

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TUG-OF-WAR NO MORE: HARMONIZING ACCURACY AND ROBUSTNESS IN VISION-LANGUAGE MODELS VIA STABILITY-AWARE TASK VECTOR MERGING

Anonymous authors

Paper under double-blind review

ABSTRACT

Foundation Vision-Language Models (VLMs) excel across benchmarks yet remain vulnerable to adversarial attacks. While adversarial fine-tuning improves robustness, attaining a desirable clean-robust performance trade-off typically requires costly hyperparameter searches with multiple retraining runs. A promising alternative is to merge task vectors (*i.e.*, parameter displacements from pre-trained models) to balance accuracy and robustness without retraining. However, we find that naive task-vector merging produces a near-linear trade-off, as it equally weights all coordinates and fails to distinguish weights that aid both objectives from those that create conflicts. To overcome this limitation, we propose a prediction stability-aware merging framework that composes task vectors from off-the-shelf naturally and robustly fine-tuned VLMs. Our key insight is that *prediction stability* serves as a proxy for cross-objective compatibility, enabling us to favor perturbation-invariant parameters while attenuating those with high cross-objective impact. Specifically, we estimate per-parameter stability from gradients under both objectives, building complementary masks that retain jointly stable coordinates while suppressing counterpart-sensitive ones. We further refine these masks along adversarial parameter trajectories, with steps weighted by a prediction-sensitivity index. Our theoretical analysis shows that the masks provably contract first-order cross-objective interference, and the prediction criticality index tracks curvature, biasing the merge toward flatter minima and better generalization. Extensive experiments across benchmarks and scenarios demonstrate our method consistently achieves superior clean-robust trade-offs over prior approaches, with the learned balance transferring effectively to downstream tasks.

1 INTRODUCTION

Despite redefining multimodal learning across diverse tasks, foundation Vision-Language Models (VLMs) like CLIP (Radford et al., 2021) remain alarmingly vulnerable under adversarial attacks (Zhang et al., 2022; Zhao et al., 2023). Even subtle input perturbations can trigger huge performance drops, undermining their reliability in practice and posing severe security risks (Huang et al., 2025).

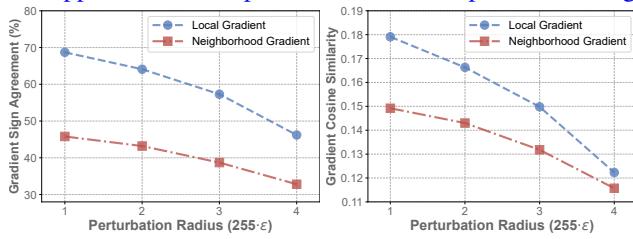
Bridging the gap between natural performance and robustness is thus essential for the safe and widespread deployment of VLMs. Previous efforts primarily focused on adversarial fine-tuning, where adversarial examples are adaptively integrated into training to enhance robustness (Mao et al., 2023; Schlarmann et al., 2024). However, extensive empirical evidence indicates that even increasingly larger and advanced multimodal architectures continue to suffer from a persistent accuracy-robustness trade-off (Wang et al., 2024). Rather than resolving this fundamental tension, most existing approaches rely on exhaustive hyperparameter searches and costly retraining to find acceptable compromises, limiting the scalability and efficiency of robust VLM solutions.

Given recent progress in parameter-space model merging, which combines fine-tuned models without joint training (Wortsman et al., 2022b; Ilharco et al., 2023), a compelling question arises: *Can model merging extend beyond similar tasks to reconcile the inherent conflict between natural performance and adversarial robustness?* However, our initial investigation reveals that vanilla task-vector merging of the vision encoder in VLMs yields a near-linear clean-robust trade-off with no sweet point, as empirically shown in Section 3.2. To gauge feasibility and diagnose the issue, we examine directional compatibility by comparing gradients of the two objectives at the respective fine-tuned

CLIP models. Figure 1 reports *gradient sign agreement* and *gradient cosine similarity* between natural and adversarial losses, where higher values indicate a more similar update direction to preserve clean accuracy while improving robustness. To test whether any observed alignment is merely local, we evaluate both **local gradients** (at the fixed parameters) and **neighborhood gradients** averaged within an ℓ_2 -ball of radius ϵ , thereby probing stability under small parameter changes. Although this analysis reveals a degree of alignment, it also shows that the alignment remains modest and degrades with a larger attack radius, evidencing growing directional conflict and motivating a more selective, stability-aware merging strategy over naive uniform addition.

Motivated by the need to resolve the parameter-level conflicts, we, for the first time, propose a novel model merging framework based on task vectors (*i.e.*, parameter differences between fine-tuned and pre-trained models) derived from *off-the-shelf* naturally and adversarially fine-tuned models, named **PredIction STability-aware mOdeL mErging (PISTOLE)**, to reconcile natural performance and robustness without repeated fine-tuning by selectively fusing compatible knowledge. Specifically, our PISTOLE estimates per-parameter stability under the natural and robust objectives from gradient magnitudes and builds complementary, gradient-informed masks that retain coordinates stable for both objectives while down-weighting those that the counterpart would strongly change. These masks are applied to the respective task vectors prior to mixing.

To better capture local loss-parameter geometry, we refine the masks by accumulating gradients along adversarial parameter trajectories, with steps weighted by a prediction-sensitivity index that quantifies how even small parameter perturbations affect the output. Furthermore, we provide theoretical analyses demonstrating that these masks contract cross-objective first-order interference and that the sensitivity index tracks curvature, steering the merge toward flatter, more generalizable regions and yielding a stronger clean-robust trade-off.



(a) Gradient Sign Agreement (b) Gradient Cosine Similarity

Figure 1: Gradient alignment on ImageNet between naturally and adversarially fine-tuned CLIP: (a) sign agreement and (b) cosine similarity for local gradients and neighborhood gradients (aggregated within an ℓ_2 -ball) across perturbation radius. Alignment degrades with attack strength, motivating selective (not uniform) parameter merging.

Through comprehensive experiments, we demonstrate that our PISTOLE consistently achieves state-of-the-art trade-offs between natural performance and robustness compared to existing methods across diverse datasets, architectures, and scenarios. Furthermore, we show that our obtained accuracy-robustness trade-off effectively transfers to a spectrum of downstream vision-language tasks, including captioning, visual question answering, hallucination mitigation, and reasoning, simply through a plug-and-play replacement of the vision encoder with the robustly merged encoder.

Our core contributions are summarized as follows:

1. We systematically explore the feasibility of parameter-level merging conflicting objectives (natural performance and robustness) via empirical gradient analyses.
2. To address this trade-off without costly fine-tuning, we introduce PISTOLE, a novel prediction stability-aware model merging framework that leverages gradient-informed stability masks and multi-step adversarial parameter perturbations for precise parameter re-weighting.
3. We provide theoretical analyses proving that PISTOLE identifies parameter-sensitive predictions in high-curvature regions, guiding selective merging for improved accuracy-robustness trade-offs.
4. We conduct extensive experiments to demonstrate the efficacy and generalizability of PISTOLE across tasks and scenarios, scaling without incurring additional fine-tuning costs.

2 RELATED WORKS

Trade-offs in foundation VLMs. Foundation VLMs (*e.g.*, CLIP (Radford et al., 2021), LLaVA (Liu et al., 2024), OpenFlamingo (Awadalla et al., 2023)) achieve strong zero-shot transfer via large-scale image-text pre-training, yet core tensions constrain practical deployment: size *vs.* efficiency (Vasu et al., 2025), specialization *vs.* generalization (Zang et al., 2024), and fairness (Luo et al., 2024). Among these, the trade-off between adversarial robustness and natural performance remains particularly challenging, as gains in adversarial robustness often degrade clean performance, consistent

108 with theory on competing objectives (Zhang et al., 2019). In this work, we target this trade-off in
 109 foundation VLMs, seeking to enhance robustness while preserving much natural performance.
 110

111 **Parameter-space model merging.** Beyond prediction ensembles (Yang et al., 2023), parameter
 112 merging combines knowledge from VLMs without retraining (Wortsman et al., 2022b;a). A key ap-
 113 proach leverages task vectors (*i.e.*, parameter differences between fine-tuned and pre-trained VLMs)
 114 (Ilharco et al., 2023; Ortiz-Jimenez et al., 2023), providing a flexible mechanism for merging knowl-
 115 edge. Recent works like Ties-Merging (Yadav et al., 2023) proposed resolving interference between
 116 merged models by identifying parameter conflicts, while AdaMerging (Yang et al., 2024) introduced
 117 adaptive merging strategies for multi-task learning. These methods overlook parameter-space per-
 118 turbations and local loss geometry. We thus complement this line by using gradient-informed masks
 119 and adversarial parameter trajectories to account for sensitivity and curvature during merging.
 120

121 **Adversarial robustness of foundation VLMs.** Adversarial robustness in VLMs remains a critical
 122 problem, with recent works (Mao et al., 2023; Schlarmann et al., 2024) mainly pursuing adversarial
 123 fine-tuning by integrating adversarial examples into training to bolster robustness. However, these
 124 methods often erode clean accuracy and require heavy hyperparameter tuning and costly retraining,
 125 limiting scalability. We instead merge off-the-shelf naturally and robustly fine-tuned VLMs via
 126 task vectors, using gradient-informed stability masks and adversarial parameter trajectories to trace
 127 gradient paths during merging, reconciling accuracy and robustness without additional fine-tuning.
 128

3 PREDICTION STABILITY-AWARE MODEL MERGING

129 Below, we propose **PISTOLE**, the first task vector-based model merging method to address the
 130 accuracy-robustness trade-off without costly adversarial fine-tuning, generalizing across tasks.
 131

3.1 *Background: Adversarial Fine-Tuning and Task Vectors*

132 **CLIP.** As a milestone of multimodal learning, CLIP (Radford et al., 2021) employs two modality-
 133 specific encoders: an image encoder $f_{\theta_I} : \mathcal{X} \rightarrow \mathbb{R}^d$ and a text encoder $f_{\theta_T} : \mathcal{T} \rightarrow \mathbb{R}^d$, whose outputs
 134 reside in a shared d -dimensional embedding space. For an input image \mathbf{x} and a set of class prompts
 135 $\{\mathbf{t}_1, \dots, \mathbf{t}_C\}$ constructed from templates (*e.g.*, 'This is a photo of [CLASS_c]'), the
 136 prediction is obtained via the cosine similarity between the visual feature and each textual feature:
 137

$$p_c(\mathbf{x}; \theta_I, \theta_T) = \frac{\exp(\cos(f_{\theta_I}(\mathbf{x}), f_{\theta_T}(\mathbf{t}_c)))}{\sum_{c'=1}^C \exp(\cos(f_{\theta_I}(\mathbf{x}), f_{\theta_T}(\mathbf{t}_{c'})))}, \quad (1)$$

138 where $\exp(\cdot)$ denotes the exponential function, and $\cos(\cdot, \cdot)$ computes the cosine similarity between
 139 two embeddings that have been ℓ_2 normalized. The prediction vector w.r.t. the CLIP parameter set
 140 $\theta = [\theta_I, \theta_T]$ across C categories is written as $\mathbf{p}_\theta(\mathbf{x}) = [p_1(\mathbf{x}; \theta_I, \theta_T), \dots, p_C(\mathbf{x}; \theta_I, \theta_T)]^\top$.
 141

142 **Standard adversarial fine-tuning (TeCoA).** In consistent with the standard adversarial training
 143 paradigm (Madry et al., 2018), TeCoA (Mao et al., 2023) enhances CLIP robustness against ℓ_∞ -
 144 norm adversarial attacks by solving the following minimax optimization problem:
 145

$$\min_{\theta_I} \mathbb{E}_{(\mathbf{x}, c) \sim \mathcal{D}} \left[\max_{\|\delta\|_\infty \leq \epsilon} \mathcal{L}_{\text{CE}}(\mathbf{p}_\theta(\mathbf{x} + \delta), \mathbf{e}_c) \right], \quad (2)$$

146 where $\mathbf{e}_c = [\mathbb{1}(c=1), \dots, \mathbb{1}(c=C)]^\top \in \{0, 1\}^C$ is the one-hot label for class c , and \mathcal{L}_{CE} denotes
 147 the cross-entropy loss. The inner maximization is approximated by the m -step Projected Gradient
 148 Descent (PGD) (Calamai & Moré, 1987) on the negative loss function:
 149

$$\hat{\mathbf{x}}^{(i+1)} = \Pi_{\mathbb{B}(\mathbf{x}, \epsilon)} \left[\hat{\mathbf{x}}^{(i)} + \alpha \cdot \text{sign} \left(\nabla_{\hat{\mathbf{x}}^{(i)}} \mathcal{L}_{\text{CE}}(\mathbf{p}_\theta(\hat{\mathbf{x}}^{(i)}), \mathbf{e}_c) \right) \right], \quad (3)$$

150 initialized with $\hat{\mathbf{x}}^{(0)} = \mathbf{x} + 0.001 \cdot \mathcal{N}(\mathbf{0}, \mathbf{I})$. Here, α represents the step size, $\text{sign}(\cdot)$ is the element-
 151 wise sign function, and $\Pi_{\mathbb{B}(\mathbf{x}, \epsilon)}(\cdot)$ denotes the projection onto the ℓ_∞ ball of radius ϵ . Further details
 152 of other adversarial fine-tuning approaches are in Appendix B.
 153

154 **Task vectors for multi-task adaptation.** Given a downstream task \mathcal{T}_i with data \mathcal{D}_i , fine-tuning
 155 a pre-trained VLM θ_0 yields task-specific parameters θ_i and the *task vector* (Ilharco et al., 2023)
 156 (parameter displacement) $\tau_i = \theta_i - \theta_0$. **Task vectors compose for vision encoders:** for $\{\tau_i\}_{i=1}^M$, the
 157 **aggregate $\tau_{\text{add}} = \sum_{i=1}^M \tau_i$ defines the merged model $\theta_{\text{add}} = \theta_0 + \lambda \cdot \tau_{\text{add}}$** , with the scalar λ tuned on
 158 a validation set. This simple addition typically attains competitive performance across the M tasks.
 159

162
163

3.2 CAN VANILLA TASK-VECTOR ADDITION AID TRADE-OFF?

164
165
166
167
168
169
170
171
172
173
174
175
176
177

Weight-space interpolation reveals an InD-shift sweet point. Following WiSE-FT (Wortsman et al., 2022b), let θ_0 denote a pre-trained zero-shot VLM and θ_{FT} its VLM fine-tuned on a *reference* (in-distribution, InD) dataset, *e.g.*, ImageNet. Evaluating on both the reference distribution and *shifted* distributions (*e.g.*, natural variants and subpopulations), the linear interpolation $\theta_{\text{WISE}}(\lambda) = (1 - \lambda)\theta_0 + \lambda\theta_{\text{FT}}$, $\lambda \in [0, 1]$, typically traces a Pareto-like curve with an interior λ^* that preserves high InD accuracy while improving accuracy under distribution shift (see Figure 2). This simple weight-space averaging with a sweet point (improved trade-off) motivates viewing parameter operations (including task-vector arithmetic) as a light-weight alternative to exhaustive hyperparameter sweeps when balancing specialization to the reference data against generalization to shifted data.

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

Vanilla addition fails to balance natural performance and adversarial robustness. Let θ_{nat} and θ_{rob} be naturally and robustly (adversarially) fine-tuned models with task vectors $\tau_{\text{nat}} = \theta_{\text{nat}} - \theta_0$ and $\tau_{\text{rob}} = \theta_{\text{rob}} - \theta_0$. Under the naive interpolation $\theta_{\text{van}}(\lambda) = \theta_0 + (1 - \lambda)\tau_{\text{nat}} + \lambda\tau_{\text{rob}}$, $\lambda \in [0, 1]$, clean and adversarial accuracies vary almost *linearly* and antagonistically, producing a near straight line between endpoints with no pronounced interior optimum (Figure 3). The issue is equal weighting: it ignores which coordinates align or conflict across objectives, so robustness gains come by eroding clean accuracy at a roughly constant rate. Gradient analyses (Figure 1) indicate that compatible and conflicting directions co-exist, motivating a prediction stability-aware, selectively re-weighted merge that preserves consensus coordinates while attenuating counterpart-sensitive ones.

193
194

3.3 GRADIENT-INFORMED STABILITY RE-WEIGHTING

195
196
197
198
199
200

Vanilla task vector merging typically treats all coordinates equally, reproducing the near-linear clean-robust trade-off of $\theta_{\text{van}}(\lambda)$. In contrast, Figure 1 shows only modest alignment that degrades with attack strength, indicating a mix of compatible and conflicting coordinates across the natural and adversarial objectives. We therefore build *complementary masks* that (i) preserve coordinates the counterpart objective deems stable and (ii) attenuate coordinates where the counterpart exhibits large gradient magnitude (*i.e.*, it would strongly update those weights in an opposing direction).

201
202
203

Aggregated gradients and layer-wise scaling. Raw per-batch gradients are noisy and differ in scale across layers; without normalization, a few high-variance tensors dominate the mask. We first accumulate expected gradients for the two objectives and then normalize them per layer:

204
205

$$\mathbf{g}_{\text{nat}} = \mathbb{E}_{(\mathbf{x}, c) \sim \mathcal{D}} [\nabla_{\theta_{\text{nat}}} \mathcal{L}_{\text{CE}}(\mathbf{p}_{\theta_{\text{nat}}}(\mathbf{x}), \mathbf{e}(c))], \quad \mathbf{g}_{\text{rob}} = \mathbb{E}_{(\mathbf{x}, c) \sim \tilde{\mathcal{D}}} [\nabla_{\theta_{\text{rob}}} \mathcal{L}_{\text{CE}}(\mathbf{p}_{\theta_{\text{rob}}}(\tilde{\mathbf{x}}), \mathbf{e}(c))], \quad (4)$$

206
207

where $\tilde{\mathbf{x}}$ is an adversarial sample for θ_{rob} obtained by Eq. (3). For each objective index $s \in \{\text{nat}, \text{rob}\}$ and each layer l , let $\mathbf{g}_s^{(l)}$ denote the gradient tensor of layer l . We define the per-layer normalization:

208
209
210

$$\text{Norm}(\mathbf{g}_s^{(l)}) = \frac{|\mathbf{g}_s^{(l)}|}{\max(|\mathbf{g}_s^{(l)}|) + \varepsilon} \in [0, 1]^{\text{shape}(\mathbf{g}_s^{(l)})}, \quad \tilde{\mathbf{g}}_s^{(l)} = \text{Norm}(\mathbf{g}_s^{(l)})^\gamma, \quad (5)$$

211
212
213

where small perturbation $\varepsilon > 0$ and temperature $\gamma \in [0, 1]$ are to control dynamic range. Stacking across layers yields $\tilde{\mathbf{g}}_{\text{nat}} = \text{concat}_l \tilde{\mathbf{g}}_s^{(l)}$ and $\tilde{\mathbf{g}}_{\text{rob}} = \text{concat}_l \tilde{\mathbf{g}}_s^{(l)}$, both in $[0, 1]^d$.

214
215

Complementary stability masks. Gradients generally indicate which coordinates each objective would change, which means that large magnitudes flag parameters that are *sensitive* for that objective. To avoid reintroducing antagonism during merging, we suppress coordinates that the *other*

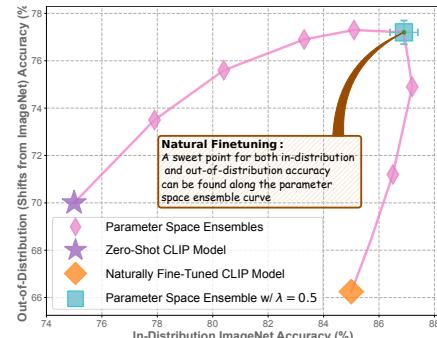


Figure 2: Parameter-space ensembling of **pre-trained and fine-tuned CLIP**.
Figure 2 shows the trade-off between in-distribution and out-of-distribution accuracy. The Parameter Space Ensemble curve (pink diamonds) represents a sweet point where both accuracies are high. The Zero-Shot CLIP Model (purple star) and Naturally Fine-Tuned CLIP Model (orange diamond) are shown as individual points.

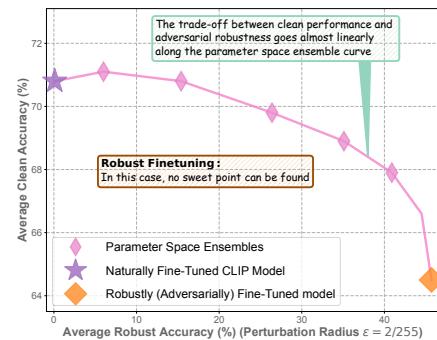


Figure 3: Parameter ensembling of **naturally and robustly fine-tuned CLIP**.
Figure 3 shows the trade-off between clean accuracy and robust accuracy. The Parameter Space Ensemble curve (pink diamonds) shows a linear trade-off, while the Naturally Fine-Tuned CLIP Model (purple star) is a single point.

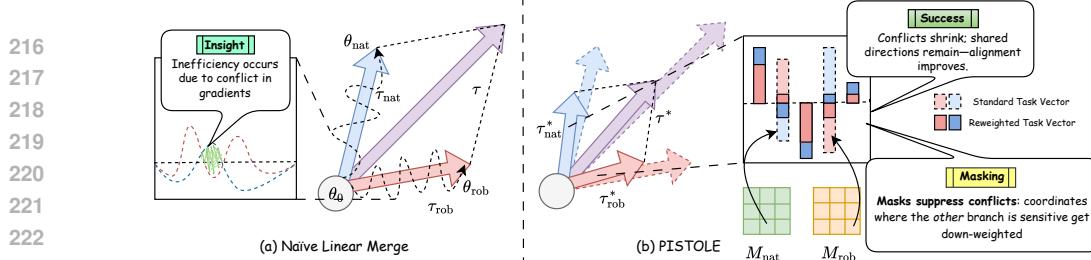


Figure 4: (a) Naive linear merge uniformly adds natural and robust task vectors, ignoring conflicts and yielding a near-linear trade-off. (b) PISTOLE merges with complementary, gradient-informed masks, suppressing conflicts and preserving shared directions for a better clean-robust balance.

fine-tuning objective wishes to change most, while preserving those it considers stable. Concretely, for $s \in \{\text{nat}, \text{rob}\}$ and each layer l , let $\tilde{\mathbf{g}}_s^{(l)} \in [0, 1]^{\text{shape}}$ be the normalized gradient magnitudes from Eq. (5), and write $\tilde{\mathbf{g}}_s = \text{concat}_l \tilde{\mathbf{g}}_s^{(l)} \in [0, 1]^d$. We convert these into complementary masks:

$$\mathbf{M}_{\text{nat}} = (1 - \tilde{\mathbf{g}}_{\text{rob}})^\kappa, \quad \mathbf{M}_{\text{rob}} = (1 - \tilde{\mathbf{g}}_{\text{nat}})^\kappa, \quad (6)$$

where $\kappa \geq 1$ sharpens selectivity. To guarantee a user-controlled stability budget, we apply a per-layer quantile cap, $\mathbf{M}_{\text{nat},l} \leftarrow \min(\mathbf{M}_{\text{nat},l}, t_{q,l}^{\text{rob}})$ and $\mathbf{M}_{\text{rob},l} \leftarrow \min(\mathbf{M}_{\text{rob},l}, t_{q,l}^{\text{nat}})$, where $t_{q,l}^{\text{rob}}$ (resp., $t_{q,l}^{\text{nat}}$) is the q -quantile of $\mathbf{M}_{\text{nat},l}$ (resp., $\mathbf{M}_{\text{rob},l}$). This attenuates the layerwise top- q most counterpart-sensitive coordinates, thereby upper-bounding first-order cross-objective interference.

Theorem 1. Let $\mathbf{g}_{\text{nat}}^0 := \nabla_{\theta} \mathcal{L}_{\text{nat}}(\theta)|_{\theta=\theta_0}$ and $\mathbf{g}_{\text{rob}}^0 := \nabla_{\theta} \mathcal{L}_{\text{rob}}(\theta)|_{\theta=\theta_0}$. Let $\mathbf{M}_{\text{nat}}^{\text{pre}} := (1 - \tilde{\mathbf{g}}_{\text{rob}})^\kappa$ and $\mathbf{M}_{\text{rob}}^{\text{pre}} := (1 - \tilde{\mathbf{g}}_{\text{nat}})^\kappa$ be the uncapped complementary masks from Eq. (6), with $\kappa \geq 1$ and $\tilde{\mathbf{g}}_s \in [0, 1]^d$ defined by Eq. (5). For each layer l , let $t_{q,l}^{\text{rob}}$ be the q -quantile of $(\mathbf{M}_{\text{nat}}^{\text{pre}})_l$ and $t_{q,l}^{\text{nat}}$ the q -quantile of $(\mathbf{M}_{\text{rob}}^{\text{pre}})_l$ (empirical quantiles on layer entries).¹ Define the capped masks layerwise by $(\mathbf{M}_{\text{nat}})_l := \min((\mathbf{M}_{\text{nat}}^{\text{pre}})_l, t_{q,l}^{\text{rob}} \mathbf{1})$ and $(\mathbf{M}_{\text{rob}})_l := \min((\mathbf{M}_{\text{rob}}^{\text{pre}})_l, t_{q,l}^{\text{nat}} \mathbf{1})$. Set $\rho_{\text{nat}} := \max_l t_{q,l}^{\text{nat}}$ and $\rho_{\text{rob}} := \max_l t_{q,l}^{\text{rob}}$. Then for any $\delta \in \mathbb{R}^d$,

$$|\langle \mathbf{g}_{\text{nat}}^0, \mathbf{M}_{\text{rob}} \odot \delta \rangle| \leq \rho_{\text{nat}} \|\mathbf{g}_{\text{nat}}^0\|_2 \|\delta\|_2, \quad |\langle \mathbf{g}_{\text{rob}}^0, \mathbf{M}_{\text{nat}} \odot \delta \rangle| \leq \rho_{\text{rob}} \|\mathbf{g}_{\text{rob}}^0\|_2 \|\delta\|_2. \quad (7)$$

Moreover, if κ is increased (i.e., sharpening $(1 - \tilde{\mathbf{g}})^\kappa$) or any of the layerwise caps $t_{q,l}^{\text{nat}}, t_{q,l}^{\text{rob}}$ are decreased, the right-hand sides in Eq. (7) are monotone nonincreasing.

Proof. The full proof is provided in Appendix D.1. \square

Corollary 1 (Worst-case first-order contraction vs. uniform addition). *For task vectors $\tau_{\text{nat}} = \theta_{\text{nat}} - \theta_0$ and $\tau_{\text{rob}} = \theta_{\text{rob}} - \theta_0$, $|\langle \mathbf{g}_{\text{nat}}^0, \mathbf{M}_{\text{rob}} \odot \tau_{\text{rob}} \rangle| \leq \rho_{\text{nat}} \|\mathbf{g}_{\text{nat}}^0\|_2 \|\tau_{\text{rob}}\|_2 \leq \|\mathbf{g}_{\text{nat}}^0\|_2 \|\tau_{\text{rob}}\|_2$, and the symmetric bound holds swapping (nat, rob). Hence, complementary masking contracts worst-case cross-objective first-order interference by factors $\rho_{\text{nat}}, \rho_{\text{rob}} \leq 1$ relative to unmasked mixing.*

Theorem 1 formalizes a first-order non-interference guarantee: when any displacement is filtered by the counterpart’s mask, the *first-order* increase of the other objective’s loss is bounded by a tunable multiplicative factor $\rho \leq 1$. The factors ρ_{nat} and ρ_{rob} depend only on layerwise caps (through their maxima) and respond monotonically: larger κ (sharper masks) or tighter caps reduce ρ and thus strengthen attenuation. Practically, this means masked combinations curve the otherwise near-linear clean-robust trade-off of uniform addition by suppressing coordinates that the counterpart objective marks as sensitive, while preserving jointly stable coordinates.

3.4 TRACING ADVERSARIAL PATHS IN PARAMETER SPACE

The complementary masks in Section 3.3 are built from *single-point* gradient magnitudes at $(\theta_{\text{nat}}, \theta_{\text{rob}})$, which capture first-order instability but can miss nearby high-curvature pockets where sensitivity spikes. To refine these stability estimates without retraining, we augment them with *adversarial parameter perturbation*: we trace short parameter updating trajectories in a small neighborhood of each fine-tuned solution and aggregate gradients *along* these paths. Intuitively, coordinates that remain stable under worst-direction parameter nudges are safe to keep, whereas coordinates of large gradients along these trajectories are fragile and should be attenuated during merging.

¹Any standard definition of the empirical q -quantile with $q \in (0, 1]$ suffices. We here consider that quantiles are monotone under component-wise decreases.

270 **Adversarial parameter trajectories.** For each objective $s \in \{\text{nat, rob}\}$, define the Frobenius ball
 271 $\mathcal{V}_{\theta_s} = \{\Delta : \|\Delta\|_F \leq \eta \|\theta_s\|_F\}$ with radius factor $\eta > 0$. Starting from $\theta_s^{(0)} = \theta_s$, we perform K
 272 projected gradient ascent steps in *parameter space* that follow locally worst-case directions:
 273

$$274 \quad \theta_s^{(i+1)} \leftarrow \Pi_{\theta_s + \mathcal{V}_{\theta_s}}(\theta_s^{(i)} + \beta \mathbf{u}_s^{(i)}), \quad \mathbf{u}_s^{(i)} := \frac{\nabla_{\theta} \mathcal{L}_s(\mathbf{p}_{\theta}(\mathbf{x}_s), \mathbf{e}(c))|_{\theta=\theta_s^{(i)}}}{\|\nabla_{\theta} \mathcal{L}_s(\mathbf{p}_{\theta}(\mathbf{x}_s), \mathbf{e}(c))|_{\theta=\theta_s^{(i)}}\|_F + \epsilon}, \quad (8)$$

277 where $\beta > 0$ is the step size, and $\Pi_{\theta_s + \mathcal{V}_{\theta_s}}(\cdot)$ projects onto \mathcal{V}_{θ_s} . We take $\mathbf{x}_{\text{nat}} = \mathbf{x}$ (clean inputs) and
 278 $\mathbf{x}_{\text{rob}} = \hat{\mathbf{x}}$ (adversarial inputs), so that \mathcal{L}_{nat} and \mathcal{L}_{rob} are evaluated under their respective input regimes.

279 **Path-integrated gradients.** To calibrate the path-integrated gradients with local sensitivity, we in-
 280 troduce the *Prediction Criticality Index* (PCI): a curvature-aware scalar that measures how fragile a
 281 prediction is to small *parameter-space* perturbations. We use PCI to weight steps along the ad-
 282 versarial parameter trajectories, so high-curvature (fragile) regions contribute more to the accumulated
 283 gradient, while flat, confidence-saturated regions are deemphasized. Formally:

284 **Definition 1** (Prediction Criticality Index (PCI)). *Let $\theta \in \mathbb{R}^d$ be the model parameters and $\mathbf{p}(\mathbf{x}; \theta) \in$
 285 $[0, 1]^C$ be the prediction for an input \mathbf{x} . For a fixed radius factor $\eta > 0$, define the parameter-level
 286 Frobenius perturbation ball $\mathcal{V}_{\theta} := \{\Delta \in \mathbb{R}^d : \|\Delta\|_F \leq \eta \|\theta\|_F\}$. Given Δ sampled isotropically
 287 and with zero mean from \mathcal{V}_{θ} (e.g., uniform in the hyperball). Its covariance is denoted as $\sigma^2 \mathbf{I}_d$,
 288 where the per-coordinate second moment is $\sigma^2 := \frac{1}{d} \mathbb{E}_{\Delta \in \mathcal{V}_{\theta}} [\|\Delta\|_2^2] = \frac{\eta^2 \|\theta\|_F^2}{d}$. The equality on the
 289 right follows directly from the radius normalization for any isotropic, zero-mean law supported on
 290 the ball \mathcal{V}_{θ} . For the ground-truth class $c \in \{1, \dots, C\}$, we define PCI as follows:*

$$291 \quad \text{PCI}(\mathbf{x}, c, \theta) := \left| \mathbb{E}_{\Delta \in \mathcal{V}_{\theta}} \left[\frac{\mathbf{p}_c(\mathbf{x}; \theta + \Delta) - \mathbf{p}_c(\mathbf{x}; \theta)}{\mathbf{p}_c(\mathbf{x}; \theta)} \right] \right|. \quad (9)$$

294 A large PCI w.r.t. clean/adversarial examples indicates that prediction confidence is highly sensi-
 295 tive to small parameter changes (fragile knowledge), while a small value reflects robustness. We
 296 therefore accumulate *path-integrated* gradients:

$$297 \quad \mathbf{G}_s := \mathbb{E}_{(\mathbf{x}, c) \sim \mathcal{D}_s} \left[\sum_{i=0}^K \text{PCI}(\mathbf{x}_s, c, \theta) \nabla_{\theta} \mathcal{L}_s(\mathbf{p}_{\theta}(\mathbf{x}_s), \mathbf{e}(c)) \Big|_{\theta=\theta_s^{(i)}} \right], \quad s \in \{\text{nat, rob}\}. \quad (10)$$

301 We then normalize per layer as in Eq. (5) to obtain scores $\tilde{\mathbf{g}}_s^{\text{path}} \in [0, 1]^d$, and form *path-refined*
 302 *complementary masks* via $\mathbf{M}_{\text{nat}}^{\text{path}} = (1 - \tilde{\mathbf{g}}_{\text{rob}}^{\text{path}})^{\kappa}$, and $\mathbf{M}_{\text{rob}}^{\text{path}} = (1 - \tilde{\mathbf{g}}_{\text{nat}}^{\text{path}})^{\kappa}$, followed by the same
 303 per-layer caps as in Section 3.3. The final merged displacement keeps the stable parts:

$$304 \quad \boldsymbol{\tau}^*(\lambda) = \lambda (\mathbf{M}_{\text{nat}}^{\text{path}} \odot \boldsymbol{\tau}_{\text{nat}}) + (1 - \lambda) (\mathbf{M}_{\text{rob}}^{\text{path}} \odot \boldsymbol{\tau}_{\text{rob}}), \quad \boldsymbol{\theta}_{\text{PISTOLE}}(\lambda) = \theta_0 + \boldsymbol{\tau}^*(\lambda). \quad (11)$$

306 Empirically, varying λ with $\boldsymbol{\theta}_{\text{PISTOLE}}(\lambda)$ bends the clean-robust frontier beyond the near-linear
 307 trade-off of uniform addition, yielding interior points that outperform naive mixing. Figure 4 is
 308 an overview of our PISTOLE method compared with naive linear merging. See Appendix E for
 309 pseudocode. We next formalize the curvature link that motivates our PCI-based weighting.

310 **Theorem 2.** *Let PCI be defined as in Definition 1, where $\mathbf{p}_c(\mathbf{x}; \theta) > 0$ is twice continuously differ-
 311 entiable in a neighborhood of θ . Given $\mathbf{H}_c(\theta) := \nabla_{\theta}^2 \mathbf{p}_c(\mathbf{x}; \theta)$, for sufficiently small η , we have the
 312 following approximation:*

$$313 \quad \text{PCI}(\mathbf{x}, c, \theta) = \frac{\sigma^2}{2} \frac{\text{Tr}(\mathbf{H}_c(\theta))}{\mathbf{p}_c(\mathbf{x}; \theta)} + \mathcal{O}(\sigma^3). \quad (12)$$

316 *Proof.* The full proof is provided in Appendix D.2. □

318 **Theorem 2** reveals that the PCI is large when the prediction confidence lies in a region of large
 319 Hessian trace (high curvature), whereas a small PCI characterizes flat, confidence-saturated
 320 zones. High-PCI samples (i.e., those most sensitive to parameter perturbations) are up-weighted
 321 in the accumulated gradients, directing the merge to address fragile prediction modes that would
 322 otherwise dominate post-fusion error. The sensitivity masks suppress features that are unstable
 323 in one model while retaining their more robust analogs in the other, fostering a synergistic blend
 324 of natural performance and adversarial robustness.

Table 1: Zero-shot accuracy of diverse adversarial learning methods evaluated on 14 datasets. Metrics: **Clean**, **Robust** (AutoAttack, ℓ_∞ -norm $\epsilon = 2/255$) **Accuracy**, and Clean+Robust **Sum**.

Eval.	Method	ImageNet	STL-10	CIFAR-10	CIFAR-100	StanfCars	Caltech101	OxfordPet	Flower102	DTD	EuroSAT	FGVC	PCAM	ImageNet-R	ImageNet-S	Average
Clean	Standard CLIP	74.90	99.31	95.20	71.08	77.91	83.29	93.21	79.17	55.21	62.65	31.77	52.01	87.86	59.61	73.08
	TeCoA	80.00	95.40	86.88	61.46	44.45	80.33	51.83	42.43	23.48	58.39	79.40	58.77	61.56		
	PMG	77.84	98.92	90.55	64.97	58.23	82.34	86.75	58.46	48.49	28.04	20.64	49.99	83.18	27.62	64.46
	FARE	72.96	98.28	90.24	67.78	66.80	84.73	89.75	62.93	30.43	22.33	50.02	49.95	80.20	58.89	65.40
	TGA	80.26	96.83	88.07	60.86	49.81	81.92	88.93	81.11	51.49	45.96	30.30	12.22	49.95	80.20	62.11
Robust	PISTOLE	80.82	98.56	90.83	68.18	67.35	86.20	91.35	70.08	51.22	30.89	26.42	62.34	85.18	59.91	69.24
	Standard CLIP	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.01	0.01	0.09	0.01
	TeCoA	61.74	86.34	61.99	35.82	18.62	70.57	68.22	27.27	26.17	12.37	5.43	26.93	59.57	44.56	43.26
	PMG	60.02	88.21	64.12	37.14	23.68	72.47	70.92	28.20	26.33	9.07	5.79	47.06	62.24	45.08	45.74
	FARE	43.56	88.55	61.82	34.89	23.74	70.88	67.70	32.95	25.69	3.76	5.31	49.39	56.47	36.86	42.97
Sum	TGA	61.46	88.56	63.21	35.44	21.60	71.16	68.52	26.15	26.70	11.37	5.76	47.88	60.32	44.46	45.19
	PISTOLE	61.89	89.09	66.71	39.83	28.36	72.83	71.30	33.42	28.84	11.02	6.61	48.32	63.03	45.85	47.65
	Standard CLIP	74.90	99.33	95.20	71.08	77.91	83.29	93.21	79.17	55.21	62.65	31.80	52.02	87.87	59.70	73.09
	TeCoA	141.74	181.74	148.87	97.46	63.07	150.90	149.00	79.10	71.60	35.85	20.43	85.32	138.97	103.33	104.82
	PMG	137.86	185.13	154.37	102.11	81.91	155.81	157.37	86.66	72.82	37.11	26.43	97.05	145.42	102.70	110.20
PISTOLE	FARE	116.52	186.83	152.06	102.67	90.54	156.53	157.45	98.08	76.12	20.30	28.14	99.41	140.22	93.72	108.47
	TGA	141.72	185.39	151.28	96.30	71.41	152.70	149.63	77.64	72.66	41.67	19.98	97.83	140.52	103.35	107.30
	PISTOLE	142.71	187.65	157.54	108.01	95.71	159.03	162.65	103.50	80.06	41.91	33.03	110.66	148.21	105.76	116.89

Table 2: Average accuracy (%) of **diverse CLIP backbones** with perturbation radius $\epsilon = 2/255$.

Backbone	Method	Clean	Robust	Sum
ViT-H/14	TeCoA	66.95	48.63	115.58
	PMG	68.96	50.31	119.27
	FARE	70.55	50.25	120.80
	TGA	65.91	49.14	115.05
	PISTOLE	73.61	52.45	126.06
ViT-B/32	TeCoA	48.83	25.75	74.58
	PMG	49.71	26.98	76.69
	FARE	56.68	29.30	85.98
	TGA	57.54	31.15	88.69
	PISTOLE	60.71	33.58	94.29

4 EXPERIMENTS

In this section, we compare our PISTOLE method with state-of-the-art adversarial fine-tuning approaches across different scenarios and downstream vision-language tasks.

Datasets. Task vectors are obtained by natural and adversarial fine-tuning on ImageNet-1k (Deng et al., 2009). We report zero-shot classification on its test set plus 13 additional datasets, and assess transfer on captioning, visual question answering, hallucination, etc. (details in Appendix C.1).

Implementation details. Unless stated otherwise, the base VLM is CLIP with a ViT-L/14 encoder, following robust-CLIP practice (Mao et al., 2023; Schlarbmann et al., 2024). The natural VLM is trained by ERM on clean data; the robust VLM follows PMG (Wang et al., 2024) with 10-step PGD (ℓ_∞ , $\epsilon = 2/255$, step $\alpha = 1/255$). We form task vectors (τ_{nat} , τ_{rob}) and merge them via PISTOLE with default mixing $\lambda = 0.2$. Zero-shot robustness is measured with AutoAttack (Croce & Hein, 2020). For downstream transfer, we replace the vision encoder in LLaVA-1.5-7B and OpenFlamingo-9B with our merged encoder while keeping other components fixed. Evaluations use adaptive attacks for fairness. Additional configurations appear in Appendix C.2.

4.1 MAIN RESULTS ON ZERO-SHOT CLASSIFICATION

Zero-shot classification. Table 1 summarizes clean and robust accuracies for CLIP ViT-L/14 on 14 evaluation sets. In addition to reporting each metric separately, we include a scalar trade-off score *Sum* (Clean+Robust) to capture overall performance. PISTOLE delivers the strongest zero-shot results, improving mean clean accuracy by $\sim 5\%$ and mean robust accuracy by $\sim 5.8\%$ over state-of-the-art adversarial fine-tuning baselines. On in-distribution ImageNet, our trade-off is marginally better than alternatives, which we attribute to the robust component obtained via PMG (Wang et al., 2024) used in the merge. Section 4.3 further examines how substituting different robustly fine-tuned VLM components can alter the relative trends.

Robustness generality across backbones. Beyond ViT-L/14, we evaluate our PISTOLE method with ViT-H/14 and ViT-B/32 based on the clean/robust task vectors of the identical CLIP architecture. As summarized in Table 2, the method consistently surpasses previous adversarial VLM learning approaches in both average clean and robust accuracy across the same 14 datasets.

Robustness across varying perturbation radius. We further stress-test robustness by increasing the ℓ_∞ budget beyond the default $\epsilon = 2/255$, considering $\epsilon \in 3/255, 4/255$ for both fine-tuning and evaluation to ensure parity. Results in Table 3 indicate that our PISTOLE maintains its lead across these stronger threat models in the zero-shot setting.

Table 3: Avg. accuracy (%) of **diverse** ϵ when fine-tuning and testing w.r.t. CLIP w/ ViT-L.

Radius	Method	Clean	Robust	Sum
$\epsilon = 3/255$	TeCoA	58.90	38.07	96.97
	PMG	61.72	39.40	101.12
	FARE	63.55	37.17	100.72
	TGA	59.65	38.59	98.24
$\epsilon = 4/255$	PISTOLE	65.09	40.57	105.66
	TeCoA	56.25	32.53	88.78
	PMG	58.82	33.87	92.69
	FARE	60.26	32.02	92.28
TGA	56.76	32.86	89.62	
	PISTOLE	62.37	34.94	97.31

Table 5: Zero-shot transfer on **image captioning** (CIDEr score) and **VQA** (accuracy %).

VLM Type	Method	Image Captioning						Visual Question Answering								
		COCO			Flickr30k			TextVQA			VQAv2			Vizwiz		
		Clean	Robust	Sum		Clean	Robust	Sum		Clean	Robust	Sum		Clean	Robust	Sum
LLaVA 1.5	Standard CLIP	112.3	2.9	115.2	74.7	1.0	25.7	34.8	0.0	34.8	74.5	0.0	74.5	39.4	2.3	41.7
	TeCoA	96.7	45.1	141.8	55.2	24.0	23.8	12.8	36.6	66.2	35.7	101.9	42.5	26.6	68.1	
	PMG	103.1	52.1	155.9	63.2	28.0	91.6	27.6	14.0	41.6	68.4	35.1	103.5	41.0	27.6	68.6
	FARE	108.5	47.9	156.4	67.4	24.5	91.9	30.5	14.7	45.2	70.3	34.5	104.8	41.9	25.3	67.2
	TGA	101.3	50.6	151.9	61.9	27.8	89.7	27.1	14.6	41.7	67.3	35.0	102.3	42.8	28.0	70.8
OpenFlamingo	PISTOLE	110.6	54.9	165.5	72.8	30.5	103.3	33.1	16.0	49.1	73.7	36.9	110.6	44.5	32.3	76.8
	Standard CLIP	78.8	1.5	80.3	58.7	0.6	59.3	22.3	0.0	22.3	47.7	0.0	47.7	17.7	3.3	21.0
	TeCoA	73.0	29.6	102.6	47.4	13.7	61.1	17.3	2.4	19.7	46.1	23.8	69.9	17.6	4.0	21.6
	PMG	76.9	31.7	104.0	52.0	16.5	68.5	25.8	2.8	20.5	47.0	24.0	71.0	16.9	4.2	21.1
	FARE	77.9	32.7	110.9	23.5	18.9	69.4	18.8	2.7	21.0	46.7	23.8	68.5	18.9	3.8	21.0
PISTOLE	TGA	74.2	30.5	104.7	23.8	16.0	69.8	19.0	2.7	21.7	49.2	23.6	69.8	18.0	3.7	20.5
	PISTOLE	80.7	34.0	114.7	57.2	16.9	74.1	21.2	4.1	25.3	47.8	24.9	72.7	19.4	5.7	25.1

Task vector merging with the PEFT extension. To reduce the high computational cost brought by full parameter fine-tuning, Parameter-Efficient Fine-Tuning (PEFT) strategies (*e.g.*, LoRA (Hu et al., 2022) based on learnable low-rank matrices for efficient adaptation) were typically paired with adversarial fine-tuning. We thus extend prior adversarial VLM learning methods and our task vector-based merging approach with LoRA. We report both clean and robust accuracy associated with their sum for our LoRA-based PISTOLE method against other LoRA-enabled baselines in Table 4. Even under this efficiency regime, our PISTOLE typically achieves the best trade-off.

4.2 ZERO-SHOT DOWNSTREAM TASK TRANSFER

Transfer to image captioning. We here evaluate zero-shot task transfer to image captioning by swapping the vision encoder in LLaVA and OpenFlamingo with our PISTOLE-merged encoder. Table 5 (Left) reports the CIDEr score (Vedantam et al., 2015) on COCO and Flickr30k. PISTOLE attains the strongest scores on both clean inputs and under adversaries for a better trade-off, outperforming adversarial learning baselines. Qualitative visualizations are in Figure 6 (Appendix F).

Transfer to Visual Question Answering (VQA). Table 5 (Right) also summarizes VQA accuracy across three standard benchmarks. PISTOLE consistently increases the sum relative to prior baselines, primarily by delivering sizable zero-shot robustness gains while keeping natural accuracy essentially intact (and even higher on VizWiz). These results indicate a better accuracy–robustness compromise in the zero-shot regime. Qualitative examples are in Figure 7 (Appendix F).

Transfer to object hallucination. To probe hallucination (*i.e.*, erroneously recognizing objects that do not exist in inputs) (Sahoo et al., 2024), we adopt the POPE benchmark (Li et al., 2023) with its standard question-sampling protocols (Appendix C.3). Results in Table 6 indicate that PISTOLE consistently lowers hallucination rates versus competing adversarial learning schemes. We attribute this to our stability-aware masking, which dampens over-confident, brittle features and favors parameters that remain reliable under perturbations. Qualitative cases are in Figure 8 in Appendix F.

Transfer to science question answering w/ Chain-of-Thought (CoT). We further assess CoT reasoning on the ScienceQA benchmark (Lu et al., 2022). Across multiple prompting and VLM settings (Appendix C.3), our PISTOLE method achieves the best overall accuracy (Table 7), suggesting that stabilizing the vision backbone from diverse knowledge sources further improves the robustness and reliability of multi-step reasoning. Illustrative examples are provided in Figure 9 in Appendix F.

4.3 FURTHER ANALYSES (WHY PISTOLE IS EFFECTIVE)

In this section, we conduct a series of controlled ablations of our PISTOLE method and its components to justify its effectiveness and generalizability across different scenarios.

Table 4: Average accuracy (%) w.r.t. different ϵ for fine-tuning and testing (ViT-L) w/ LoRA.

Radius	Method	Clean	Robust	Sum
$\epsilon = 3/255$	TeCoA	55.22	26.54	81.76
	PMG	56.82	27.02	83.84
	FARE	57.84	23.85	81.69
	TGA	55.88	26.66	82.54
$\epsilon = 4/255$	PISTOLE	59.47	29.35	88.82
	TeCoA	49.84	19.87	69.71
	PMG	52.08	20.07	72.15
	FARE	53.20	19.09	72.29
	TGA	51.13	19.83	70.96
	PISTOLE	55.06	21.78	76.84

Table 6: **POPE** hallucination benchmark (F1-score) with ViT-L using three sampling protocols.

Method	POPE Sampling			Avg. Score
	Random	Popular	Adversarial	
TeCoA	79.8	79.1	75.2	78.0
PMG	81.7	80.9	76.3	79.6
FARE	82.2	81.5	78.6	80.8
TGA	80.4	79.8	76.0	78.7
PISTOLE	84.6	83.7	80.8	83.0

Table 7: CoT eval. (Acc.) using science question answering for adversarial VLM learning (ViT-L).

Method	Temperature			Avg. Acc.
	0.0	0.1	0.2	
TeCoA	51.4	51.6	50.0	51.0
PMG	51.9	52.0	51.6	51.8
FARE	52.5	52.2	52.4	52.4
TGA	52.1	51.9	51.8	51.9
PISTOLE	54.1	53.9	54.2	54.1

432 **Effect of PISTOLE components.** We here quantify the
 433 contributions of three core modules in our PISTOLE: (i)
 434 Gradient-Informed Stability Mask (GISM) in Eq. (6),
 435 (ii) Re-weighting of Prediction Criticality Index (PCI) in
 436 Definition 1, and (iii) Adversarial Parameter Trajectory
 437 (APT) in Eq. (8). Table 8 reports zero-shot results aver-
 438 aged over 14 classification benchmarks. As a reference,
 439 *the first row (baseline) applies vanilla task vector merging* in $\theta_{\text{van}}(\cdot)$ in Section 3.2. Enforcing
 440 stability masks simultaneously improves natural performance and robustness. Augmenting it with
 441 PCI further lifts the trade-off by prioritizing fragile predictions. Incorporating adversarial parameter
 442 trajectory improves robustness by refining sensitivity estimates beyond single-point gradients.

443 **Effect of natural knowledge components.** We
 444 vary the source of the “natural” task vector
 445 while fixing the robust task vector in our PIS-
 446 TOLE method. As shown in Table 9, replacing
 447 the pre-trained (zero-shot) VLM with a natu-
 448 rally fine-tuned one yields a stronger clean-robust trade-off. Intuitively, natural empirical risk min-
 449 imization contributes task-calibrated shifts that better align with the robust objective’s consensus
 450 direction, which our stability masks preserve while suppressing antagonistic coordinates.

451 **Effect of robust knowledge compo-**
 452 **nent.** We ablate the source of the
 453 robust task vector while fixing the
 454 natural one, instantiating PISTOLE
 455 with diverse adversarial fine-tuning
 456 methods (summarized in Appendix
 457 B). From Table 10, we observe a consistent pattern: TeCoA yields the strongest in-distribution (Im-
 458 ageNet) robustness but transfers less favorably under shift, while FARE improves OOD robustness
 459 yet lags on ImageNet. Our setup offers the most balanced performance, producing the best trade-off.
 460 We attribute this to its prediction-regularized objective, which preserves features aligned with the
 461 natural objective. Our stability masks retain these while suppressing antagonistic coordinates.

462 **Curvature analyses.** We quantify loss-parameter curva-
 463 ture along the local update (gradient) direction for ad-
 464 versarial inputs in Figure 5, which plots this directional
 465 curvature while changing the merging weight λ . Vanilla
 466 mixing exhibits consistently higher curvature, especially
 467 at a larger radius, whereas PISTOLE lowers curvature
 468 throughout, indicating a smoother, more stable landscape
 469 under parameter nudges. We observe that $\lambda = 0.2$
 470 (our operating point) attains the lowest curvature and si-
 471 multaneously yields the best trade-off. This behavior
 472 aligns with our theorems: PCI weighting prioritizes high-
 473 curvature regions (Theorem 2), and the complementary
 474 masks provably contract cross-objective first-order inter-
 475 ference (Theorem 1), jointly steering the merge toward flatter,
 476 better-generalizing solutions.

477 **Extended analyses.** More analyses are in Appendix G, including task-vector re-weighting ablations,
 478 hyperparameter analyses, and cost comparisons, all of which corroborate the efficacy of PISTOLE.

5 CONCLUSION

479 Motivated by our gradient-similarity analyses between natural and robust VLMs, we introduced
 480 PISTOLE, a prediction stability-aware task-vector merging framework that composes off-the-shelf
 481 natural and robust VLMs without retraining. PISTOLE forms complementary, gradient-informed
 482 masks and refines them along adversarial parameter trajectories, weighting steps by a curvature-
 483 linked prediction criticality index. Our theorems bound cross-objective interference and show that
 484 this index tracks Hessian trace, explaining why the merge gravitates toward flatter, more general-
 485 izable regions. Empirically, PISTOLE consistently improves the clean-robust trade-off across 14
 486 datasets and scenarios, and transfers as a drop-in encoder to downstream tasks. Rigorous ablations
 487 and curvature analyses validate each component and quantify its impact on the clean-robust frontier.

Table 8: Component ablations for PIS-
 TOLE. We report mean clean and robust
 accuracy (%) averaged on 14 datasets.

	GISM	PCI	APT	Clean	Robust	Sum
1				66.57	44.54	111.11
2	✓			67.78	45.69	113.47
3	✓	✓		68.36	46.47	114.83
4	✓		✓	67.64	47.11	114.75
4	✓	✓	✓	69.24	47.65	116.89

Table 9: Avg. performance (%) of our PISTOLE with diverse task vectors for natural knowledge.

Natural Knowledge Source	Clean			Robust			Sum
	Pre-Trained (Zero-Shot) VLM	67.10	47.83	114.93			
Naturally Fine-tuned VLM	69.24	47.65	116.89				

Table 10: Avg. performance (%) of our PISTOLE with diverse task vectors for robust knowledge.

Robust Knowledge Source	ImageNet			Avg. 13 Datasets		
	Clean	Robust	Sum	Clean	Robust	Sum
TeCoA	79.23	62.31	141.54	64.94	43.52	108.46
FARE	75.86	62.02	137.88	69.47	44.91	114.38
PMG (Our Setup)	80.82	61.89	142.71	68.35	46.55	114.90

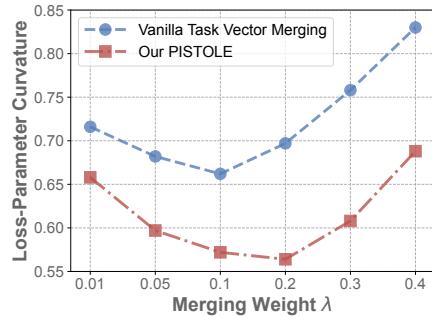


Figure 5: Analyses of loss-parameter curvature on ImageNet adversaries.

Figure 5: Analyses of loss-parameter curvature on ImageNet adversaries.

486 ETHICS STATEMENT
487

488 This work studies model robustness and parameter-space merging for vision-language models. Our
489 experiments use publicly available datasets and model checkpoints under their original licenses.
490 No personally identifiable or sensitive data is introduced. We evaluate robustness with standard
491 adversarial attacks to stress-test models in a defensive setting. As with most robustness research,
492 there is potential dual use: insights that improve defenses could also inform stronger attacks. To
493 mitigate misuse, our paper reports evaluations and ablations strictly for benchmarking and does not
494 target real users or deployed systems. We encourage responsible release and deployment practices,
495 including clearly labeling merged checkpoints, documenting training/merging procedures, and re-
496 validating safety filters when models are adapted. From an environmental perspective, parameter-
497 space merging substantially reduces computational costs compared with repeated adversarial fine-
498 tuning. We are not aware of disparate-impact risks unique to our method beyond those inherited from
499 the underlying datasets and models. Nonetheless, we recommend auditing downstream applications
500 for distribution shift and fairness where appropriate.

501 REPRODUCIBILITY STATEMENT
502

503 We organize the paper and appendix to enable end-to-end replication using publicly available models
504 and datasets. Complete experimental configurations, including datasets, preprocessing, evaluation
505 splits, and attack settings, are centralized in Appendix C. Dataset coverage and zero-shot evaluation
506 suites are detailed in Appendix C.1. The task-vector construction and merging/evaluation protocol
507 (backbones, default hyperparameters, and attack parameters) appear in Appendix C.2, while down-
508 stream transfer setups for image captioning, VQA, object hallucination, and ScienceQA CoT are
509 specified in Appendix C.3. Theoretical assumptions and complete proofs are provided in Appendix
510 D. Hyperparameter choices, sensitivity studies, and search ranges are summarized in Appendix G.2.
511 Tables and figures in the main text refer back to these sections so that all reported clean and robust
512 accuracies can be reproduced under the stated configurations. We stress that our code and check-
513 points will be publicly available to facilitate independent verification and reuse.

514
515 REFERENCES
516

517 Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zit-
518 nick, and Devi Parikh. Vqa: Visual question answering. In *Proceedings of the IEEE international*
519 *conference on computer vision*, pp. 2425–2433, 2015. 17

520 Anas Awadalla, Irena Gao, Josh Gardner, Jack Hessel, Yusuf Hanafy, Wanrong Zhu, Kalyani
521 Marathe, Yonatan Bitton, Samir Gadre, Shiori Sagawa, et al. Openflamingo: An open-
522 source framework for training large autoregressive vision-language models. *arXiv preprint*
523 *arXiv:2308.01390*, 2023. 2, 16

524 Paul H Calamai and Jorge J Moré. Projected gradient methods for linearly constrained problems.
525 *Mathematical programming*, 39(1):93–116, 1987. 3

527 Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
528 scribing textures in the wild. In *Proceedings of the IEEE conference on computer vision and*
529 *pattern recognition*, pp. 3606–3613, 2014. 16

531 Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
532 feature learning. In *Proceedings of the fourteenth international conference on artificial intelli-*
533 *gence and statistics*, pp. 215–223. JMLR Workshop and Conference Proceedings, 2011. 16

534 Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
535 of diverse parameter-free attacks. In *International conference on machine learning*, pp. 2206–
536 2216. PMLR, 2020. 7, 16, 17

538 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
539 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
pp. 248–255. Ieee, 2009. 7, 16

540 Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training
 541 examples: An incremental bayesian approach tested on 101 object categories. In *2004 conference*
 542 *on computer vision and pattern recognition workshop*, pp. 178–178. IEEE, 2004. 16
 543

544 Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
 545 matter: Elevating the role of image understanding in visual question answering. In *Proceedings*
 546 *of the IEEE conference on computer vision and pattern recognition*, pp. 6904–6913, 2017. 16
 547

548 Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and
 549 Jeffrey P Bigham. Vizwiz grand challenge: Answering visual questions from blind people. In
 550 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 3608–3617,
 551 2018. 16
 552

553 Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
 554 and deep learning benchmark for land use and land cover classification. *IEEE Journal of Selected*
 555 *Topics in Applied Earth Observations and Remote Sensing*, 12(7):2217–2226, 2019. 16
 556

557 Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
 558 Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer.
 559 The many faces of robustness: A critical analysis of out-of-distribution generalization. *ICCV*,
 560 2021. 16
 561

562 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 563 and Weizhu Chen. Lora: Low-rank adaptation of large language models. In *The Tenth Interna-*
 564 *tional Conference on Learning Representations, ICLR*, 2022. 8, 16
 565

566 Yue Huang, Chujie Gao, Siyuan Wu, Haoran Wang, Xiangqi Wang, Yujun Zhou, Yanbo Wang, Jiayi
 567 Ye, Jiawen Shi, Qihui Zhang, et al. On the trustworthiness of generative foundation models:
 568 Guideline, assessment, and perspective. *arXiv preprint arXiv:2502.14296*, 2025. 1
 569

570 Gabriel Ilharco, Marco Túlio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
 571 and Ali Farhadi. Editing models with task arithmetic. In *The Eleventh International Conference*
 572 *on Learning Representations, ICLR*, 2023. 1, 3, 16, 24
 573

574 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
 575 categorization. In *Proceedings of the IEEE international conference on computer vision work-*
 576 *shops*, pp. 554–561, 2013. 16
 577

578 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 579 2009. 16
 580

581 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
 582 object hallucination in large vision-language models. In *Proceedings of the 2023 Conference on*
 583 *Empirical Methods in Natural Language Processing, EMNLP*, pp. 292–305, 2023. 8, 16, 17
 584

585 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 586 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer*
 587 *vision–ECCV 2014: 13th European conference, zurich, Switzerland, September 6–12, 2014, pro-*
 588 *ceedings, part v 13*, pp. 740–755. Springer, 2014. 16
 589

590 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 591 tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-*
 592 *nition*, pp. 26296–26306, 2024. 2, 16, 17
 593

594 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Confer-*
 595 *ence on Learning Representations, ICLR*, 2019. 16
 596

597 Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
 598 Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
 599 science question answering. *Advances in Neural Information Processing Systems*, 35:2507–2521,
 600 2022. 8, 16, 17

594 Yan Luo, Min Shi, Muhammad Osama Khan, Muhammad Muneeb Afzal, Hao Huang, Shuaihang
 595 Yuan, Yu Tian, Luo Song, Ava Kouhana, Tobias Elze, et al. Fairclip: Harnessing fairness in
 596 vision-language learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 597 *Pattern Recognition*, pp. 12289–12301, 2024. 2

598 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 599 Towards deep learning models resistant to adversarial attacks. In *6th International Conference on*
 600 *Learning Representations, ICLR*, 2018. 3, 16

601 Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
 602 visual classification of aircraft. *arXiv preprint arXiv:1306.5151*, 2013. 16

603 Chengzhi Mao, Scott Geng, Junfeng Yang, Xin Wang, and Carl Vondrick. Understanding zero-
 604 shot adversarial robustness for large-scale models. In *The Eleventh International Conference on*
 605 *Learning Representations, ICLR*, 2023. 1, 3, 7, 15, 16

606 Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
 607 of classes. In *2008 Sixth Indian conference on computer vision, graphics & image processing*, pp.
 608 722–729. IEEE, 2008. 16

609 Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent
 610 space: Improved editing of pre-trained models. *Advances in Neural Information Processing Sys-*
 611 *tems*, 36:66727–66754, 2023. 3, 24

612 David Osowiecki, Mehrdad Noori, Gustavo Vargas Hakim, Moslem Yazdanpanah, Ali Bahri, Milad
 613 Cheraghaliakhani, Sahar Dastani, Farzad Beizaee, Ismail Ayed, and Christian Desrosiers. Watt:
 614 Weight average test time adaptation of clip. *Advances in neural information processing systems*,
 615 37:48015–48044, 2024. 24

616 Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In *2012*
 617 *IEEE conference on computer vision and pattern recognition*, pp. 3498–3505. IEEE, 2012. 16

618 Bryan A Plummer, Liwei Wang, Chris M Cervantes, Juan C Caicedo, Julia Hockenmaier, and Svet-
 619 lana Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer image-
 620 to-sentence models. In *Proceedings of the IEEE international conference on computer vision*, pp.
 621 2641–2649, 2015. 16

622 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 623 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 624 models from natural language supervision. In *International conference on machine learning*, pp.
 625 8748–8763. PMLR, 2021. 1, 2, 3, 15, 16

626 Pranab Sahoo, Prabhash Meharia, Akash Ghosh, Sriparna Saha, Vinija Jain, and Aman Chadha.
 627 A comprehensive survey of hallucination in large language, image, video and audio foundation
 628 models. In *Findings of the Association for Computational Linguistics: EMNLP*, pp. 11709–
 629 11724, 2024. 8

630 Christian Schlaremann and Matthias Hein. On the adversarial robustness of multi-modal foundation
 631 models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision Work-*
 632 *shop*, pp. 3677–3685, 2023. 17

633 Christian Schlaremann, Naman Deep Singh, Francesco Croce, and Matthias Hein. Robust clip: Un-
 634 supervised adversarial fine-tuning of vision embeddings for robust large vision-language models.
 635 In *International Conference on Machine Learning*, pp. 43685–43704. PMLR, 2024. 1, 3, 7, 15,
 636 16, 17

637 Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
 638 and Marcus Rohrbach. Towards vqa models that can read. In *Proceedings of the IEEE/CVF*
 639 *conference on computer vision and pattern recognition*, pp. 8317–8326, 2019. 16

640 Pavan Kumar Anasosalu Vasu, Fartash Faghri, Chun-Liang Li, Cem Koc, Nate True, Albert Antony,
 641 Gokula Santhanam, James Gabriel, Peter Grasch, Oncel Tuzel, et al. Fastvilm: Efficient vision
 642 encoding for vision language models. In *Proceedings of the Computer Vision and Pattern Recog-*
 643 *nition Conference*, pp. 19769–19780, 2025. 2

648 Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. Cider: Consensus-based image
 649 description evaluation. In *Proceedings of the IEEE conference on computer vision and pattern*
 650 *recognition*, pp. 4566–4575, 2015. 8, 16

651

652 Bastiaan S Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, and Max Welling. Rotation
 653 equivariant cnns for digital pathology. In *Medical Image Computing and Computer Assisted*
 654 *Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, September 16–20,*
 655 *2018, Proceedings, Part II 11*, pp. 210–218. Springer, 2018. 16

656

657 Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representa-
 658 tions by penalizing local predictive power. In *Advances in Neural Information Processing Sys-*
 659 *tems*, pp. 10506–10518, 2019. 16

660

661 Sibo Wang, Jie Zhang, Zheng Yuan, and Shiguang Shan. Pre-trained model guided fine-tuning for
 662 zero-shot adversarial robustness. In *Proceedings of the IEEE/CVF conference on computer vision*
 663 *and pattern recognition*, 2024. 1, 7, 15, 16

664

665 Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
 666 Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
 667 soups: averaging weights of multiple fine-tuned models improves accuracy without increasing in-
 668 ference time. In *International conference on machine learning*, pp. 23965–23998. PMLR, 2022a.
 669 3

670

671 Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
 672 Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, et al. Robust
 673 fine-tuning of zero-shot models. In *Proceedings of the IEEE/CVF conference on computer vision*
 674 *and pattern recognition*, pp. 7959–7971, 2022b. 1, 3, 4

675

676 Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial weight perturbation helps robust gener-
 677 alization. *Advances in Neural Information Processing Systems*, 33:2958–2969, 2020. 16

678

679 Zhitong Xiong, Yi Wang, Weikang Yu, Adam J Stewart, Jie Zhao, Nils Lehmann, Thomas Dujardin,
 680 Zhenghang Yuan, Pedram Ghamisi, and Xiao Xiang Zhu. Geolangbind: Unifying earth observa-
 681 tion with agglomerative vision-language foundation models. *arXiv preprint arXiv:2503.06312*,
 682 2025. 24

683

684 Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging: Re-
 685 solving interference when merging models. *Advances in Neural Information Processing Systems*,
 686 36:7093–7115, 2023. 3, 23

687

688 Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng
 689 Tao. Adamerging: Adaptive model merging for multi-task learning. In *The Twelfth International*
 690 *Conference on Learning Representations, ICLR*, 2024. 3, 23

691

692 Yongquan Yang, Haijun Lv, and Ning Chen. A survey on ensemble learning under the era of deep
 693 learning. *Artificial Intelligence Review*, 56(6):5545–5589, 2023. 3

694

695 Lu Yu, Haiyang Zhang, and Changsheng Xu. Text-guided attention is all you need for zero-shot
 696 robustness in vision-language models. In *Advances in Neural Information Processing Systems*
 697 *38: Annual Conference on Neural Information Processing Systems, NeurIPS*, 2024. 15

698

699 Yuhang Zang, Hanlin Goh, Joshua M. Susskind, and Chen Huang. Overcoming the pitfalls of vision-
 700 language model finetuning for OOD generalization. In *The Twelfth International Conference on*
 701 *Learning Representations, ICLR*, 2024. 2

702

703 Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
 704 Theoretically principled trade-off between robustness and accuracy. In *International Conference*
 705 *on Machine Learning*, pp. 7472–7482. PMLR, 2019. 3

706

707 Jiaming Zhang, Qi Yi, and Jitao Sang. Towards adversarial attack on vision-language pre-training
 708 models. In *Proceedings of the 30th ACM International Conference on Multimedia*, pp. 5005–
 709 5013, 2022. 1

702 Yunqing Zhao, Tianyu Pang, Chao Du, Xiao Yang, Chongxuan Li, Ngai-Man Man Cheung, and Min
703 Lin. On evaluating adversarial robustness of large vision-language models. *Advances in Neural*
704 *Information Processing Systems*, 36:54111–54138, 2023. 1

705 Minghao Zhu, Zhengpu Wang, Mengxian Hu, Ronghao Dang, Xiao Lin, Xun Zhou, Chengju Liu,
706 and Qijun Chen. Mote: Reconciling generalization with specialization for visual-language to
707 video knowledge transfer. *Advances in Neural Information Processing Systems*, 37:55403–55424,
708 2024. 24

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A APPENDIX SUMMARY**
757

758 This appendix provides background on adversarial fine-tuning for VLMs (Section B), followed by
759 full experimental configurations (Section C). We then present the complete theoretical analyses (see
760 Section D) with the algorithmic specification of our **PISTOLE** method. We supply qualitative
761 visualizations of zero-shot transfer under clean and adversarial inputs (Section F). Extended studies
762 report ablations on re-weighting, hyperparameter sensitivity, computational cost comparisons, and
763 also the performance comparison with standard task vector merging approaches are listed in Section
764 G. Finally, we conclude with limitations and broader impact of our work in Section H with an LLM
765 usage declaration in Section I.

766 **B DIVERSE ADVERSARIAL FINE-TUNING SCHEMES**
767

769 Below, we provide details regarding adversarial fine-tuning schemes in the context of Vision-
770 Language Models (VLMs) for a more comprehensive background introduction.
771

772 **TeCoA (Mao et al., 2023) [In-Distribution Robustness].** Given image-text pairs \mathcal{D} , standard ad-
773 versarial fine-tuning (TeCoA) (Mao et al., 2023) is framed as a minimax optimization to improve
774 adversarial robustness of the CLIP models:

$$775 \min_{\theta_l} \mathbb{E}_{(\mathbf{x}, c) \sim \mathcal{D}} \left[\max_{\|\delta\|_\infty \leq \epsilon} \mathcal{L}_{CE}(\mathbf{p}(\mathbf{x} + \delta), \mathbf{y}(c)) \right], \quad (13)$$

778 **PMG (Wang et al., 2024) [OOD Robustness].** Motivated by the inherent over-fitting of TeCoA
779 (Mao et al., 2023) with generalization degradation, PMG (Wang et al., 2024) leveraged the
780 prediction-level guidance from the vanilla pre-trained VLM with a regularization of clean samples
781 for the target model to conduct adversarial fine-tuning, as follows:
782

$$783 \min_{\theta_l} \mathbb{E}_{(\mathbf{x}, c) \sim \mathcal{D}} \left[\max_{\|\delta\|_\infty \leq \epsilon} \mathcal{L}_{CE}(\mathbf{p}(\mathbf{x} + \delta), \mathbf{y}(c)) \right. \\ 784 \left. + \lambda_1 \cdot \mathcal{L}_{KL}(\mathbf{p}_{\text{orig}}(\mathbf{x}) \parallel \mathbf{p}(\mathbf{x} + \delta)) + \lambda_2 \cdot \mathcal{L}_{KL}(\mathbf{p}(\mathbf{x}) \parallel \mathbf{p}(\mathbf{x} + \delta)) \right], \quad (14)$$

787 where \mathcal{L}_{KL} represents the Kullback–Leibler divergence to align predictions, and \mathbf{p}_{orig} denotes the
788 prediction of the vanilla pre-trained CLIP model (Radford et al., 2021). λ_1 and λ_2 are the corre-
789 sponding loss weighting factors.

790 **FARE (Schlarmann et al., 2024) [OOD Robustness].** To enhance the robustness generalization
791 capability across diverse vision-language tasks, Schlarmann et al. (Schlarmann et al., 2024) pro-
792 posed an unsupervised adversarial fine-tuning approach, dubbed *FARE*, to adversarially optimize
793 feature-level discrepancies in an unsupervised scheme:

$$794 \min_{\theta_l} \mathbb{E}_{(\mathbf{x}, c) \sim \mathcal{D}} \left[\max_{\|\delta\|_\infty \leq \epsilon} \left\| \mathbf{F}_{\text{orig}}(\mathbf{x}) - \mathbf{F}(\mathbf{x} + \delta) \right\|_2^2 \right], \quad (15)$$

797 where $\mathbf{F}(\cdot)$ denotes the image encoder of the CLIP model for fine-tuning, while $\mathbf{F}_{\text{orig}}(\cdot)$ is the image
798 encoder of the vanilla pre-trained CLIP model as the frozen reference.

799 **TGA (Yu et al., 2024) [In-Distribution Robustness].** Built on TeCoA (Mao et al., 2023), Text-
800 Guided Attention (TGA) adversarially fine-tunes the image encoder while aligning text-guided at-
801 tention maps, computed by correlating per-patch visual tokens with a frozen text embedding of the
802 class prompt (from the original CLIP). It (i) pulls the target model’s attention on adversarial images
803 toward the original model’s clean-image attention and (ii) keeps the target’s clean-image attention
804 close to the original, aiming to boost robustness with eroding marginal clean accuracy.

806 **C FULL EXPERIMENTAL CONFIGURATIONS**
807

808 This section details datasets used, task vector merging/evaluation settings, and downstream transfer
809 protocols used in our experiments and analyses with our **PISTOLE** method.

810
811 C.1 DATASET DESCRIPTION

812 Following prior work on robust VLMs (Mao et al., 2023; Schlar mann et al., 2024), we train on the
 813 ImageNet-1k training split (Deng et al., 2009) and report classification on the *validation* split (test
 814 labels are unavailable). Zero-shot classification is further evaluated on 13 datasets covering:

- 815 • **Natural objects:** STL-10 (Coates et al., 2011), CIFAR-10/100 (Krizhevsky et al., 2009),
 816 Caltech-101 (Fei-Fei et al., 2004).
- 817 • **Fine-grained:** Stanford Cars (Krause et al., 2013), Oxford-IIIT Pets (Parkhi et al., 2012),
 818 Flowers-102 (Nilsback & Zisserman, 2008), FGVC-Aircraft (Maji et al., 2013).
- 819 • **Textures:** DTD (Cimpoi et al., 2014).
- 820 • **Remote sensing:** EuroSAT (Helber et al., 2019).
- 821 • **Medical:** PCAM (Veeling et al., 2018).
- 822 • **Robustness variants:** ImageNet-R (Hendrycks et al., 2021) and ImageNet-S (Wang et al., 2019).

823 We also assess zero-shot transfer on a series of downstream image–text understanding tasks: image
 824 captioning on COCO (Lin et al., 2014) and Flickr30k (Plummer et al., 2015); Visual Question An-
 825 swering (VQA) on TextVQA (Singh et al., 2019), VQAv2 (Goyal et al., 2017), and VizWiz (Gurari
 826 et al., 2018); object hallucination evaluation via POPE (Li et al., 2023); and multimodal Chain-of-
 827 Thought (CoT) reasoning on ScienceQA dataset (Lu et al., 2022).

828
829 C.2 IMPLEMENTATION DETAILS (ZERO-SHOT IMAGE CLASSIFICATION)

830 **Default setup.** Unless noted, we use CLIP (Radford et al., 2021) with a ViT-L/14 image encoder.
 831 In line with standard task arithmetics (Ilharco et al., 2023), all the task vectors are the parameter
 832 differences of the vision encoder between fine-tuned and pre-trained CLIP models. The natural
 833 VLM is trained by Empirical Risk Minimization (ERM) on clean data, while the robust VLM follows
 834 PMG (Wang et al., 2024). Adversarial examples are generated by 10-step PGD (Madry et al., 2018)
 835 at ℓ_∞ radius $\epsilon = 2/255$ and step size $\alpha = 1/255$. We form task vectors $(\tau_{\text{nat}}, \tau_{\text{rob}})$ and merge them
 836 via **PISTOLE** with default mixing factor $\lambda = 0.2$ (Eq. (11)) and the mask sharpness factor $\kappa = 2$ (Eq.
 837 (6)). Following adversarial weight training in single-modal architectures (Wu et al., 2020), we adopt
 838 the adversarial parameter radius factor $\eta = 1 \times 10^{-3}$ (Eq. (8)). For backbone studies (Table 2), we
 839 consider both a large architecture CLIP ViT-H/14 and a lightweight one CLIP ViT-B/14. For fine-
 840 tuning the CLIP models, we optimize with AdamW (Loshchilov & Hutter, 2019) (betas (0.9, 0.95)),
 841 a cosine schedule with linear warm-up to 1×10^{-5} over 2 epochs. For PEFT experiments (Table 4),
 842 we use the LoRA (Hu et al., 2022) scheme specifically on attention blocks. All experimental runs
 843 and empirical analyses use eight NVIDIA H100 GPUs.

844 **Evaluation protocol.** Following prior adversarial VLM learning works (Mao et al., 2023; Schlar-
 845 mann et al., 2024), we report clean accuracy and robust accuracy under AutoAttack (AA) (Croce
 846 & Hein, 2020) with $\epsilon = 2/255$ unless specified. Note that AA is an ensemble adversarial attack of
 847 diverse scenarios for practical reliability assessment. All the robustness evaluation results are based
 848 on adaptive attacks for a fair comparison. Zero-shot classification follows the standard CLIP infer-
 849 ence/evaluation protocol: cosine similarity between image features and class-prompt text features,
 850 selecting the highest-scoring prediction index as the result.

851
852 C.3 DETAILS OF DOWNSTREAM TASK EXTENSIONS

853 For downstream vision-language task evaluations, we replace the ViT-L/14 vision encoder in
 854 LLaVA-1.5-7B (Liu et al., 2024) and OpenFlamingo-9B (Awadalla et al., 2023) with our merged
 855 encoder with a better clean-robust trade-off. Note that all other components remain fixed. Below,
 856 we provide detailed explanations about each vision-language task and its corresponding setup.

857 **Downstream task extension to image captioning.** We evaluate the CIDEr score (Vedantam et al.,
 858 2015) on COCO (Lin et al., 2014) and Flickr30k (Plummer et al., 2015) using LLaVA-1.5-7B and
 859 OpenFlamingo-9B with our merged vision encoder swapped in. Adversarial examples are generated
 860 with APGD (Croce & Hein, 2020) under an ℓ_∞ perturbation budget of $\epsilon = 2/255$, running 100 steps
 861 *per image–reference pair* following (Schlar mann et al., 2024). After each step, we recompute CIDEr

864 and early-stop that example if the score falls below 10 (COCO) or 2 (Flickr30k). For reporting, we
 865 apply the adversarial perturbation that achieved the lowest CIDEr score across references.
 866

867 **Downstream task extension to visual question answering.** For evaluations, we report standard
 868 Visual Question Answering (VQA) accuracy (Antol et al., 2015), selecting the five most frequent
 869 answers among the ten annotations for each example. Adversarial inputs are crafted with APGD
 870 (Croce & Hein, 2020) at the radius of $\epsilon = 2/255$, using targeted perturbations steered by prompt
 871 strings (e.g., ‘‘Maybe’’, ‘‘Word’’) as in (Schlarmann & Hein, 2023; Schlarmann et al., 2024).
 872 Model decoding and text prompts follow each framework’s default setup unless stated otherwise.
 873

874 **Downstream task extension to object hallucination (POPE evaluation benchmark).** We assess
 875 object hallucination with POPE benchmark (Li et al., 2023) by issuing binary (yes/no) queries about
 876 candidate objects under three standard sampling strategies: *Random* (uniform over absent objects),
 877 *Popular* (top- k most frequent absent objects), and *Adversarial* (top- k absent objects with highest
 878 co-occurrence with present objects). Following (Li et al., 2023), we report the F1 score and also
 879 average the score across sampling strategies for a single summary metric.
 880

881 **Downstream task extension to Science question answering with chain-of-thought.** We evaluate
 882 on ScienceQA (Lu et al., 2022) using LLaVA-1.5-7B (Liu et al., 2024) with our PISTOLE-merged
 883 ViT-L/14 vision encoder swapped in and all other weights frozen. Each instance provides an image,
 884 a question, and four options $\{A, B, C, D\}$. We adopt a chain-of-thought protocol: the model is first
 885 prompted to ‘‘think step by step’’ to produce a free-form rationale, then a short follow-up prompt
 886 elicits a single final option token. Inputs follow LLaVA defaults (single image and single-turn dia-
 887 logue). Decoding uses the temperature $T = \{0.0, 0.1, 0.2\}$. Note that the last explicit token among
 888 A/B/C/D is taken as the prediction, with fallback to option–text matching if needed. We report
 889 accuracy at each T and the mean across temperatures (Table 7).
 890

891 D FULL THEORETICAL ANALYSES

892 D.1 PROOF OF THEOREM 1

893 In this section, we provide the complete proof of Theorem 1, establishing first-order attenuation of
 894 cross-objective interference under layerwise complementary masking and its monotone dependence
 895 on the mask hyperparameters.

896 **Theorem 3** (Theorem 1 from the main text). *Let $\mathbf{g}_{\text{nat}}^0 := \nabla_{\theta} \mathcal{L}_{\text{nat}}(\theta)|_{\theta=\theta_0}$ and $\mathbf{g}_{\text{rob}}^0 :=$
 897 $\nabla_{\theta} \mathcal{L}_{\text{rob}}(\theta)|_{\theta=\theta_0}$. Let $\mathbf{M}_{\text{nat}}^{\text{pre}} := (1 - \tilde{\mathbf{g}}_{\text{rob}})^{\kappa}$ and $\mathbf{M}_{\text{rob}}^{\text{pre}} := (1 - \tilde{\mathbf{g}}_{\text{nat}})^{\kappa}$ be the uncapped comple-
 898 $\mathbf{M}_{\text{nat}}^{\text{pre}}$ and $\mathbf{M}_{\text{rob}}^{\text{pre}}$ from Eq. (6), with $\kappa \geq 1$ and $\tilde{\mathbf{g}}_s \in [0, 1]^d$ defined by Eq. (5). For each layer
 899 l , let $t_{q,l}^{\text{rob}}$ be the q -quantile of $(\mathbf{M}_{\text{nat}}^{\text{pre}})_l$ and $t_{q,l}^{\text{nat}}$ the q -quantile of $(\mathbf{M}_{\text{rob}}^{\text{pre}})_l$ (empirical quantiles
 900 on layer entries).² Define the capped masks layerwise by $(\mathbf{M}_{\text{nat}})_l := \min((\mathbf{M}_{\text{nat}}^{\text{pre}})_l, t_{q,l}^{\text{rob}} \mathbf{1})$ and
 901 $(\mathbf{M}_{\text{rob}})_l := \min((\mathbf{M}_{\text{rob}}^{\text{pre}})_l, t_{q,l}^{\text{nat}} \mathbf{1})$. Set $\rho_{\text{nat}} := \max_l t_{q,l}^{\text{nat}}$ and $\rho_{\text{rob}} := \max_l t_{q,l}^{\text{rob}}$. Then for any $\delta \in \mathbb{R}^d$,*

$$902 |\langle \mathbf{g}_{\text{nat}}^0, \mathbf{M}_{\text{rob}} \odot \delta \rangle| \leq \rho_{\text{nat}} \|\mathbf{g}_{\text{nat}}^0\|_2 \|\delta\|_2, \quad |\langle \mathbf{g}_{\text{rob}}^0, \mathbf{M}_{\text{nat}} \odot \delta \rangle| \leq \rho_{\text{rob}} \|\mathbf{g}_{\text{rob}}^0\|_2 \|\delta\|_2. \quad (16)$$

903 Moreover, if κ is increased (i.e., sharpening $(1 - \tilde{\mathbf{g}})^{\kappa}$) or any of the layerwise caps $t_{q,l}^{\text{nat}}, t_{q,l}^{\text{rob}}$ are
 904 decreased, the right-hand sides in Eq. (16) are monotone nonincreasing.
 905

906 *Proof.* We here prove the first bound, while the second is identical with roles swapped.
 907

908 **Layerwise ℓ_∞ control of the capped mask.** According to the definition of the capping, for every
 909 layer l and every index i in that layer’s index set \mathcal{I}_l ,

$$910 0 \leq (\mathbf{M}_{\text{rob}})_i \leq t_{q,l}^{\text{nat}}.$$

911 Consequently, if we write $\mathbf{m} := \mathbf{M}_{\text{rob}}$ and use the layer partition $\{\mathcal{I}_l\}$, then
 912

$$913 \|\mathbf{m}\|_\infty = \max_i |m_i| = \max_l \max_{i \in \mathcal{I}_l} m_i \leq \max_l t_{q,l}^{\text{nat}} = \rho_{\text{nat}}. \quad (17)$$

914 ²Any standard definition of the empirical q -quantile with $q \in (0, 1]$ suffices. We here consider that quantiles
 915 are monotone under component-wise decreases.

918 **Bounding the masked displacement in ℓ_2 .** For any vector δ ,

$$919 \quad \|\mathbf{m} \odot \delta\|_2^2 = \sum_i m_i^2 \delta_i^2 \leq \|\mathbf{m}\|_\infty^2 \sum_i \delta_i^2 = \|\mathbf{m}\|_\infty^2 \|\delta\|_2^2.$$

920 Taking square roots and invoking Eq. (17) yields

$$921 \quad \|\mathbf{M}_{\text{rob}} \odot \delta\|_2 \leq \|\mathbf{M}_{\text{rob}}\|_\infty \|\delta\|_2 \leq \rho_{\text{nat}} \|\delta\|_2. \quad (18)$$

922 **First-order inner-product control.** By Cauchy–Schwarz,

$$923 \quad |\langle \mathbf{g}_{\text{nat}}^0, \mathbf{M}_{\text{rob}} \odot \delta \rangle| \leq \|\mathbf{g}_{\text{nat}}^0\|_2 \|\mathbf{M}_{\text{rob}} \odot \delta\|_2.$$

924 Combining with Eq. (18) gives

$$925 \quad |\langle \mathbf{g}_{\text{nat}}^0, \mathbf{M}_{\text{rob}} \odot \delta \rangle| \leq \rho_{\text{nat}} \|\mathbf{g}_{\text{nat}}^0\|_2 \|\delta\|_2,$$

926 which is the first inequality in Eq. (16).

927 **Monotonicity in κ and caps.** Consider the pointwise map $\phi_\kappa(u) = (1-u)^\kappa$ on $u \in [0, 1]$. Since
928 $\kappa \mapsto \phi_\kappa(u)$ is nonincreasing for every fixed $u \in [0, 1]$, increasing κ makes the pre-cap masks $\mathbf{M}_{\text{rob}}^{\text{pre}}$
929 and $\mathbf{M}_{\text{nat}}^{\text{pre}}$ component-wise *no larger*. Quantiles are monotone under component-wise decreases: if
930 $\mathbf{a} \leq \mathbf{b}$ element-wise then the empirical q -quantile of \mathbf{a} is \leq that of \mathbf{b} .³ Therefore $t_{q,l}^{\text{nat}}$ and $t_{q,l}^{\text{rob}}$ are
931 nonincreasing in κ . The capping operation ($\mathbf{v} \mapsto \min(\mathbf{v}, t\mathbf{1})$) is also monotone nonexpansive (it
932 cannot increase any coordinate). Thus both masks after capping are nonincreasing in κ , and so are
933 $\rho_{\text{nat}} = \max_l t_{q,l}^{\text{nat}}$ and $\rho_{\text{rob}} = \max_l t_{q,l}^{\text{rob}}$. Finally, explicitly decreasing any $t_{q,l}^{\text{nat}}$ or $t_{q,l}^{\text{rob}}$ further shrinks
934 the corresponding mask entries and hence cannot increase the right-hand sides in Eq. (16). \square

940 D.2 PROOF OF THEOREM 2

941 **Theorem 4** ([Theorem 2 from the main text]). *Let PCI be defined as in Definition 1, where
942 $\mathbf{p}_c(\mathbf{x}; \boldsymbol{\theta}) > 0$ is twice continuously differentiable in a neighborhood of $\boldsymbol{\theta}$. Given $\mathbf{H}_c(\boldsymbol{\theta}) :=$
943 $\nabla_{\boldsymbol{\theta}}^2 \mathbf{p}_c(\mathbf{x}; \boldsymbol{\theta})$, for sufficiently small η , we have the following approximation:*

$$944 \quad \text{PCI}(\mathbf{x}, c, \boldsymbol{\theta}) = \frac{\sigma^2}{2} \frac{\text{Tr}(\mathbf{H}_c(\boldsymbol{\theta}))}{\mathbf{p}_c(\mathbf{x}; \boldsymbol{\theta})} + \mathcal{O}(\sigma^3). \quad (19)$$

945 *Proof.* Throughout the proof, we take all the expectations with respect to the isotropic and zero-
946 mean perturbation $\boldsymbol{\Delta} \in \mathcal{V}_{\boldsymbol{\theta}}$ at the parameter level introduced in Definition 1. The covariance of $\boldsymbol{\Delta}$
947 is $\sigma^2 \mathbf{I}_d$, where the per-coordinate second moment is $\boldsymbol{\sigma}^2 := \frac{1}{d} \mathbb{E}_{\boldsymbol{\Delta} \in \mathcal{V}_{\boldsymbol{\theta}}} [\|\boldsymbol{\Delta}\|_2^2] = \frac{\eta^2 \|\boldsymbol{\theta}\|_F^2}{d}$.

948 Given the mapping $\boldsymbol{\vartheta} \mapsto \mathbf{p}_c(\mathbf{x}; \boldsymbol{\vartheta})$ is C^2 by definition. The second-order multivariate Taylor's
949 expansion around $\boldsymbol{\theta}$ with Lagrange form remainder yields:

$$950 \quad \mathbf{p}_c(\mathbf{x}; \boldsymbol{\theta} + \boldsymbol{\Delta}) = \mathbf{p}_c(\mathbf{x}; \boldsymbol{\theta}) + \underbrace{\nabla_{\boldsymbol{\theta}} \mathbf{p}_c^\top(\mathbf{x}; \boldsymbol{\theta}) \boldsymbol{\Delta}}_{(a)} + \underbrace{\frac{1}{2} \boldsymbol{\Delta}^\top \mathbf{H}_c(\boldsymbol{\theta}) \boldsymbol{\Delta}}_{(b)} + \mathcal{O}(\|\boldsymbol{\Delta}\|^3). \quad (20)$$

951 Recall that isotropy and zero mean imply $\mathbb{E}[\boldsymbol{\Delta}] = \mathbf{0}$. Thus, the first-order term (a) vanishes under expectation $\mathbb{E}[\nabla_{\boldsymbol{\theta}} \mathbf{p}_c^\top(\mathbf{x}; \boldsymbol{\theta}) \boldsymbol{\Delta}] = \mathbf{0}$. For the quadratic term (b), we apply $\mathbb{E}[\boldsymbol{\Delta}^\top \mathbf{H}_c(\boldsymbol{\theta}) \boldsymbol{\Delta}] =$
952 $\text{Tr}(\mathbf{H}_c(\boldsymbol{\theta}) \mathbb{E}[\boldsymbol{\Delta} \boldsymbol{\Delta}^\top]) = \sigma^2 \text{Tr}(\mathbf{H}_c(\boldsymbol{\theta}))$ for isotropic covariance. Hence, we obtain:

$$953 \quad \mathbb{E}_{\boldsymbol{\Delta}} [\mathbf{p}_c(\mathbf{x}; \boldsymbol{\theta} + \boldsymbol{\Delta})] = \mathbf{p}_c(\mathbf{x}; \boldsymbol{\theta}) + \frac{\sigma^2}{2} \text{Tr}(\mathbf{H}_c(\boldsymbol{\theta})) + \mathcal{O}(\sigma^3). \quad (21)$$

954 Taylor's theorem bounds the truncation error in Eq. (20) by $\mathcal{O}(\|\boldsymbol{\Delta}\|_2^3)$. Under the isotropic law in
955 $\mathcal{V}_{\boldsymbol{\theta}}$, we have $\mathbb{E}[\|\boldsymbol{\Delta}\|_2^2] = d\sigma^2$, so Hölder's inequality with exponents $(3/2, 3)$ gives:

$$956 \quad \mathbb{E}[\|\boldsymbol{\Delta}\|_2^3] \leq (\mathbb{E}[\|\boldsymbol{\Delta}\|_2^2])^{3/2} = (d\sigma^2)^{3/2} = d^{3/2} \boldsymbol{\sigma}^3. \quad (22)$$

957 ³Formally, for any t , the empirical CDFs satisfy $F_{\mathbf{a}}(t) \geq F_{\mathbf{b}}(t)$, hence $\inf\{t : F_{\mathbf{a}}(t) \geq q\} \leq \inf\{t : F_{\mathbf{b}}(t) \geq q\}$.

972 Algorithm 1 Prediction Stability-aware mOdeL mErging (PISTOLE)

973 **Input:** natural and robust CLIP models ($f_{\theta_{\text{nat}}}, f_{\theta_{\text{rob}}}$) and their task vectors ($\tau_{\text{nat}}, \tau_{\text{rob}}$); dataset $\mathcal{D} = \{(\mathbf{x}, c)\}$;
974 input-PGD steps m and step size α ; parameter-trajectory steps K and step size β ; parameter-ball radius factor
975 η ; mask temperature γ and sharpness κ ; small $\epsilon > 0$; trade-off λ ; quantile cap q .
976 1: **Initialize** accumulated gradients: $\mathbf{G}_{\text{nat}} \leftarrow \mathbf{0}, \mathbf{G}_{\text{rob}} \leftarrow \mathbf{0}$
977 2: **while** not at the end of task vector merging **do**
978 3: Sample $(\mathbf{x}, c) \sim \mathcal{D}$ and set $\hat{\mathbf{x}}^{(0)} \leftarrow \mathbf{x} + 0.001 \cdot \mathcal{N}(\mathbf{0}, \mathbf{I})$
979 4: **for** $t = 1, \dots, m$ **do** ▷ PGD to obtain adversarial input for robust branch
980 5: $\hat{\mathbf{x}}^{(t)} \leftarrow \hat{\mathbf{x}}^{(t-1)} + \alpha \cdot \text{sign}(\nabla_{\hat{\mathbf{x}}^{(t-1)}} \mathcal{L}_{\text{CE}}(\mathbf{p}_{\theta_{\text{rob}}}(\hat{\mathbf{x}}^{(t-1)}), \mathbf{e}(c)))$
981 6: $\hat{\mathbf{x}}^{(t)} \leftarrow \Pi_{\mathbb{B}(\mathbf{x}, \epsilon)}(\hat{\mathbf{x}}^{(t)})$
982 7: **end for**
983 8: Set $\hat{\mathbf{x}} \leftarrow \hat{\mathbf{x}}^{(m)}, \mathbf{x}_{\text{nat}} \leftarrow \mathbf{x}, \mathbf{x}_{\text{rob}} \leftarrow \hat{\mathbf{x}}$
984 9: **for** $s \in \{\text{nat, rob}\}$ **do** ▷ Adversarial parameter trajectories
985 10: $\theta_s^{(0)} \leftarrow \theta_s; \mathcal{V}_{\theta_s} \leftarrow \{\Delta : \|\Delta\|_F \leq \eta \|\theta_s\|_F\}$
986 11: **for** $i = 0, \dots, K-1$ **do**
987 12: $\mathbf{g} \leftarrow \nabla_{\theta} \mathcal{L}_s(\mathbf{p}_{\theta}(\mathbf{x}_s), \mathbf{e}(c))|_{\theta=\theta_s^{(i)}}$
988 13: $\mathbf{u} \leftarrow \mathbf{g}/(\|\mathbf{g}\|_F + \epsilon)$
989 14: $\theta_s^{(i+1)} \leftarrow \Pi_{\theta_s + \mathcal{V}_{\theta_s}}(\theta_s^{(i)} + \beta \mathbf{u})$
990 15: $\mathbf{G}_s \leftarrow \mathbf{G}_s + \text{PCI}(\mathbf{x}_s, c, \theta_s^{(i)}) \cdot \mathbf{g}$
991 16: **end for**
992 17: **end for**
993 18: **end while**
994 19: Per-layer normalization and path-refined masks:
995 19: $\tilde{\mathbf{g}}_s^{\text{path}} \leftarrow \text{Norm}(|\mathbf{G}_s|)^{\gamma}$ for $s \in \{\text{nat, rob}\}$; $\mathbf{M}_{\text{nat}}^{\text{path}} \leftarrow (\mathbf{1} - \tilde{\mathbf{g}}_{\text{rob}}^{\text{path}})^{\kappa}, \mathbf{M}_{\text{rob}}^{\text{path}} \leftarrow (\mathbf{1} - \tilde{\mathbf{g}}_{\text{nat}}^{\text{path}})^{\kappa}$
996 20: **if** quantile cap q is specified **then**
997 21: Apply per-layer caps:
998 21: $\mathbf{M}_{\text{nat}, \ell}^{\text{path}} \leftarrow \min(\mathbf{M}_{\text{nat}, \ell}^{\text{path}}, t_{q, \ell}^{\text{rob}}), \mathbf{M}_{\text{rob}, \ell}^{\text{path}} \leftarrow \min(\mathbf{M}_{\text{rob}, \ell}^{\text{path}}, t_{q, \ell}^{\text{nat}})$
999 22: **end if**
1000 22: Re-weight task vectors and merge:
1001 23: $\tau_{\text{nat}}^* \leftarrow \mathbf{M}_{\text{nat}}^{\text{path}} \odot \tau_{\text{nat}}, \tau_{\text{rob}}^* \leftarrow \mathbf{M}_{\text{rob}}^{\text{path}} \odot \tau_{\text{rob}}, \tau^* \leftarrow \lambda \tau_{\text{nat}}^* + (1 - \lambda) \tau_{\text{rob}}^*$
1002 24: **return** merged vector τ^* and parameters $\theta_{\text{PISTOLE}}(\lambda) = \theta_0 + \tau^*$
1003

1004
1005 Hence, the expectation of the remainder term is $\mathcal{O}(\sigma^3)$, validating the order claimed in Eq. (21).
1006

1007 Subtracting $\mathbf{p}_c(\mathbf{x}; \theta)$ from Eq. (21) and dividing by $\mathbf{p}_c(\mathbf{x}; \theta) > 0$ (keeping terms up to $\mathcal{O}(\sigma^2)$)
1008 yields:
1009

$$\mathbb{E}\left[\frac{\mathbf{p}_c(\mathbf{x}; \theta + \Delta) - \mathbf{p}_c(\mathbf{x}; \theta)}{\mathbf{p}_c(\mathbf{x}; \theta)}\right] = \frac{\sigma^2}{2} \frac{\text{Tr}(\mathbf{H}_c(\theta))}{\mathbf{p}_c(\mathbf{x}; \theta)} + \mathcal{O}(\sigma^3). \quad (23)$$

1010 For sufficiently small σ^2 , the leading term dictates the sign, and the outer absolute value in the
1011 definition of our proposed PCI (Definition 1) therefore keeps the magnitude and removes the sign.
1012 Consequently, we obtain:
1013

$$\text{PCI}(\mathbf{x}, c, \theta) = \frac{\sigma^2}{2} \frac{\text{Tr}(\mathbf{H}_c(\theta))}{\mathbf{p}_c(\mathbf{x}; \theta)} + \mathcal{O}(\sigma^3), \quad (24)$$

1014 establishing the quadratic estimation in Eq. (19). □
1015

1021 **E PISTOLE: FULL ALGORITHMIC SPECIFICATION**
1022

1023 This section instantiates the procedure described in the main text (*cf.* Sections 3.3 and 3.4). The
1024 routine first constructs robust inputs for the `robust` branch via the PGD adversary generation scheme,
1025 then traces short *adversarial parameter trajectories* around each fine-tuned solution. Along these

		Clean Captioning		Adversarial Captioning	
1026			CLIP: A man is skateboarding in a parking lot.		CLIP: A man riding a motorcycle on the road.
1027			TeCoA: A man is riding a surfboard on the beach.		TeCoA: A person is sitting at a desk using a laptop.
1028			PMG: A man skateboarding on the street next to a car.		PMG: A boy riding a skateboard on the street while holding a dog.
1029		Clean Image	FARE: A man skateboards with a car behind.		FARE: Skater rolls through traffic as cars approach from behind.
1030			TGA: A person snowboarding on a snowy slope.		TGA: A group of people are sitting around a table in an office.
1031			PISTOLE: A man is skateboarding in a parking lot.		PISTOLE: A man is skateboarding in a parking lot.
1032					
1033					
1034					
1035					
1036					
1037					
1038					
1039					
1040		Clean Image	Clean Captioning	Adv. Image	Adversarial Captioning
1041			CLIP: A bunch of skis are lined up on a ski rack.	$\epsilon = 2/255$	CLIP: A parking lot filled with cars in the sun.
1042			TeCoA: A pile of skis and ski poles are leaning against a metal pole.		TeCoA: A pile of bicycles are leaning against a metal fence.
1043			PMG: Many pairs of skis and ski poles are leaning against a rack.		PMG: A group of people walking through a snowy village street.
1044			FARE: A pile of skis and ski poles are leaning against a wall.		FARE: Several snowboards are stacked together on the ground.
1045			TGA: A rack of fishing rods near a lake.		TGA: A row of surfboards standing upright on a sandy beach.
1046			PISTOLE: A bunch of skis are arranged neatly in racks outdoors.		PISTOLE: Skis and snowboards organized neatly in racks.
1047					
1048					
1049					
1050					
1051					
1052					
1053					
1054					
1055			Question: What movie is being advertised?		
1056		Clean Image	Clean VQA		
1057			CLIP: Teenage mutant ninja turtles		
1058			TeCoA: None		
1059			PMG: Teenage mutant ninja turtles		
1060			FARE: Teenage mutant ninja turtles		
1061			TGA: None		
1062			PISTOLE: Teenage mutant ninja turtles		
1063					
1064					
1065					
1066					
1067					
1068					
1069			Question: What's the title of the book to the very top right?		
1070		Clean Image	Clean VQA		
1071			CLIP: Frozen star		
1072			TeCoA: Shopaholic		
1073			PMG: Frozen star		
1074			FARE: Sleeping where they fall		
1075			TGA: Sleeping beauty		
1076			PISTOLE: Frozen star		
1077					
1078					
1079					

Figure 6: **Image captioning** under clean and adversarial inputs (ℓ_∞ -norm perturbation $\epsilon = 2/255$) using LLaVA-1.5 coupled with vision encoders from the compared methods on COCO. PISTOLE maintains semantic consistency across perturbations, whereas alternatives often drift or hallucinate.

		Clean VQA		Adversarial VQA	
1053		Question: What movie is being advertised?		Question: What movie is being advertised?	
1054		Clean Image	Adv. Image $\epsilon = 2/255$	Adversarial VQA	
1055			CLIP: Ura		
1056			TeCoA: None		
1057			PMG: Turtles		
1058			FARE: Turkeys		
1059			TGA: None		
1060			PISTOLE: Teenage mutant ninja turtles		
1061					
1062		Question: What's the title of the book to the very top right?		Question: What's the title of the book to the very top right?	
1063		Clean Image	Adv. Image $\epsilon = 2/255$	Adversarial VQA	
1064			CLIP: None		
1065			TeCoA: Shopaholic		
1066			PMG: Frozen		
1067			FARE: Sleeping where they fall		
1068			TGA: None		
1069			PISTOLE: Frozen star		
1070					
1071					
1072					
1073					
1074					
1075					
1076					
1077					
1078					
1079					

Figure 7: Qualitative **visual question answering** under clean samples and their adversarial counterparts ($\epsilon = 2/255$) on TextVQA, using LLaVA-1.5 with different robust vision encoders. PISTOLE preserves correct answers across both conditions, whereas baselines often drift or abstain.

trajectories, it accumulates PCI -weighted gradients, converts them to per-layer normalized sensitivity scores, and forms complementary, path-refined masks. Finally, it re-weights the natural/robust task vectors and merges them with mixing coefficient λ .

In practice, the method is training-free and efficient: small step counts suffice; ϵ stabilizes normalization; (γ, κ) tune mask dynamic range and selectivity; and the quantile cap q enforces a first-order non-interference budget. Unless otherwise stated, we apply our PISTOLE method to the vision encoder parameters, but the specification in Algorithm 1 is architecture-agnostic.

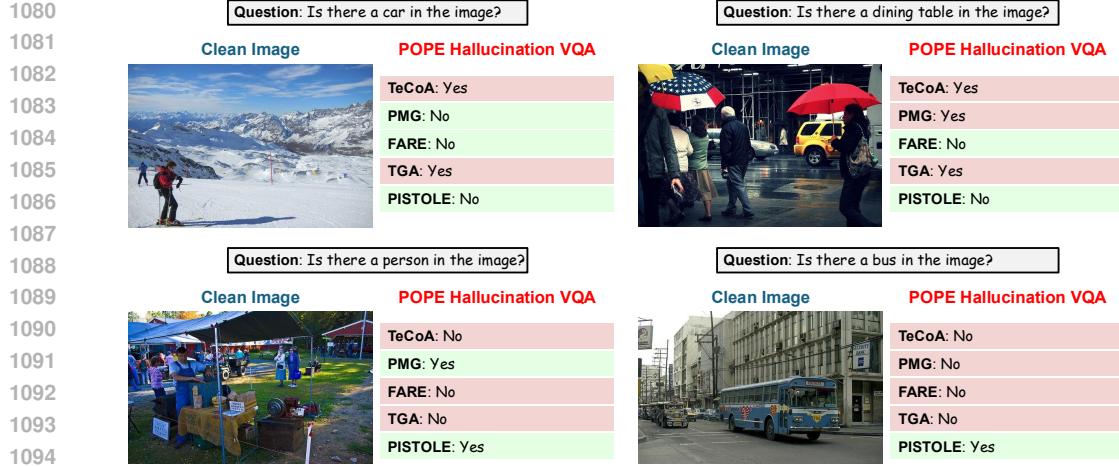


Figure 8: Visual examples on **POPE hallucination benchmark** using LLaVA 1.5 with vision encoders from different adversarial VLM learning schemes. PISTOLE reduces yes/no hallucinations and maintains pixel-grounded responses under perturbation.

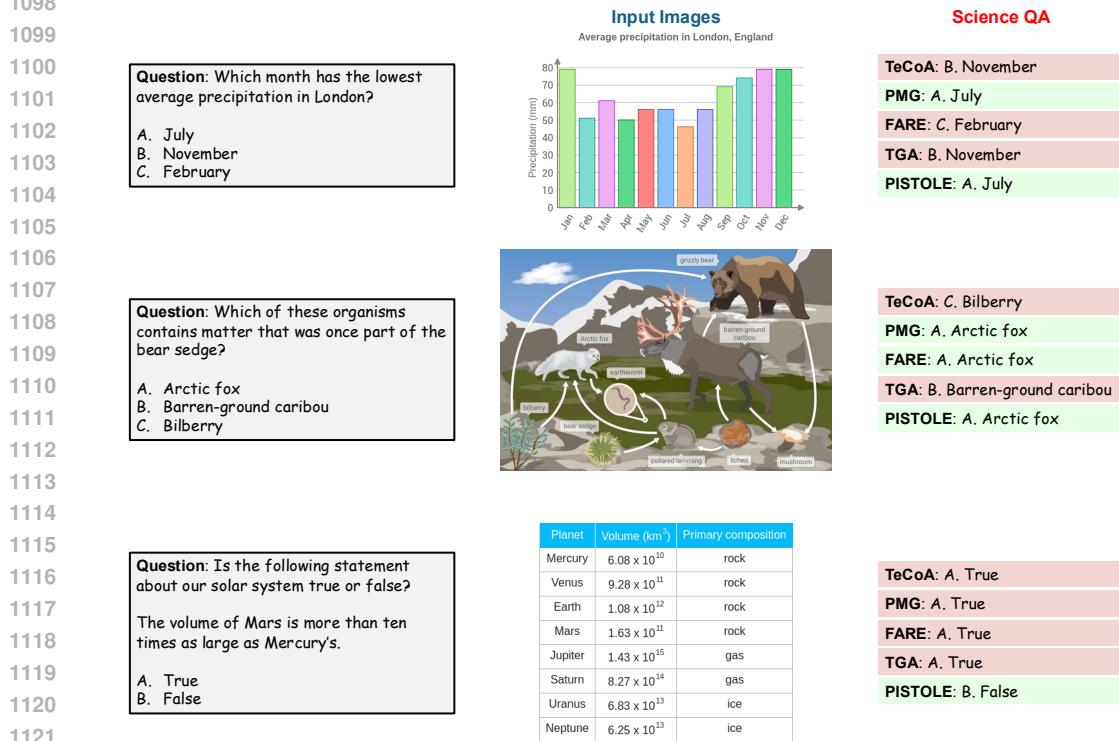


Figure 9: Qualitative examples for **science question answering w/ CoT** using LLaVA-1.5 with different robust vision encoders. Our PISTOLE method maintains evidence-consistent answers under perturbations, while alternatives often drift toward prior-biased choices.

F VISUALIZATIONS OF ZERO-SHOT TRANSFER TO DOWNSTREAM TASKS

In this section, we present qualitative comparisons across adversarial learning baselines and our task vector merging method (**PISTOLE**) for zero-shot transfer across diverse downstream vision-language tasks, *e.g.*, captioning and visual question answering, under clean inputs and adversaries.

Zero-shot transfer to image captioning. Figure 6 shows that equipping LLaVA-1.5 with PISTOLE's merged encoder yields captions that remain semantically stable from clean to adversarial images (ℓ_∞ -norm perturbation $\epsilon = 2/255$). Competing encoders frequently drift across domains or

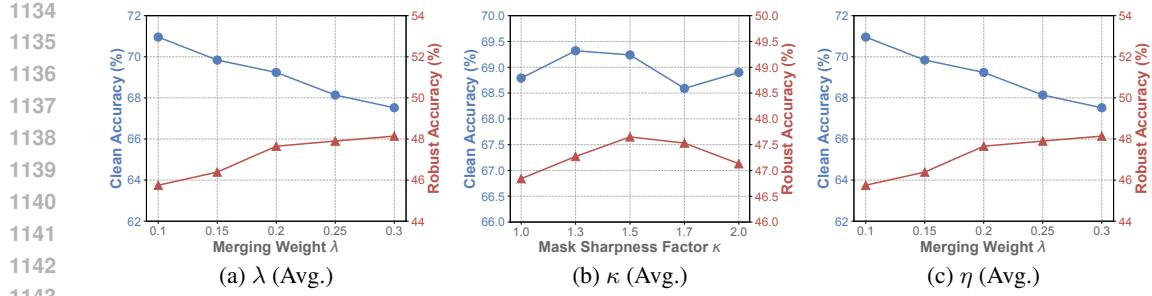


Figure 10: Hyper-parameter (merge weight λ , mask sharpness factor κ , and parameter-trajectory radius scaling factor η) sensitivity analyses of PISTOLE.

hallucinate objects/attributes under perturbation, while PISTOLE preserves object grounding and scene semantics—evidence of stronger invariance to input attacks and distribution shift.

Zero-shot transfer to visual question answering. Figure 7 illustrates two TextVQA cases in which PISTOLE maintains answer consistency from clean to adversarial inputs (*e.g.*, “Teenage Mutant Ninja Turtles” and “Frozen star”), while competing encoders frequently switch to incorrect strings or “None”. These qualitative trends align with our quantitative gains associated with a higher sum of clean and robust VQA accuracy shown in the main text.

Zero-shot transfer to POPE object hallucination. We here illustrate POPE object hallucination cases across its question-sampling protocols in Figure 8. The baseline encoders frequently follow language priors, thus answering “Yes” for common objects and “No” for unlikely ones, regardless of image evidence. In contrast, our PISTOLE method aligns decisions with the pixels, lowering both false positives (hallucinated objects) and false negatives (missed objects), and preserving consistent judgments between clean and adversarial inputs.

Zero-shot transfer to science question answering w/ CoT. Figure 9 contrasts predictions on representative ScienceQA items. Under adversarial perturbations, prior robust CLIP variants frequently select high-prior but visually unsupported options, whereas PISTOLE remains aligned with the chart/diagram context and the underlying facts, yielding stable, evidence-grounded answers. These cases suggest that stabilizing the vision backbone with PISTOLE curbs brittle pattern-matching and supports more reliable multi-step reasoning.

G EXTENDED ANALYSES OF PISTOLE

G.1 EFFECT OF TASK VECTOR RE-WEIGHTING

We compare three re-weighting strategies for task vector merging: i) *no mask* (uniform addition), ii) a *random mask* matching the layerwise sparsity, and iii) *gradient-informed stability masks* in Eq. (6) in Table 11. Uniform addition yields the weakest trade-off, reproducing the near-linear clean–robust antagonism. Random masking offers small gains by incidentally pruning conflicts but lacks guarantees. In contrast, our gradient-informed strategy consistently achieves the best trade-off, bending the frontier toward interior optima by suppressing counterpart-sensitive coordinates. This aligns with Theorem 1 and Corollary 1, which proves that complementary masks contract cross-objective first-order interference, unlike other schemes.

G.2 HYPERPARAMETER SENSITIVITY ANALYSES.

In this section, we study the effect of three core hyperparameters in our **PISTOLE**, the merge weight λ (Eq. (11)), the mask sharpness factor κ (Eq. (6)), and the parameter-trajectory radius scaling factor η (Eq. (8)), while holding all other settings fixed. Figures 10 plot both the average clean and robust accuracy across the 14 evaluation datasets.

1188 **Merge weight λ .** Sweeping λ from 0.1 to 0.3 reveals the expected trade-off: clean accuracy increases with larger weight on the natural task vector, while robustness decreases roughly monotonically. The frontier is bowed (not linear), yielding an interior optimum of the Clean+Robust **Sum** near $\lambda = 0.2$, which we adopt as default. Trends are stable across seeds, indicating that λ primarily sets the accuracy–robustness operating point rather than introducing instability.

1193 **Mask sharpness factor κ .** Sharpening the complementary masks by increasing κ (Eq. (6)) improves 1194 clean accuracy and raises robust accuracy up to an interior peak, after which robustness plateaus 1195 or dips slightly. The trade-off is maximized near $\kappa = 1.5$, which we use by default to attenuate 1196 counterpart-sensitive coordinates without over-pruning.

1197 **Parameter-trajectory radius scaling factor η .** We can observe that η controls the neighborhood 1198 explored by the adversarial parameter trajectory: too small under-explores the loss geometry, while 1199 too large drifts off the manifold. As shown in the attached sweep, both clean and robust accuracy 1200 peak at a moderate radius $\eta = 1 \times 10^{-3}$. It can also be seen that smaller parameter-level perturbation 1201 radii yield limited gains, and larger ones degrade the trade-off.

1203 G.3 COMPUTATIONAL COST COMPARISONS

1205 **Training-free merging.** PISTOLE 1206 operates on *off-the-shelf* naturally 1207 and adversarially fine-tuned VLMs 1208 and performs a *one-shot* merge: we 1209 estimate stability masks from a small 1210 calibration split (no epochs of weight 1211 updates), then apply element-wise re- 1212 weighting to the two task vectors and 1213 compose the final encoder. In contrast, 1214 prior adversarial VLM learning approaches 1215 run full optimization loops with inner PGD 1216 steps and (often) model forward propagation, 1217 incurring substantial GPU time. To make costs comparable 1218 across methods, we count gradient evaluations 1219 and auxiliary forwards. As shown in Table 12, 1220 we can observe that our PISTOLE 1221 method attains the best 1222 clean–robust trade-off while being $\sim 8\text{--}11 \times$ faster 1223 than prior adversarial fine-tuning 1224 baselines.

1225 Table 12: Computational cost (training time) comparison
1226 between PISTOLE and other adversarial learning methods.

Method	Clean	Robust	Sum	Time
TeCoA	61.56	43.26	104.82	6.2 hours
PMG	64.46	45.74	110.20	8.6 hours
FARE	65.50	42.97	108.47	7.6 hours
TGA	62.11	45.19	107.30	8.0 hours
PISTOLE	69.24	47.65	116.89	0.8 hours

1227 **Complexity analysis.** Let N_c be the size of the (small) calibration split, m the number of PGD 1228 steps for adversarial inputs, and K the number of parameter-trajectory steps. PISTOLE does: (i) m 1229 input-gradient evaluations to generate adversarial inputs for the robust branch (same inner loop as 1230 standard adversarial training), and (ii) for each branch, K parameter-gradient evaluations along the 1231 adversarial parameter trajectory, each weighted by PCI. Thus, the total number of gradient evaluations 1232 to estimate the masks is $O(N_c(m + 2K))$, run once over a calibration split with no weight 1233 updates and no multi-epoch optimization loop. In contrast, adversarial fine-tuning over E epochs 1234 on the full training set of size N has complexity $O(EN(m + 1))$, since each iteration both runs 1235 PGD and performs a parameter update. In practice, E is large (multiple epochs), while K is a small 1236 constant, and $N_c \ll N$, so the overall cost of PISTOLE is substantially lower even though we do 1237 multiple forward–backward passes during calibration.

1238 G.4 COMPARISON WITH STANDARD TASK VECTOR MERGING METHODS

1239 Recall from Section 2 that Ties-Merging 1240 (Yadav et al., 2023) enforces sign- 1241 consistent sparsification and AdaMerging 1242 (Yang et al., 2024) learns per-parameter 1243 weights for multi-task settings. Table 13 1244 compares our PISTOLE with these stan- 1245 dard parameter-space merging methods 1246 that combine the same naturally and 1247 robustly fine-tuned CLIP models in the 1248 identical configuration. Across 14 datasets, 1249 our method attains the best clean and robust 1250 accuracy, improving the clean-robust trade-off 1251 over naive task-vector addition, Ties-Merging, 1252 and AdaMerging. We attribute these gains 1253 to modeling *parameter-space sensitivity and local loss geometry*: PISTOLE

1254 Table 13: Average performance (%) over 14 datasets
1255 for merging the same natural and robust CLIP models
1256 under the identical configuration.

Task Vector Merging	Clean	Robust	Sum
Vanilla Merging	66.57	44.54	111.11
Ties-Merging	67.91	46.27	114.18
AdaMerging	68.23	46.52	114.75
PISTOLE	69.24	47.65	116.89

Figure 11: On an adversarially perturbed image, both the robust source model and PISTOLE output a wrong answer, despite the natural model giving a partially correct answer on the clean input, illustrating failures that merging cannot fix.

uses gradient-informed complementary masks and refines them along adversarial parameter trajectories to account for sensitivity and curvature during merging—factors overlooked by prior methods.

G.5 FURTHER EXPLANATION OF THE "TRAINING-FREE" ASSUMPTION

Our intent is to emphasize that PISTOLE performs no additional gradient-based optimization for each downstream task once such source models are available. First, this assumption is aligned with common practice in the task-vector/model-editing literature Ilharco et al. (2023); Ortiz-Jimenez et al. (2023), where methods start from already fine-tuned checkpoints and apply post-hoc parameter-space operations. In the VLM ecosystem, high-quality natural and robust checkpoints (e.g., CLIP-/OpenCLIP-style models and their adversarially trained/fine-tuned counterparts) are increasingly released and reused as off-the-shelf backbones. PISTOLE is designed precisely for this regime: given pre-existing natural and adversarial models, we can cheaply obtain a continuum of merged models with improved clean–robust trade-offs without any further training.

Second, even when a pair of natural/robust models must be trained once, this one-time cost is amortized over many downstream tasks/domains. In contrast, standard adversarial fine-tuning typically re-optimizes the model for each new target task. While our PISTOLE exhibits generalizable robustness across diverse downstream vision-language tasks.

G.6 ANALYSIS ON FAILURE CASES

Figure 11 illustrates a typical failure mode that PISTOLE cannot fix. Our method operates by interpolating and masking between a natural and an adversarially trained model in parameter space, so it can only reshuffle how much each endpoint contributes. When both source models systematically fail on certain patterns (e.g., rare classes or heavily shifted domains), the merged model likewise produces wrong answers and may even accumulate errors, as seen in the adversarial example where both the robust source model and PISTOLE are incorrect despite the natural model being partially correct.

G.7 BROADER PARAMETER-SPACE CONTEXT (MORE DISCUSSION)

Beyond classical model soups and linear task-vector addition, several recent VLM-specific methods also operate directly in parameter space. WATT Osowiecki et al. (2024) adapts CLIP under domain shift via test-time updates followed by weight averaging of the adapted parameters, improving test-time robustness. GeoLangBind Xiong et al. (2025) trains a remote-sensing VLM and uses a progressive multimodal weight-merging strategy to aggregate knowledge from multiple visual backbones within a single VLM. MoTE Zhu et al. (2024) adds temporal experts on top of a VLM and employs weight-merging regularization in parameter space to enhance the trade-off. Our work is complementary: instead of merging across domains, backbones, or experts, PISTOLE performs stability-aware merging between natural and adversarially trained vision encoders to reconcile clean accuracy and robustness.

H LIMITATIONS AND BROADER IMPACT.

H.1 BROADER IMPACT

PISTOLE targets a central safety concern in foundation VLMs: robustness to adversarial perturbations. By reconciling clean accuracy and robustness through a **training-free, plug-and-play** merge

1296 of off-the-shelf natural and robust task vectors, our approach can make multimodal systems more **re-**
 1297 **liable in downstream applications** (captioning, VQA, hallucination mitigation, and scientific QA).
 1298 The method is compute-efficient, requiring only a short calibration pass and no weight updates,
 1299 thereby lowering the environmental and financial cost of robustness compared to full adversarial
 1300 fine-tuning. Because PISTOLE composes existing checkpoints rather than collecting new data, it
 1301 also **eases reproducibility and facilitates community vetting**. At the same time, improved ro-
 1302 bustness should be paired with **standard safeguards** (bias audits, red-teaming, and attack-aware
 1303 evaluation) to ensure equitable performance across subpopulations and **responsible deployment**.

1304 H.2 LIMITATIONS

1305 While PISTOLE shows strong empirical gains and formal guarantees, several limitations remain.
 1306 We note them alongside why their impact is limited or how we partially mitigate them.

- 1307 • **Dependence on off-the-shelf task vectors.** PISTOLE assumes access to natural and robust
 1308 fine-tuned VLMs to form task vectors. In practice, this is a minor constraint: high-quality CLIP-
 1309 family checkpoints (natural and adversarial) are widely available in open-source repositories, and
 1310 our method is agnostic to the specific recipe used to produce them. Moreover, Section 4.3 (Tables
 1311 9&10) shows robustness to the choice of source models, and our masks provably attenuate cross-
 1312 objective interference (Theorem 1).
- 1313 • **Inheritance of upstream biases.** Merging cannot remove biases present in the component
 1314 models and may propagate spurious correlations. Our gradient-informed masks down-weight
 1315 counterpart-sensitive (often brittle) coordinates, which empirically reduces hallucination and im-
 1316 proves grounding, but it does not replace fairness auditing. We report object-hallucination and
 1317 reasoning improvements, while broader bias assessments are a valuable direction for future work.
- 1318 • **Scope of architectures and tasks.** Most experiments use CLIP-like encoders and open-
 1319 vocabulary classification/captioning/VQA. Although we show transfer across backbones and
 1320 tasks, coverage is not exhaustive (e.g., video, speech–vision). The merge is model-agnostic and
 1321 only requires gradients for calibration, and our curvature results (Figure 5, Theorem 2) suggest
 1322 applicability beyond the tested settings/applications.

1323 I LLM USAGE DECLARATION/DISCLOSURE.

1324 We used a Large Language Model (LLM) (e.g., ChatGPT-5) solely for polishing: grammar, wording,
 1325 and LaTeX phrasing. **The LLM did not generate ideas, methods, experiments, analyses, or**
 1326 **results.** All technical content and claims were authored and verified by us. Outputs were reviewed
 1327 and edited by the authors, and all citations/equations were checked manually. No proprietary or
 1328 non-public data is provided to the model.