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Abstract. Prior work on short text classification has mainly focused
on augmenting short texts with features obtained from external sources,
which often leads to topic drift and ambiguity. Instead, this paper ex-
plores internal knowledge within dataset to enhance short text classifi-
cation. In particular, we construct a single directed graph on the dataset
where nodes denote words and edges represent the order between words.
We treat a short text as a path and then propose a novel graph-based
model, which aggregates graph topological features of each word into
themselves. Compared with previous work, we focus on enhancing the
representation of short texts based on geometry-based neighbors, re-
garded as internal knowledge from the dataset. Furthermore, we con-
struct two new Chinese short text datasets and develop a simple method
for short text classification. Experimental results on nine benchmark
datasets validate the effectiveness of the proposed method and show im-
provements in classification accuracy.

Keywords: Short Text Classification · Directed Graph · Topological
Feature· Graph Attention Network.

1 Introduction

Short text classification is the task of classifying short texts into predefined class
labels. Recently, short texts have been produced explosively in the form of various
domains, such as user comments on e-commerce platforms, user utterances in
many conversational systems [1], search queries in information retrieval (IR)[2–
4], and rapidly growing bullet screen ( danmu messages ) on short video platform
[5, 6]. Classifying these short texts into predefined labels has become a significant
problem in many applications, e.g., utterance-level emotion analysis in dialogues
[7] and query intent classification in IR[8, 9]. Unlike long texts such as blogs,
news articles, and web pages, short texts pose a new challenge for contextual
understanding due to the limitation of the input length [3, 10, 1]. In general,
short sentences lack enough textual features, making their understanding more
challenging. Instead of adding features obtained from external sources, this paper
focuses on in-dataset features for short text classification.

As mentioned above, it is challenging to adapt traditional long text classifi-
cation methods to short texts with good performance[11–13] because shortness
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Fig. 1. Most prior work on short text classification considers one short text in isolation,
e.g., the left part (a): three short texts tagged with α, β, and γ are shown in parallel. By
contrast, in our work, the right part (b) displays the three short texts in a graph, where
they interleave via overlapped words. Contextual features of a short text are not only
from itself (within-sentence) but also from other related short texts (cross-sentence).
For conciseness, we denote a word with a number in this paper.

and sparsity of the input text. Previous work assumes that the missing context
in short text can be obtained from external sources [14–16]. Therefore, a major
concern is shift to increase textual features with external knowledge from out-
of-dataset sources. For example, they collect similar titles and snippets returned
by search engines [17, 18] to expand the raw short text or fetch attributes of the
mentioned entity in short text from databases [19, 14, 10], such as Wikipedia and
YAGO. Specifically, in [10], they retrieve conceptual information from YAGO
and Freebase as background knowledge. In [20], they leverage textual category
information from Wikipedia based on explicit mentions of entities in short texts.

Most current work on short text classification is limited to classifying each
short text separately. As shown in the left part of figure 1, three short texts
tagged with α, β, and γ are represented in isolation, ignores intra-relations across
them.

Intuitively, we observe rich adjacent relationships across short texts in a
dataset where related short texts often share certain words. For example, the
right side of figure 1 shows that the three short texts share the same words.
Although the words labeled 9 and 4 do not appear in the short text α, they may
provide language prompts to help classify it, which should be worth considering
for short text classification.

With these observations, we think the interconnected short texts might pro-
vide an essential piece of contextual prompts, which can also be a source of inter-
nal knowledge. Specially, we construct a single directed graph (digraph briefly)
on the dataset. As seen in the right part in figure 1, a node represents a word
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(or a Chinese character), such as nodes marked as v0, v1, v2 that denote three
different words; a directed edge represents orders between pairs of nodes, which
is convenient for encoding word order-related semantic information. Compared
to prior work, we regard a short text as a path in the digraph, and each short
text is represented as a sequence of nodes and edges, i.e, the short text α can be
written as a set of α = {v0, e0,1, v1, e1,2, v2, e2,3, v3, e3,5, v5}, naturally.

Moreover, a basic idea is that the two or more interlinked sentences could
form some topological geometry structures in the digraph, e.g., a simple triangle
consists of three nodes v1, v8, v2, or other polygons. By looking closer at these
geometry-based features, we explore how to integrate them into a short text. In
Figure 1, we combine nodes v1, v2, v3 of α with a neighbor node v4 to form a
quadrangle, which are closely related to the path of short text α that can serve
as candidate topological features. As a result, an augmented representation for
α can be rewritten as α̂ = α ∪ {v4, e1,4, e4,3, v9, e1,9, e9,5, · · · }.

We developed a classification method called PathWalk. For each word in a
text, we first fuse neighbors’ topological features into node (i.e. word) repre-
sentation via a graph attention mechanism. Then the list of representations of
nodes can be fed into an encoder to obtain a final short text representation used
for classification. At last, the final representation is passed through a softmax
classifier for prediction, resulting in a probability distribution over predefined
labels. In addition, we present 2 new large short datasets: DanMu with size of
100K used for binary sentiment classification, and CVQD consists of 150K user
queries categorized by 26 topics. Extensive experiments show that the proposed
PathWalk method obtains results competitive with all compared methods on
most benchmark datasets. Significantly on the DanMu dataset, the proposed
method achieves state-of-the-art accuracy compared to all the baselines, includ-
ing the Bert-based ERNIE model. To summarize, our contributions are mainly
three-fold:

– We propose a novel topological graph-based model for short text classifica-
tion, thinking of in-dataset geometric structures as a source of internal knowl-
edge and constructing a single directed graph on the dataset. It aims to ag-
gregate neighbours’ topological features without requiring external sources.

– We present a simple yet effective graph-based method PathWalk, that en-
hances short text representation using geometry-based topological features
through graph attention. It considers neighboring features and helps alleviate
the problem of shortness in a short text.

– We construct two large-scale Chinese datasets for short text classification.
Experiments on nine benchmark datasets demonstrate that our method
achieves state-of-the-art results on six of nine datasets. Especially our method
obtains start-of-the-art on the new DanMu dataset.

2 Related Work

Short text classification is a fundamental problem in natural language processing
(NLP), mainly based on textual representation learning [10, 13]. This section
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briefly categorizes existing text classification methods into three groups from a
perspective of textual representation.
Bag-of-Words model In traditional machine learning, most previous work
on text classification methods heavily rely on human-designed features [21, 13],
and they view a text as a bag of words [22, 23]. One shortcoming is that it
disregards orders between words in the text. These methods, such as support
vector machine [23] and Logistic Regression [23], are widespread approaches for
traditional text classification and achieve good performance when the right bag
of features is designed. However, due to the limited content of a short-text, bag-
of-words-based methods usually fail to attain good performance for short text
classification.
Neural network-based methods In NLP, three types of neural network-based
methods have obtained great progress on text classification, including convolu-
tional neural networks (CNN) [24–26], recurrent neural networks (RNN) model
[27, 28] and various recent transformer-based models[29, 30].

CNN-based methods commonly convert a sentence into a feature matrix of
words based on pre-trained word vector [25, 24, 31], e.g., word2vec or GloVe
vectors. Suppose sentence length is n, the dimension of word vector is d, then
the dimensionality of the sentence matrix is n×d. CNN is good at capturing key-
phrases [32] or informative ngrams [21] in text. In [25], TextCNN is presented
for sentence-level classification, using a simple CNN with parameter tuning, and
achieves strong results on sentiment analysis and question classification tasks.

RNN-based methods view a text as a sequence of words [27, 32] that is good
at extracting long-range semantic dependency. In [27, 33, 10], a simple bidirec-
tional LSTM (BiLSTM) model is used for text classification called TextRNN.
It obtains competitive or new state-of-the-art results on sentiment analysis and
topic classification tasks.

Transformer-based models have become a dominant neural architecture in
the field of NLP. Transformer adopts a self-attention mechanism that can model
all the interactions between every word in the text, improving state-of-the-art
performance on various NLP tasks.
Graph-based methods The closest work to ours is in [34–37]. Ding et al. [34]
built a hypergraph for each text document to capture word interactions, using
an attention over node and edge respectively. Jian Tang et al. [35] proposed to
build a large-scale heterogeneous graph on a text corpus. The graph consists of
three types of text networks: word-word network, word-document network and
word-label network. Liang Yao et al. [36] presented to use of graph convolutional
neural networks (GCN) for text classification, building a single text graph for a
corpus and converting text classification into document-node classification.

3 Models

This section introduces a digraph-based method PathWalk for short text clas-
sification. An overview of our model architecture is depicted in figure 2. There
are four modules: Dataset-level Graph Construction (DGC), Geometry-based
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Fig. 2. Overall structure of the proposed model.

Feature Selection (GFS), Graph Attention Network (GAN), and Classification
Framework (CF). Where the DGC module first constructs a dataset-level di-
graph from a dataset. GFS module selects some geometry-based features in the
digraph for use in the GAN. GAN module aggregates the features of neighboring
nodes or edges via the attention mechanism. Finally, the CF module employs a
basic classification method based on augmented features for prediction. In the
remainder of this section, we go into more detail on each module, respectively.
Dataset-level Graph Construction (DGC)
Given a dataset, we construct a directed graph G = (V,E) (digraph in brief), in
which V is a set of nodes {vi}Ni=0 that correspond to the dataset’s vocabulary
of size N . E is a set of directed edges as written in {ei,j | ei,j = (vi, vj), i, j ∈
[0, · · · , N ]}, i.e., ei,j is a directed edge from node vi to node vj . For each short
text, we add all the words into the digraph one by one, connecting them with
a directed edge. The right part of figure 1 shows an example, short text α con-
tains nodes {v0, v1, v2, v3, v5}, there are four directed edges linking them, i.e.,
{e0,1, e1,2, e2,3, e3,5}.

We have three notes on DGC as follows. Firstly, different from previous
dataset-level graphs [36], DGC includes directed edges representing the order
of words, which is used to explicitly capture order-related semantic information
within a text sequence. Secondly, any word in digraph has lots of edges linked
with other words. Two or more related sentences may form some geometrical
structures, such as a loop or a triangle. Borrowing an item from point-set topol-
ogy, we call such structures simplex seen later in GFS. Thirdly, we assume that
the dataset’s internal knowledge might come from these geometrical structures.
It is the major insight of this work, which may provide a new perspective to
explore the usage of knowledge within dataset.
Geometry-based Feature Selection (GFS)
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Unlike previous work, we think of a short text as a path in the digraph, our
goal is to explore within-dataset geometry and capture word associations from
them. It is crucial to define topological structure along the path. For example,
given a short text α in figure 3(a) that highlighted in red, we refer to the nodes
v1, v2, v3, v5 in α as in-text nodes (or words), other nodes as neighbor nodes. Let
an n-simplex be v0, v1, . . . , vn consists of n+ 1 nodes, e.g. a quadrangle consists
of v1, v2, v3, v9 that is an 3-simplex, which might provide contextual prompts for
α. We define three types as optional neighbor features in the following:

(a) 1-simplex-based features, which are represented by one neighbor node
that pointed to one in-text node plus with the directed edge between them, such
as neighbor node v9 and edge e9,3 in figure 3(a), which can augment textual
feature to in-text node v3 of α.

(b) 2-simplex-based features, which are defined by a triangle, include the
directed edges between them. For example, the triangle denoted by {v1, v2, v8}
in figure 3(b), the in-text node v1 can reach the follow-up v2 through a neighbor
node v8. Both of e1,8 and e8,2 can be as an optional path between the two in-
text nodes v1 and v2, which may capture complementary short-range contextual
information for α.

(c) 3-simplex or higher-simplex based features, a 3-simplex shape is repre-
sented by a quadrangle such as {v1, v2, v3, v4} in figure 3(c), a 4-simplex shape
like a pentagon {v1, v2, v3, v5, v4}. Intuitively, the neighbor node v4 and edge e4,3
are considered to have the ability to capture long-distance interactions between
in-text nodes v1 and v3 of α, bypassing in-between node v2.

To avoid introducing noises, we constraint a topological structure that starts
with an in-text node of α pointing to one neighbor node and then re-pointing
to another α’s in-text node. Taking the 4-simplex in figure 3(c) as an example,
although the in-text word v1 is far away from the last in-text word v5, v1 has
extra short path that connects to v5 via neighbor node v4 that not in α, bypassing
the two in-text nodes v2 and v3. These shortcut connections, such as through v4,
which may efficiently represent long-range associations in a text, would quickly
transfer the complementary long-range context of v1 to v5.
Graph Attention Network (GAN)
Following the output of the GFS module, GAN aims to selectively aggregate
topological features into the original features of the each word in text. Three
steps are proposed as below.
Subset of n-simplexes features: We first adopt a random strategy to sample
or choose a subset of candidate neighbour features of size K, which is used for
attention calculation in equation 4:

SubsetK = random_choose({n−simplexes}4n=0). (1)

Edge-aware node represention: An edge-aware node represention is to fuse
features of directed edge into node represention. Let hei,j ∈ Rd denote represen-
tion of the directed edge ei,j from node vi to vj , hvi , hvj ∈ Rd denote represention
of nodes. Here let the two nodes vi and vj be in-text nodes that belong to α.
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The edge-aware node representionare hvi is computed as follows:

ĥei,j = gelu(We[hei,j , (hvj − hvi)] + be),

hvi = gelu(Wv[hvi , ĥei,j ] + bv),

hvi = LayerNorm(hvi),

(2)

where the two map matrixes We, Wv and their corresponding bias be, bv are
trainable parameters, [·, ·] denotes concatenation, d is the dimension of the node
or edge represention. We use a difference operator as hvj −hvi , which means the
representaion of the directed edge ei,j is closely related to both of the head and
tail node.

0

1

2

3

4

5

7

8

9

10

(a) 1-simplex-
based features

0

1

2

3

4

5

7

8

9

10

(b) 2-simplex-
based features

0

1

2

3

4

5

7

8

9

10

(c) 3/4-simplex
based features

Fig. 3. Geometry-based topological feature selection for short text α =
{v0, v1, v2, v3, v5}. Figure best viewed in color.

More specially, we assume that vk is a neighbor node that does not belong
to α. There are two directed edges ei,k and ek,j that links the three nodes. The
representation of vk can be calculated as follows:

hvk = gelu(Wo[ĥei,k , hvk , ĥek,j
] + bo),

hvk = LayerNorm(hvk),
(3)

where the projection matrix Wo and the bias bo are trainable parameters.
For each in-text node in short text α, such as vi ∈ α, there exists a subset of

neighbour nodes of size K, SubsetK , where each neighbour node vk is not belong
to text α. To selectively focus on some informative neighors for the specific in-
text node, we employ a graph attention model to learn the importance on the
subset, and assign different attention scores to them. Formally,

hi,k = gelu(W2[W1hvi + b1,W1hvk + b1] + b2),

ϕk,i =
exp(hi,k)∑K

n∈SubsetK exp(hi,n)
,

h̃vi = gelu(hvi +

K∑
k=1

ϕk,ihvk),

(4)

where W1,2 and b1,2 are learnable parameters, ϕk,i denotes the weight of atten-
tion of neighbor node vk to the in-text node vi. h̃vi is output representation for
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the in-text node vi ∈ α that can fuse these neighbour context features to obtain
the final embedding for vi.
Classification Framework (CF)
Figure 2 shows a classification framework. It contains a two-layer bidirectional
long short-term memory (BiLSTM) network as text encoder as [10] does, a soft-
max classifier layer to yield a probability distribution over the predifined labels.
Formally,

~(f)α = LSTM (f)({h̃vi}l1),

~(b)α = LSTM (b)({h̃vi}l1),
p(ŷ | α) = softmax(Wc[~(f)α , ~(b)α ] + bc),

ŷ = argmax
ŷ

p(ŷ | α),

(5)

where Wc and bc are trained parameters, l is the sentence length of α. ~(f)α and
~(b)α represent the last hidden state for forward and backward pass respectively,
which are concatenated to feed to the softmax layer. p(ŷ | α) denotes the proba-
bility distribution produced on the predefined labels, the higher one ŷ is choosed
as the predicted result,
Model LearningWith the guide of labels, we can optimize the proposed model
via back propagation and learn the embeddings of the graph, including the node
and directed edge. For supervised text classification task, we can minimize the
categorical Cross-Entropy loss between the prediction and the ground-truth and
the loss can be optimized as: L(θ) = − 1

N

∑N
i=1 yi log(ŷi), where N is the batch

size, y is the ground truth label, and θ are trainable model parameters. In our
work, we use dropout and gradient value clip to prevent overfitting in gradient
descent step.

4 Experiment and Evaluation

Table 1. Summary statistics of the datasets.

Dataset Class AvgLen Size Train Dev Test Nodes Edges
DanMu 2 6 100K 70K 15K 15K 2,913 118,14
CVQD 26 8 150K 105K 22.5K 22.5K 3,601 232,387
MR 2 20 10.6K 7464 1,599 1,599 4,479 71,832
SST1 5 18 11.8K 8,544 2,210 1,101 4,615 73,825
SST2 2 18 9.6K 6,920 872 1,821 3,929 60,487
SUBJ 2 23 10K 7,001 1,495 1,499 5,061 79,591
TREC 6 11 6.4K 5,452 500 500 1,402 13,739
CR 2 16 3.7K 2,639 566 565 1,485 23,588

MPQA 2 3 10.6K 7,423 1,590 1,590 1,157 8,185
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Datasets We evaluate experiments on seven widely used benchmark datasets,
including Movie Review (MR)[38], TREC [39], Customer Reviews (CR) [40],
MPQA [41], SST-1/2[42], and SUBJ. Due to there being no standard split for
MR, TREC, CR and MPQA, we randomly shuffle their datasets and split them
into the training (70%), dev (15%), and test (15%) set, respectively. We sum-
marize the detailed statistics in Table 1. However, on the one hand, the average
sentence length of most above datasets is quite long, such as the average length
of SUBJ is 23, MR is 20, and SST-1/2 18. On the other hand, our NLP commu-
nity lacks large-scale Chinese datasets for short text classification. Therefore, we
built 2 large short datasets: DanMu and CVQD. We crawled both with a spider
from a wide range of sources, such as the open web or video search engines,
short-video websites, and Weibo websites. We annotated each sample automati-
cally according to our hand-crafted features, such as their domain names in URL
or taking the majority vote in the returned snippets of search engines.

Chinese Video Query dataset (CVQD) We collected a query dataset of size
150K from some popular Chinese video search engines, which involves classifying
a query into 26 query types, whether the query is about Movie, Cartoon, Travel,
Fashion, Culture, Music, and Game, etc. We split the dataset into the training
(70%), validation (15%), and test (15%) set, respectively.

Chinese DanMu dataset (DanMu) We gathered user reviews of size 100K
from some famous Chinese short-video websites and assigned binary emotion
tagging, i.e., positive or negative, for the task of binary sentiment classification.
We follow the standard partition as the CVQD did.

Compared Methods Following the compared methods used in [34], we adopt
the four classes of popular baselines. (1) Word embedding-based methods, such
as fastText[43, 23]; (2) Sequence-based methods, including a family of CNN’s-
based methods and LSTMs-based methods[27, 10, 33]; (3) Transformer-based
models[44]; (4) ERNIE[45], that is an extension of the pre-trained Bert model.

Implementation DetailsWe fix the maximum length to 20 for the Chinese and
English datasets. We set the batch size to 64, embedding size of 300-dimension
for node and edge, encoder hidden state to 300, hyperparameter K to 45 for
all datasets, random seed 4257 for reproducibility. We trained our model for
50 epochs using Adam with a learning rate of 5e-3 and do not perform dataset-
specific tuning, performed early stopping on the dev set if the validation accuracy
did not increase for ten consecutive epochs. To alleviate overfitting, we employ
dropout before each MLP layer with a rate of 0.2, in BiLSTM encoder with
rate 0.2. We save the punctuations in CVQD and DanMu datasets, because we
think they may have semantic information in language, which is corroborated as
in [46]. We build directed graphs by NetworkX and implement our model with
PyTorch. For measure, we follow [25, 34] to use classification performance by the
accuracy metric on the test set.

Comparison with strong baselines Due to the variance of the sampled subset
in GAN module can be quite high, we repeat the classification process 10 times
and report the averaged accuracy in Table 2. Compared with baseline methods on
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Table 2. Test accuracy on test set of the 9 benchmark datasets.

Model DanMu CVQD MR SST1 SST2 SUBJ TREC CR MPQA
LSTM 94.45 57.49 65.54 33.50 65.18 83.12 85.40 68.14 82.08
BiLSTM[47] 94.20 54.78 64.67 35.43 64.74 82.39 83.00 69.73 83.08
Att-BLSTM[48] 94.62 58.87 65.67 33.78 67.76 84.46 87.20 70.80 82.58
DPCNN[49] 93.75 56.94 66.23 36.11 68.81 87.53 87.20 75.75 79.43
CNN-rand[25] 93.37 60.07 68.86 32.90 71.06 86.32 87.40 74.34 80.50
TextRCNN[21] 94.17 56.28 70.11 32.49 77.59 89.73 86.20 78.94 82.52
fastText[23] 94.51 58.21 60.60 36.88 70.68 88.99 88.00 70.09 85.16
Transformer[44] 93.40 58.30 68.67 30.47 67.93 88.19 86.80 66.02 82.08
ERNIE[45] 95.81 65.42 - - - - - - -
PathWalk
(Ours) 96.68 57.55 73.17 34.39 77.70 89.86 88.80 79.29 82.83

the test set, the proposed PathWalk model has achieved state-of-the-art results
on six of nine benchmark datasets.

First, compared to LSTM- and CNN-based models in the top half of the ta-
ble, e.g., BiLSTM, Att-BLSTM, and TextRCNN, PathWalk obtains new state-of-
the-art results on six of nine benchmark datasets, including significantly pushing
the test accuracy to 96.68% ( approximately 3.3% point absolute improvement
) on the DanMu dataset, MR accuracy to 73.17% ( 3% absolute improvement
compared to the best TextRCNN 70.11% ). PathWalk reaches state-of-the-art
accuracy on SST2 77.70%, SUBJ 89.86%, TREC 88.80%, and CR 79.29%, im-
proving over the existing best results.

We note that a shallow CNN-rand model performs better with randomly
initialized word embeddings, especially on the CVQD and TREC; it outper-
forms more complex models like TextRCNN and Transformer. Also, PathWalk
is competitive with state-of-the-art LSTM- and CNN-based methods on CVQD,
SST1, and MPQA datasets. On the CVQD dataset, CNN-rand attains the best
accuracy of 60.07%. Att-BLSTM gets 58.87% and outperforms BiLSTM by 4%
absolute improvement, which shows that the attention mechanism provides more
important information in text for classification.

fastText model yields a higher accuracy of 85.16% than other methods on
MPQA, and it has a 2.3% absolute improvement compared to the proposed
PathWalk-BiLSTM model. It demonstrates that fastText uses the average of
word embeddings as sentence representation is helpful for very short text classi-
fication.

Second, compared to the Transformer and fastText, the proposed PathWalk-
BiLSTM performs the best and significantly outperforms them on most datasets.
Especially on the DanMu dataset, our model obtains 3.2% and 2.17% respective
accuracy improvement over the Transformer and fastText models. The proposed
model obtains a 9% and 13% absolute accuracy improvement on CR.

Finally, the results show that the ERNIE model performs better on the two
Chinese datasets, it achieves the best results on the CVQD dataset. ; this is
likely because the pre-trained ERNIE model can learn a good representation for
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Chinese entities and phrases, which can be fine-tuned for Chinese text classi-
fication. Especially on the DanMu dataset, our PathWalk model also achieves
new state-of-the-art classification accuracy and performs much better, even if we
only adopt the basic BiLSTM as a simple encoder.

We observed that simple models usually achieve comparable results on a
specific dataset, such as fastText performs well on CVQD and MPQA. BiL-
STM performs better than our complex PathWalk-BiLSTM model on MPQA.
Although DanMu and CVQD are all Chinese short text datasets, the PathWalk-
BiLSTM model attains new state-of-the-art on DanMu that even surpassed the
most sophisticated Transformer models but performs worse on CVQD. Because
CVQD tends to be phrase queries at search engines, search users often ignore
the word order in their query. These findings emphasize that complex models
can not produce consistent performance across all datasets.

(a) (b)

Fig. 4. Ablation studies on the DanMu dataset. (a) Number of neighbors K; (b) Di-
mension of node/edge embedding.

Ablation Study In this part, we conduct ablation studies to analyze our model
further.
Effect of the parameter K: K is the number of randomly sampled neighbor
nodes. To evaluate its sensitivity to classification accuracy, we grid search for K
between 0 and 75, stepped by 5. In particular, K=0 is equivalent to the graph
neighbors are not used for classification, which means the proposed model does
not introduce neighbor nodes and edges from other texts. Figure 4(a) shows the
influence of K on the DanMu test set. From the results, we can find that the
model reaches its optimal accuracy at K=45. It shows that aggregating features
from neighbours’ nodes or edges could benefit classification accuracy. However,
the performance does not grow with K because the variance of randomly sampled
neighbors might be pretty high.
Dimension of graph embedding: We explore the effect of dimension of the
graph embedding with various dimensions. The accuracy on the DanMu test set
is shown in figure 4(b). It shows that the accuracy rises with increase of the
embedding dimension. Although our model achieves higher accuracy when the
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dimension is set to 384, we adopt a suitable dimension of 300, a tradeoff between
the accuracy and the model size.
Analysis of geometry-based features: In order to check the impact of ge-
ometry based features, we evaluate each of them by removing it from the full
model. In this work, the full model incorporates neighbours’ nodes as well as
their edges in-between, we describe the full formulation for short text α(1) as
follows: α(1)

1:l = f({vi + ei,i+1 + attentionSubsetK ({vk + ek,i}Kk=1)}li=1), where f
denotes a generic encoder function, here BiLSTM is employed as an encoder.
Next, we remove neighbours’ features in α(1), the second formulation of α(2) can
be represented as: α(2)

1:l = f({vi + ei,i+1)}li=1). Finally, after removing in-text
edges of α, our model would degenerate to the traditional method as prior work
dose, the third formulation of α(3) can be rewritten as: α(3)

1:l = f({vi}li=1).

Table 3. Effectiveness of geometry-based features on DanMu test set.

Method
Full model

α(1)

- neighbors
α(2)

- in-text edges
α(3)

test
accuracy 96.68% 94.41% 94.20%

Table 3 reports the accuracy on the test set. From the results, we can see
that the full model of α(1)

1:l outperforms α(2)
1:l by 2.27% absolute improvement. On

the one hand, it demonstrates that augmenting short text with geometry-based
neighboring features could improve accuracy significantly. On the other hand, it
indicates the effectiveness of the graph attention network (GAN) for selecting
important neighboring features. Compared to α(3)

1:l , α
(1)
1:l achieves 2.48% absolute

improvement, α(2)
1:l gets 0.21% absolute improvement, which show directed edges

in the text sequence could further increase the features for short text. Overall, it
corroborates that internal features within dataset can bring contextual prompts
to guide short text classification

5 Conclusion

The paper utilizes within-dataset topological features to improve short text clas-
sification, augmenting short text with the internal knowledge from the dataset
oneself. We start by transferring the dataset into a single directed graph and
regard a short text as a path. Then, we enhance the representation of short text
by aggregating topological features from neighboring texts, which alleviates the
problem of feature sparsity. Extensive experiments on nine benchmark datasets
show that the improvement in classification accuracy comes from topological
features, i.e., neighbors nodes and edges. In addition, we build 2 new short-text-
specific datasets as a helpful reference for classification. This work may provide
a new perspective to data enhancement via introducing knowledge, which can
come not only from external resources but also from the dataset oneself.
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