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ABSTRACT

We propose a method to tackle misuses of large language models beyond the
identification of machine-generated text. While existing methods focus on de-
tection, some malicious misuses demand tracing the adversary user for counter-
acting them. To address this, we propose “Multi-bit Watermark via Position Al-
location”, embedding traceable multi-bit information during language model gen-
eration. Leveraging the benefits of zero-bit watermarking (Kirchenbauer et al.,
2023a), our method enables robust extraction of the watermark without any model
access, embedding and extraction of long messages (≥ 32-bit) without finetuning,
and maintaining text quality, while allowing zero-bit detection all at the same time.
Moreover, our watermark is relatively robust under strong attacks like interleaving
human texts and paraphrasing.

1 INTRODUCTION

How can we take a step further from merely identifying machine-generated text to proactively tack-
ling misuses of large language models? The emergence of human-like language models has neces-
sitated the development of various methods to detect machine-generated texts through techniques
such as zero-shot detection, supervised training, watermarking, and more (Mitchell et al., 2023;
Wang et al., 2023b; Kirchenbauer et al., 2023a; Krishna et al., 2023). These endeavors focus on the
crucial task of identifying machine-generated content, which serves as a pivotal step in mitigating
the potential harm caused by such text.

However, when it comes to more pernicious misuses of large language models, such as the dissem-
ination of misinformation and propaganda on social media platforms, the stakes are considerably
higher, potentially leading to the erosion of social trust (Valenzuela et al., 2022). Notable instances
that exploited automated bots in the past include manipulating an election campaign (Badawy et al.,
2018), spreading disinformation about the Russian invasion of Ukraine (Pierri et al., 2023), and pro-
moting products through fake reviews (Annie, 2023). With the rapid pace at which large language
models are currently developed, similar threats will be automated in a much more rapid and delicate
manner in the future.

In these scenarios, merely identifying the machine-generated text may not suffice for the language
model providers. Instead, the ability to trace back to the adversary user responsible for generating
the content becomes pivotal in counteracting such misuses. By doing so, the API providers can take
a precursory measure to ban these users from their systems. More importantly, this allows media
and social platforms, along with API providers, to collaborate with law enforcement authorities and
take more decisive actions. All in all, watermarking the user information (or part thereof) can hold
the adversary user accountable for potential harms facilitated through language model APIs without
having to store user queries (Krishna et al., 2023), which would be prohibitively expensive and
concern ordinary users who value privacy. Additionally, watermarking can enable language model
providers to bind meta-data (e.g. model versions) for tracing the provenance of the language model
output.

All this can be achieved by embedding multi-bit information. In this study, we demonstrate that
this can be realized on top of the recently proposed zero-bit watermarking method (Kirchenbauer
et al., 2023a) in an extremely simple way without sacrificing the text quality. Zero-bit watermarking
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works by randomly favoring a “greenlist” of tokens at each generation. The selection of a greenlist
from the vocabulary set is determined by a random seed generated by a pseudo-random function.

Our proposed method called Multi-bit watermark via Position Allocation (MPAC) first allocates
each token pseudo-randomly onto a single position of the message to be embedded. Then the mes-
sage content at the allocated position decides which subset of tokens to favor. We show that the
zero bit watermarking method can be viewed as a special case of encoding the same single bit mes-
sage. To increase load capacity, we can further partition the vocabulary into multiple “colored” lists
instead of a single green list, effectively encoding multiple states for every token. By viewing our
method through coding theory, we analyze what factors affect the performance of our method and
devise techniques for improvement. We also discuss and analyze the limitations of MPAC in Section
5 – namely, the trade-off between watermark detection and bit-width.

Since our method works on top of zero-bit watermarking, it leverages most of the advantages: (1)
Multi-bit message can be extracted without access to the model parameters or the API, allowing
other parties to extract the adversary information (e.g. timestamp, ID) if given access to the extrac-
tion algorithm. (2) It can be done on the fly without pretraining or finetuning the model and can
embed and extract long messages (≥ 32-bit) with negligible overhead. (3) The watermark is not
fragile against realistic corruptions such as interleaving with human texts or paraphrasing. This has
not been previously demonstrated in other post-processing multi-bit watermarks (Yoo et al., 2023)
or stenography methods (Ziegler et al., 2019; de Witt et al., 2023). (4) Finally, our watermarking
framework can distinguish between machine and human text and simultaneously embed multi-bit
information while maintaining the same text quality as its zero-bit counterpart. Our experiments
demonstrate that 8-bit messages can be embedded effectively in short text lengths (∼100 tokens)
with over 90% bit accuracy. We hope this opens up new research directions to proactively counter-
acting malicious use cases of language model APIs.1

2 RELATED WORKS

Watermarking has been studied in various types of multimedia such as image (Potdar et al., 2005),
video (Asikuzzaman & Pickering, 2017), audio (Hua et al., 2016), and natural language (Topkara
et al., 2005). Following previous works (Zhu et al., 2018; Luo et al., 2020), we use the term water-
marking to denote embedding information into natural language in a manner that is robust against
possible attacks given a watermarked text – in our case, this is the output generated by a language
model given the prompt. This differs from steganography(Cheddad et al., 2010; Fang et al., 2017;
Ziegler et al., 2019; de Witt et al., 2023), which focuses more on the undetectability of a secret mes-
sage that is embedded in the multimedia rather than robustness. For instance, Ziegler et al. (2019)
rely on arithmetic coding every token, rendering a burst error when the first token is substituted or
removed.

Recently, methods relying on neural networks have shown progress in natural language watermark-
ing, outperforming traditional methods that rely on rule-based watermarks (Topkara et al., 2006b;a;
Atallah et al., 2001). Abdelnabi & Fritz (2021) proposed an end-to-end framework where a decoder
network predicts the encoded message. Yang et al. (2022) improved upon the quality of the water-
marked text by using an algorithmic approach. Yoo et al. (2023) focused on robustness and capacity,
outperforming previous works on the two aspects. However, since the proposed method works at
sentence-level, any addition or removal of a sentence will fail to extract the watermark. Moreover,
these works cannot distinguish non-watermarked texts, making them unsuitable for distinguishing
between machine text and human text.

Meanwhile, directly watermarking language models in a zero-bit manner during token genera-
tion has emerged as a promising approach for distinguishing language model outputs from human
text (Kirchenbauer et al., 2023a; Aaronson & Kirchner, 2023) while achieving robustness against
realistic attacks as it can reinforce the watermark every token (Kirchenbauer et al., 2023b). Sev-
eral works have improved upon Kirchenbauer et al. (2023a), e.g., in low entropy generation tasks
such as code generation (Lee et al., 2023), undetectability of the watermark (Christ et al., 2023),
and its robustness (Munyer & Zhong, 2023). We focus on extending the prior work for a more
proactive counteraction towards identifying malicious users of language models by embedding any
information while maintaining the key advantages.

1https://github.com/anoymous92874838/multibit-watermark-for-llms
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Concurrent to our work, Fernandez et al. (2023a) propose a technique for encoding a multi-bit mes-
sage by providing a message-specific greenlist through shifting the vocabulary list dependent on the
message. Similarly, Wang et al. (2023a) use the message content as the hashing key before selecting
the greenlist and further utilizes an auxiliary language model for enhancing text quality. Crucially,
both works use the entire message content directly during embedding as input to the random seed
generator, which requires computing through the exponential number of possible messages during
decoding. This restricts the length of the message due to computational and/or memory limitations.
To give a rough estimate of the required message length for encoding a user ID, consider the POSIX
(Group, 2018) standard used when creating usernames in operating systems. 65 characters (∼7 bits)
are permitted by POSIX, meaning at least 35 bits are required to encode a username of 5 characters.
Accordingly, works in image watermarking embeds messages easily over 32-bits (Zhu et al., 2018;
Zhao et al., 2023; Fernandez et al., 2023b). Our method allows the embedding of long messages
without any added latency by encoding each bit position independently.

3 METHOD

We briefly review zero-bit watermarking introduced by Kirchenbauer et al. (2023a) and elaborate on
extending this method to multi-bit watermarking. Then, we analyze our framework from the lens of
coding theory and introduce additional techniques for improving the watermark performance.

3.1 ZERO-BIT WATERMARKING (KIRCHENBAUER ET AL., 2023A)

A watermark is embedded by biasing the language model to output a certain subset of tokens. Given
an autoregressive language model that predicts the next token with vocabulary V , a subset of tokens
is randomly selected from the vocabulary at each token step t and forms a green list Gt. The logit
scores lt ∈ R|V | are modified towards selecting the green-listed tokens in favor of the other tokens
by adding a bias term δ to the logits in Gt. Instead of fixing the greenlist using rule-based heuristics
such as spelling or synonym variations (He et al., 2022), the greenlist is selected (pseudo-)randomly
at each time step to minimize a noticeable shift in text distributions. At each time step, a seed s is
outputted depending on the previous h tokens using a pseudo-random function f : Nh → N, and s
is used to sample Gt from V .

At decoding, the greenlist can be recovered by using the same pesudo-random function f . The
presence of a watermark is determined by counting the number of tokens in the greenlist. For a
human-generated text that has no knowledge of the greenlist rule, a token will be from the greenlist
with the probability γ, the proportion of the greenlist size compared to the entire vocabulary. Without
the knowledge of the greenlist (null hypothesis), the number of tokens in the greenlist (g) follows a
binomial distribution. (Kirchenbauer et al., 2023a) used the normal approximation to the binomial
distribution to compute the z-statistics for a text with T tokens: z = g−γT√

γ(1−γ)T
.

3.2 MPAC: EXTENDING TO MULTI-BIT WATERMARK

We first present an overview of our method and further elaborate on the details in the subsequent
section. The objective of multi-bit watermarking is to embed and extract a message m ∈ Σb where
Σ denotes the r-nary possible strings, or more commonly referred to as the alphabet. For a binary
message, Σ = {0, 1}. We let p ∈ {0, . . . , b − 1} denote the position of the message and m[p] ∈
{0, . . . , r − 1} the message content at that position. Hereafter, we use [a] to denote the integer set
{0, . . . , a− 1}.
Our proposed method Multi-bit watermarking via Position Allocation (MPAC) works by partition-
ing the tokens to message positions and enlarging the size of the alphabet through color-listing. First,
notice that zero-bit watermarking can be viewed as watermarking a single bit of information stating
the existence of a watermark (m=0). In essence, each token generated by the language model is a
signal in favor of the watermark (See Fig. 1-Right).

Message Encoding In MPAC, we allocate the signals (tokens) into multiple positions. For instance,
when the message content at a position is ‘0’, we sample from the greenlist, while doing otherwise
when the message is ‘1’. This allows encoding multi-bit messages of arbitrary length as long as
the language model generates sufficient tokens. To further increase the bit capacity, we color the
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Figure 1: An overview of our method MPAC. The number inside a token (e.g. p = 1 ) denotes
the allocated position, while the color signifies the message content at that position. At Step 1, a
position is sampled prior to generating a token. At Step 2, the message at that position determines
the token subsets to favor. Right: Zero-bit watermarking can be viewed as a special case of multi-bit
watermarking.

vocabulary set with r “colors” instead of using a single greenlist, increasing the alphabet to Σ = [r].
The number of colors can be determined by the greenlist proportion γ, i.e. r = ⌊ 1γ ⌋. Thus, this
allows encoding r states into each token as opposed to encoding a binary state (whether the token is
selected from the greenlist or not). Given a binary message of length b, the message is convereted to
radix r attaining mr ∈ [r]b̃ where b̃ = ⌈ b

log2 r ⌉. In Figure 1 Left, we illustrate the case of r = 4 and
b = 8, where the 8-bit message is converted into radix 4, resulting in an effective message length
of 4 (b̃ = 4)2. At each token generation, the message content at the assigned position p determines
which colorlist to add δ to. If the message content is ‘0’, the tokens from the first list (red in Fig. 1)
are favored. We discuss the design choices for allocating the positions in the next section.

Our method is extremely easy to implement over the zero-bit watermarking scheme. We highlight
the steps in colors that are specific to ours. Given t − 1 prefix tokens X1:t−1, bit message m, its
r-radix converted form mr, and pseudo-random function f , the tth token is generated by

1. Compute hash of tokens s = f(Xt−h:t−1). Use s as a seed for a random number generator.
2. p← sample([b]) # p is the position of the message.
3. m←mr[p] # m is the message content at position p.
4. Permute vocabulary Vt using s as seed.
5. Partition Vt = [C0t , · · · , Cr−1

t ] discarding remainders if any.
6. Add δ to token logits in Cmt .

Note that zero-bit watermarking can be seen as a special case of embedding the same single bit
message (b = 1, r = 2, and m = 0) as shown in Figure 1-Right.

Message Decoding Given a watermarked language model output, we determine the position and
which colorlist each token is from and increment the number of tokens in the colored lists. For
instance, for the tth token with message position p = i and the jth colorlist Cjt , we increment the
counter Wi[j]. After computing this on the entire text segment, we predict the message content by
taking the colorlist with the most tokens for each position. A more detailed algorithm is shown in
Algorithm 1.

MPAC encodes and decodes each bit position of the message independently, which brings a negli-
gible increase in the computation as the message length is increased. This is in contrast with recent
works (Wang et al., 2023a; Fernandez et al., 2023a)3 that have to compute the likelihood of all the
possible messages during decoding, which makes the embedding of long-length messages infeasible
due to exponentially growing (O(2b)) computations during decoding without additional techniques
to avoid this. In contrast, our algorithm can encode 64-bit messages (264 messages) as will be shown
in the subsequent section.

2Hereafter, we use b instead of b̃ to denote the effective message length (dimension of mr).
3See Section 7.5 of Wang et al., 2023a
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Algorithm 1: Message Decoding

Input: Watermarked text X1:T , hash context width h, effective message length b̃
Output: Predicted message m̂, number of colorlisted tokens w
/* Initialize counter */

1 Wp[m] = 0 ∀p,m
/* Count tokens in colorlists */

2 for t in [h+ 1, T ] do
3 s = f(Xt−h:t−1)

4 p = sample([b̃])
5 for m in [r] do
6 Permute Vt using s as seed
7 if Xt ∈ Gmt then
8 Wp[m] += 1

/* Predict message */
9 m̂r = “ ”

10 w = 0

11 for p in [b̃] do
12 w += max(Wp[m])
13 m̂ = argmaxm(Wp[m])
14 m̂r += str(m̂)
15 Get bit message m̂ by converting m̂r

16 return m̂, w

3.3 DESIGN CHOICES THROUGH THE LENS OF CODING THEORY

Having set out the encoding and decoding algorithm of MPAC, we elaborate on the design choices
and analyze what factors affect the performance using basic notions from coding theory adapted
from Cover (1999):

• Encoding function is a function E :M → X that maps the original message into longer,
usually redundant string where M ⊆ [r]b,X ⊆ ΣT . The rate of E is given by b

T log2 r
bits/symbol.

• p(y|x) is a noisy channel that models the transmission of the encoded message.

• A channel’s capacity is the upper bound of the rate of an encoding function in order for a
reliable transmission.

• Decoding function is a function D : Y →M that recovers the original message from y.

We first simplify our setting to embedding a single-digit message (b = 1), which does not lead to
a loss of generality as MPAC encodes each position independently. As noted earlier, each token
of a language model is a signal for embedding the message (m) by repetitively sampling from the
mth colorlist. Therefore, in MPAC our encoding function is a repetition code that maps a redundant
message content T (number of tokens) times. Our channel is the generation process of the lan-
guage model, which stochastically transmits the encoded message by sampling from the vocabulary
distribution that has been modified to favor the selected colorlist. The success probability of each
transmission depends on the magnitude of the bias δ, the entropy of the vocabulary distribution,
and, more holistically, the text distribution. The decoding function is the rule set out in Sec. §3.2,
whereby the argmax of the colorlist is predicted as the message content, i.e. majority voting.

Position Allocating Coming back to our original multi-bit message setting, the rate b
T log2 r signi-

fies that having more tokens leads to increased strength of the signal (i.e. lower rate) as more tokens
are assigned to each position. Ideally, allocating tokens to each position should (1) equally favor the
positions and (2) be robust to potential corruptions in the watermarked text. The first criterion can
be easily achieved through a rule-based scheme such as sequentially allocating positions for every k
tokens or deterministically cycling through the positions. However, while these schemes may effec-
tively retain the positions when the generated text is untouched, even a single insertion or deletion of
a word will lead to burst errors during decoding. This makes them extremely fragile under realistic
use cases where users paraphrase or edit the generated texts.

To remedy this, we use the hashing scheme that was used for permuting the colorlists: At each
token step, we sample p ∈ [b] seeded with s that was generated from the pseudo-random function
f . This allows enjoying the relative robustness of the hashing scheme towards attacks that alter the
total length (e.g. paraphrasing) or mixing snippets of human text onto the watermarked text. This
is illustrated in Appendix Fig. 6a: when 20% of human texts are mixed into the watermarked texts,
rule-based position allocation (cycle) almost falls to near-random chance (61%, 55%, 54%, and 51%
across the bit-widths), while sampling positions via hashing maintains the watermark.
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At this point, one may assume that the ratio between the number of tokens and bit-width (Tb ) deter-
mines the channel’s capacity. We show in Appendix Fig. 6b that this is not necessarily the case: The
bit error rate increases as longer messages are embedded despite the same bits per token (BPT). This
can be explained by the well-known theorem in channel coding that the noise of the signal (Shannon,
1948) also affects the channel capacity. Signal-to-noise (SNR = µ

σ ) precisely measures this quan-
tity where we define µ as the mean number of tokens per position and σ as the standard deviation.
Modeling this as a uniform multinomial distribution P ∼Multinomial(T, [ 1b · · ·

1
b ]) for simplicity,

we can get a rough estimate of SNR. Increasing both b and T at the same rate maintains µ = T/b,
but increases σ =

√
T (b− 1)/b. Fig. 6b displays the theoretical SNR (=

√
T/(b− 1), which better

explains the empirical bit error rate.

List Decoding List decoding is a well-established field in coding theory that decodes a list of mes-
sages that are within a certain hamming distance (Elias, 1991; Guruswami & Rudra, 2008; Gu-
ruswami, 2004). Inspired by this, we alter our decoding function to output candidate messages sorted
by the level of confidence. Denoting the predicted message for position i by m̂, and the observed
number of tokens in the colored list (strength of the watermark) by w = Wi[m̂], the confidence of
m̂ should be higher if w deviates from the expected mean under the null hypothesis that all colored
lists are equally likely to be sampled. We define confidence at position i as ci ∝ Pr(Wmax

i ≤ w|H0)

where Wmax
i is the maximum cell value of Wi

H0∼ Multinomial(Ti, [γ · · · γ]) where Ti is the number
of tokens assigned to position i. The distribution of Wmax

i is approximated using techniques from
Levin (1981) (See Appendix A.9).

Our algorithm can be parameterized by the confidence bound on each position:

• Input: Best prediction m̂ found by majority voting via Alg. 1, confidence bound c0
• Output: m̂1, · · · , m̂|L| ∈ L whose predictions are altered on positions with confidence under c0

Empirically, we determine c0 by constraining |L|. Note that since m̂ is always the most confident
message, we comprise L with the next confident messages. To do this, we greedily alter the positions
with the lowest confidence to the colorlist with the second largest number of tokens. Note that this
list decoding technique is not unique to ours and can be applied to other methods as long as the
decoding stage is computationally feasible.

We believe the simplicity of our multi-bit watermark scheme via position allocation makes it gener-
alizable to other zero-bit watermark approaches. An example is provided in Appendix A.10.

3.4 DETECTING MACHINE TEXT

While we can use MPAC to decode the multi-bit watermark in conjunction with another detection
mechanism, MPAC alone can detect human text from watermarked text just like zero-bit water-
marking. The strength of our watermark can be determined by taking the maximum cell frequency
of each position, which is modeled by the confidence ci at each position. However, we found that
simply modeling the number of tokens in the argmax colorlist of position i as a random variable
Ci

H0∼ Binomial(Ti, γ) led to slightly better results where Ti is the number of tokens assigned to
position i. As C0, . . . , Cb−1 are independent for a fixed set of trials (Ti, . . . , Tb−1) and have the
same success probability parameter, the sum of these is a binomial random variable as well:

C = C0 + · · ·+ Cb−1
H0∼ Binomial(T, γ) (1)

where T = T0+· · ·+Tb−1. This reduces to the same random variable used in zero-bit watermarking
and we can compute the z-statistics from §3.1. More discussion regarding other possible statistics is
outlined in the last section of Appendix A.8. Computing C is shown in Line 12 of Algo. 1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We use LLaMA-2-7B (Touvron et al., 2023) to generate sequences on the newslike subset of the
Colossal Common Crawl Cleaned corpus (C4) dataset (Raffel et al., 2020) as the prompt for our
main experiments following previous work (Kirchenbauer et al., 2023a). For watermarking and

6



Under review as a conference paper at ICLR 2024

8b 16b 24b 32b
0.8

0.9

1.0

B
it
 A

cc
.

= 0.25, r = 4 = 0.25, r = 2 = 0.5, r = 2 16-List decoded

8b
125T

16b
250T

32b
500T

64b
1000T

0.8

0.9

1.0

250T

Figure 3: Clean bit accuracy with 3 standard errors for a fixed number of tokens (left) and fixed BPT
(right).

generation, we follow the configurations used in Kirchenbauer et al. (2023b) unless otherwise de-
noted: bias δ = 2.0, greenlist ratio γ = 0.25, which have shown a good trade-off between the
detection performance and generation quality. Since γ = 0.25, the number of colors r is 4. We
embed a random b-bit message onto >500 samples and report the mean metrics across samples.
When using the term ‘bit’ or ‘bit-width’, this denotes the initial message length and the effective
message length is determined by r. When necessary, we also show the three standard error ranges.
For list decoding, we compute a list size of 16 (in addition to the best prediction) unless otherwise
noted, which corresponds to 6e−2, 2e−4, and 4e−9 of the output space for 8-bit, 16-bit, and 32-bit,
respectively. More details are in Appendix A.2.

Metrics To measure the performance of multi-bit watermarking, we use bit accuracy following
previous works in the literature (Zhu et al., 2018; Luo et al., 2020; Yang et al., 2022; Yoo et al.,
2023) to measure how much of the embedded bits can be extracted without error. To compute
the performance of list decoding, we take the closest message out of the candidates. For zero-bit
watermark detection (i.e. machine-text detection), we use area under the ROC curve (AUROC)
and the true positive rate (TPR) at various thresholds. For text quality, we use the automatic metrics
used in Kirchenbauer et al. (2023b) such as perplexity (PPL) using a larger oracle model (LLaMA-2-
13B) and semantic similarity based on a paraphraser model (Wieting et al., 2022, P-SP). We further
discuss the validity of the metrics in Appendix A.7.

4.2 RESULTS

We visualize the results as graphs in the main paper. Tables are in Appendix A.4.
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Figure 2: Text quality (PPL, P-SP) and
encoding latency across bit widths. 3
standard errors are shown.

Text quality is not affected by bit-width. MPAC
extends zero-bit watermarking by allocating tokens to
message positions and partitioning vocabularies, which
would otherwise be allocated to a single position and a
single vocabulary partition. Consequently, given the same
δ and γ, it only alters the text distribution to an extent that
zero-bit watermarking does regardless of the bit-width.
Indeed, our empirical results in Fig. 2 demonstrate that
the text quality is statistically indistinguishable across bit-
widths. We also show that the encoding latency, which di-
rectly experiences user experience, does not increase with
bit-width. Three standard error ranges are shown.

Colorlisting improves multibit performance. Through
colorlisting, we can take advantage of the surplus vocab-
ulary partitions. Fig. 3 Left demonstrates the gain in the load capacity by using r=4 colorlists as
opposed to r=2 given a fixed γ. We also show the results for γ = .5 and r=2. Besides the 8-bit case,
which already achieves high accuracy, the performance of γ=.25, r=4 is statistically significant at
p=1e−2 than the second runner-up. We further discuss the implications of varying γ, r in Section 5.

Next, we increase the number of tokens (T) and bit width accordingly to verify the effectiveness of
embedding longer messages at a fixed bits per token. This resembles the scenario where the users
generate longer sequences such as news articles or essays. While the message can be extracted up
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Figure 4: Corrupted bit accuracy for (a) copy-paste attack controlled by the human text percentage
at T-250 and (b) paraphrasing attack using GPT-3.5 embedding 8-bit messages at varying token
lengths. For (b), we show multiple sizes of list (|L| ∈{2, 4, 8, 16}) by color gradation as 8-bit has
relatively small output space.

to 90% accuracy up to 32-bit, the performance considerably falls for 64-bit. However, this can be
partially compensated for by using list decoding as shown by the transparent bars, boosting the bit
accuracy to more than 95% up to 32-bit.

MPAC can maintain the watermark under corruption. In the real world, a user may edit the
generated text for better quality or in an attempt to evade the watermark. We study two types of
attacks studied in the past work (Kirchenbauer et al., 2023b): copy-paste mixes the watermarked text
and human text and paraphrasing uses another language model to paraphrase the watermarked text.
Both attacks are realistic in that they do not maintain the start and end tokens of the watermarked text.
The results in Fig. 4a demonstrate that for the copy-paste attack, the bit accuracy can be maintained
to 90%(80%) for 8-bit (16-bit). Once again, list decoding is particularly effective, increasing the bit
accuracy by 6.1% absolute for the corrupted case.

For paraphrasing, we use GPT-3.5.4 We found paraphrasing to be much more challenging than the
copy-paste attack and thus, experimented with only 8-bit messages and increasing the token lengths
(Fig. 4b). With T=500, the bit accuracy reaches nearly 80% and with 16-list decoding, we are able
to attain 90% bit accuracy across all token lengths. More attacks are considered in Appendix A.5.

Detection performance is affected by bit-width. To get a clearer picture of the detection perfor-
mance, we compute AUC vs. the number of tokens observed in Fig. 5a following Kirchenbauer
et al. (2023b). We see that the detection performance decreases as the message bit is increased. This
phenomenon is similarly observed in other works as the increase in the number of “hypotheses”
required to check leads to an increase in the false positive rate (Fernandez et al., 2023b). We further
discuss the reasons behind this in the subsequent section. Note, however, that a watermarked text
with 32-bit message reaches AUC over 0.99 once observing 200 tokens. The TPR at FPR=1e−3 for
b={0, 8, 16, 24, 32} are 0.98, 0.98, 0.95, 0.93, and 0.91, respectively (shown in Table 7).

Across Model Scales, Datasets, Hash Schemes. The results for larger models (13B, 70B) and
other datasets are in Appendix A.6. To summarize, we found that text distributions with low entropy
inherently have lower load capacity as observed similarly in Lee et al. (2023); Kirchenbauer et al.
(2023b). We also present results for using another hash scheme with a longer context width in
Appendix Table 10 and 11, which shows a similar level of performance.

Comparison with Other Works. We compare MPAC with Fernandez et al. (2023a, FCT) and
Wang et al. (2023b, CTWL) in Table 1. For FCT, two zero-bit watermarking schemes are tested:
Greenlisting Kirchenbauer et al. (2023a, Greenlist) and exponential minimum sampling Aaronson
& Kirchner (2023, EMS). For FCT+Greenlist, using the Llama-2-7B tokenizer upperbounds the bit-
width roughly to 15 bits. In summary, the clean performance and robust performance are similar
in low bit-widths, but MPAC starts to outperform at 16-bit. FCT noticeably suffers from latency
overhead when bit-width increases: increasing the bit-width from 16→24, lengthens the generation
time by roughly 3.5x (14 seconds→ 50 seconds) per sample. Decoding latency (message extraction)

4We use the most challenging prompt found for zero-bit watermarking (shown in Table 13)

8
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B=8,T=250 B=16,T=250
Copy-Paste (p) Clean cp=10% cp=30% cp=50% Clean cp=10% cp=30% cp=50%

Ours .986 (.06) .981 (.07) .956 (.10) .900 (.13) .951 (.07) .939 (.08) .887 (.09) .819 (.12)
FCT+EMS .979 (.10) .943 (.17) .858 (.24) .800 (.28) .905 (.20) .811 (.26) .702 (.26) .601 (.23)

CTWL .977 (.11) .973 (.12) .951(.16) .858(.24) .936 (.18) .909 (.20) .810 (.26) .614 (.22)
FCT+Greenlist* .995 (.05) .988 (.08) .970 (.12) .908 (.20) .986 (.09) .974 (.12) .929 (.18) .765 (.26)

Table 1: Comparison of multibit watermark performance with other methods on clean and corrupted
settings. For corruption, we use the copy-paste attack. *The load capacity of FCT+Greenlist is
limited to 15-bit.
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Figure 5: (a) AUC@number of tokens observed for b={0, 8, 16, 24, 32}. Darker colors denote larger
bit-widths. (b) Zero-bit and multi-bit watermark performance for varying γ and r for 1000 samples
at T=100,b=8. (c) Error rate as a function of confidence.

is increased by 130x (0.87 second → 115 seconds) per sample. For more analysis, see Appendix
A.4.

5 DISCUSSIONS

Load capacity and detection performance trade-off. As noted above, embedding longer mes-
sages degrades the watermark detection performance due to overestimating the statistics of non-
watermarked human texts (Fig. 10). This is because computing the statistics involved finding the
maximum cell value for each position. One natural solution is to use a better statistic that models the
maximum cell value of a multinomial distribution. Empirically, we found that this performed on par
or even slightly worse compared to the current approach, which may be due to the approximation
error when using a small sample size. We give a more detailed discussion on this in Appendix A.8.

Radix and Colorlist proportion How do radix and colorlist proportion γ influence multi-bit water-
mark performance? For γ=.125, the benefits of enlarging r to 8 are saturated and show no statistical
significance to r=4. While larger r allows more tokens to be assigned to each position by reducing
the effective length of the message, it challenges the problem by increasing the number of possible
answers (digits) per position. Additionally, we observed that increasing radix trade-offs zero-bit
performance for multi-bit performance. The observations are illustrated in Fig. 5b.

List Decoding Ablation In Fig. 5c, we show a plot of bit error rate stratified by confidence. While
not properly calibrated (under-estimation), having higher confidence definitely shows the error rate
is lower. We also highlight the effectiveness of this technique by comparing it with randomly out-
putting candidate messages from scratch in Table 4. We also observed that randomly altering a
single position provides a good list as the best candidate message is already a good starting point.

6 CONCLUSION

Our findings demonstrate the viability of embedding any information into the outputs of language
models while having the capability to distinguish between machine text and human text. This unveils
a novel prospect of counteracting high-stake misuse of large language models via API. Furthermore,
our analysis rooted in coding theory opens up other avenues for technical improvements such as
using feedback or fusing error correction codes into MPAC. One limitation of our approach is the
reduced separability of machine and human text when embedding longer messages. Overhauling
this limitation can be a major step towards deploying multi-bit watermark in the real world.

9
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7 ETHICS STATEMENT

Watermarking is one of the technologies that can mitigate malicious use cases by being able to trace
back to the malicious user. However, ordinary users may find the idea discomforting as it may give
the sense that the API provider can know what outputs are fed to the individual users. This is not the
case unless the content is published to the public by the user, which – in many cases – is already done
in an environment where the user can be identified (e.g. social media). All in all, the identification of
machine-generated texts and tracing their provenance can enhance the accountability of API access
of large language models without breaching individual users’ privacy.
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A APPENDIX
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A.1 DECODING ALGORITHM

Algorithm 2: Message Decoding

Input: Watermarked text X1:T , hash context width h, effective message length b̃
Output: Predicted message m̂, number of colorlisted tokens w
/* Initialize counter */

1 Wp[m] = 0 ∀p,m
/* Count tokens in colored lists */

2 for t in [h+ 1, T ] do
3 s = f(Xt−h:t−1)

4 p = sample([b̃])
5 for m in [r] do
6 Permute Vt using s as seed
7 if Xt ∈ Gmt then
8 Wp[m] += 1

/* Predict message */
9 m̂r = “ ”

10 w = 0

11 for p in [b̃] do
12 w += max(Wp[m])
13 m̂ = argmaxm(Wp[m])
14 m̂r += str(m̂)
15 Get bit message m̂ by converting m̂r

16 return m̂, w
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Figure 6: (a) Comparing robustness of the watermark (Clean performance - corrupted performance)
for deterministic (cyclic) and pseudo-random position sampling schemes at T=250. (b) Relationship
between bit accuracy and SNR for a fixed BPT.

A.2 IMPLEMENTATION, HARDWARE, CODE DETAILS

We follow Kirchenbauer et al. (2023a) in most experimental settings. For the hashing scheme in
the main paper, we use LeftHash scheme with context window h = 1. In the appendix, we provide
results for the SelfHash scheme. For further discussions regarding the hash scheme see Appendix
A.3. To generate sequences with the desired token length T , we generate with the max token set as T .
Then we filter out the watermarked and non-watermarked sequences with token lengths under Tlow =
T − τ . We set τ=25, except for the LFQA dataset, which was set to τ=50 as it has instructions that
state to generate answers with 200-300 words. For generation, we use sampling with a temperature
of 0.7. For each bit-width, a new set of generations had to be made as the length of the message
differed.

For the copy-paste attack, we sample a random non-watermarked text and truncate to have the same
length. Then, a position is randomly sampled to insert a p percentage of the watermarked text into
the non-watermarked text. We experiment with varying degrees of p (10%∼ 50%).

We used float16 for all our models during generation. Our experiment was run on a single
NVIDIA A100. For T=250, generating around 500 watermarked and non-watermarked samples took
approximately 200 minutes for the left hash scheme. When using the self-hash scheme, this took sig-
nificantly longer (∼ 550 minutes). Our implementation is based on the official codebase of Kirchen-
bauer et al. (2023a): https://github.com/jwkirchenbauer/lm-watermarking. We
will be releasing our code to reproduce our experiments.

A.3 DISCUSSION ON THE HASHING SCHEME

The hashing scheme for generating the seed plays a significant role in watermarking. For our MPAC,
the hashing scheme is employed once for position allocation and once for permuting the vocabulary
list. Here, we discuss some implications of the design choices.

To recap, the function f(Xt−h:t−1) is used to hash h most recent tokens before generating the tth

token. Following the terminology of Kirchenbauer et al. (2023b), LeftHash takes the leftmost token,
while SelfHash is determined in a slightly more complex way that is dependent on the tth token (see
Algorithm 1 of Kirchenbauer et al. (2023b)). The context width and the hashing scheme determine
robustness and quality (diversity) trade-offs. For our experiments, we use the two configurations
(LeftHash with h=1 and SelfHash with h=4) proposed in the previous work found to be effective in
the two aspects without further fine-tuning.

As expected by the trade-off, the perplexity was slightly higher for LeftHash compared to SelfHash
(5.1 vs. 4.9 on average for 250 tokens), while P-SP was at the same level. One clear distinction
between the two schemes was the encoding time latency. As SelfHash iteratively searches for tokens,
this took significantly longer than the LeftHash scheme, which had nearly no overhead compared to
no watermarking (appendix A.2 and Table 4). In addition, we observed that the sampled positions
were not uniform for LeftHash with h = 1 as shown in Tab. 2 due to the reduced diversity of the
tokens in the context width. Despite this, the multi-bit performance was similar for the two schemes
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Ratio Sampled Position (Sorted)
LeftHash (h=1) 0.319 0.251 0.235 0.195
SelfHash (h=4) 0.264 0.257 0.242 0.238

Table 2: Ratio of the sampled position for b=8,r=4 (four positions total) for the two hashing schemes
for position allocation.

(Table 10 and 11). A possible direction for improvement may be using different hashing schemes
for position allocation (more robust) and vocabulary partitioning (more quality-focused).

A.4 MORE RESULTS: LIST DECODING, LATENCY, FEEDBACK

Comparison with Concurrent Works In our experiments, we compared MPAC with Fernandez
et al. (2023a, FCT) and Wang et al. (2023b, CTWL). Here we provide more details about the method-
ological differences and the experimental settings. We expect both methods to be relatively robust
under realistic attacks that remove or add entire sentences as they rely on a pseudo-random function
of the previous token(s) similar to ours. FCT uses message-specific secret keys to embed the water-
mark and is extendable to both Kirchenbauer et al. (2023a) and Aaronson & Kirchner (2023). For the
zero-bit framework of Kirchenbauer et al. (2023a), they cyclically shift the greenlist m times. This
provides only m distinct signals unique for each message. Since the size of the greenlist is equal to
vocabulary size, the bit-width is bounded by. For the zero-bit framework of Aaronson & Kirchner
(2023), the zero-bit watermark is embedded by using exponential minimum sampling, which relies
on a random secret key (See A.10). In FCT, the random secret key of arbitrary size is created and
cyclically shifted m times. This allows embedding a larger bit-width than the aforementioned meth-
ods. As mentioned in the paper, both works have a computation cost that exponentially scales with
the bit-width. Out of decoding and encoding, the encoding latency directly affects the API user,
which is a crucial aspect for the API provider.

We generate 250 tokens on the C4 news-like subset, and the copy-paste percentage denotes the
percentage of non-watermarked texts (higher denotes a stronger attack). We report the mean bit ac-
curacy of roughly 500 samples. The results are in Table 1. Our results showed that all three methods
achieved high performance in the 8-bit setting with FCT+Greenlist consistently outperforming all.
However, as the bit-width and corruption rate increase, CTWL and FCT show a greater degree of
degradation. For 16-bit, both (Fernandez et al., 2023a)+EMS and CTWL show considerable drop-
off compared to ours. This shows that MPAC achieves superior robustness by separating the signals
of each position. In contrast, the other methods display an all-or-nothing behavior where a message
is either correct or completely random. While this may be beneficial in the high-performance regime
(low bit-width and no corruption), this may lead to severe performance degradation when embed-
ding longer messages. The distinction is also noticeable by the larger standard deviation of the two
methods compared to ours.

List decoding and Latency We show absolute accuracy gained using confidence-based list decod-
ing (|L|=16) compared with random decoding. We further compare the encoding and decoding
latency for sequences with ∼ 250 tokens using a single Nvidia A100 when using an additive left
hash scheme with context width 1. The results are in Table 4.The latency does not proportionally
increase with message bit length, making it scalable to long messages. When using an efficient
hashing scheme watermarking has a negligible increase in both encoding and decoding compared to
vanilla generation, which requires 7.9 seconds and 0.09 seconds, respectively.

Message Correction with Feedback Here we provide some preliminary results of taking advantage
of feedback during message encoding. One simple scheme is adapting the magnitude of the bias so
that when the message is not correctly encoded, we enlarge the bias. Concretely, for 0 ≤ t ≤ T
that is allocated to position p, if the current max colorlist does not match the actual message content,
i.e. m[p] ̸= argmaxjW[j], we use a larger bias δ̃ > δ. The results in Fig. 3 show that all lead to
an increase in the multi-bit accuracy. However, we observed this came with a degradation in text
quality measured by automatic metrics. We leave finding better methodology as a future work.

A.5 MORE ON ROBUSTNESS: OTHER ATTACKS, DETECTION
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Accuracy Gained
8b 16b 24b 32b

Confidence-based list 1.1% 3.7% 6.0% 5.6%
Random list 0.6% 0.4% 0.5% 0.3%

Latency (seconds/250 tokens )
0b 8b 16b 24b 32b

Encoding (7.9) 8.19 7.98 8.01 7.96 8.24
Decoding (.09) .08 .09 .09 .09 .10

Table 4: Comparison of absolute improvement in bit accuracy when using confidence-based list
decoding and random list.
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Figure 7: Multi-bit performance across datasets and model sizes.
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Bit Acc. after Paraphrasing with DIPPER
Bit-width 8 16 24 32

Best Prediction .922 (.13) .825 (.12) .778 (.12) .736 (.10)
16-List Decoded .982 (.05) .924 (.08) .864 (.10) .801 (.09)

Table 5: Robustness under paraphrasing using DIPPER (Lexical diveristy=20)

DIPPER

GPT-3.5 Lex.=20 Lex.=40 Lex.=60 Lex.=60
Ordering=60

P-SP .815 .933 .897 .844 .827
Absolute Change in # of Words 36 13 16 19 20

Bit Acc. .733 .922 .849 .757 .719

Table 6: Comparison of the two paraphrasing method on text quality.

Bit Accuracy
δ 0.5 1 2

No feedback .626 .766 .948
δ̃ = δ + 1 .769 .860 .960

Table 3: Results for using feedback for
adapting bias on T=100,b=8

We also test our watermark against DIPPER (Krishna
et al., 2023), which is a specialized paraphrasing model.
DIPPER is parameterized by two scalers, which con-
trol lexical diversity and token order diversity. We first
present the results across bit-width with a lexical diver-
sity of 20 (out of 100). We see that the watermark fares
considerably better than using GPT-3 attack in Table 5.

To see the magnitude of semantic drift of the two para-
phrasing methods, we compute the P-SP between the
original watermarked text and its paraphrased counter-
part. We also compute the absolute change in the number of words. Table 6 demonstrates that
paraphrasing using GPT-3.5 changes the semantic and the number of words greater than the setting
used in Table 5, which may explain why the multi-bit watermark performance is lower for GPT-
3.5. When we control the diversity parameters of DIPPER, this is able to degrade the watermark
performance as well as GPT-3.5.

Some other forms of possible attacks considered in the literature are word substitution, insertion,
and deletion. Word substition is very similar to the copy-paste attack considered in the main paper.
Our watermark scheme is also robust to partial insertion and deletion of words as MPAC relies on
the local context to synchronize the positions of the message and the ordering of the vocabulary.

Robustness of zero-bit Watermark Here we provide results for the detection performance under
corrptuion. We use the copy-paste attack with the attack percentage ranges of {10%, 20%, 30%,
40%, 50%} and compare the AUC vs. number of tokens observed curve similar to Fig. 5a. While
the detectability is noticeably affected, the final AUC is recovered to a large degree only after ob-
serving 250 tokens. In order of the attack strength, the final AUC’s are .992, .987, ,980, ,971, .942,
respectively. For the zero-bit counterpart, all the scores are over .990.

A.6 ABLATIONS ON DATASETS AND MODEL SIZES

We show additional results on other datasets and model sizes in Fig. 7. C4 news-like subset is the
dataset we used for our main experiment. ”Long-form Question-Answering” (LFQA) is a dataset
curated by Krishna et al. (2023) on the Reddit’s “Explain Like I’m Five” (ELI5) forum. The Essays
dataset comprises paris of instructions and essays (Schuhmann, 2022). Wikitext (Merity et al.,
2016) comprises Wikipedia article. We use the ‘wikitext-2’ subset. For LFQA, we use the finetuned
version, LLaMA-2-Chat, specialized for chats as they explicitly have questions or instructions as
prompts.

It is apparent that the watermark performance is affected by the text distribution. When the entropy
of the vocabulary distribution is low (low diversity), there is little room for encoding the message
with a fixed bias, which has been observed in zero-bit watermarking as well where the watermark
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performance suffers for low entropy text distributions such as coding (Lee et al., 2023; Kirchenbauer
et al., 2023b). For our multi-bit case, this means the load capacity is inherently low for such text
distributions. This is especially observed for LFQA, in which the model consistently starts the
response by restating the question (e.g. ”The reason for [Question] is . . . ”). Across the model
scale, the trend is not as apparent although we found that the largest model consistently has a lower
performance. This hints that the entropy of the vocabulary distribution is lower for the largest model,
which might explain the higher text quality in general when we increase the model size. Larger
models might have the capacity to form high-quality sequences even when the text distribution is
altered by increasing the entropy via temperature or explicitly increasing the magnitude of the bias
during watermarking. We leave this as a future work.

A.7 METRICS: BIT ACCURACY, TEXT QUALITY
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Figure 9: Text quality vs. δ across
bias@T=100,b=8

Text Quality Metrics Using P-SP, we measure the se-
mantic similarity between the human text and water-
marked text given the same prompt. While human evalu-
ation is considered to be the golden label, our main pur-
pose is to show that our multi-bit watermarking does not
degrade the quality compared to zero-bit watermarking.
Moreover, the effect of watermarking on the text quality
compared to no watermarking shows promising results
in human evaluations when sufficiently large models are
used for open-ended generation by Kirchenbauer et al.
2023b (Appendix A.2 and A.9). Additionally, Fernandez
et al. (2023a) also demonstrate that watermarking does
not lead to noticeable performance degradation even on
benchmarks with non-ambiguous answers such as coding
and math especially with sufficiently larger models, albeit at a small bias. We further show in Fig.
9 the trade-off curve between bit accuracy and text quality. The size indicates the magnitude of bias
({1, 1.5 2, 3, 4, 5}) and horizontal dashed lines indicate non-watermarked counterparts. Analysis of
text quality shows δ = 2 lies at a good trade-off point.

Bit Accuracy for Multi-bit Watermark In our experiments, we used bit accuracy (error) as our
metric for multi-bit watermark performance. This is a general metric that is independent of the
downstream application or the encoding scheme. However, computing the exact match of a message
should be done dependent on the context. To illustrate this, we start with some examples. First,
consider the case where the encoding scheme to identify users is simply assigning a message to
each user. Then, by embedding 4-bit message one can encode 24 different users : m=‘0000’ for
Bob, m=‘0001’ for Alice, and so on. For such a scenario, one might be interested in computing the
exact match of the 4-bit message, also known as the packet error ratio. While this encoding scheme
enables tracing back to the exact users at low load capacity, this is extremely inflexible as it cannot
handle influx or outflux of users.

Conversely, one can turn to a more flexible encoding scheme by encoding each character. Using
UTF-8, this requires 8 bits per character, which would mean 40 bits is required just for encoding
5 character user ID. For this scenario, one might be more interested in computing the packet error
ratio of each character or the entire 40-bit message. A more realistic encoding scheme will be
somewhere between the middle, which uses a more efficient representation, e.g. by merging often-
used bytes as done in Byte pair encoding (Gage, 1994). Added with error correction codes such
as the Reed-Solomon code (Wicker & Bhargava, 1999), this allows a more robust representation.
Since focusing on a single type of encoding scheme – and more fundamentally, what information to
embed – narrows down the potential applications, we present bit accuracy in our main experiments
as done in previous works in the literature (Zhu et al., 2018; Luo et al., 2020; Yang et al., 2022; Yoo
et al., 2023; Fernandez et al., 2023b). For T=250, the packet error ratio for the 8-bit message was
7.1%, which is +5.7 % higher than the bit error rate. With 16-list decoding, this is reduced to 2.4%.

Another metric considered in Table III of Fernandez et al. (2023a) was combining the detection
scheme and packet error ratio. In this scenario, they assume using an encoding scheme of assigning
each user to a single message (first example) and computing the percentage of finding the exact user
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True Positive Rate
Bit-width 0 8 16 24 32
FPR=1e-2 0.999 0.986 0.974 0.964 0.958
FPR=1e-3 0.997 0.974 0.956 0.943 0.915
FPR=1e-4 0.997 0.96 0.934 0.905 0.88
FPR=1e-5 0.994 0.951 0.907 0.851 0.793

Table 7: True positive rate at a fixed false positive rate across bit-widths. We use ∼ 500 positive
sample and ∼100,000 negative samples. We only count the unique tokens following (Kirchenbauer
et al., 2023a; Fernandez et al., 2023a). This has an effect of removing outlier human text samples
that have exceptionally high scores.

given a fixed false positive rate. At FPR=1e-3 and using 8-bit message (256 users), we can correctly
identify 92.6% cases. Our true positive rate was computed by the setting used in Table 7.

A.8 ANALYSIS ON WATERMARK DETECTION

Here we further analyze how bit-width of the message and radix affect detection performance. Our
analysis stems from the observation that as we increase the bit-width the detection score for the
non-watermarked text increases more rapidly than that of the watermarked text. Consequently, the
difference in the two scores decreases as larger bit-width is used, leading to reduced seperability.
The results are in Fig. 10. Notice that the difference between the scores of watermarked and non-
watermarked texts decreases for larger bit-width.

To grasp a hint of what is going on, we do away with the language model and other complexities
by modeling this only through statistical distributions. To recap, our detection statistic (Eq. 1) was
computed by aggregating the number of tokens in each position of the message. Letting Ci as the
number of tokens in the colorlist for the position i, we can write the aggregated form as

C = C0 + · · ·+ Cp−1
H0∼ Binomial(T, γ) (2)

However, note that during decoding the ground truth message is unknown and thus, is predicted
by taking the colorlist that has the max number of tokens. This is problematic when decoding for
non-watermarked text as it biases the statistic to be higher when bit-width is increased. We let
Wi = [w0, . . . , wr−1] be the number of tokens in r colorlists (strength of watermark) for position i.
For a non-watermarked text, we can assume that this is a random variable with equal probability for
each colorlist

Wi ∼Multinomial(ni, [γ · · · γ]) (3)
where ni is the number of tokens allocated to position i. Our decoding method takes the maximum
cell value of this, which makes itself a random variable:

Wmax
i = max(Wi) = max([w0, . . . , wr−1]). (4)

Our final statistic used for our detection score is the sum of this variable over the entire positions:

Wmax =

p∑
i

Wmax
i (5)

We see that our statistic is dependent upon the number of candidates when selecting the maximum
cell (i.e. radix) through Eq. 4 and the number of positions (i.e. bit-width) through Eq. 5.

To verify the effect of bit-width and radix on the detection score, we compare the difference in
the statistics for a uniform multinomial distribution, which signify non-watermarked text, and a
multinomial distribution with a slightly modified probability [γ + ϵ, γ, . . . , γ] to signify the added
bias term for the watermarked distribution. We sample 1000 samples of Wmax and compute the
difference in the detection scores for the two distributions. The results in Fig. 11 corroborate that an
increase in bit-width / radix decreases the separability of the detection scores.

In an attempt to overhaul this, we tried computing the likelihood of W rm
i before aggregating them

using an approximation of Levin (1981) (More details in the next section). However, this only led
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Figure 10: The detection scores of non-watermarked texts, watermarked texts and their difference
as a function of number of tokens observed. We see that the difference in the scores decreases as
bit-width increases, leading to reduced seperability.
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Figure 11: Simulation of the difference between (unormalized) scores for watermarked and non-
watermarked multinomial distributions. Higher score signify higher seperability, hence higher de-
tection performance. We use ϵ=0.1. For right, we use γ=.125 to allow more radix.

to on par or slightly worse performance. This may be because ni is small for cases when T is small
compared to the length of the message. Other than this, some of the approaches we attempted were:

• Computing test statistic per position or weighting the statistic of each position with ni

before aggregating.

• Computing the p-value of the binomial random variables rather than using the normal ap-
proximation, i.e. regularized incomplete beta function.

• Computing the p-value under the null hypothesis that the distribution of the colorlists fol-
lows a uniform distribution, i.e. Chi-square Goodness of Fit test

All the approaches either led to on-par or slightly worse results.

A.9 APPROXIMATING MAX MULTINOMIAL CELL DISTRIBUTION

We used the approximation of Levin (1981) for modeling the distribution of the maximum cell
frequency. For completeness, we present the steps used for the approximation adapted to our case.
For a multinomial distribution with sample size N and probability vectors [p0, . . . , pr−1], Let a be
the maximum cell value, then the cumulative distribution function of having a maximum value of a
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can be approximated for any real number s > 0

P (a) =
N !

sNe−s
{
r−1∏
i

P (Xi ≤ a)}P (W = N) (6)

where Xi∼Poisson(spi) and W =
∑r−1

i = Yi∼Truncated Poisson(spi) with range 0, 1, . . . , a.
Following Example 1 of Levin (1981), we set s = N and use Stirling’s approximation for N !. We
also approximate W using the normal approximation to the Poisson distribution.

A.10 EXTENSION TO OTHER ZERO-BIT WATERMARKING

Aaronson & Kirchner (2023) is another line of work in zero bit watermarking that modifies the
sampling process by generating a secret vector r ∈ [0, 1]|V| based on the random seed s. Given the
original probability distribution p|V|, the token with both large pv and rv is favored by choosing

x = argmaxv∈Vr
1/pv
v . (7)

We can adapt our position allocation method to this as well by preceding the above step with position
allocation. Then, the secret key can be modified depending on the message content by the following
rule:

r =

{
r if m[p] = 0

1− r if m[p] = 1
(8)

where 1 is a vector with 1 in all the elements. Analogous to favoring mutually exclusive colorlists,
this allows favoring different tokens depending on the message content. At decoding time, we can
similarly maintain a counter for each position for the two cases.

A.11 TABULAR RESULTS

Here we present the numerical results for the experiments done in the main paper. Numbers in the
parenthesis signify the standard deviation.

• Table 8 ↔ Figure 9 show the relationship between δ vs. text quality and watermark
strength.

• Table 9↔ Figure 3 left compare the different configurations of radix and colorlist propor-
tion.

• Table 10↔ Figure 3 left show the multibit watermark performance on a fixed token length.
• Table 11↔ Figure 3 right show the multibit watermark performance on a fixed load capac-

ity (bits per token).
• Table 12↔ Figure 4a show the multibit watermark performance under copy-paste corrup-

tion.
• Table 13↔ Figure 4b show the multibit watermark performance under paraphrasing.

δ 0.5 1 1.5 2 3 4 5
Bit Acc. .626 (.19) .766 (.18) .887 (.15) .947 (.11) .982 (.08) .993 (.05 .995 (.05)

P-SP (w/ reference) .385 (.15) .379 (.15) .372 (.15) .371 (.15 .360 (.14) .336 (.13) .319 (.13)
P-SP (w/ non-wm.) .526 (.18) .460 (.16) .433 (.15) .417 (.15) .388 (.14) .349 (.14) .330 (.13)

PPL 4.41 (1.5) 4.64 (1.8) 5.01 (2.0) 5.6 (2.0) 7.41 (2.7) 10.3 (4.1) 13.67 (5.9)

Table 8: Bit accuracy and text quality on embedding 8 bit-width message on T=250 across various
magnitudes of bias δ.
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Bit Accuracy @ T=250
Bit 8 16 24 32

γ=.25,r=4 .986 (.06) .951 (.07) .900 (.09) .871 (0.08)
γ=.25,r=2 .966 (.07) .905 (.08) .858 (.08) 0.820 (.08)
γ=.50,r=2 .978 (.05) .922 (.07) .875 (.08) 0.849 (.07)

Table 9: Multibit watermark performance measured by bit accuracy for varying configurations of
colorlist proportion and radix.

Bit Acc. @ T=250
Bit 8 16 24 32

LeftHash(h = 1) .986 (0.06) .951 (.07) .900 (.09) .871 (0.08)
SelfHash(h = 4) .976 (.08) .905 (.08) .895 (.09) .862 (.09)

Table 10: Bit accuracy for two different hash schemes for a fixed token length.

Bit Acc. @ BPT=.064
T 63 125 250 500 1000

Bit 4 8 16 32 64
LeftHash(h = 1) .961 (.13) .958 (.09) .951 (.07) .913 (.08) .846 (.09)
SelfHash(h = 4) .952 (.13) .953 (.10) .945 (.08) .911 (.08) .850 (.08)

Table 11: Bit accuracy for two different hash schemes for a fixed bits per token.

Copy-paste Attack
Attack Strength Clean 10% 20% 30% 40% 50%

8-bit Best .986 (.06) .981 (.07) 0.971 (.08) .956 (.10) .938 (.12) .900 (.13)
+16-List .997 (.02) .997 (.02) .995 (.03) .993 (.03) .991 (.04) .980 (.05)

16-bit Best .951 (.07) .939 (.08) .918 (.09) .887 (.09) .858 (.11) .819 (.12)
+16-List .988 (0.04) .983 (.04) .978 (.05) .964 (.06) .947 (.07) .918 (.08)

24-bit Best .899 (.09) .882 (.09) .858 (.10) .830 (.10) .797 (.11) .755 (.11)
+16-List .959 (.06) .944 (.06) .927 (.08) .907 (.08) .879 (.09) .840 (.09)

32-bit Best .871 (.08) .851 (.09) .828 (.09) .801 (.09) .765 (.09) .723 (.1)
+16-List .927 (.07) .910 (.08) .888 (.08) .863 (.08) .831 (.09) .792 (.09)

Table 12: Robustness when certain percentage of human text is mixed into the watermarked text.

GPT-3.5 Paraphrasing
Token Length 250T 400T 500T

8-bit

Best .733 (.19) .792 (.19) .795 (.19)
+2-List .825 (.16) .874 (.15) .875 (.15)
+4-List .856 (.14) .894 (.13) .898 (.13)
+8-List .893 (.12) .924 (.11) .928 (.11)
+16-List .911 (.10) .934 (.09) .939 (.09)

Prompt
“As an expert copy-editor, please rewrite the following text
in your own voice while ensuring that the final output con-
tains the same information as the original text and has
roughly the same length. Please paraphrase all sentences
and do not omit any crucial details. Additionally, please
take care to provide any relevant information about public
figures, organizations, or other entities mentioned in the text
to avoid any potential misunderstandings or biases.”

Table 13: Robustness when paraphrased with GPT-3.5.
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A.12 GENERATION SAMPLES

Prompt Non-Watermarked Watermarked

A blind man in his 60s is searching
for the young man who pulled him
back from an approaching train and
saved his life last Thursday, Nov. 9.
Mike Wyatt stood at the stairs to the
Peoria train station in Aurora, Col-
orado, on Monday, looking for the
young man who saved his life days
earlier

“He told me he was 20 years
old and he was going to college,”
Wyatt told reporters. “He said he
was going to be a doctor.” Wy-
att, who is blind and has been for
most of his life, was at the train
station ready to catch a train to
the airport when he slipped and
almost fell in front of an oncom-
ing train.[...]

and has given him new life. In-
side the station, he spoke to
the counter clerk, hoping the
clerk might have information that
might lead him to the young man,
who jumped at the chance to help
Wyatt when he saw he was in
danger. But, he said, he found
nothing.[...]

[...] Shortly after the release of
the lead single “Life’s About to Get
Good,” it hit number one on the Bill-
board 200. Of course, fans were sim-
ply dying to see how their favourite
country icon was doing, so

the album was released on CD,
vinyl, and digital. But, Shania
took things to the next level and
released a deluxe version with
added tracks. [...]

the song was released a few
months earlier in June. “OK so
I am sooooo proud that my song
Life’s About to Get Good is now
the number one song on Bill-
board country,” she tweeted back
in June.[...]

[..] Amazon’s offices will be lo-
cated within an already-established
special tax district where a portion of
the property tax revenue goes toward
infrastructure improvements such as
parks and wider sidewalks. The in-
centive agreement says that half of
any new revenue from that district
starting in 202

3 would go to Amazon to help
pay for employee benefits and
transportation, but the county has
said it would not be required to
pay those benefits.[...]

7 would go to Amazon through a
15-year payment schedule. This
amount would grow to more than
60 percent if the company ex-
ceeds 10.24 million square feet
of office space. Amazon is
expected to reach that level in
2027.[...]

[...] ”Below the surface of the Sun a
dynamo process is working creating
magnetic field,” Harra explained in
an email interview. ”When this be-
comes buoyant it can rise to the sur-
face of the Sun,

and this is what we call a
sunspot.” The new research
shows that the initial explosion
was actually a series of smaller
blasts that combined to create the
X-7 flare.

and form coronal holes and
sunspots. This happens in a fairly
homogeneous area on the Sun,
so there can be several sunspots
with a single magnetic field un-
derneath.

[...]The merge listing the most im-
portant changes to Linux 3.8’s
sound subsystem includes some
other changes to audio drivers. The
kernel now includes a driver for hu-
man interface devices (HIDs) that
use I2C (1, 2 and others), using the
”HID over I2C” protocol designed
by Microsoft and implemented in
WindowsÂ

7 and later versions of the op-
erating system. The kernel now
has a driver for the Samsung
Galaxy S III smartphone’s touch-
screen (1, 2 and others), and the
rt2800usb driver, for the RaLink
RT2800USB WLAN chip, now
supports devices that have Blue-
tooth 3.0 (1, 2).[...]

7 and Windows Vista. The
drivers can read out data from
HIDs and set the appropriate
commands to them. An exam-
ple of such a device is a BT-
USB adapter. The sound subsys-
tem now supports two new, high-
quality audio codecs (1, 2):[...]

Table 14: Randomly sampled examples of watermarked texts on the C4 newslike subset with 100%
bit accuracy. Samples are truncated for readability.
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