adversarial inputs are crafted with APGD
(Croce & Hein, 2020) at the radius of ϵ = 2/255, using targeted perturbations steered by prompt
strings (e.g., ‘‘Maybe’’, ‘‘Word’’) as in (Schlarmann & Hein, 2023; Schlarmann et al., 2024).
Model decoding and text prompts follow each framework’s default setup unless stated otherwise.

Downstream task extension to object hallucination (POPE evaluation benchmark). We assess
object hallucination with POPE benchmark (Li et al., 2023) by issuing binary (yes/no) queries about
candidate objects under three standard sampling strategies: Random (uniform over absent objects),
Popular (top-k most frequent absent objects), and Adversarial (top-k absent objects with highest
co-occurrence with present objects). Following (Li et al., 2023), we report the F1 score and also
average the score across sampling strategies for a single summary metric.

Downstream task extension to Science question answering with chain-of-thought. We evaluate
on ScienceQA (Lu et al., 2022) using LLaVA-1.5-7B (Liu et al., 2024) with our PISTOLE-merged
ViT-L/14 vision encoder swapped in and all other weights frozen. Each instance provides an image,
a question, and four options {A,B,C,D}. We adopt a chain-of-thought protocol: the model is first
prompted to “think step by step” to produce a free-form rationale, then a short follow-up prompt
elicits a single final option token. Inputs follow LLaVA defaults (single image and single-turn dia-
logue). Decoding uses the temperature T = {0.0, 0.1, 0.2}. Note that the last explicit token among
A/B/C/D is taken as the prediction, with fallback to option–text matching if needed. We report
accuracy at each T and the mean across temperatures (Table 7).

D FULL THEORETICAL ANALYSES

D.1 PROOF OF THEOREM 1

In this section, we provide the complete proof of Theorem 1, establishing first-order attenuation of
cross-objective interference under layerwise complementary masking and its monotone dependence
on the mask hyperparameters.

Theorem 3 (Theorem 1 from the main text). Let g0
nat := ∇θLnat(θ)

∣∣
θ=θ0

and g0
rob :=

∇θLrob(θ)
∣∣
θ=θ0

. Let Mpre
nat :=

(
1− g̃rob

)κ
and Mpre

rob :=
(
1− g̃nat

)κ
be the uncapped comple-

mentary masks from Eq. (6), with κ ≥ 1 and g̃s ∈ [0, 1]d defined by Eq. (5). For each layer
l, let trob

q,l be the q-quantile of (Mpre
nat)l and tnat

q,l the q-quantile of (Mpre
rob)l (empirical quantiles

on layer entries).2 Define the capped masks layerwise by (Mnat)l := min
(
(Mpre

nat)l, t
rob
q,l1

)
and

(Mrob)l :=min
(
(Mpre

rob)l, t
nat
q,l1

)
. Set ρnat :=maxl t

nat
q,l and ρrob :=maxl t

rob
q,l . Then for any δ ∈ Rd,∣∣⟨g0

nat, Mrob ⊙ δ⟩
∣∣ ≤ ρnat ∥g0

nat∥2 ∥δ∥2,
∣∣⟨g0

rob, Mnat ⊙ δ⟩
∣∣ ≤ ρrob ∥g0

rob∥2 ∥δ∥2. (16)

Moreover, if κ is increased (i.e., sharpening (1 − g̃)κ) or any of the layerwise caps tnat
q,l, t

rob
q,l are

decreased, the right-hand sides in Eq. (16) are monotone nonincreasing.

Proof. We here prove the first bound, while the second is identical with roles swapped.

Layerwise ℓ∞ control of the capped mask. According to the definition of the capping, for every
layer l and every index i in that layer’s index set Il,

0 ≤ (Mrob)i ≤ tnat
q,l.

Consequently, if we write m := Mrob and use the layer partition {Il}, then

∥m∥∞ = max
i
|mi| = max

l
max
i∈Il

mi ≤ max
l

tnat
q,l = ρnat. (17)

2Any standard definition of the empirical q-quantile with q ∈ (0, 1] suffices. We here consider that quantiles
are monotone under component-wise decreases.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Bounding the masked displacement in ℓ2. For any vector δ,

∥m⊙ δ∥22 =
∑
i

m2
i δ

2
i ≤ ∥m∥2∞

∑
i

δ2i = ∥m∥2∞ ∥δ∥22.

Taking square roots and invoking Eq. (17) yields

∥Mrob ⊙ δ∥2 ≤ ∥Mrob∥∞ ∥δ∥2 ≤ ρnat ∥δ∥2. (18)

First-order inner-product control. By Cauchy–Schwarz,∣∣⟨g0
nat, Mrob ⊙ δ⟩

∣∣ ≤ ∥g0
nat∥2 ∥Mrob ⊙ δ∥2.

Combining with Eq. (18) gives∣∣⟨g0
nat, Mrob ⊙ δ⟩

∣∣ ≤ ρnat ∥g0
nat∥2 ∥δ∥2,

which is the first inequality in Eq. (16).

Monotonicity in κ and caps. Consider the pointwise map ϕκ(u) = (1 − u)κ on u ∈ [0, 1]. Since
κ 7→ ϕκ(u) is nonincreasing for every fixed u ∈ [0, 1], increasing κ makes the pre-cap masks Mpre

rob
and Mpre

nat component-wise no larger. Quantiles are monotone under component-wise decreases: if
a ≤ b element-wise then the empirical q-quantile of a is ≤ that of b.3 Therefore tnat

q,l and trob
q,l are

nonincreasing in κ. The capping operation (v 7→ min(v, t1)) is also monotone nonexpansive (it
cannot increase any coordinate). Thus both masks after capping are nonincreasing in κ, and so are
ρnat = maxl t

nat
q,l and ρrob = maxl t

rob
q,l . Finally, explicitly decreasing any tnat

q,l or trob
q,l further shrinks

the corresponding mask entries and hence cannot increase the right-hand sides in Eq. (16).

D.2 PROOF OF THEOREM 2

Theorem 4 ([Theorem 2 from the main text). ] Let PCI be defined as in Definition 1, where
pc(x;θ) > 0 is twice continuously differentiable in a neighborhood of θ. Given Hc(θ) :=
∇2

θpc(x;θ), for sufficiently small η, we have the following approximation:

PCI(x, c,θ)=
σ2

2

Tr(Hc(θ))

pc(x;θ)
+O(σ3). (19)

Proof. Throughout the proof, we take all the expectations with respect to the isotropic and zero-
mean perturbation ∆ ∈ Vθ at the parameter level introduced in Definition 1. The covariance of ∆
is σ2Id, where the per-coordinate second moment is σ2 := 1

dE∆∈Vθ
[∥∆∥22]=

η2∥θ∥2
F

d .

Given the mapping ϑ 7→ pc(x;ϑ) is C2 by definition. The second-order multivariate Taylor’s
expansion around θ with Lagrange form remainder yields:

pc(x;θ +∆) = pc(x;θ) +∇θp
⊤
c (x;θ)∆︸ ︷︷ ︸
(a)

+ 1
2∆

⊤Hc(θ)∆︸ ︷︷ ︸
(b)

+O(∥∆∥3).
(20)

Recall that isotropy and zero mean imply E[∆] = 0. Thus, the first-order term (a) vanishes un-
der expectation E[∇θp

⊤
c (x;θ)∆] = 0. For the quadratic term (b), we apply E[∆⊤Hc(θ)∆] =

Tr(Hc(θ)E[∆∆⊤]) = σ2 Tr(Hc(θ)) for isotropic covariance. Hence, we obtain:

E∆[pc(x;θ+∆)]=pc(x;θ)+
σ2

2
Tr(Hc(θ))+O(σ3). (21)

Taylor’s theorem bounds the truncation error in Eq. (20) by O(∥∆∥32). Under the isotropic law in
Vθ, we have E∥∆∥22 = dσ2, so Hölder’s inequality with exponents (3/2, 3) gives:

E∥∆∥32 ≤ (E∥∆∥22)3/2 = (dσ2)3/2 = d3/2 σ3. (22)

3Formally, for any t, the empirical CDFs satisfy Fa(t) ≥ Fb(t), hence inf{t : Fa(t) ≥ q} ≤ inf{t :
Fb(t) ≥ q}.
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Algorithm 1 PredIction STability-aware mOdeL mErging (PISTOLE)
Input: natural and robust CLIP models (fθnat , fθrob) and their task vectors (τnat, τrob); dataset D = {(x, c)};
input-PGD steps m and step size α; parameter-trajectory steps K and step size β; parameter-ball radius factor
η; mask temperature γ and sharpness κ; small ϵ>0; trade-off λ; quantile cap q.
1: Initialize accumulated gradients: Gnat ← 0, Grob ← 0
2: while not at the end of task vector merging do
3: Sample (x, c) ∼ D and set x̂(0)←x+ 0.001 · N (0, I)
4: for t = 1, . . . ,m do ▷ PGD to obtain adversarial input for robust branch
5: x̂(t)← x̂(t−1) + α · sign

(
∇x̂(t−1)LCE(pθrob(x̂

(t−1)), e(c))
)

6: x̂(t)←ΠB(x,ϵ)
(
x̂(t)

)
7: end for
8: Set x̂← x̂(m), xnat←x, xrob← x̂
9: for s ∈ {nat, rob} do ▷ Adversarial parameter trajectories

10: θ
(0)
s ←θs; Vθs←{∆ : ∥∆∥F ≤ η∥θs∥F }

11: for i = 0, . . . ,K − 1 do

12: g←∇θLs

(
pθ(xs), e(c)

)∣∣
θ=θ

(i)
s

13: u←g/(∥g∥F + ϵ)

14: θ
(i+1)
s ←Πθs+Vθs

(
θ
(i)
s + β u

)
15: Gs←Gs + PCI(xs, c,θ

(i)
s ) · g

16: end for
17: end for
18: end while

19:
Per-layer normalization and path-refined masks:
g̃path
s ←Norm(|Gs|)γ for s∈{nat, rob}; Mpath

nat ←(1−g̃path
rob )

κ, Mpath
rob ←(1−g̃path

nat )
κ

20: if quantile cap q is specified then

21:
Apply per-layer caps:
Mpath

nat,ℓ←min
(
Mpath

nat,ℓ, t
rob
q,ℓ

)
, Mpath

rob,ℓ←min
(
Mpath

rob,ℓ, t
nat
q,ℓ

)
22: end if

23:
Re-weight task vectors and merge:
τ ∗

nat←Mpath
nat ⊙ τnat, τ ∗

rob←Mpath
rob ⊙ τrob, τ ∗←λ τ ∗

nat + (1− λ) τ ∗
rob

24: return merged vector τ ∗ and parameters θPISTOLE(λ)=θ0 + τ ∗

Hence, the expectation of the remainder term is O(σ3), validating the order claimed in Eq. (21).

Subtracting pc(x;θ) from Eq. (21) and dividing by pc(x;θ) > 0 (keeping terms up to O(σ2))
yields:

E[
pc(x;θ+∆)−pc(x;θ)

pc(x;θ)
]=

σ2

2

Tr(Hc(θ))

pc(x;θ)
+O(σ3). (23)

For sufficiently small σ2, the leading term dictates the sign, and the outer absolute value in the
definition of our proposed PCI (Definition 1) therefore keeps the magnitude and removes the sign.
Consequently, we obtain:

PCI(x, c,θ)=
σ2

2

Tr(Hc(θ))

pc(x;θ)
+O(σ3), (24)

establishing the quadratic estimation in Eq. (19).

E PISTOLE: FULL ALGORITHMIC SPECIFICATION

This section instantiates the procedure described in the main text (cf. Sections 3.3 and 3.4). The rou-
tine first constructs robust inputs for the robust branch via the PGD adversary generation scheme,
then traces short adversarial parameter trajectories around each fine-tuned solution. Along these
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Clean Image

Clean Captioning

TeCoA: A man is riding a surfboard 
on the beach.

TGA: A person snowboarding on a 
snowy slope.

PMG: A man skateboarding on the 
street next to a car.

FARE: A man skateboards with a 
car behind.

PISTOLE: A man is skateboarding 
in a parking lot.

CLIP: A man is skateboarding in a 
parking lot.

TeCoA: A person is sitting at a 
desk using a laptop.

TGA: A group of people are sitting 
around a table in an office.

PMG: A boy riding a skateboard on 
the street while holding a dog.

FARE: Skater rolls through traffic 
as cars approach from behind.

PISTOLE: A man is skateboarding 
in a parking lot.

CLIP: A man riding a motorcycle on 
the road.

Adv. Image

𝜺 = 𝟐/𝟐𝟓𝟓

Adversarial Captioning

Clean Image

Clean Captioning

TeCoA: A pile of skis and ski poles 
are leaning against a metal pole.

TGA: A rack of fishing rods near a 
lake.

PMG: Many pairs of skis and ski 
poles are leaning against a rack.

FARE: A pile of skis and ski poles 
are leaning against a wall.

PISTOLE: A bunch of skis are 
arranged neatly in racks outdoors.

CLIP: A bunch of skis are lined up 
on a ski rack.

TeCoA: A pile of bicycles are 
leaning against a metal fence.

TGA: A row of surfboards standing 
upright on a sandy beach.

PMG: A group of people walking 
through a snowy village street.

FARE: Several snowboards are 
stacked together on the ground.

PISTOLE: Skis and snowboards 
organized neatly in racks.

CLIP: A parking lot filled with cars 
in the sun.

Adv. Image

𝜺 = 𝟐/𝟐𝟓𝟓

Adversarial Captioning

Figure 6: Image captioning under clean and adversarial inputs (ℓ∞-norm perturbation ϵ=2/255)
using LLaVA-1.5 coupled with vision encoders from the compared methods on COCO. PISTOLE
maintains semantic consistency across perturbations, whereas alternatives often drift or hallucinate.

Clean Image Clean VQA

TeCoA: None

TGA: None

PMG: Teenage mutant ninja turtles

FARE: Teenage mutant ninja turtles

PISTOLE: Teenage mutant ninja turtles

CLIP: Teenage mutant ninja turtles

Question: What movie is being advertised?

Question: What's the title of the book to the very top right?

Clean Image Clean VQA

TeCoA: Shopaholic

TGA: Sleeping beauty

PMG: Frozen star

FARE: Sleeping where they fall

PISTOLE: Frozen star

CLIP: Frozen star

Adversarial VQA

TeCoA: None

TGA: None

PMG: Turtles

FARE: Turkeys

PISTOLE: Teenage mutant ninja turtles

CLIP: Ura

Adversarial VQA

TeCoA: Shopaholic

TGA: None

PMG: Frozen

FARE: Sleeping where they fall

PISTOLE: Frozen star

CLIP: None

Adv. Image 𝜺 = 𝟐/𝟐𝟓𝟓

Adv. Image 𝜺 = 𝟐/𝟐𝟓𝟓

Question: What movie is being advertised?

Question: What's the title of the book to the very top right?

Figure 7: Qualitative visual question answering under clean samples and their adversarial counter-
parts (ϵ=2/255) on TextVQA, using LLaVA-1.5 with different robust vision encoders. PISTOLE
preserves correct answers across both conditions, whereas baselines often drift or abstain.

trajectories, it accumulates PCI-weighted gradients, converts them to per-layer normalized sensitiv-
ity scores, and forms complementary, path-refined masks. Finally, it re-weights the natural/robust
task vectors and merges them with mixing coefficient λ.

In practice, the method is training-free and efficient: small step counts suffice; ϵ stabilizes normal-
ization; (γ, κ) tune mask dynamic range and selectivity; and the quantile cap q enforces a first-order
non-interference budget. Unless otherwise stated, we apply our PISTOLE method to the vision
encoder parameters, but the specification in Algorithm 1 is architecture-agnostic.
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Clean Image POPE Hallucination VQA

TeCoA: Yes

TGA: Yes

PMG: No

FARE: No

PISTOLE: No

Question: Is there a car in the image?

Clean Image POPE Hallucination VQA

TeCoA: Yes

TGA: Yes

PMG: Yes

FARE: No

PISTOLE: No

Question: Is there a dining table in the image?

Clean Image POPE Hallucination VQA

TeCoA: No

TGA: No

PMG: Yes

FARE: No

PISTOLE: Yes

Question: Is there a person in the image?

Clean Image POPE Hallucination VQA

TeCoA: No

TGA: No

PMG: No

FARE: No

PISTOLE: Yes

Question: Is there a bus in the image?

Figure 8: Visual examples on POPE hallucination benchmark using LLaVA 1.5 with vision en-
coders from different adversarial VLM learning schemes. PISTOLE reduces yes/no hallucinations
and maintains pixel-grounded responses under perturbation.

Input Images Science QA

TeCoA: B. November

TGA: B. November

PMG: A. July

FARE: C. February

PISTOLE: A. July

Question: Which month has the lowest 
average precipitation in London?

A. July
B. November
C. February

Question: Which of these organisms 
contains matter that was once part of the 
bear sedge?

A. Arctic fox
B. Barren-ground caribou
C. Bilberry

TeCoA: C. Bilberry

TGA: B. Barren-ground caribou

PMG: A. Arctic fox

FARE: A. Arctic fox

PISTOLE: A. Arctic fox

Question: Is the following statement 
about our solar system true or false?

The volume of Mars is more than ten 
times as large as Mercury’s. 

A. True
B. False

TeCoA: A. True

TGA: A. True

PMG: A. True

FARE: A. True

PISTOLE: B. False

Figure 9: Qualitative examples for science question answering w/ CoT using LLaVA-1.5 with dif-
ferent robust vision encoders. Our PISTOLE method maintains evidence-consistent answers under
perturbations, while alternatives often drift toward prior-biased choices.

F VISUALIZATIONS OF ZERO-SHOT TRANSFER TO DOWNSTREAM TASKS

In this section, we present qualitative comparisons across adversarial learning baselines and our
task vector merging method (PISTOLE) for zero-shot transfer across diverse downstream vision-
language tasks, e.g., captioning and visual question answering, under clean inputs and adversaries.

Zero-shot transfer to image captioning. Figure 6 shows that equipping LLaVA-1.5 with PIS-
TOLE’s merged encoder yields captions that remain semantically stable from clean to adversarial
images (ℓ∞-norm perturbation ϵ=2/255). Competing encoders frequently drift across domains or
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Figure 10: Hyper-parameter (merge weight λ, mask sharpness factor κ, and parameter-trajectory
radius scaling factor η) sensitivity analyses of PISTOLE.

hallucinate objects/attributes under perturbation, while PISTOLE preserves object grounding and
scene semantics—evidence of stronger invariance to input attacks and distribution shift.

Zero-shot transfer to visual question answering. Figure 7 illustrates two TextVQA cases in which
PISTOLE maintains answer consistency from clean to adversarial inputs (e.g., “Teenage Mutant
Ninja Turtles” and “Frozen star”), while competing encoders frequently switch to incorrect strings
or “None”. These qualitative trends align with our quantitative gains associated with a higher sum
of clean and robust VQA accuracy shown in the main text.

Zero-shot transfer to POPE object hallucination. We here illustrate POPE object hallucination
cases across its question-sampling protocols in Figure 8. The baseline encoders frequently follow
language priors, thus answering “Yes” for common objects and “No” for unlikely ones, regardless
of image evidence. In contrast, our PISTOLE method aligns decisions with the pixels, lowering both
false positives (hallucinated objects) and false negatives (missed objects), and preserving consistent
judgments between clean and adversarial inputs.

Zero-shot transfer to science question answering w/ CoT. Figure 9 contrasts predictions on rep-
resentative ScienceQA items. Under adversarial perturbations, prior robust CLIP variants frequently
select high-prior but visually unsupported options, whereas PISTOLE remains aligned with the
chart/diagram context and the underlying facts, yielding stable, evidence-grounded answers. These
cases suggest that stabilizing the vision backbone with PISTOLE curbs brittle pattern-matching and
supports more reliable multi-step reasoning.

G EXTENDED ANALYSES OF PISTOLE

G.1 EFFECT OF TASK VECTOR RE-WEIGHTING

Table 11: Avg. performance (%) of our PISTOLE
with diverse task vector re-weighting schemes.

Re-Weighting Scheme Clean Robust Sum
No Mask 66.57 44.54 111.11

Random Mask 67.32 44.95 111.27
Gradient-Informed Mask 69.24 47.65 116.89

We compare three re-weighting strategies for
task vector merging: i) no mask (uniform ad-
dition), (ii) a random mask matching the lay-
erwise sparsity, and (iii) gradient-informed sta-
bility masks in Eq. (6) in Table 11. Uniform ad-
dition yields the weakest trade-off, reproducing
the near-linear clean–robust antagonism. Random masking offers small gains by incidentally prun-
ing conflicts but lacks guarantees. In contrast, our gradient-informed strategy consistently achieves
the best trade-off, bending the frontier toward interior optima by suppressing counterpart-sensitive
coordinates. This aligns with Theorem 1 and Corollary 1, which proves that complementary masks
contract cross-objective first-order interference, unlike other schemes.

G.2 HYPERPARAMETER SENSITIVITY ANALYSES.

In this section, we study the effect of three core hyperparameters in our PISTOLE, the merge weight
λ (Eq. (11)), the mask sharpness factor κ (Eq. (6)), and the parameter-trajectory radius scaling factor
η (Eq. (8)), while holding all other settings fixed. Figures 10 plot both the average clean and robust
accuracy across the 14 evaluation datasets.
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Merge weight λ. Sweeping λ from 0.1 to 0.3 reveals the expected trade-off: clean accuracy in-
creases with larger weight on the natural task vector, while robustness decreases roughly monoton-
ically. The frontier is bowed (not linear), yielding an interior optimum of the Clean+Robust Sum
near λ=0.2, which we adopt as default. Trends are stable across seeds, indicating that λ primarily
sets the accuracy–robustness operating point rather than introducing instability.

Mask sharpness factor κ. Sharpening the complementary masks by increasing κ (Eq. (6)) improves
clean accuracy and raises robust accuracy up to an interior peak, after which robustness plateaus
or dips slightly. The trade-off is maximized near κ = 1.5, which we use by default to attenuate
counterpart-sensitive coordinates without over-pruning.

Parameter-trajectory radius scaling factor η. We can observe that η controls the neighborhood
explored by the adversarial parameter trajectory: too small under-explores the loss geometry, while
too large drifts off the manifold. As shown in the attached sweep, both clean and robust accuracy
peak at a moderate radius η=1×10−3. It can also be seen that smaller parameter-level perturbation
radii yield limited gains, and larger ones degrade the trade-off.

G.3 COMPUTATIONAL COST COMPARISONS

Table 12: Computational cost (training time) comparison
between PISTOLE and other adversarial learning methods.

Method Clean Robust Sum Time
TeCoA 61.56 43.26 104.82 6.2 hours
PMG 64.46 45.74 110.20 8.6 hours
FARE 65.50 42.97 108.47 7.6 hours
TGA 62.11 45.19 107.30 8.0 hours

PISTOLE 69.24 47.65 116.89 0.8 hours

Training-free merging. PISTOLE
operates on off-the-shelf naturally
and adversarially fine-tuned VLMs
and performs a one-shot merge: we
estimate stability masks from a small
calibration split (no epochs of weight
updates), then apply element-wise re-
weighting to the two task vectors and
compose the final encoder. In contrast, prior adversarial VLM learning approaches run full opti-
mization loops with inner PGD steps and (often) model forward propagation, incurring substantial
GPU time. To make costs comparable across methods, we count gradient evaluations and auxil-
iary forwards. As shown in Table 12, we can observe that our PISTOLE method attains the best
clean–robust trade-off while being ∼8–11× faster than prior adversarial fine-tuning baselines.

Complexity analysis. Let Nc be the size of the (small) calibration split, m the number of PGD
steps for adversarial inputs, and K the number of parameter-trajectory steps. PISTOLE does: (i) m
input-gradient evaluations to generate adversarial inputs for the robust branch (same inner loop as
standard adversarial training), and (ii) for each branch, K parameter-gradient evaluations along the
adversarial parameter trajectory, each weighted by PCI. Thus, the total number of gradient evalu-
ations to estimate the masks is O(Nc(m + 2K)), run once over a calibration split with no weight
updates and no multi-epoch optimization loop. In contrast, adversarial fine-tuning over E epochs
on the full training set of size N has complexity O(EN(m + 1)), since each iteration both runs
PGD and performs a parameter update. In practice, E is large (multiple epochs), while K is a small
constant, and Nc ≪ N , so the overall cost of PISTOLE is substantially lower even though we do
multiple forward–backward passes during calibration.

G.4 COMPARISON WITH STANDARD TASK VECTOR MERGING METHODS

Table 13: Average performance (%) over 14 datasets
for merging the same natural and robust CLIP models
under the identical configuration.

Task Vector Merging Clean Robust Sum
Vanilla Merging 66.57 44.54 111.11

Ties-Merging 67.91 46.27 114.18
AdaMerging 68.23 46.52 114.75
PISTOLE 69.24 47.65 116.89

Recall from Section 2 that Ties-Merging
(Yadav et al., 2023) enforces sign-
consistent sparsification and AdaMerging
(Yang et al., 2024) learns per-parameter
weights for multi-task settings. Table 13
compares our PISTOLE with these stan-
dard parameter-space merging methods
that combine the same naturally and ro-
bustly fine-tuned CLIP models in the iden-
tical configuration. Across 14 datasets, our method attains the best clean and robust accuracy, im-
proving the clean-robust trade-off over naive task-vector addition, Ties-Merging, and AdaMerging.
We attribute these gains to modeling parameter-space sensitivity and local loss geometry: PISTOLE
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Clean Image Natural Knowledge Source 

Answer: 5:53

Question: What is the time?

Adversarial Knowledge SourceAdv. Image 𝜺 = 𝟐/𝟐𝟓𝟓

Answer: None

Question: What is the time?

PISTOLE (Ours)Adv. Image 𝜺 = 𝟐/𝟐𝟓𝟓

Answer: None

Question: What is the time?

Figure 11: On an adversarially perturbed image, both the robust source model and PISTOLE output
a wrong answer, despite the natural model giving a partially correct answer on the clean input,
illustrating failures that merging cannot fix.

uses gradient-informed complementary masks and refines them along adversarial parameter trajec-
tories to account for sensitivity and curvature during merging—factors overlooked by prior methods.

G.5 FURTHER EXPLANATION OF THE ”TRAINING-FREE” ASSUMPTION

Our intent is to emphasize that PISTOLE performs no additional gradient-based optimization for
each downstream task once such source models are available. First, this assumption is aligned with
common practice in the task-vector/model-editing literature Ilharco et al. (2023); Ortiz-Jimenez et al.
(2023), where methods start from already fine-tuned checkpoints and apply post-hoc parameter-
space operations. In the VLM ecosystem, high-quality natural and robust checkpoints (e.g., CLIP-
/OpenCLIP-style models and their adversarially trained/fine-tuned counterparts) are increasingly
released and reused as off-the-shelf backbones. PISTOLE is designed precisely for this regime:
given pre-existing natural and adversarial models, we can cheaply obtain a continuum of merged
models with improved clean–robust trade-offs without any further training.

Second, even when a pair of natural/robust models must be trained once, this one-time cost is amor-
tized over many downstream tasks/domains. In contrast, standard adversarial fine-tuning typically
re-optimizes the model for each new target task. While our PISTOLE exhibits generalizable robust-
ness across diverse downstream vision-language tasks.

G.6 ANALYSIS ON FAILURE CASES

Figure 11 illustrates a typical failure mode that PISTOLE cannot fix. Our method operates by inter-
polating and masking between a natural and an adversarially trained model in parameter space, so
it can only reshuffle how much each endpoint contributes. When both source models systematically
fail on certain patterns (e.g., rare classes or heavily shifted domains), the merged model likewise
produces wrong answers and may even accumulate errors, as seen in the adversarial example where
both the robust source model and PISTOLE are incorrect despite the natural model being partially
correct.

G.7 BROADER PARAMETER-SPACE CONTEXT (MORE DISCUSSION)

Beyond classical model soups and linear task-vector addition, several recent VLM-specific meth-
ods also operate directly in parameter space. WATT Osowiechi et al. (2024) adapts CLIP under
domain shift via test-time updates followed by weight averaging of the adapted parameters, im-
proving test-time robustness. GeoLangBind Xiong et al. (2025) trains a remote-sensing VLM and
uses a progressive multimodal weight-merging strategy to aggregate knowledge from multiple visual
backbones within a single VLM. MoTE Zhu et al. (2024) adds temporal experts on top of a VLM
and employs weight-merging regularization in parameter space to enhance the trade-off. Our work
is complementary: instead of merging across domains, backbones, or experts, PISTOLE performs
stability-aware merging between natural and adversarially trained vision encoders to reconcile clean
accuracy and robustness.

H LIMITATIONS AND BROADER IMPACT.

H.1 BROADER IMPACT

PISTOLE targets a central safety concern in foundation VLMs: robustness to adversarial perturba-
tions. By reconciling clean accuracy and robustness through a training-free, plug-and-play merge
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of off-the-shelf natural and robust task vectors, our approach can make multimodal systems more re-
liable in downstream applications (captioning, VQA, hallucination mitigation, and scientific QA).
The method is compute-efficient, requiring only a short calibration pass and no weight updates,
thereby lowering the environmental and financial cost of robustness compared to full adversarial
fine-tuning. Because PISTOLE composes existing checkpoints rather than collecting new data, it
also eases reproducibility and facilitates community vetting. At the same time, improved ro-
bustness should be paired with standard safeguards (bias audits, red-teaming, and attack-aware
evaluation) to ensure equitable performance across subpopulations and responsible deployment.

H.2 LIMITATIONS

While PISTOLE shows strong empirical gains and formal guarantees, several limitations remain.
We note them alongside why their impact is limited or how we partially mitigate them.

• Dependence on off-the-shelf task vectors. PISTOLE assumes access to natural and robust
fine-tuned VLMs to form task vectors. In practice, this is a minor constraint: high-quality CLIP-
family checkpoints (natural and adversarial) are widely available in open-source repositories, and
our method is agnostic to the specific recipe used to produce them. Moreover, Section 4.3 (Tables
9&10) shows robustness to the choice of source models, and our masks provably attenuate cross-
objective interference (Theorem 1).

• Inheritance of upstream biases. Merging cannot remove biases present in the component
models and may propagate spurious correlations. Our gradient-informed masks down-weight
counterpart-sensitive (often brittle) coordinates, which empirically reduces hallucination and im-
proves grounding, but it does not replace fairness auditing. We report object-hallucination and
reasoning improvements, while broader bias assessments are a valuable direction for future work.

• Scope of architectures and tasks. Most experiments use CLIP-like encoders and open-
vocabulary classification/captioning/VQA. Although we show transfer across backbones and
tasks, coverage is not exhaustive (e.g., video, speech–vision). The merge is model-agnostic and
only requires gradients for calibration, and our curvature results (Figure 5, Theorem 2) suggest
applicability beyond the tested settings/applications.

I LLM USAGE DECLARATION/DISCLOSURE.

We used a Large Language Model (LLM) (e.g., ChatGPT-5) solely for polishing: grammar, wording,
and LaTeX phrasing. The LLM did not generate ideas, methods, experiments, analyses, or
results. All technical content and claims were authored and verified by us. Outputs were reviewed
and edited by the authors, and all citations/equations were checked manually. No proprietary or
non-public data is provided to the model.
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