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Abstract

In modern machine learning, inner product attention computation is a fundamental
task for training large language models such as Transformer, GPT-1, BERT, GPT-2,
GPT-3 and ChatGPT. Formally, in this problem, one is given as input three matrices
Q,K, V ∈ [−B,B]n×d, and the goal is to construct the matrix Att(Q,K, V ) :=
diag(A1n)

−1AV ∈ Rn×d, where A = exp(QK⊤/d) is the ‘attention matrix’,
and exp is applied entry-wise. Straightforward methods for this problem explicitly
compute the n× n attention matrix A, and hence require time Ω(n2) even when
d = no(1) is small.
In this paper, we investigate whether faster algorithms are possible by implicitly
making use of the matrix A. We present two results, showing that there is a sharp
transition at B = Θ(

√
log n).

• If d = O(log n) and B = o(
√
log n), there is an n1+o(1) time algorithm to

approximate Att(Q,K, V ) up to 1/poly(n) additive error.
• If d = O(log n) and B = Θ(

√
log n), assuming the Strong Exponential Time

Hypothesis from fine-grained complexity theory, it is impossible to approxi-
mate Att(Q,K, V ) up to 1/poly(n) additive error in truly subquadratic time
n2−Ω(1).

This gives a theoretical explanation for the phenomenon observed in practice that
attention computation is much more efficient when the input matrices have smaller
entries.

1 Introduction

Large language models (LLMs) such as Transformer [VSP+17], BERT [DCLT18], GPT-3
[BMR+20], PaLM [CND+22], and OPT [ZRG+22] can process natural language more effectively
than smaller models or traditional algorithms. This means that they can understand and generate
more complex and nuanced language, which can be useful for a variety of tasks such as language
translation, question answering, and sentiment analysis. LLMs can also be adapted to multiple
purposes without needing to be retained from scratch. Their power is particularly exemplified by the
recent success of ChatGPT, a chat software by OpenAI built on top of GPT-3 [Ope22].

The key technical backbone of LLMs is the attention matrix [VSP+17, RNS+18, DCLT18, RWC+19,
BMR+20]. An attention matrix is a square matrix whose rows and columns correspond to words
or “tokens”, and whose entries correspond to the correlations between these tokens in natural text.
The attention matrix is then used to calculate the importance of each input token in a sequence
when producing an output. In an attention mechanism, each input token is given a weight or score,
which reflects its importance or relevance to the current output being generated. These scores are
calculated based on a comparison between the current output state and the input states, using a
similarity function.
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More formally, the attention matrix is defined as follows. Let Q ∈ Rn×d be the matrix of query
tokens, and K ∈ Rn×d be the matrix of key tokens. (We focus here on the case when d = no(1),
so d≪ n.) The attention matrix is an n× n matrix A where the rows and columns correspond to
the input tokens in the sequence. Each entry in the matrix represents the attention weight or score
between a particular input token (query token Q) and a particular output token (key token K). The
diagonal entries of the matrix represent self-attention scores, which measure the importance of each
token with respect to itself.

The major bottleneck to speeding up LLM operations (in the case of modeling long sequences
with large n) is the time to perform attention matrix computations [VSP+17, RNS+18, DCLT18,
RWC+19, BMR+20, WLK+20, KKL20]. These computations ask us to multiply the attention matrix
A with another value token matrix V ∈ Rn×d.

We formally define Attention computation as follows. Throughout this paper, we write exp to denote
the entry-wise exponential for matrices.
Definition 1.1 (Exact Attention Computation EAttC(n, d)). Given three matrices Q,K, V ∈ Rn×d,
output the n× d matrix Att(Q,K, V ) defined by

Att(Q,K, V ) := D−1AV

where A ∈ Rn×n and diagonal matrix D ∈ Rn×n are defined as

A := exp(QK⊤/d), and D := diag(A1n).

The straightforward algorithm for this problem computes the matrix A and then performs the
multiplications D−1AV , in time n2+o(1). Since A is an n×n matrix with n2 entries, it is impossible
to improve on this much while explicitly computing the matrix A. However, the input to the problem
is not A, but rather the three matrices Q,K, V which each have only n1+o(1) entries. An algorithm
which only implicitly makes use of A, without explicitly computing all its entries, could hope to run
in almost linear time!

In this paper, we investigate the possibility of accelerating attention computations in this way. The
two main questions we address are:

• Q1. When can we perform attention computations in almost linear time n1+o(1)?
• Q2. When can we prove that subquadratic-time algorithms for attention computations are

impossible?

In most LLMs, it suffices to approximately perform attention computations throughout the infer-
ence process as long as there are reasonable precision guarantees [CGRS19, KKL20, WLK+20,
DKOD20, KVPF20, CDW+21, CDL+22, LWD+23, ZSZ+23]. We therefore focus here on approxi-
mate attention computation, which can potentially be performed even faster than exact computation.
Mathematically, we define the approximate version of EAttC as follows.
Definition 1.2 (Approximate Attention Computation AAttC(n, d,B, ϵa)). Let ϵa > 0 and B > 0
be parameters. Given three matrices Q,K, V ∈ Rn×d, with the guarantees that ∥Q∥∞ ≤ B,
∥K∥∞ ≤ B, and ∥V ∥∞ ≤ B, output a matrix T ∈ Rn×d which is approximately equal to D−1AV ,
meaning,

∥T −D−1AV ∥∞ ≤ ϵa.

Here, for a matrix M ∈ Rn×n, we write ∥M∥∞ := maxi,j |Mi,j |.

Again, the straightforward algorithm for this problem runs in time O(n2d) ≤ n2+o(1), but the input
size is only O(nd) ≤ n1+o(1). Our goal is to investigate when faster algorithms are possible in terms
of the parameters d,B, and ϵa.

1.1 Our Results

We focus on the natural setting where d = O(log n) (the setting where we model long sequences)
and ϵa = 1/ poly(n) (low enough error so that attention computations over an entire network can be
combined). Our main results show that whether or not there is a fast algorithm for AAttC critically
depends on B, the magnitudes of the entries in the input matrices.
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We first show a lower bound, that when B ≥ Ω(
√
log n), it is impossible to design a truly

subquadratic-time algorithm. Our lower bound makes use of the Strong Exponential Time Hy-
pothesis (SETH) [IP01], a popular conjecture [Wil18] from the area of fine-grained complexity
regarding the time required to solve k-SAT. (See Section 4 below where we discuss SETH in more
detail.)

Theorem 1.3 (Lower bound, informal version of Theorem 4.6). Assuming SETH, for every q > 0,
there are constants C,Ca, Cb > 0 such that: there is no O(n2−q) time algorithm for the problem
AAttC(n, d = C log n,B = Cb

√
log n, ϵa = n−Ca).

Our second complementary result is a new algorithm, showing that when B < o(
√
log n), the

problem can be solved very efficiently, in almost linear time.

Theorem 1.4 (Upper bound, informal version of Theorem 3.8). There is an algorithm (Algorithm 1)
that solves AAttC(n, d = O(log n), B = o(

√
log n), ϵa = 1/ poly(n)) in time n1+o(1).

Our Theorems 1.3 and 1.4 show that the attention computation problem AAttC exhibits a very tight
transition at B = Θ(

√
log n) from almost linear time to trivial quadratic time. When B < o(

√
log n)

is smaller, the problem can be solved in almost linear time n1+o(1) in the input size, using our
algorithm for Theorem 1.4. When B ≥ Ω(

√
log n) is greater, our algorithm from Theorem 1.4

no longer applies, and furthermore our lower bound from Theorem 1.3 shows that it is impossible
to solve the problem in truly subquadratic time, no matter what algorithmic techniques one uses
(assuming SETH).

It has been observed in LLM implementations in practice that computations are much faster when
one assumes that the matrix entries are bounded or can be well-approximated using a small number
of bits (see, e.g., [ZBIW19, Section 2] and [KVPF20, Section 3.2.1]). Our work can be viewed as
giving a theoretical explanation for this phenomenon, and helping to explain why techniques like
quantization [ZBIW19] and low-degree polynomial approximation [KVPF20] have been so effective
in practice.

Related Work.

A recent work by Zandieh, Han, Daliri, and Karbasi [ZHDK23] was the first to give an algorithm
with provable guarantees for attention approximation. Their algorithm makes use of locality sensitive
hashing (LSH) techniques [CKNS20] which, as we will discuss next, is quite different from our
algorithm for Theorem 1.4 which uses the polynomial method [ACSS20, AA22].

In the case when d = o(log2 n), they achieve a running time of roughly O(n1.17 ·d/ϵ2r), where ϵr is a
relative error parameter (which is similar, though not exactly the same, as our ϵa from Definition 1.2).
In particular, their algorithm applies for larger d than ours (we require d = O(log n)), but we achieve
almost linear time n1+o(1) (whereas their running time is bounded below by Ω(n1.17)), and our
algorithm can handle any polynomial error ϵa = 1/ poly(n) (whereas they require ϵr ≥ 1/no(1) to
not increase the running time by a polynomial factor).

It is natural to wonder whether further improvements are possible by combining our techniques
with those of [ZHDK23]. However, our lower bound of Theorem 1.3 shows that our algorithm of
Theorem 1.4 is already essentially tight and cannot be substantially improved.

Another recent work by Keles, Wijewardena, and Hedge [KWH23] was the first to prove a lower
bound for attention computation assuming SETH. They prove, among other results, that AAttC
cannot be solved in truly subquadratic time in the case when d = ω(log n). Our Theorem 1.3
improves their result to also hold for d = Θ(log n), and to show how the complexity changes with
the magnitude of entries B (which is not studied by [KWH23]). As we discuss more shortly, both
our lower bound proof and [KWH23] use the high-level technique of [BIS17], although our more
fine-grained analysis of the parameters d,B requires a more intricate analysis and the use of other
techniques from fine-grained complexity related to approximate nearest neighbor search [Rub18] and
the polynomial method [AA22].

1.2 Technique Overview

Our high-level approach is to make use of similarities between attention computation and other
computational problems related to Kernel Density Estimation (KDE). Such a relationship was
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investigated by recent work [TBY+19, ZHDK23]. In particular, [ZHDK23] was inspired to apply
LSH techniques to attention computation because of the prevalence of LSH in KDE algorithms [CS17,
BCIS18, CS19, CKNS20]. The main conceptual idea behind our results is that different techniques
from the KDE literature, other than LSH, can be modified to apply in this setting and yield tight
algoriths and lower bounds.

To design our algorithm for Theorem 1.3, we instead build off of a different line of work on KDE
which makes use of the ‘polynomial method in algorithm design’. Suppose M ∈ Rn×n is a matrix,
f : R→ R is a function, and let f(M) denote the matrix one gets by applying f entry-wise to M .
The polynomial method is a technique for finding low-rank approximations of f(M). It shows that if
M has low rank, and if f can be approximated by a low-degree polynomial, then the matrix f(M) is
very close to a low-rank matrix whose low-rank decomposition can be computed efficiently.

To use this to solve AAttC, we make use of a recent result which bounds the degree required to
approximate the exponential function by a polynomial [AA22] in order to find a low-rank approxima-
tion of the attention matrix A. Prior work [ACSS20, ACM+20, AA22] applied these polynomials in
a similar way to solve the Gaussian KDE problem; our main observation is that by an appropriate
rescaling, this approach can be modified to apply to AAttC as well.

The proof of our lower bound Theorem 1.3 builds off of another line of work on the fine-grained
complexity of KDE problems [BIS17, ACSS20, AA22]. The main idea is to give a fine-grained
reduction from the well-studied problem of Approximate Nearest Neighbor search ANN. In ANN,
one is given as input n vectors of dimension d, and an error parameter ϵ > 0, and the goal is to find a
pair of vectors whose distance is at most (1 + ϵ) times the minimum distance between any pair of
the vectors. The straightforward algorithm for ANN runs in quadratic time, and it is known that it is
impossible to solve ANN in truly subquadratic time assuming SETH [Rub18].

In order to prove our lower bound, we show that AAttC can be used to solve ANN. The key idea is
that, if the matrices Q and K from AAttC are formed by concatenating the input vectors to the ANN
problem, then the nearest neighbor vectors correspond to the largest entries of the attention matrix A.
It is not immediately clear that AAttC can be used to detect large entries of A, since the output is
rescaled by the matrix D−1, but we show that this can be overcome with some modifications to the
input vectors which approximately balance the rows of A. Prior work [BIS17, ACSS20, AA22] used
a very similar approach to give lower bounds for KDE problems, although KDE doesn’t involve any
rescaling factors.

Roadmap.

In Section 2, we introduce relevant notation and tools from prior work. In Section 3, we present and
analyze our attention algorithm. In Section 4, we prove our fine-grained attention lower bound. In
Section 5, we provide a conclusion for this paper.

2 Preliminaries

We work in the standard real-RAM model and assume arithmetic operations on real numbers can be
performed in constant time in our algorithms.

We use Tmat(a, b, c) to denote the time to multiply an a× b matrix with another b× c matrix. In fact,
we will only make use of the straightforward, practical bound Tmat(a, b, c) ≤ O(abc). In principle,
fast theoretical matrix multiplication algorithms could be used instead to improve this bound and
speed up our algorithms here (in exchange for making them less practical). That said, because of our
parameter settings3, we will see that faster matrix multiplication could only improve low-order terms
in our running times.

For any positive integer, we use [n] to denote set {1, 2, · · · , n}.
For a matrix M , we write ∥M∥∞ to denote its ℓ∞ norm, i.e., ∥M∥∞ := maxi,j |Mi,j |. For a matrix
M , we use M⊤ to denote its transpose.

We use 1n to denote a length-n vector whose entries are all 1s. We use 0n to denote a length-n vector
whose entries are all 0s.

3We will make use of Tmat(n, n
o(1), no(1)), which can be solved straightforwardly in time n1+o(1), and

which cannot be solved much faster since it has input size n1+o(1).
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For any matrix A ∈ Rn×n, we use exp(A) ∈ Rn×n to denote the matrix where exp(A)i,j =
exp(Ai,j). In other words, all the exp() operators in this paper are applied entry-wise to matrices. In
particular, we will not use matrix exponentials in this paper.

For a vector x ∈ Rn, we use ∥x∥0 to denote its number of non-zero entries, we use ∥x∥1 to
denote its ℓ1 norm, i.e., ∥x∥1 :=

∑n
i=1 |xi|, and we use ∥x∥2 to denote its ℓ2 norm, i.e., ∥x∥2 :=

(
∑n

i=1 |xi|2)1/2. For a vector x, we use x⊤ to denote its transpose.

2.1 Additive Error for Polynomial Approximation

Our algorithm for attention computation will critically make use of a polynomial approximation for
the exponential function. In particular, we use the following tight construction from previous work
[AA22].
Lemma 2.1 ([AA22]). Let B > 1 and let ϵ ∈ (0, 0.1). There is a polynomial P : R→ R of degree

g := Θ
(
max

{
log(1/ϵ)

log(log(1/ϵ)/B) , B
})

such that for all x ∈ [0, B], we have

|P (x)− exp(x)| < ϵ.

Moreover, P can be computed efficiently: its coefficients are rational numbers with poly(g)-bit
integer numerators and denominators which can be computed in poly(g) time.

2.2 From Additive Error to Relative Error

We note that in our setting, Lemma 2.1 can be used to give a relative error approximation as well:
Corollary 2.2. Let B > 1 and let ϵ ∈ (0, 0.1). There is a polynomial P : R → R of degree
g := Θ(max{ log(1/ϵ)

log(log(1/ϵ)/B) , B}) such that for all x ∈ [−B,B], we have

|P (x)− exp(x)| < ϵ · exp(x).

Proof. By Lemma 2.1, there is a polynomial Q : R → R of degree g = Θ({ log(1/ϵ)
log(log(1/ϵ)/B) , B})

such that, for all y ∈ [0, 2B] we have |Q(y)− exp(y)| ≤ ϵ. Our desired polynomial is the rescaled
P (x) := Q(x+B)/ exp(B). Indeed, for any x ∈ [−B,B], we have exp(x) ≥ exp(−B), and so

|P (x)− exp(x)| = |Q(x+B)/ exp(B)− exp(x)|
= |Q(x+B)− exp(x+B)|/ exp(B)

≤ ϵ/ exp(B)

≤ ϵ · exp(x),

as desired.

3 Attention Algorithm

In this section, we show how to use polynomial approximations for the exponential function in order
to approximately perform attention computations. In Section 3.1, we define the type of low-rank
matrix approximation which we will use. In Section 3.2, we show how polynomial approximations
can give rise to such low-rank matrix approximations. In Section 3.3, we bound the entries of the
matrix QK⊤ ∈ Rn×n (before converting it to the attention matrix) to confirm that our polynomial
approximation applies. In Section 3.4, we state our main technique for approximating the attention
matrix. In Section 3.5, we show how to control the error propagation from A to the rescaling matrix D.
In Section 3.6, we further explain how to control the error propagation from D and A to the resulting
attention matrix. Finally, in Section 3.7, we conclude our general algorithm, and in Section 3.8, we
appropriately select the parameters to achieve almost linear time.

3.1 Matrix Low-Rank Approximation

Definition 3.1. Let r ≥ 1 denote a positive integer. Let ϵ ∈ (0, 0.1) denote an accuracy parameter.
Given a matrix A ∈ Rn×n

≥0 , we say Ã ∈ Rn×n
≥0 is an (ϵ, r)-approximation of A if
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• Ã = U1 · U⊤
2 for some matrices U1, U2 ∈ Rn×r (i.e., Ã has rank at most r), and

• |Ãi,j −Ai,j | ≤ ϵ ·Ai,j for all (i, j) ∈ [n]2.

3.2 From Low Degree Polynomials to Low Rank Matrices

Lemma 3.2. Let M = XY ⊤ ∈ Rn×n denote a matrix with X,Y ∈ Rn×d. Let P (x) denote a
degree-g polynomial, and define r =

(
2(g+d)

2g

)
.

There is an algorithm that runs in O(nrg) time and, given as input the matrix X,Y , constructs
matrices U1, U2 ∈ Rn×r such that P (M) = U1U

⊤
2 . (Here, P (M) denotes the entry-wise application

of P to M .)

Due to space limitation, we defer the proof of Lemma 3.2 to Appendix A.

3.3 Matrix QK⊤ Has Bounded Entries

Lemma 3.3 (Bounded entry). Suppose B ≥ 1 and matrices Q,K ∈ Rn×d have ∥Q∥∞ ≤ B and
∥K∥∞ ≤ B. Then, we have

∥QK⊤/d∥∞ ≤ B2.

Proof. For each (i, j) ∈ [n]× [n], we have

|(QK⊤)i,j | = |
d∑

l=1

Qi,lKj,l|

≤ d · ∥Q∥∞ · ∥K∥∞
≤ d ·B2,

as desired.

3.4 Key Lemma

Our key lemma shows that, even though the attention matrix A may have full rank, it has a low-rank
approximation that is easy to compute:

Lemma 3.4. Suppose Q,K ∈ Rn×d, with ∥Q∥∞ ≤ B, and ∥K∥∞ ≤ B. Let A := exp(QK⊤/d) ∈
Rn×n. For accuracy parameter ϵ ∈ (0, 1), there is a positive integer g bounded above by

g = O
(
max

{ log(1/ϵ)

log(log(1/ϵ)/B2)
, B2

})
,

and a positive integer r bounded above by

r ≤
(
2(g + d)

2g

)
such that: There is a matrix Ã ∈ Rn×n that is an (ϵ, r)-approximation (Definition 3.1) of A ∈ Rn×n.
Furthermore, the matrices U1 and U2 defining Ã can be computed in O(n · r) time.

Proof. Let M := QK⊤/d. From Lemma 3.3, we know that ∥M∥∞ ≤ B2. Thus, applying Corol-
lary 2.2 (with bound B2 on its entries), there is a degree-g polynomial P such that the matrix
Ã = P (M) is an (ϵ, r)-approximation to A (See the definition of (ϵ, r)-approximation in Defini-
tion 3.1.) We can then compute U1, U2 using Lemma 3.2, which gives the bound

r ≤
(
2(g + d)

2g

)
.

This completes the proof.
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3.5 From A to D

Lemma 3.5. Let A ∈ Rn×n be any matrix whose entires are all positive and ϵA ∈ (0, 0.1) be any
parameter. Let Ã ∈ Rn×n be any matrix such that, for all (i, j) ∈ [n]× [n], we have

|Ãi,j −Ai,j | ≤ ϵA ·Ai,j .

Define the matrices D, D̃ ∈ Rn×n by D = diag(A1n) and D̃ = diag(Ã1n). Then, for all i ∈ [n]
we have

|D̃i,i −Di,i| ≤ ϵA ·Di,i.

Due to space limitation, we defer the proof of Lemma 3.5 into Appendix A.

3.6 From A and D to Attention Matrix

Lemma 3.6. Let ϵA, ϵD ∈ (0, 0.1) and B > 1 be parameters, and let V ∈ Rn×d denote a matrix
with ∥V ∥∞ ≤ B. Let A ∈ Rn×n be any matrix whose entires are all positive, and let Ã ∈ Rn×n be
a matrix such that, for all (i, j) ∈ [n]× [n] we have

|Ãi,j −Ai,j | ≤ ϵA ·Ai,j .

Let D, D̃ ∈ Rn×n be any diagonal matrices with positive entries on their diagonals, with the property
that, for all i ∈ [n], we have

|D̃i,i −Di,i| ≤ ϵD ·Di,i.

Then, we have

∥D̃−1ÃV −D−1AV ∥∞ ≤ (ϵA + ϵD) ·B.

Due to space limitation, we delay the proof of Lemma 3.6 to Appendix A.

3.7 Main Upper Bound

Theorem 3.7. For positive integers n, d and real parameters ϵ > 0 and B > 1, there are positive
integers g = Θ(max{ log(1/ϵ)

log(log(1/ϵ)/B2) , B
2}) and r =

(
2(g+d)

2d

)
such that: There is an algorithm

(Algorithm 1) that runs in O(Tmat(n, r, d) + nrg) time to solve AAttC(n, d,B, ϵ) (Definition 1.2).

Proof. The running time of each step is shown in Algorithm 1; its running time follows from
Lemma 3.4. Its correctness follows from Lemma 3.5 and Lemma 3.6.

Algorithm 1 Our Algorithm

1: procedure POLYATTENTION(Q ∈ Rn×d,K ∈ Rn×d, V ∈ Rn×d, n, d,B, ϵ) ▷ Theorem 1.4
2: ▷ ϵ is the accuracy output
3: ▷ ∥Q∥∞, ∥K∥∞, ∥V ∥∞ ≤ B

4: g ← O(max{ log(1/ϵ)
log(log(1/ϵ)/B2) , B

2})
5: r ←

(
2(g+d)

2d

)
6: Construct U1, U2 ∈ Rn×r via Lemma 3.4 ▷ O(nrg) time
7: w̃ ← U1 · (U⊤

2 1n) ▷ O(nr) time
8: D̃−1 = diag(w̃−1) ▷ O(n) time
9: Compute U⊤

2 V ∈ Rr×d ▷ Takes Tmat(r, n, d) time
10: Compute U1 · (U⊤

2 V ) ▷ Tmat(n, r, d) time
11: T ← D̃−1 · (U1 · (U⊤

2 V )) ▷ O(nd) time
12: return T ▷ T ∈ Rn×d

13: end procedure
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3.8 Proof of Theorem 1.4

Theorem 3.8 (Upper bound, formal statement of Theorem 1.4). AAttC(n, d = O(log n), B =
o(
√
log n), ϵa = 1/ poly(n)) can be solved in time Tmat(n, n

o(1), d) = n1+o(1).

Proof. If we select the parameters

B = o(
√
log n), ϵ = 1/ poly(n), d = O(log n)

in Theorem 3.7, then we see that

g = O(max{ log(1/ϵ)

log(log(1/ϵ)/B2)
, B2})

= O(max{ log(n)

log(log(n)/B2)
, B2})

= O(max{ log n

log log n
, o(log n)})

= o(log n),

where the second step follows from ϵ = 1/ poly(n) and the third step follows from B = o(
√
log n).

Since g = o(log n), let us write g = (log n)/f for some f = ω(1). We thus have that

r =

(
2(d+ g)

2g

)
≤

(
e(d+ g)

g

)2g

≤ 2O(g log((logn)/g)) ≤ 2O(logn log(f)/f) < 2o(logn) < no(1).

The second step follows from the generic bound
(
a
b

)
≤ (ea/b)b for 1 ≤ b ≤ a, and the third step uses

that d = O(log n).

Since d, r, g are all bounded by no(1), our final running time is n1+o(1) as desired.

4 Hardness

In this section, we prove our fine-grained lower bound for attention computation. In Section 4.1, we
state the Strong Exponential Time Hypothesis (SETH), the main hardness assumption we will use.
In Section 4.2, we define the approximate nearest neighbor search problem, and its known hardness
assuming SETH. Finally, in Section 4.3, we give a reduction from approximate nearest neighbor
search to attention computation, which implies our hardness result.

4.1 Fine-Grained Hypotheses

The Strong Exponential Time Hypothesis (SETH) was introduced by Impagliazzo and Paturi [IP01]
over 20 years ago. It is a strengthening of the P ̸= NP conjecture, which asserts that our current best
SAT algorithms are roughly optimal:

Hypothesis 4.1 (Strong Exponential Time Hypothesis (SETH)). For every ϵ > 0 there is a positive
integer k ≥ 3 such that k-SAT on formulas with n variables cannot be solved in O(2(1−ϵ)n) time,
even by a randomized algorithm.

SETH is a popular conjecture which has been used to prove fine-grained lower bounds for a wide
variety algorithmic problems. See, for instance, the survey [Wil18].

4.2 Nearest Neighbor Search

We will make use of a known relationship between SETH and approximate nearest neighbor search.

Definition 4.2 (Approximate Hamming Nearest Neighbor Search (ANN)). For a parameter ϵ > 0,
in the (1 + ϵ)-Approximate Hamming Nearest Neighbor Search problem for n vectors of dimension d,
we are given as input two sets A,B ⊂ {0, 1}d with |A| = |B| = n, and our goal is to find an a∗ ∈ A
and b∗ ∈ B satisfying ∥a∗ − b∗∥0 ≤ (1 + ϵ) ·mina∈A,b∈B ∥a− b∥0.
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(This is sometimes called the ‘bichromatic’ ANN problem, and a monochromatic version has also
been studied; see, for instance, [SM19].) Rubinstein [Rub18] showed that for certain parameters,
it is impossible to substantially improve on the straightforward quadratic-time algorithm for ANN
assuming SETH:
Lemma 4.3 ([Rub18]). Assuming SETH, for every q > 0, there are ϵ ∈ (0, 1) and C > 0 such that
(1+ ϵ)-Approximate Hamming Nearest Neighbor Search in dimension d = C log n requires Ω(n2−q)
time.
Remark 4.4. We may assume that 4.3 holds even in the special case where each input vector from
A and B has half its entries equal to 0 and half equal to 1. Indeed, for any vector a ∈ {0, 1}d, we
can construct a new vector ã ∈ {0, 1}2d given by ã =

[
a⊤ a⊤

]⊤
. Here a ∈ {0, 1}d is the binary

complement of vector a, i.e., ai = 1− ai for all i ∈ [d]. Thus, ∥ã∥0 = d. We can similarly construct
a new vector b̃ ∈ {0, 1}2d for each b ∈ B. After this transformation, for any a ∈ A and b ∈ B, we
have ∥ã − b̃∥0 = 2 · ∥a − b∥0, so it suffices to find an approximate nearest neighbor among these
transformed vectors.

For convenience in our the analysis, we define a gap version of approximate nearest neighbor search
problem Gap−ANN(n, d, t, ϵ).
Definition 4.5 (Gap approximate nearest neighbor search (Gap−ANN(n, d, t, ϵ))). Let n, d denote
two positive integers. Let t > 0 denote a threshold parameter. Let ϵ denote a accuracy parameter.
Given two sets of points A = {a1, · · · , an} ⊂ {0, 1}d and B = {b1, · · · , an} ⊂ {0, 1}d: For each
i ∈ [n], we need to distinguish the following two cases

• Case 1. There exists a j ∈ [n] such that ∥ai − bj∥0 < t.

• Case 2. For all j ∈ [n] we have ∥ai − bj∥22 ≥ (1 + ϵ) · t.

An algorithm for Gap−ANN(n, d, t, ϵ) can be called log(nd) times to binary search for the answer
to ANN, so Lemma 4.3 holds as well for Gap−ANN(n, d, t, ϵ).

4.3 Hardness Result

In the remainder of this section, we prove our lower bound for attention computation:
Theorem 4.6 (Main Result, formal version of Theorem 1.3). Assuming SETH, for every sufficiently
small q > 0, there are constants C > 0 and Cα > 0 and Cβ > 1 such that Approximate Attention
Computation AAttC (Definition 1.2) for parameters (n, d = C log n,B = Cβ

√
log n, ϵa = n−Cα)

requires Ω(n2−q) time.

Proof. This follows from combining Lemma 4.3 (hardness for approximation nearest neighbor
search) and Lemma 4.7 (a reduction from approximate nearest neighbor search to approximate
attention computation) which we prove below.

Lemma 4.7. For any constant Cγ ∈ (0, 0.1): For every ϵ > 0 and C > 0, there exist constants
Ca > 0 and Cb > 0 and such that, if AAttC (Definition 1.2) for parameters (2n, d = 2C log n,B =
Cb

√
log n, ϵa = n−Ca) can be solved in time T , then Gap−ANN(n, d = C log n, t, ϵ) (Defini-

tion 4.5) can be solved in time O(T + n2−Cγ ).

Due to space limitation, we defer the proof of Lemma 4.7 to Appendix B.

5 Conclusion

In this work, we showed that how quickly one can perform attention computation depends critically on
the magnitude, B, of the entries of the input matrices. Our main idea was to make use of similarities
between attention computation and KDE, and to show how many known techniques for KDE can
also be used in this setting. Since KDE is a very well-studied problem, it would be exciting to see
what other techniques can be applied to attention computation as well. One limitation of our lower
bound result is, it is a conditional lower bound which is based on a well-known conjecture SETH in
the area of complexity. It would be interesting to show unconditional lower bound for future work.
As far as we are aware, our work does not have negative societal impacts.
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Appendix

Roamdap.

We provide the missing proofs of our upper bound (algorithm) result in Section A. We provide the
missing proofs of our lower bound (hardness) result in Section B.

A Missing Proofs for Upper Bound

A.1 Proof of Lemma 3.2

Lemma A.1 (Restatement of Lemma 3.2). Let M = XY ⊤ ∈ Rn×n denote a matrix with X,Y ∈
Rn×d. Let P (x) denote a degree-g polynomial, and define r =

(
2(g+d)

2g

)
.

There is an algorithm that runs in O(nrg) time and, given as input the matrix X,Y , constructs
matrices U1, U2 ∈ Rn×r such that P (M) = U1U

⊤
2 . (Here, P (M) denotes the entry-wise application

of P to M .)

Proof. Let P (x) denote the degree-g polynomial. Expand it in terms of its coefficients as

P (x) =

d∑
i=0

ci · xi.

Consider the function K : Rd × Rd → R defined by, for u, v ∈ Rd,

K(u, v) := P (⟨u, v⟩).
K is a degree-2g polynomial in the 2d entries u1, · · ·ud, v1, · · · , vd of the vectors u, v. Define the set
V of its variables,

V := {u1, · · · , ud, v1, · · · , vd}.
Let F denote the set of functions

F :=

{
f : V → {0, 1, 2, · · · , 2g} |

∑
v∈V

f(v) ≤ 2g

}
.

We can count that

|F| =
(
2d+ 2g

2g

)
.

Hence, there are coefficients ct ∈ R for each t ∈ F such that

K(u, v) =
∑
t∈F

ct ·
∏
v∈V

vt(v).

Define

Vu := {u1, · · · , ud}
and

Vv = V \Vu.

We define ϕu : Rd → R|F| by, for any t ∈ F ,

ϕu(u1, · · · , ud)t = ct ·
∏

vi∈Vu

u
t(ui)
i .

Similarly, we define ϕv : Rd → R|F| by, for any t ∈ F ,

ϕv(v1, · · · , vd)t =
∏

vi∈Vv

v
t(ui)
i .
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Thus, we have

K(u, v) = ⟨ϕu(u), ϕv(v)⟩.

For i ∈ [n], let Xi ∈ Rd denote the i-th row of X , and let Yi ∈ Rd denote the i-th row of Y . Our
algorithm can thus construct

• the matrix U1 ∈ Rn×|F| whose i-th row is the vector ϕu(xi) for i ∈ [n], and

• the matrix U2 ∈ Rn×|F| whose i-th row is the vectors ϕv(yi) for i ∈ [n].

Each entry of these matrices can be constructed by multiplying together at most g variables, so these
n× r matrices can be constructed in time O(nrg) as desired.

A.2 Proof of Lemma 3.5

Lemma A.2 (Restatement of Lemma 3.5). Let A ∈ Rn×n be any matrix whose entires are all positive
and ϵA ∈ (0, 0.1) be any parameter. Let Ã ∈ Rn×n be any matrix such that, for all (i, j) ∈ [n]× [n],
we have

|Ãi,j −Ai,j | ≤ ϵA ·Ai,j .

Define the matrices D, D̃ ∈ Rn×n by D = diag(A1n) and D̃ = diag(Ã1n). Then, for all i ∈ [n]
we have

|D̃i,i −Di,i| ≤ ϵA ·Di,i.

Proof. We calculate that

|D̃i,i −Di,i| = |
n∑

j=1

Ãi,j −
∑
j=1

Ai,j |

≤
n∑

j=1

|Ãi,j −Ai,j |

≤
n∑

j=1

ϵAAi,j

= ϵA ·Di.

where the second step follows from triangle inequality.

This completes the proof.

A.3 Proof of Lemma 3.6

Lemma A.3 (Restatement of Lemma 3.6). Let ϵA, ϵD ∈ (0, 0.1) and B > 1 be parameters, and let
V ∈ Rn×d denote a matrix with ∥V ∥∞ ≤ B. Let A ∈ Rn×n be any matrix whose entires are all
positive, and let Ã ∈ Rn×n be a matrix such that, for all (i, j) ∈ [n]× [n] we have

|Ãi,j −Ai,j | ≤ ϵA ·Ai,j .

Let D, D̃ ∈ Rn×n be any diagonal matrices with positive entries on their diagonals, with the property
that, for all i ∈ [n], we have

|D̃i,i −Di,i| ≤ ϵD ·Di,i.

Then, we have

∥D̃−1ÃV −D−1AV ∥∞ ≤ (ϵA + ϵD) ·B.
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Proof. We have

∥D̃−1ÃV −D−1AV ∥∞ ≤ ∥D̃−1ÃV −D−1ÃV ∥∞ + ∥D−1ÃV −D−1AV ∥∞. (1)

We now bound each of these two terms separately.

First, for each (i, j) ∈ [n]× [d],

|(D̃−1ÃV −D−1ÃV )i,j | = |
n∑

l=1

(D̃−1
i,i −D−1

i,i ) · Ãi,l · Vl,j |

≤
n∑

l=1

|(D̃−1
i,i −D−1

i,i ) · Ãi,l| · ∥V ∥∞

=

n∑
l=1

|Di,i − D̃i,i

Di,iD̃i,i

Ãi,l| · ∥V ∥∞

≤ ϵD ·
n∑

l=1

|D̃−1
i Ãi,l| · ∥V ∥∞

= ϵD · |
n∑

l=1

D̃−1
i Ãi,l| · ∥V ∥∞

= ϵD · ∥V ∥∞
≤ ϵD ·B (2)

where the second step follows from the triangle inequality, the forth step follows from |(Di,i −
D̃i,i)/Di,i| ≤ ϵD, the fifth step follows from D̃−1

i > 0 and Ãi,l > 0, and the last step follows from
our assumption on V .

Second, for each (i, j) ∈ [n]× [d],

|(D−1ÃV −D−1AV )i,j | = |
n∑

l=1

D−1
i,i (Ãi,l −Ai,l) · Vl,j |

≤
n∑

l=1

|D−1
i,i | · |(Ãi,l −Ai,l)| · ∥V ∥∞

=

n∑
l=1

D−1
i,i · |(Ãi,l −Ai,l)| · ∥V ∥∞

≤
n∑

l=1

D−1
i,i · ϵAAi,l ·B

= ϵA ·B, (3)

where the second step follows from triangle inequality, the third step follows from D−1
i,i > 0, the

forth step follows from |Ãi,l −Ai,l| ≤ ϵA ·Ai,l and the last step follows from definition of Di,i.

The result follows by combining Eq. (1), and two inequalities (Eq. (2) and Eq. (3)).

B Missing Proofs for Lower Bound

Lemma B.1 (Restatement of Lemma 4.7). For any constant Cγ ∈ (0, 0.1): For every ϵ > 0
and C > 0, there exist constants Ca > 0 and Cb > 0 and such that, if AAttC (Definition 1.2)
for parameters (2n, d = 2C log n,B = Cb

√
log n, ϵa = n−Ca) can be solved in time T , then

Gap−ANN(n, d = C log n, t, ϵ) (Definition 4.5) can be solved in time O(T + n2−Cγ ).

Proof. We give an algorithm with the stated running time for Gap−ANN(n, d = C log n, t, ϵ). Let
c > 0 be a parameter we will choose later (it will be a function of C and Cγ). Our algorithm will
proceed to one of two cases depending on the value of t. If t < c log n, then we will use one algorithm
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which runs in time O(n2−Cγ ). Otherwise, if t ≥ c log n, we will use another algorithm which runs
in time O(T ).

Case 1: t < c log n.

Let a1, · · · , an, b1, · · · , bn ∈ {0, 1}d be the input vectors to Gap−ANN, and let t ∈ [0, d] denote the
target distance. Recall that d = C log n.

In this t < c log n case, we will simply brute-force for the answer in the following way: We first store
the vectors b1, · · · , bn in a lookup table, then for each i ∈ [n], we iterate over all vectors b′ ∈ {0, 1}d
which have Hamming distance at most t from ai and check whether b′ is in the lookup table. This
determines whether there is a b ∈ B at distance at most t from ai, as desired.

For each i ∈ [n], we need to iterate over
(
d
t

)
choices for the vector b′, so the total running time will

be O(n ·
(
d
t

)
). By standard bounds on binomial coefficients, we know that

n ·
(
d

t

)
≤ n ·

(
C log n

c log n

)
≤ n1+f(C,c)

for some function f : R>0 × R>0 → R>0 with the property that, for any fixed C > 0, we have

lim
c→0

f(C, c) = 0.

We can thus pick a sufficiently small constant c > 0, depending only on Cγ and C such that
f(C, c) < 1− Cγ and this entire brute-force takes O(n2−Cγ ) time.

Case 2: t ≥ c log n.

Let a1, · · · , an, b1, · · · , bn ∈ {0, 1}d denote the input of Gap−ANN(n, d, t, ϵ) (Definition 4.5), and
recall from Remark 4.4 that we may assume each has half its entries 0 and half its entries 1. We will
explain how to construct an Attention matrix using this instance.

Let C0 ≥ c be such that

t := C0 log n. (4)

Let β > 0 and d̃ ≥ d denote parameters we will choose later (see Eq. (9) and Eq. (6), respectively).
Define τ > 0 by

τ := exp(β/2). (5)

Intuitively, our goal in picking these parameters is that τ will be an upper bound on entries of the
attention matrix, i.e., we will have:

τ ≥ max
i∈[n],j∈[n]

exp(β⟨ai, bj⟩/d̃).

We will make use of an algorithm for the AAttC(ñ, d̃, B, ϵa) problem, for the following parameters:

ñ := 2n, d̃ := 2d, (6)

B := Cb

√
log n, where Cb :=

√
40C/(C0ϵ), (7)

ϵa := n−Ca , where Ca := 2 + C2
b (1 + C0/C). (8)

Furthermore, set

β := B2. (9)
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We define Q ∈ Rñ×d̃ and K ∈ Rñ×d̃ as

Q :=
√
β ·



a⊤1 1⊤
d

a⊤2 1⊤
d

...
...

a⊤n 1⊤
d

0⊤
d 1⊤

d

0⊤
d 1⊤

d
...

...
0⊤
d 1⊤

d


and K :=

√
β ·



b⊤1 0⊤
d

b⊤2 0⊤
d

...
...

b⊤n 0⊤
d

0⊤
d 1⊤

d

0⊤
d 1⊤

d
...

...
0⊤
d 1⊤

d


.

Since each entry of Q and K is either
√
β or 0, it follows that

∥Q∥∞ ≤
√
β = B

∥K∥∞ ≤
√
β = B

∥QK⊤/d̃∥∞ ≤
β · d̃
d̃

= β = B2.

Using the above construction of Q ∈ Rñ×d̃ and K ∈ Rñ×d̃, we note that

A := exp(QK⊤/d̃) ∈ Rñ×ñ

is given by

A =



exp(β⟨a1, b1⟩/d̃) exp(β⟨a1, b2⟩/d̃) · · · exp(β⟨a1, bn⟩/d̃) τ τ · · · τ

exp(β⟨a2, b1⟩/d̃) exp(β⟨a2, b2⟩/d̃) · · · exp(β⟨a2, bn⟩/d̃) τ τ · · · τ
...

...
. . .

...
...

...
. . .

...
exp(β⟨an, b1⟩/d̃) exp(β⟨an, b2⟩/d̃) · · · exp(β⟨an, bn⟩/d̃) τ τ · · · τ

exp(0) exp(0) · · · exp(0) τ τ · · · τ
exp(0) exp(0) · · · exp(0) τ τ · · · τ

...
...

. . .
...

...
...

. . .
...

exp(0) exp(0) · · · exp(0) τ τ · · · τ


.

(Note that we do not explicitly compute all the entries of A in our algorithm; we will make use of it
only through calling our algorithm for the Attention problem.)

For each (i, j) ∈ [n]× [n], we know that

Ai,j = exp(β⟨ai, bj⟩/d̃)

≤ exp(β∥ai∥∞ · ∥bj∥∞ · d/d̃)
≤ exp(β)

= τ (10)

where the first step follows from definition of A ∈ Rñ×ñ, the second step follows from ⟨ai, bj⟩ ≤
∥ai∥∞ · ∥bj∥∞d, the third step follows from d < d̃ (see Eq. (6)), and the last step follows from
definition of τ (see Eq. (5)).

On the other hand, we know that that for each (i, j) ∈ [n]× [n],

Ai,j ≥ 0 (11)

since it is an exponential of an entry of QK⊤/d̃.

Using Eq. (10) and Eq. (11), combined with our expression for A, it thus follows that

nτ ≤ (A1ñ)i ≤ 2nτ, ∀i ∈ [ñ].

17



Since Di,i = (A1ñ)i, thus we know that

nτ ≤ Di,i ≤ 2nτ, ∀i ∈ [ñ].

Choose the vector v ∈ Rñ defined as

v =

[
1n

0n

]
.

We define t̃ as

t̃ :=
1

3
exp(0.25β(1− t/d))/(2nτ). (12)

We can show that t̃ ≥ ϵa as follows:

t̃ =
1

6n
exp(0.25β(1− t/d)− β)

=
1

6n
exp(−0.75β − 0.25βt/d)

=
1

6n
exp(−0.75β − 0.25βC0/C)

=
1

6
exp(−0.75β − 0.25βC0/C − log n)

=
1

6
exp(−0.75C2

b log n− 0.25C2
b (C0/C) log n− log n)

≥ n−Ca

= ϵa,

where the second step follows from simple algebra, the third step follows from t = C0 log n (Eq. (4))
and d = C log n (assumption in Lemma statement), the second step follows from choice of β
(Eq. (7)), and the sixth step follows from choice of Ca (Eq. (8)), and the last step follows from
Eq. (8).

Since t̃ ≥ ϵa, if we run an algorithm for Approximation Attention Computation (Definition 1.2)
AAttC(ñ, d̃, B, ϵa), where we pick V to be a matrix with one row v and the rest 0, we can output a
vector u ∈ Rñ such that, for all i ∈ [ñ],

|ui − (D−1Av)i| < t̃.

Note that using Remark 4.4, we have

∥ai∥22/d = 0.5, ∀i ∈ [n],

∥bj∥22/d = 0.5, ∀j ∈ [n].

Therefore, for any (i, j) ∈ [n]× [n],

1

d
⟨ai, bj⟩ =

1

2d
(∥ai∥22 + ∥bj∥22 − ∥ai − bj∥22)

=
1

2d
(0.5d+ 0.5d− ∥ai − bj∥22)

= 0.5− 0.5∥ai − bj∥22/d,

where the second step follows from ∥ai∥22 = ∥bj∥22 = d/2, and the last step follows from simple
algebra.

Recall that our goal is to determine, for each i ∈ [n], whether there is a j ∈ [n] such that ∥ai−bj∥22 ≤
t, or whether ∥ai − bj∥22 ≥ (1 + ϵa)t for all j ∈ [n]. We will show next that we can distinguish these
two cases by seeing whether ui is greater than or less than the value t̃0 := 2t̃.

Case 2a.
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If there exists an (i, j) ∈ [n]× [n] such that ∥ai − bj∥22 ≤ t, then

β⟨ai, bj⟩/d̃ = 0.5 · β⟨ai, bj⟩/d
≥ 0.25 · β(1− t/d),

where the first step follows from 2d = d̃ (see Eq. (6)).

This means that

ui ≥ exp(0.25β(1− t/d))/(2nτ)− t̃

= 3t̃− t̃

= 2t̃

= t̃0,

where the second step follows from the definition of t̃ (see Eq. (12)), and the last step follows from
the definition of t̃0.

Case 2b.

If for all (i, j) ∈ [n]× [n], we have ∥ai − bj∥22 > t(1 + ϵ), this implies

β⟨ai, bj⟩/d ≤ 0.25β · (1− t(1 + ϵ)/d).

Then, for all i ∈ [n],

ui < (n · exp(0.25β(1− (1 + ϵ)t/d)))/(nτ) + t̃

= exp(0.25β(1− t/d))/(2nτ) · (n/ exp(0.25βϵt/d)) + t̃

= 3t̃ · (n/ exp(0.25βϵt/d)) + t̃

≤ 3t̃ · 1
4
+ t̃

= 2t̃

= t̃0,

where the third step follows from definition of t̃ (see Eq. (12)), the forth step follows from the
calculation in Eq. (13) below, and the last step follows from t̃ = t̃0/2.

Finally, b our choice of β and t, we can see that

exp(0.25βϵt/d) = exp((0.25βϵC0 log n)/d)

= exp(0.25βϵC0/C)

= exp(10 log n)

> 4n, (13)

where the first step follows t = C0 log n (Eq. (4)), the second step follows from d = C log n, and the
third step follows from β = B2 (Eq. (9)) and the choice of B (Eq. (7)).

Recent Followup Work During the preparation of camera ready, we are aware of a number of
new related work [KMZ23, HJK+23, AS23, DLS23, GSWY23, DSZ23, GSY23] to this paper. This
work studies softmax attention, and [KMZ23] shows to speed up the polynomial based attention
unit via sketching techniques. [HJK+23] introduces hyperattention, which is able to handle long-
context attention in near-linear time. This work is mainly focusing classical attention computation,
[AS23] consider a more general tensor version computation of attention scheme. This work studies
the inference computation, the recent work [DLS23, GSWY23] also considers how to speedup the
training process which involves the computation of gradient and hessian. Inspired by hardness
result of this work, [DSZ23] shows that there is a binary classification tasks (involves two datasets)
that softmax attention can distinguish but linear attention cannot. [GSY23] provides a result for
computing the attention matrix differentially privately. [GSYZ23] introduce a quantum algorithm for
computing attention matrix.
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