
Under review as a conference paper at ICLR 2024

DEFYING MULTI-MODEL FORGETTING: ORTHOGO-
NAL GRADIENT LEARNING TO ONE-SHOT NEURAL
ARCHITECTURE SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

One-shot neural architecture search (NAS) trains an over-parameterized network
(termed as supernet) that assembles all the architectures as its subnets by using
weight sharing, and thereby reduces much computational budget. However, there
is an issue of multi-model forgetting about supernet training in one-shot NAS
that some weights of the previously well-trained architecture will be overwritten
by that of the newly sampled architecture which has overlapped structures with
the old one. To overcome the issue, we propose an orthogonal gradient learning
(OGL) guided supernet training paradigm for one-shot NAS, where the novelty
lies in the fact that the weights of the overlapped structures of current architecture
are updated in the orthogonal direction to the gradient space of these overlapped
structures of all previously trained architectures. Moreover, a new approach of
calculating the projection is designed to effectively find the base vectors of the
gradient space to acquire the orthogonal direction. We have theoretically and
experimentally proved the effectiveness of the proposed paradigm in overcoming
the multi-model forgetting. Besides, we apply the proposed paradigm to two one-
shot NAS baselines, and experimental results have demonstrated that our approach
is able to mitigate the multi-model forgetting and enhance the predictive ability of
the supernet in one-shot NAS with remarkable efficiency on popular test datasets.

1 INTRODUCTION

Recent years, one-shot neural architecture search (one-shot NAS) has aroused massive interests
and attentions in automatic architecture design, due to its remarkable efficiency in finding high-
performance neural architectures under specific resource constraints Bender et al. (2018); Pham
et al. (2018); Brock et al. (2017). The key of the one-shot NAS is weight sharing Guo et al. (2020a);
Dong & Yang (2019a); Guo et al. (2020b); Chu et al. (2021), where the weights of all candidate
architectures directly inherit from a supernet without training from scratch Hu et al. (2021); Chen
et al. (2021); Yu et al. (2021). In this way, only the supernet needs to be trained during the archi-
tecture search, and the training time can be reduced from days to several hours, so that the search
efficiency is greatly improved Yu et al. (2020); Dong & Yang (2019b).

Although the weight sharing can significantly enhance the computational efficiency, it may also
introduce multi-model forgetting (defined by Benyahia et al. (2019)). During the training of a super-
net, a number of architectures are sequentially sampled from the supernet and trained independently.
Once the architectures have partially overlapped structures, the weights of these overlapped struc-
tures of the previously well-trained architecture will be overwritten by the weights of the newly
sampled architectures. In this way, the performance of the previously well-trained architecture may
be decreased.

The above phenomenon has also been verified by Zhang et al. (2020b;a) that the multi-model for-
getting may ultimately lead to unreliable ranking of the validation accuracy due to the performance
degradation in the training. An example to illustrate the above phenomenon is given in Fig. 1 that
the observed validation accuracy of ArcA is lower than that of baseline (ArcA) when ArcB(n = 1)
or (n = 2) is training. Besides, the more overlapped operations between ArcA and ArcB will trig-
ger a larger degradation of the validation accuracy. This reason lies to the fact that the weights of

1



Under review as a conference paper at ICLR 2024

the overlapped operations of ArcA are overwritten by the corresponding weights of ArcB(n = 1)
or (n = 2). Therefore, how to defy the multi-model forgetting in one-shot NAS based on weight-
sharing paradigm is essential.

(a) (b) (c)

Figure 1: (a) ArcA is firstly sampled from the search space, and then ArcB(n = 1) or
ArcB(n = 2) is sampled in the next. (b) The curves of baseline (ArcA), ArcB(n = 1) and
ArcB(n = 2) represent their validation accuracy during the training. The curve of ArcA during
training ArcB(n = 1) or the training of ArcB(n = 2) indicates the observed validation accuracy
of ArcA when training ArcB(n = 1) or (n = 2). (c) Validation accuracy of sampled architectures
and average rank of the orthogonal projectors of overlapped structures with respect to the training
epochs by the disturbance-immune (DI) Niu et al. (2021).

At present, the study of defying multi-model forgetting in one-shot NAS is in its infancy Benyahia
et al. (2019). The typical way in handling this issue is to regularize the training of an architecture
sampled from the supernet by adding constraints to the loss function Benyahia et al. (2019); Zhang
et al. (2020b;a). These constraints designed to penalize the large changes of the weights of the over-
lapped structures are constructed on a subset of an archive which preserves all previously trained
architectures Zhang et al. (2020b). However, the above training process is subject to the size of
subset, especially when it is filled up. Differently, recently proposed disturbance-immune (DI) Niu
et al. (2021) introduces an idea to mitigate the multi-model forgetting issue. It introduces a projector
to update the weights of the overlapped structures of current architecture in the orthogonal direction
to the input space of the overlapped structures of all previously trained architectures. However, we
discover that the DI has a potential issue of projector attenuation that the rank of the orthogonal
projectors is approaching zero, and more overlapped cases will happen as the training process con-
tinues. Unfortunately, the projector attenuation will ultimately and severely degrade the efficiency
of the weight learning as well as the prediction ability of the supernet.

In order to defy the multi-model forgetting of one-shot NAS and overcome the projector attenuation
issue of DI, we develop an orthogonal gradient learning (OGL) paradigm for supernet training.
During the training process, we firstly detect the structures of current architecture whether they are
ever sampled or not. If not, then the weights of the architecture are updated with back-propagation
algorithm (e.g., SGD) and a pre-constructed gradient space is updated by the gradient direction of the
structure. If yes, then the weights of the overlapped structures of the current architecture are updated
in the orthogonal direction to the gradient space of all previously trained architectures. Following
the OGL guided training paradigm, the training of the current architecture will largely eliminate
the influence to the performance of all previously trained architectures when they have overlapped
structures, which has been theoretically and experimentally proved in this study.

To the best of our knowledge, it is the first attempt to use the orthogonal gradient to handle the
multi-model forgetting problem in one-shot NAS and the main contributions include:

• An orthogonal gradient learning (OGL) guided supernet training paradigm is proposed to
effectively defy the multi-model forgetting of one-shot NAS, which has been theoretically
and experimentally proved that the OGL guided training paradigm enables the training of
the current architecture to largely eliminate the impact to the performance of all previously
trained architectures.

• An enhanced projection based on PCA is designed to find a set of base vectors to represent
the gradient space of all previously trained architectures, which overcomes the projector

2



Under review as a conference paper at ICLR 2024

Figure 2: Difference between SGD and OGL in the training of the overlapped structures of architec-
ture B after the training of architecture A. The updating direction of the weights in SGD is towards
the low error region of architecture B, and that in OGL is towards the intersection region where both
architectures A and B have low test error.

attenuation issue and helps to determine the orthogonal direction without need to store the
gradient vectors of all previously trained architectures.

• The proposed paradigm is integrated into two baselines, and a number of experimental
results show that the OGL is able to mitigate the multi-model forgetting and improve the
prediction ability of the baselines.

2 RELATED WORK

2.1 ONE-SHOT NAS AND ISSUE OF MULTI-MODEL FORGETTING

In the training of one-shot NAS, each candidate architecture α inherits weights from the supernet
WA and directly evaluates it on the validation dataset without training. Afterwards, the best candi-
date architecture α∗ and the weights of supernetWA(α

∗) can be found with the highest validation
accuracy, as defined as

(α∗,WA(α
∗)) = argmin

α,W
Ltrain(WA(α)), (1)

where Ltrain is the training loss function.

In the training of one-shot NAS, the issue of multi-model forgetting Benyahia et al. (2019) easily
happens that the weights of the overlapped structures of the previously trained architecture are over-
written by the weights of the new architecture. As a consequence, the accuracy of previously trained
architectures is seriously degraded after the training of a new architecture Yu et al. (2020); Li et al.
(2020); Wang et al. (2020) and even lead to unreliable ranking of the validation accuracy Zhang
et al. (2020b;a).

To handle multi-model forgetting, Benyahia et al. (2019) propose a weight plasticity loss (WPL),
which regularizes the learning of the weights of overlapped structures according to the importance
of the previously and firstly-trained architecture. However, Zhang et al. (2020b;a) have verified
that considering only one previous architecture in each step seems not much effective in handling
the multi-model forgetting issue so that they add constraints to the loss function to regularize the
supernet training, where the constraints are referring to the loss functions of a subset of the previ-
ously trained architectures. Unfortunately, it is challenging to find an archive with appropriate size
to represent all previously trained architectures during the training process. The recently proposed
disturbance-immune (DI) Niu et al. (2021) shows a great potential to alleviate the multi-model for-
getting, which updates the weights of each sampled operation in the orthogonal direction of input
features through projection matrices. However, this approach suffers the issue of projector attenua-
tion, i.e., the rank of the projectors will approach zero as the training process goes. In other words,
the weights of the operation will be no more modified in the following training so that the prediction
ability of the supernet will be degraded Zeng et al. (2019).

According to the above analysis, the key to handle the multi-model forgetting is to design an effective
weight learning method and meanwhile avoid the projector attenuation.

3



Under review as a conference paper at ICLR 2024

3 PROPOSED METHOD

3.1 ORTHOGONAL GRADIENT LEARNING (OGL)

In this study, the cell structure of DARTS Saha et al. (2020) with 7 nodes is adopted to construct
the standard supernet1. In other words, a supernet constitutes of a number of stacked cells. The cell
structure includes two input nodes (nodes 0 and 1), four intermediate nodes (nodes 2, 3, 4 and 5),
and one output node (node 6). The edge highlighted in dashed line indicates one of eight possible
operations, i.e., 3× 3 max pooling, 3× 3 average pooling, 3× 3 and 5× 5 separable convolutions,
3 × 3 and 5 × 5 dilated separable convolutions, identity and zero. On the basis of the above cell
structure, an architecture can be sampled from a supernet by selecting a subset of the dashed lines
and determining the operation of each selected dashed line in the cells.

In order to handle the multi-model forgetting, we design an effective orthogonal gradient learning
(OGL) for supernet training and meanwhile avoid the projector attenuation. The main idea is to
design a gradient space to save the gradient directions of each operation of the previously trained
architectures. Notably, the weight update of every operation is orthogonal to the gradient space. As
a result, the impact from the weight update of the newly sampled architectures to the performance of
the previously well-trained architectures will be largely eliminated. Consequently, the multi-model
forgetting in one-shot NAS can be alleviated. Figure 2 shows an example to illustrate the above
idea. In OGL, the updating direction of the weights in each update is determined by the direction of
stochastic gradient descent (SGD). After a number of updates, we can see that the direction of OGL
is towards the intersection region where both architectures A and B have low test error.

In SGD, the weights of architectures during the supernet training is obtained as follows:

w
(i,j)
l,r (k + 1)← w

(i,j)
l,r (k)− η∆w

(i,j)
l,r (k + 1)BP , (2)

where w
(i,j)
l,r (k) and w

(i,j)
l,r (k + 1) are the weight vectors of the r-th candidate operation o

(i,j)
r be-

tween nodes i and j in cell l for the k-th and (k + 1)-th sampled architectures, respectively. η is the
learning rate. ∆w

(i,j)
l,r (k+1)BP , the weight direction of SGD calculated by back propagation (BP),

is represented by the weight adjustment (or gradient) of o(i,j)r in cell l of architecture k + 1.

In OGL, we modify the weight direction ∆w
(i,j)
l,r (k + 1)BP in Eq. 2 as follows:

∆w
(i,j)
l,r (k + 1)BP ← ∆w

(i,j)
l,r (k + 1)BP − pro

S
(i,j)
r

(∆w
(i,j)
l,r (k + 1)BP ), (3)

where S
(i,j)
r is the gradient space of o

(i,j)
r . pro

S
(i,j)
r

(∆w
(i,j)
l,r (k + 1)BP ) represents the vector

∆w
(i,j)
l,r (k + 1)BP projected on S

(i,j)
r .

Lemma 1. The OGL guided training paradigm enables the training of the current architecture to
largely eliminate the impact to the performance of all previously trained architectures.

Proof. Define w(k) as the weights of k-th architecture and L(w) is the loss function. The loss of
k + 1-th architecture can be calculated according to Taylor formula:

L(w) = L(w(k)) + (w − w(k))L
′
(w(k)) +R1(w), (4)

where L
′
(w) is the first derivative of L(w), and R1(w) = o(w−w(k)) is the remainder term of Eq.

4.

Note that o(w−w(k)) is approximately equal to zero when w approaches w(k). Then the Eq. 4 can
be reformed as:

L(w)− L(w(k)) ≈ (w − w(k))L
′
(w(k)). (5)

where the left side of the Eq. 5 is due to the amount of change in the loss of the k-th architecture
when training k + 1-th architecture.

OGL guided training paradigm enables the modification of weights in the orthogonal direction
of the corresponding gradient space. Every gradient space consists of the gradient direction

1Other structures of supernets can also be used in this work

4



Under review as a conference paper at ICLR 2024

(i.e., L
′
(w(k))) of previous architectures. If the modification of operation weights (w − w(k))

of new architecture is updated in the orthogonal direction of its gradient space, we will have
⟨w−w(k), L′

(w)⟩ = 0, and then L(w)−L(w(k))→ 0, which means the performance of previously
trained architectures is slightly impacted. The Lemma 1 is proven.

We further provide with the convergence analysis of the update of the weights in appendix ?.

Theorem 1. Given a l-smooth and convex loss function L(w), w∗ and w0 are the optimal and initial
weights of L(w), respectively. If we let the learning rate η = 1/l, then we have:

L(wt)− L(w∗) ≤ 2l

t
∥w0 − w∗∥2F , (6)

where wt is the weights of architecture after t-th training.

Theorem 1 demonstrates that our proposed method OGL has a convergence rate of O(1/t) Liu et al.
(2018b). The proof of Theorem is provided in the section 1.2 of the supplementary file.

3.2 DESIGN OF GRADIENT SPACE

In this section, we propose an orthogonal gradient learning algorithm that makes the update of
the architecture parameters orthogonal to the gradient vectors, in order to preserve the gradients
of the previously trained architectures. Specifically, we calculate the gradient of each operation of
architecture k after training k-th architecture and introduce the gradient vector to the update of the
gradient space. Therefore, the term pro

S
(i,j)
r

(∆w
(i,j)
l,r (k+1)BP ) in Eq. 3 can be obtained according

to Lemma 2.

Lemma 2. Given a gradient space S
(i,j)
r consists of a number of gradient vectors, i.e., S(i,j)

r =

{g1, g2, ..., gn}, the projection of ∆w
(i,j)
l,r (k + 1)BP on S

(i,j)
r can be calculated by Eq. 6.

pro
S

(i,j)
r

(∆w
(i,j)
l,r (k + 1)BP ) = G(GTG)−1GT∆w

(i,j)
l,r (k + 1)BP , (7)

where G = [g1, g2, ..., gn], gi ∈ Rh×1, i = 1, 2, ..., n. n and h are the number of gradient vectors
and the dimension of the gradient space S

(i,j)
r , respectively. The proof of Lemma 2 is provided in

the section 1.1 of the supplementary file.

Notably, it is impractical to record all the gradient vectors during the training of the supernet, since
the same operation is often repeatedly sampled. To address this issue, we describe G in Eq. 6 with a
small number of vectors since any vector in a space can be represented by a set of bases. Therefore,
we perform PCA on the matrix G ∈ Rh×n to get the set of representative bases Gdim ∈ Rh×d,
where d is the number of base vectors. After that, Gdim is adopted in Eq. 6 to obtain the enhanced
calculation of the projection as follows:

pro
S

(i,j)
r

(∆w
(i,j)
l,r (k + 1)BP ) = Gdim(GT

dimGdim)−1GT
dim∆w

(i,j)
l,r (k + 1)BP . (8)

Algorithm 1 outlines the training process of supernet with the proposed OGL.

3.3 RELATION WITH DI

In OGL, the weights of the overlapped structures of the current architecture are updated in the or-
thogonal direction to the gradient space of all previously trained architectures. By contrast, the
disturbance-immune (DI) strategy proposed by Niu et al. (2021) is that the weights of an architec-
ture are learnt in the orthogonal direction to the input space of the previously trained architectures.
However, OGL and DI are fundamentally different: OGL updates the weights in the direction or-
thogonal to the gradient space, while DI is to learn the direction orthogonal to the input space. In
DI, the recursive least square algorithm is used to calculate the projector, which may easily lead
to the projector attenuation issue, i.e., the rank of orthogonal projectors will be quickly reduced to
zero Zeng et al. (2019). As a consequence, the learning capacity of DI in defying the multi-modal
forgetting issue is severly limited. An example is shown in Fig. 1c that the validation accuracy se-
riously decreases with the reduction of the rank value. By contrast, OGL is free from this projector
attenuation issue by using Eq. 7 to calculate pro

S
(i,j)
r

(∆w
(i,j)
l,r (k + 1)BP ).

5

Administrator
高亮



Under review as a conference paper at ICLR 2024

Algorithm 1 OGL Supernet Training
Input: Dtrain: the training dataset, Dval: the validation dataset, T : NAS iteration
Output: The optimal architecture found by the proposed method OGL

1: Initialize the supernet weights w(i,j)
l,r (0) and archive Arc = ∅;

2: for k = 0 to T − 1 do
3: Randomly sample an architecture from the supernet;
4: Forward propagate all the input;
5: Calculate ∆w

(i,j)
l,r (k)BP through BP method;

6: if non-overlapped operations then
7: Update the weights using ∆w

(i,j)
l,r (k)BP .

8: else
9: Update the weights using Eq. 3 and Eq. 6.

10: end if
11: Perform PCA on each operation and update the gradient space with the gradient vectors.
12: Update Arc by new gradient spaces.
13: end for
14: Obtain the optimal architecture by Eq. 1.

(a) Normal cell searched by
RandomNAS-OGL

(b) Reduction cell searched
by RandomNAS-OGL

(c) Normal cell searched by
GDAS-OGL

(d) Reduction cell searched
by GDAS-OGL

Figure 3: The best cells discovered on CIFAR-10.

4 EXPERIMENT

4.1 ONE-SHOT NAS WITH OGL

In this study, we apply OGL to two popular single-path one-shot NAS baselines, including the
RandomNAS Li & Talwalkar (2020) and GDAS Dong & Yang (2019b), where RandomNAS and
GDAS are random- and gradient-based sampling NAS methods, respectively. For convenience, our
proposed methods based on the baselines are denoted by RandomNAS-OGL and GDAS-OGL. In
the experiments, we compare our methods with 13 state-of-the-art one-shot NAS competitors on
CIFAR-10, CIFAR-100 and ImageNet, where the experimental settings (e.g., the search space and
hyperparameters) follow Dong & Yang (2019b); Li & Talwalkar (2020) for fair comparison.

4.2 RESULTS ON CIFAR-10 AND CIFAR-100

In this section, the experimental results on CIFAR-10 and CIFAR-100 are presented. Note that we
use 8 cells with 16 initial channels and 64 batch size to construct the supernet. The final architecture
is composed of 20 cells, which is trained with 96 batch size. The whole architecture search, including
operation search and topology search, consumes 41.2 hours (1.7 GPU-Days) with 240 epochs on an
NVIDIA Tesla V100 GPU. Table 1 shows the comparison results.

• Compared with the baselines (RandomNAS and GDAS), RandomNAS-OGL and GDAS-
OGL show better performance in terms of the test loss and model size. Specifically, the
test loss values on CIFAR-10 of RandomNAS and GDAS decrease from 2.85% and 2.93%
to 2.63% and 2.83%, respectively. Also, the test error on CIFAR-100 of RandomNAS
and GDAS decrease from 17.63% and 18.38% to 17.54% and 17.75%, respectively. Their
corresponding model parameters decrease from 4.3M and 3.4M to 3.52M and 3.14M, re-
spectively. Accordingly, OGL can increase the test accuracy and meanwhile decrease the

6



Under review as a conference paper at ICLR 2024

Method
Test Error(%) Paras. FLOPs Search Cost Memory Supernet

CIFAR-10 CIFAR-100 (M) (M) (GPU Days) Consumption Optimization
ENASPham et al. (2018) 3.54 19.43† 4.6 - 0.45 Single Path RL

NAO-WSLuo et al. (2018) 3.53 - 2.5 - - Single Path Gradient
SNASXie et al. (2018) 2.85±0.02 20.09∗ 2.8 422 1.5 Whole Supernet Gradient

PARSECCasale et al. (2019) 2.86±0.06 - 3.6 485 0.6 Single Path Gradient
BayesNASZhou et al. (2019) 2.81±0.04 - 3.4 - 0.2 Whole Supernet Gradient
RENASChen et al. (2019b) 2.88±0.02 - 3.5 - 6 - RL&EA
MdeNASZheng et al. (2019) 2.87 17.61∗ 3.78 599 0.16 Single Path MDL

DSO-NASZhang et al. (2020c) 2.87±0.07 - 3.0 - 1 Whole Supernet Gradient
Random BaselineLiu et al. (2018b) 3.29±0.15 - 3.2 - 4 - Random

DARTS(1st)Liu et al. (2018b) 2.94 - 2.9 501 1.5 Whole Supernet Gradient
DARTS(2nd)Liu et al. (2018b) 2.76±0.09 17.57† 3.4 528 4 Whole Supernet Gradient

WPLBenyahia et al. (2019) 3.81 - - - - Single Path RL
DI-RandomNAS + cutoutNiu et al. (2021) 2.87±0.04 17.71‡ 3.6 - 1.5 Single Path Random
RandomNAS-NSASZhang et al. (2020a) 2.64 17.56 3.08 489 0.7 Single path Random

GDAS-NSASZhang et al. (2020a) 2.73 18.02 3.54 528 0.4 Single path Gradient
GDASDong & Yang (2019b) 2.93 18.38 3.4 519 0.21 Single Path Gradient

GDAS-OGL 2.83 17.75 3.14 528 0.3 Single Path Gradient
RandomNASLi & Talwalkar (2020) 2.85±0.08 17.63∗ 4.3 612 2.7 Single Path Random

RandomNAS-OGL 2.63±0.02 17.54 3.52 503 0.5 Single Path Random

Table 1: Comparision results in terms of test error on CIFAR-10 and CIFAR-100. “*” indicates that
the results are reported in the Zhang et al. (2020a). “†” indicates that the results are reported in the
Dong & Yang (2019b). “‡” indicates that the results are reported by ourselves. “-” indicates that
these methods are not reproducd in the experiment. All models are trained with 600 epochs except
RandomNAS-OGL, which is trained with 1000 epochs to get the optimal results.

model parameters. These results initially show the effectiveness of OGL in overcoming the
multi-model forgetting.

• Compared with the popular multi-model forgetting methods, i.e., WPL Benyahia et al.
(2019), NSAS Zhang et al. (2020a) and DI Niu et al. (2021), our methods achieve
better performance, i.e., getting lower test error with fewer parameters. Specifically,
RandomNAS-OGL and GDAS-OGL outperforms WPL with a test error improvement of
1.18% and 0.98% on CIFAR-10, respectively. Also, RandomNAS-OGL performs better
than RandomNAS-NSAS with 0.01% test error improvement on CIFAR-10 and 0.02% test
error improvement on CIFAR-100. Furthermore, GDAS-OGL performs better than GDAS-
NSAS on CIFAR-100 with smaller test error (0.27% improvement) and less parameters
(0.4M improvement). In addition, RandomNAS-OGL outperforms DI-RandmNAS with a
test error improvement of 0.24% and 0.17% on CIFAR-10 and cifar-100, respectively.

• Compared with other NAS methods, RandomNAS-OGL and GDAS-OGL exhibit com-
petitive performance. Especially, RandomNAS-OGL gets 2.63% test error on CIFAR-10
and 17.54% test error on CIFAR-100, and GDAS-OGL achieves 2.83% on CIFAR-10 and
17.75% on CIFAR-100, which are better than most of compared methods. The results
indicate that OGL is capable of enhancing the supernet prediction.

• Fig. 3 presents the visualization results of the best cells found by RandomNAS-OGL for
CNN models on CIFAR-10 and CIFAR-100.

4.3 RESULTS ON IMAGENET

This section is to evaluate the transferability of OGL, where the architecture discovered from
CIFAR-10 will be tested on ImageNet dataset. Here, RandomNAS is employed as the baseline. In
this experiment, we train the architecture in 250 epochs with 52 initial channels and 128 batch size.
Table 2 shows the comparison results between our method and other NAS methods with or without
weight sharing. The results show that the test error of RandomNAS-OGL is 25.8%, which outper-
forms the baseline (RandomNAS) with 1.3%. In comparision with other methods, RandomNAS-
OGL is on par with or even better than them. Specifically, our proposed method RandomNAS-OGL
outperforms RandomNAS-NSAS with 0.3% improvement and outperforms DI-RandomNAS with
0.6% improvement. In average, RandomNAS-OGL performs better than most of NAS methods by
0.3%-1.2%. These results demonstrate OGL has a great transferabilityof the searched convolutional

7



Under review as a conference paper at ICLR 2024

cells, and also show that OGL plays a positive role in improving the prediction ability of the one-shot
NAS method (RandomNAS).

Method Test Error (%) Param.(M) FLOPs(M)
Inception-v1Szegedy et al. (2015) 30.2 6.6 1448
MobileNetHoward et al. (2017) 29.4 4.2 569

ShuffleNet 2 ×Zhang et al. (2018) 26.4 5 524
NASNet-AZoph et al. (2018) 26.0 5.3 564

PNASLiu et al. (2018a) 25.8 5.1 588
SNASXie et al. (2018) 27.3 4.3 522

PARSECCasale et al. (2019) 26.3 5.5 -
BayesNASZhou et al. (2019) 26.5 3.9 -
MdeNASZheng et al. (2019) 26.8 6.1 595

DSO-NASZhang et al. (2020c) 26.2 4.7 571
PDARTSChen et al. (2019a) 25.9∗ 4.9 557

DARTS(2nd)Liu et al. (2018b) 26.7 4.7 574
DI-RandomNAS + cutoutNiu et al. (2021) 26.4‡ 5.1 587
RandomNAS-NSASZhang et al. (2020a) 26.1 5.2 581

GDAS-NSASZhang et al. (2020a) 26.7 5.1 564
RandomNASLi & Talwalkar (2020) 27.1 5.4 595

RandomNAS-OGL 25.8 5.9 589

Table 2: Comparision results on Imagenet. The first block contains the NAS methods without
weight sharing. The second block contains one-shot NAS methods. “*” indicates that the results are
reported in the Li & Talwalkar (2020). “‡” indicates that the results are reported by ourselves.

4.4 MULTI-MODEL FORGETTING IN ONE-SHOT NAS

(a) (b)

Figure 4: (a) Validation accuracy comparison of normal, DI and OGL supernet training. Four archi-
tectures Arc1, Arc2, Arc3, and Arc4 are sampled and trained sequentially from stage 1 to stage 4.
At each stage, only one architecture is trained for updating the supernet, while each block is the val-
idation accuracy of corresponding architecture tested on MNIST. (b) The performance comparison
of the four architectures Arc1, Arc2, Arc3, and Arc4 during the retraining.

In order to intuitively observe the effectiveness of our methods in relieving multi-model forgetting
in one-shot NAS, we test the validation accuracy of previously-trained architectures during a new ar-
chitecture is training. As shown in Fig. 4 (a), given four architectures (Arc1, Arc2, Arc3, and Arc4)
which have overlapped structures, we will track their validation accuracy when they are trained in a
sequential way by using OGL, DI or normal supernet training. Specifically, Arc1 is firstly trained
to update the supernet at stage 1 (1-30 epochs); At stage 2 (31-60 epochs), only Arc2 is trained for
the supernet, while the validation accuracy of Arc1 through inheriting supernet weights is tracked;
Similarly, at stage 3 (61-90 epochs) or stage 4 (91-120 epochs), only Arc3 or Arc4 is trained for
updating the supernet, while the validation accuracy of other architectures is recorded.

8

Administrator
高亮



Under review as a conference paper at ICLR 2024

(a) (b)

Figure 5: (a) The final Kendall Tau values and architecture ranking of different methods with or
without OGL. (b) The mean validation accuracy for the architectures found through different meth-
ods.

Fig. 4 (a) shows the validation accuracy changes of the four architectures on MNIST. We observe
that the validation accuracy results of Arc1-Normal, Arc2-Normal, Arc3-Normal drop drastically
at stage 2, 3, and 4, respectively. It indicates that the normal supernet training is easily impacted by
the multi-model forgetting issue since these architectures have overlapped structures. In contrast,
the validation accuracy of the architectures with DI and OGL remains stable to much extent when a
new architecture is training. These results show that DI and OGL both are effective to prevent multi-
model forgetting. However, DI may lead to unreliable ranking of architectures due to the projector
attenuation issue. As shown in Fig. 4 (b), the true validation accuracy rank of the four architectures
after retraining from the scratch is Arc2, Arc1, Arc4, and Arc3. In Fig. 4 (a), we can see that the
final accuracy rank of these architectures trained by normal supernet training is Arc4, Arc2, Arc3
and Arc1, which is totally different from the true ranking due to the multi-model forgetting. And
the result of DI (Arc1, Arc2, Arc3, and Arc4) is different from the true ranking due to the projector
attenuation issue. However, the result of OGL can lead to reliable rank by defying the multi-model
forgetting and projector attenuation, which is the key to assure the supernet predictive ability.

4.5 SUPERNET PREDICTIVE ABILITY COMPARISON

The supernet predictive ability can be measured by the correlation between the architecture rankings
obtained by weight sharing and retraining. This correlation is commonly evaluated by Kendall Tau
τ metric Zheng et al. (2019); Kendall (1945) where τ close to 1.0 means high correlation and strong
predictive ability. Therefore, we compare the architecture rankings of the methods with or without
OGL. Firstly, we sample 9 promising architectures (3 from RandomNAS, 3 from RandomNAS-
OGL, and 3 randomly sampled from previous experiment) and retrained them from scratch. Similar
experiments are also conducted on GDAS and GDAS-OGL.

Fig. 5 (a) presents the Kendall Tau τ metric of the architecture rankings based on normal method,
OGL, DI and retraining (true ranking). These results show the difference in rankings between the
retraining and the proposed method OGL. Specifically, Fig. 5 (a) presents the final Kendall Tau
values τ of RandomNAS (0.333), RandomNAS-OGL (0.667), RandomNAS-DI (0.556), GDAS (-
0.222) and GDAS-OGL (0.500). Note that the closer τ is to 1, the more perfect the consistency of the
two sequences (the more similar of the two sequences). We can find that the architecture rankings of
the methods with OGL is far more similar to the true ranking than that of the methods without OGL.
And the result of RandomNAS-OGL is better than DI-RandomNAS. In other words, it indicates
that the supernet obtained through OGL has a stronger predictive ability. Fig. 5 (b) depicts the
mean validation accuracy of sampled architectures through different methods. The results show that
the architectures of RandomNAS-OGL have better validation accuracy than that of other methods.
Hence, we can conclude that OGL is able to find the architectures with high quality.

5 CONCLUSION AND FUTURE WORK

The goal of this work is to train a supernet in an effective way to overcome the multi-model for-
getting in one-shot neural NAS. To this end, we proposed an orthogonal weight learning method
to update the weights of current architecture in the direction orthogonal to the constructed gradient

9



Under review as a conference paper at ICLR 2024

space. In this way, the update of new weights will not impact the performance of previously-trained
architectures and free from projector attenuation issue. A series of experiments have been conducted
and the results have theoretically and experimentally demonstrated the effectiveness of OGL in im-
proving the ability of prediction and defying the multi-model forgetting in one-shot NAS. In the
future work, more effective way to store all gradient vectors of all architectures can be explored to
indirectly improve the supernet predictive ability.

In future work, we will focus on the storage and computational issues. From all the experiments
above, OGL shows a slighly higher FLOPs but relatively lower search costs (GPU days) in compar-
ison with other methods. OGL aims to deal with multi-model forgetting issue and have to calculate
the gradient vector of each operation and update the corresponding gradient space. Hence, the im-
provement of the accuracy (Test error) achieved by OGL is on the sacrifice of the complexity of the
proposed method, leading to a higher FLOPs. Notably, the reasons for fewer GPU days of OGL is
because the improvement of the accuracy can speed up the model convergence rate. From the results,
OGL is relatively efficient in supernet training. For the storage issue, although PCA has reduced the
dimension of the gradient space, OGL still needs to store a set of base vectors. Hence, we will
develop more efficent calculation of orthogonal direction with fewer storage, with the consideration
of using iterative methods instead of directly storing them.

A APPENDIX

A.1 SUPPLEMENTARY EXPERIMENTS ON CIFAR-10 AND CIFAR-100

Method
Test Error(%) Paras. FLOPs Search Cost Memory Supernet

CIFAR-10 CIFAR-100 (M) (M) (GPU Days) Consumption Optimization
MetaQNN Baker et al. (2016) 6.92 27.14 11.2 - >80 Single Path RL
NASNet-A Zoph et al. (2018) 3.41 19.7 3.3 564 2000 Single Path RL

NASNet-A+cutout Zoph et al. (2018) 2.65 17.81 3.3 564 2000 Single Path RL
SMASH Brock et al. (2017) 4.03 20.6 16 - - Single Path Random

GDAS + cutout Dong & Yang (2019b) 2.93 18.38 3.4 - 0.84 Single Path Gradient
ENASPham et al. (2018) 3.54 19.43† 4.6 - 0.45 Single Path RL

ENAS + cutoutPham et al. (2018) 2.89 18.91† 4.6 - 0.5 Single Path RL
SNASXie et al. (2018) 2.85±0.02 20.09∗ 2.8 422 1.5 Whole Supernet Gradient

MdeNASZheng et al. (2019) 2.87 17.61∗ 3.78 599 0.16 Single Path MDL
DARTS(2nd)Liu et al. (2018b) 2.76±0.09 17.57† 3.4 528 4 Whole Supernet Gradient

WPLBenyahia et al. (2019) 3.81 - - - - Single Path RL
DI-RandomNAS + cutoutNiu et al. (2021) 2.87±0.04 17.71‡ 3.6 - 1.5 Single Path Random
RandomNAS-NSASZhang et al. (2020a) 2.64 17.56 3.08 489 0.7 Single path Random

GDAS-NSASZhang et al. (2020a) 2.73 18.02 3.54 528 0.4 Single path Gradient
GDASDong & Yang (2019b) 2.93 18.38 3.4 519 0.21 Single Path Gradient

GDAS-OGL 2.83 17.75 3.14 528 0.3 Single Path Gradient
RandomNASLi & Talwalkar (2020) 2.85±0.08 17.63∗ 4.3 612 2.7 Single Path Random

RandomNAS-OGL 2.63±0.02 17.54 3.52 503 0.5 Single Path Random

Table 3: Comparision results in terms of test error on CIFAR-10 and CIFAR-100. “*” indicates that
the results are reported in the Zhang et al. (2020a). “†” indicates that the results are reported in the
Dong & Yang (2019b). “‡” indicates that the results are reported by ourselves. “-” indicates that
these methods are not reproducd in the experiment. All models are trained with 600 epochs except
RandomNAS-OGL, which is trained with 1000 epochs to get the optimal results.

In order to evaluate the performance of the proposed OGL in handling the multi-model forgetting is-
sue, we compared OGL with WPL, DI-RandomNAS, RandomNAS-NSAS and GDAS-NSAS, which
are the existing methods in solving the multi-model forgetting issue. And the experimental results
demonstrate that our OGL performs better in solving the multi-model forgetting.

In addition, we also compared OGL with ten state-of-the-art one-shot NAS methods without de-
signing techniques to handle the multi-model forgetting issues. In Table 3, we have also provided
extra six state-of-the-art one-shot NAS methods to get a comprehensive comparison. Specifically,
RandomNAS-OGL gets 2.63% test error on CIFAR-10 and 17.54% test error on CIFAR-100, and
GDAS-OGL achieves 2.83% on CIFAR-10 and 17.75% on CIFAR-100, which are better than most

10

Administrator
高亮

Administrator
高亮



Under review as a conference paper at ICLR 2024

of compared methods. The results show that the methods especially OGL with the techniques show
better performance than other NAS methods without the techniques.

REFERENCES

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network architec-
tures using reinforcement learning. arXiv preprint arXiv:1611.02167, 2016.

Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le. Understand-
ing and simplifying one-shot architecture search. In International Conference on Machine Learn-
ing (ICML), pp. 550–559, 2018.

Yassine Benyahia, Kaicheng Yu, Kamil Bennani Smires, Martin Jaggi, Anthony C Davison, Mathieu
Salzmann, and Claudiu Musat. Overcoming multi-model forgetting. In International Conference
on Machine Learning (ICML), pp. 594–603, 2019.

Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Smash: One-shot model archi-
tecture search through hypernetworks. arXiv preprint arXiv:1708.05344, 2017.

Francesco Paolo Casale, Jonathan Gordon, and Nicolo Fusi. Probabilistic neural architecture search.
arXiv preprint arXiv:1902.05116, 2019.

Minghao Chen, Jianlong Fu, and Haibin Ling. One-shot neural ensemble architecture search by
diversity-guided search space shrinking. In Computer Vision and Pattern Recognition (CVPR),
pp. 16525–16534, 2021.

Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search: Bridg-
ing the depth gap between search and evaluation. In International Conference on Computer
Vision(ICCV), pp. 1294–1303, 2019a.

Yukang Chen, Gaofeng Meng, Qian Zhang, Shiming Xiang, Chang Huang, Lisen Mu, and Xing-
gang Wang. Renas: Reinforced evolutionary neural architecture search. In Computer Vision and
Pattern Recognition (CVPR), pp. 4782–4791, 2019b.

Xiangxiang Chu, Bo Zhang, and Ruijun Xu. Fairnas: Rethinking evaluation fairness of weight
sharing neural architecture search. In International Conference on Computer Vision(ICCV), pp.
12239–12248, 2021.

Xuanyi Dong and Yi Yang. One-shot neural architecture search via self-evaluated template network.
In International Conference on Computer Vision (ICCV), pp. 3680–3689, 2019a.

Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four gpu hours. In Computer
Vision and Pattern Recognition (CVPR), pp. 1761–1770, 2019b.

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun.
Single path one-shot neural architecture search with uniform sampling. In European Conference
on Computer Vision (ECCV), pp. 544–560, 2020a.

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun.
Single path one-shot neural architecture search with uniform sampling. In European Conference
on Computer Vision (ECCV), pp. 544–560, 2020b.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Yiming Hu, Xingang Wang, Lujun Li, and Qingyi Gu. Improving one-shot nas with shrinking and
expanding supernet. Pattern Recognition (PR), 118:108025, 2021.

Maurice G Kendall. The treatment of ties in ranking problems. Biometrika, 33(3):239–251, 1945.

Changlin Li, Jiefeng Peng, Liuchun Yuan, Guangrun Wang, Xiaodan Liang, Liang Lin, and Xiao-
jun Chang. Block-wisely supervised neural architecture search with knowledge distillation. In
Computer Vision and Pattern Recognition(CVPR), pp. 1989–1998, 2020.

11



Under review as a conference paper at ICLR 2024

Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search. In
Uncertainty in Artificial Intelligence (UAI), pp. 367–377, 2020.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In European
Conference on Computer Vision (ECCV), pp. 19–34, 2018a.

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu. Hier-
archical representations for efficient architecture search. arXiv preprint arXiv:1711.00436, 2017.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In
International Conference on Learning Representations (ICLR), 2018b.

Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimization.
Advances in Neural Information Processing Systems (NIPS), 31, 2018.

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yong Guo, Peilin Zhao, Junzhou Huang, and Mingkui
Tan. Disturbance-immune weight sharing for neural architecture search. Neural Networks, 144:
553–564, 2021.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture
search via parameters sharing. In International Conference on Machine Learning (ICML), pp.
4095–4104, 2018.

Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning. In
International Conference on Learning Representations (ICLR), 2020.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Computer Vision and Pattern Recognition(CVPR), pp. 1–9, 2015.

Weiyao Wang, Du Tran, and Matt Feiszli. What makes training multi-modal classification networks
hard? In Computer Vision and Pattern Recognition (CVPR), pp. 12695–12705, 2020.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: Stochastic neural architecture search.
In International Conference on Learning Representations (ICLR), 2018.

Kaicheng Yu, Christian Suito, Martin Jaggi, Claudiu-Cristian Musat, and Mathieu Salzmann. Eval-
uating the search phase of neural architecture search. In International Conference on Learning
Representations (ICLR), number CONF, 2020.

Kaicheng Yu, Rene Ranftl, and Mathieu Salzmann. Landmark regularization: Ranking guided su-
pernet training in neural architecture search. In Computer Vision and Pattern Recognition (CVPR),
pp. 13718–13727, 2021.

Guanxiong Zeng, Yang Chen, Bo Cui, and Shan Yu. Continual learning of context-dependent pro-
cessing in neural networks. Nature Machine Intelligence, 1:364–372, 2019.

Miao Zhang, Huiqi Li, Shirui Pan, Xiaojun Chang, and Steven Su. Overcoming multi-model for-
getting in one-shot nas with diversity maximization. Computer Vision and Pattern Recognition
(CVPR), pp. 7806–7815, 2020a.

Miao Zhang, Huiqi Li, Shirui Pan, Xiaojun Chang, Chuan Zhou, Zongyuan Ge, and Steven Su.
One-shot neural architecture search: Maximising diversity to overcome catastrophic forgetting.
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 43(9):2921–2935, 2020b.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In Computer Vision and Pattern Recogni-
tion(CVPR), pp. 6848–6856, 2018.

Xinbang Zhang, Zehao Huang, Naiyan Wang, Shiming Xiang, and Chunhong Pan. You only search
once: Single shot neural architecture search via direct sparse optimization. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 43(9):2891–2904, 2020c.

12



Under review as a conference paper at ICLR 2024

Xiawu Zheng, Rongrong Ji, Lang Tang, Baochang Zhang, Jianzhuang Liu, and Qi Tian. Multinomial
distribution learning for effective neural architecture search. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 1304–1313, 2019.

Hongpeng Zhou, Minghao Yang, Jun Wang, and Wei Pan. Bayesnas: A bayesian approach for neural
architecture search. In International Conference on Machine Learning (ICML), pp. 7603–7613,
2019.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Computer Vision and Pattern Recognition(CVPR), pp. 8697–
8710, 2018.

13


	Introduction
	Related Work
	One-shot NAS and Issue of Multi-model Forgetting

	Proposed Method
	Orthogonal Gradient Learning (OGL)
	Design of Gradient Space
	Relation with DI

	Experiment
	One-shot NAS with OGL
	Results on CIFAR-10 and CIFAR-100
	Results on ImageNet
	Multi-model Forgetting in One-shot NAS
	Supernet Predictive Ability Comparison

	Conclusion and Future Work
	Appendix
	Supplementary experiments on CIFAR-10 and CIFAR-100


