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Abstract

Many applications of representation learning, such as privacy-preservation, al-1

gorithmic fairness and domain adaptation, desire explicit control over semantic2

information being discarded. This goal is often formulated as satisfying two po-3

tentially competing objectives: maximizing utility for predicting a target attribute4

while simultaneously being independent or invariant with respect to a known seman-5

tic attribute. In this paper, we identify and determine two fundamental trade-offs6

between utility and semantic dependence induced by the statistical dependencies7

between the data and its corresponding target and semantic attributes. We derive8

closed-form solutions for the global optima of the underlying optimization prob-9

lems under mild assumptions, which in turn yields closed formulae for the exact10

trade-offs. We also derive empirical estimates of the trade-offs and show their11

convergence to the corresponding population counterparts. Finally, we numeri-12

cally quantify the trade-offs on representative problems and compare the solutions13

achieved by baseline representation learning algorithms.14

1 Introduction15

Real-world applications of representation learning algorithms often have to contend with objectives16

beyond predictive performance. These include cost functions pertaining to, invariance (e.g., to17

photometric or geometric variations), semantic independence (e.g., w.r.t to age or race for face18

recognition systems), privacy (e.g., mitigating leakage of sensitive information [1]), algorithmic19

fairness (e.g., demographic parity [2]), and generalization across multiple domains [3], to name a few.20

At its core, the underlying goal of the aforementioned formulations of representation learning is to21

satisfy two competing objectives, extracting as much information necessary to predict a target label22

y (e.g., face identity) while intentionally and permanently suppressing information pertaining to a23

desired semantic attribute s (e.g., age, gender or race). When y is independent of s, one can learn a24

representation that is independent of s with no loss of performance, i.e., no trade-off exists between25

the two objectives. However, when the two attributes y and s are correlated, attaining semantic26

independence will necessarily reduce the performance of the target predictor, i.e., there is a trade-off27

between the two objectives. The trade-off is unknown yet is important for understanding the limits of28

existing and future representation learning algorithms that involve semantic independence constraints.29

Let z = f(x) be a representation of input data x, and f(·) be the encoder (see Fig 1(a)). Invariant30

learning requires that prediction of the target label, ŷ = gY (z) be independent of a semantic attribute31

s i.e., ŷ ⊥⊥ s for all possible downstream target predictors gY (·). This independence condition is32

satisfied if and only if (iff), the representation z is independent of s i.e., z ⊥⊥ s. Therefore, Invariant33

representation learning (IRL) seeks to optimize two objectives: i) the degree of dependence between34

data representation z and semantic attribute s, and ii) target task utility. These two objectives can be35

combined into one, with a parameter τ controlling the trade-off.36
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Figure 1: (a): Generic frame work of invariant representation learning (IRL) where attributes s and y
are caused by a latent factor a and are not marginally independent. Under this setting, IRL seeks
a representation z = f(x) that contains enough information for downstream target predictor gY (·)
while being independent of the semantic attribute s. Consequently, the prediction ŷ = gY (z) will
also be independent of s for any downstream predictor gY (·). (b): We identify and determine two
different fundamental trade-offs between utility (i.e., the performance of target task predictor) and
dependence measure dep(z, s) by an optimal learner in the hypothesis class of Borel-measurable
functions. Trade-off L is induced by the joint distribution of the labels pys. Trade-off D is induced
by the joint distribution of the data pxys. Trade-off F is a relaxed version of trade-off D obtained by
either using a surrogate measure of dependence, e.g., adversarial learning [3] or from a constrained
hypothesis class [4], or from using sub-optimal optimization algorithms.

In this paper, we identify and analytically determine two fundamental trade-offs in the invariant37

representation learning setting introduced above, namely Data Space Trade-Off and Label Space38

Trade-Off. These trade-offs are illustrated in Figure 1 (b) and formally defined next.39

Definition 1. Data Space Trade-Off arises from the statistical dependence between the target attribute40

y and the semantic attribute s conditioned on the given input data x. When the learner’s hypothesis41

class contains all Borel-measurable functions1 we have:42

inf
f(·) measurable

{
(1− τ) inf

gY (·) measurable
Ex,y

[
LY
(
gY (f(x)),y

)]
+ τ dep(f(x), s)

}
. (1)

where f(·) is the encoder that extracts representation z from x, gY (·) predicts ŷ from the repre-43

sentation z, LY (·, ·) is the loss for the desired task of predicting the task label y. The function44

dep(·, ·) ≥ 0 is a parametric or non-parametric measure of statistical dependence i.e., dep(q, r) = 045

means q and r are independent, and dep(q, r) > 0 means q and r are dependent with larger values46

indicating greater degrees of dependence. The scalar τ ∈ [0, 1) is a hyper-parameter that controls47

the trade-off between the two objectives, with τ = 0 being the standard approach that enforces no48

independence to the attribute s, while τ → 1 enforces representation z to be independent of s.49

Including all measurable functions in the hypothesis class of the encoder f(·) and target predic-50

tor gY (·) ensures that the best possible trade-off is included within the feasible solution space.51

For example, when τ = 0 and LY (·, ·) is the mean-squared error, the optimal Bayes estimator,52

gY (f(x)) = Ey[y |x] is reachable. This definition corresponds to the trade-off D in Figure 1 (b).53

Definition 2. Label Space Trade-Off arises by ignoring the data x and is purely determined by the54

statistical dependence between the target feature y and the semantic attribute s. Such a trade-off can55

be defined as:56

inf
z∈L2

{
(1− τ) inf

gY (·) measurable
Ex,y

[
LY (gY (z),y)

]
+ τ dep(z, s)

}
, (2)

where L2 is the space of all random vectors with finite second-order moment (i.e., Ez[‖z‖2] <∞)57

on the same probability space in which the joint variable (s,y) comes from.58

1More specifically, we consider square-integrable Borel-measurable functions for boundedness.
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This definition corresponds to the optimal trade-off obtained by an ideal representation z that is not59

constrained by the learnability of the encoder f(·). For example, if τ = 0, the ideal representation60

z is perfectly aligned with the target label y i.e., z = y and gY (·) is the identity function, perfect61

prediction of target attribute is feasible. Therefore, this trade-off corresponds to the best trade-off that62

any combination of data x and learnable encoder f(·) can aspire to. This definition corresponds to63

the trade-off L in Figure 1 (b), and it necessarily dominates the Data Space Trade-Off D.64

Contributions: i) Identify two fundamental trade-offs in invariant representation learning. ii) Obtain65

closed-form solution for the corresponding optimization problems, and consequently determine the66

trade-offs exactly. iii) Provide consistent empirical closed-form solution for the representations that67

achieve optimal trade-offs. iv) Numerically quantify the trade-offs defined here and compare them to68

those obtained by existing solutions.69

Implications: i) Our closed-form empirical estimators for the optimal representations lend themselves70

to practical invariant representation learning algorithms. ii) Theoretically elucidating and empirically71

quantifying the intrinsic limits of invariant representations will enable researchers and practitioners72

alike to identify the feasible and infeasible solution space for the trade-offs and lead to informed73

development and deployment of optimal IRL methods. iii) Our theoretical analysis sheds light on the74

utility-semantic independence trade-off, the role of statistical dependency between target label y, the75

semantic attribute s, and the input data x, and the hypothesis class adopted for the learners.76

2 Related Work77

Trade-Offs in Representation Learning: While there are abundant empirical approaches for the78

representation learning applications considered in this paper, to the best of our knowledge, there79

is no prior work that exactly characterizes and empirically quantifies the trade-offs inherent to80

representation learning with semantic independence constraints.81

Prior work primarily sought to either obtain lower or upper bounds or characterize the extreme82

points of the trade-off in specific contexts such as fair representation learning. For instance, [5]83

uses information theoretic tools and characterizes the utility-fairness trade-off in terms of a lower84

bounds when both y and s are binary labels. Later [6] provided both upper and lower bound for the85

binary labels. By leveraging Chernoff bound [7] proposed a construction method to generate an ideal86

representation beyond input data to achieve perfect fairness while maintaining the best performance87

on target task for equalized odds. In the case of categorical features, a lower bound on utility-fairness88

trade-off has been provided by [8]. The notion of Pareto optimality was used by [9] to minimize89

the maximum possible error among sensitive attributes where both target and sensitive features are90

categorical. In contrast to this body of work, our trade-off analysis is applicable to multi-dimensional91

discrete and/or continuous attributes where we find the exact optimal trade-offs.92

The only prior work that investigates fundamental trade-offs in a general setting where both y and s93

can be continuous or discrete features, are [4] and [10]. [4] considers only linear dependence between94

the representation and semantic attribute and proposed a closed-form solution for the utility-fairness95

trade-off. Even though [10] considers non-linear dependencies, optimal losses have been derived only96

for the extremes of the trade-off (i.e., τ → 0 and τ → 1). In a more general setting where 0 < τ < 1,97

[10] only provides a lower bound on utility-invariance trade-off through information plane analysis.98

In contrast to the foregoing, we take a functional analysis approach and utilize covariance operator99

based measures of dependence that account for all non-linear dependence relations. We exactly100

characterize and quantify the utility-invariance trade-offs, while also providing a means to empirically101

estimate the encoder that achieves said optimal trade-off. Lastly, in addition to the Data Space102

Trade-Off, we also introduce and determine the Label Space Trade-Off which is the ideal trade-off103

that any unrestricted learning algorithm can aspire to.104

Invariant, Fair, Privacy-Preserving Representation Learning: The basic idea of representation105

learning that discards unwanted semantic information has been explored under different contexts like106

invariant, fair, or privacy-preserving learning. In domain adaptation [11, 12, 13], the goal is to learn107

features that are independent of the data domain. In fair learning [14, 15, 16, 17, 18, 19, 20, 21, 22, 23,108

2, 24, 25, 26, 27, 4], the goal is to discard the demographic information that leads to unfair outcomes.109

Similarly, there is a growing interest in mitigating unintended leakage of private information from110

data representations [28, 29, 1, 30, 31]. A vast majority of this body of work is empirical in nature.111

These methods implicitly look for a single or more points in the trade-off between utility and fairness112
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and do not explicitly seek to characterize the whole trade-off front. Overall, these approaches are113

not concerned (or aware) about the feasibility and limitations on the utility-invariance trade-off. In114

contrast, this paper determines the fundamental theoretical limits of controlling independence to115

semantic attributes, and proposes practical learning algorithms that achieve this limit.116

Adversarial Representation Learning: Most practical approaches for learning fair, invariant, do-117

main adaptive or privacy-preserving representations discussed above are based on adversarial repre-118

sentation learning (ARL). This learning problem is typically formulated as,119

inf
f∈Hx

{
(1− τ) inf

gY ∈Hy

Ex,y

[
LY
(
gY (f(x)),y

)]
− τ inf

gS∈Hs

Ex,s

[
LS
(
gS(f(x)), s

)]}
, (3)

whereLS(·, ·) is the loss function of a hypothetical adversary gS(·) who intends to extract the semantic120

attribute s through the best predictor within the hypothesis classHs. ARL is a special case of the Data121

Space Trade-Off in (1) where the negative loss of the adversary, − inf
gS∈Hs

Ex,s

[
LS
(
gS(f(x)), s

)]
122

plays the role of dep(f(x), s). However, this form of adversarial learning suffers from a fundamental123

drawback as also noted in [32, 33]. The measure of dependence induced by ARL does not account124

for all modes of non-linear dependence between s and the representation z. The next theorem states125

this observation precisely,126

Theorem 1. 2 Let Hs contain all Borel-measurable functions and LS(·, ·) be mean squared error127

(MSE) loss. Then,128

z ∈ arg sup

{
inf

gS∈Hs

Ex,s

[
LS
(
gS(z), s

)]}
⇔ E[s | z] = E[s].

This theorem implies that an optimal adversary does not necessarily lead to a representation z that129

is statistically independent of s (i.e., p(s|z) = p(s)), but rather leads to s being mean independent130

of representation z i.e., independence with respect to first order moment only. In other words,131

adversarially learned measure of dependence is not a complete measure of dependence and hence132

does not account for all modes of non-linear dependence between two random variables. As such, ARL133

is inherently incapable of attaining the trade-offs achievable by complete measures of dependence.134

3 Theoretical Results135

3.1 Problem Setting136

Consider the probability space (Ω,F ,P), where Ω is the sample space, F is a σ−algebra on Ω, and137

P is a probability measure on F . We assume that the joint random vector (x,y, s), containing the138

input data x ∈ Rdx , the target label y ∈ Rdy and the sensitive attribute s ∈ Rds , is a random vector139

on (Ω,F) with joint distribution pxys.140

Assumption 1. We assume that the encoder consists of r functions in an L2-universal RKHS141

(Hx, kx(·, ·)) (e.g., Gaussian kernel), where L2−universality guarantees thatHx can approximate142

any Borel-measurable function with arbitrary precision [34].143

Now, the representation vector z can be expressed as144

z = f(x) :=
[
f1(x), · · · , fr(x)

]T
∈ Rr, fj(·) ∈ Hx ∀j = 1, . . . , r. (4)

where r is the dimensionality of the representation z. As discussed in Corollary 5.1, unlike common145

practice where it is chosen arbitrarily, r itself is an object of interest for optimization. We consider a146

general scenario where both y and s can be continuous or discrete, or one of y or s is continuous147

while the other is discrete. To do this, we substitute3 the target loss, inf
gY

Ex,y[LY (gY (z),y)] in (1)148

with the negative of a non-parametric measure of dependence i.e., −dep(z,y). Furthermore, in149

2We defer the proofs of all lemmas, theorems and corollaries to the supplementary material.
3Many standard loss functions can be written in term of dependence measures [35] that capture all non-

linear dependencies i.e, Ex,y

[
LY

(
fT

(
f(x)

)
,y

)]
∝ −dep(f(x),y). For example, the mean squared error is

proportional to 1− ρ(f(x),y), where ρ is the Pearson correlation coefficient, a plausible dependence measure.
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x f(·) z = f(x)

Cov(f(x), βy(y)) βy(·) y

Cov(f(x), βs(s)) βs(·) s

Figure 2: Our IRL model consists of three components: i) An r-dimensional encoder f(·) in a RKHS
Hx. ii) A measure of dependence that accounts for all kinds of linear or non-linear dependencies
between the representation z and the semantic attribute s via the covariance between f(x) and βs(s)
where x is the input data and βs(·) belongs to RKHS Hs. iii) A measure of dependency between
f(x) and the target attribute y defined similar to the one for s.

unsupervised settings, when there is no target attribute y, the target dependence dep(z,y) can be150

replaced with dep(z,x), which implicitly forces the representation z to retain as much information151

as is necessary for reconstructing the input data x. This scenario is of practical interest when a data152

producer aims to provide a representation of data that is independent of a desired semantic attribute153

for any arbitrary downstream task.154

We start by designing dep(z, s), and dep(z,y) follows similarly. A key desiderata of dependence155

measures is that they should be able to account for all possible non-linear dependence relations156

between the random variables (or vectors). Examples of such measures include information theoretic157

measures such as mutual information (e.g., MINE [36]) or covariance operator based measures such158

as Hilbert-Schmidt Independence Criterion [37], Constrained Covariance [38] and Kernel Canonical159

Correlation [39]. The underlying principle behind the latter class of dependence measures is that160

finite dimensional spaces with non-linear dependencies behave as linearly dependent spaces when161

mapped appropriately to higher dimensional spaces. In this paper we adopt the covariance operator162

based measures as our choice of dependence measure for analytical tractability.163

Principally, z and s are independent iff Cov(α(z), βs(s)) is zero for all α(·) and βs(·) belong-164

ing to some universal RKHSs [38]. Since z = f(x) and f(·) ∈ Hx, Cov(α(z), βs(s)) =165

Cov(α(f(x)), βs(s)), which necessitates application of a kernel on top of another kernel. This166

limits the analytical tractability of our solution. However, as we argue below, it is almost sufficient to167

consider transformation on s, only, in which case it reduces to Cov(f(x), βs(s)). Let (Hs, ks(·, ·))168

and (Hy, ky(·, ·)) be separable4 RKHSs of functions defined on Rds and Rdy , respectively. Consider169

the bi-linear functional,170

h(·, ·) : Hx ×Hs → R, hj(fj , βs) := Covx,s(fj(x), βs(s)). (5)

Assumption 2. We assume in the rest of this paper that the positive definite kernel functions are171

bounded, i.e.,172

Ex[kx(x,x)] <∞, Es[ks(s, s)] <∞, and Ey[ky(y,y)] <∞. (6)

The assumptions in (6) guarantee that h(·, ·) in (5) is bounded [40] and therefore, invoking Riesz173

representation theorem [41], there exists a unique and bounded linear operator Σsx, such that174

h(f, βs) = Covx,s(f(x), βs(s)) = 〈βs,Σsxf〉Hs
∀f ∈ Hx, ∀βs ∈ Hs. (7)

Based on h(·, ·), we define the linear operator hf ,s : Hs → Rr as175

hf ,s(βs) :=




Covx,s(f1(x), βs(s))

...
Covx,s(fr(x), βs(s))


 =




〈βs,Σsxf1〉Hs

...
〈βs,Σsxfr〉Hs


 .

The operator hf ,s captures all modes of non-linear dependence, since the distribution of a low-176

dimensional projection of high-dimensional data is approximately normal [42], [43]. In other words,177

we assume that (f(x), βs(s)) is an approximately Gaussian random vector.178

4By separable we mean having a countable orthonormal basis set.
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Among the different dependence measures that have been defined through the covariance operator179

we adopt the Hilbert-Schmidt Independence Criterion (HSIC) [37] which is defined as the Hilbert-180

Schmidt norm (HS-norm) of the covariance operator,181

dep(z, s) := ‖hf ,s‖2HS =
∑

βs∈Us

‖hf ,s(βs)‖22=
∑

βs∈Us

r∑

j=1

h2(fj , βs) (8)

where Us is a countable orthonormal basis set for Hs. Note that, based on this definition, if the182

distribution (f(x), βs(s)) fails to be a normal distribution, we end up measuring mean dependency183

of z = f(x) from s which is still much stronger than the linear dependency between z and s [44].184

Even under this assumption, empirically (Section 4) we observe that trade-offs we obtain significantly185

dominate those from existing invariant representation learning algorithms.186

The following Lemma introduces a well-defined population expression for dep(z, s) in (8).187

Lemma 2.

dep(z, s) =

r∑

j=1

{
Ex,s,x′,s′

[
fj(x) fj(x

′) ks(s, s′)
]

+ Ex[fj(x)]Ex′ [fj(x
′)]Es,s′ [ks(s, s′)]

−2Ex,s

[
fj(x)Ex′ [fj(x

′)]Ey′ [ks(s, s′)]
]}

where (x, s) and (x′, s′) are independently drawn from the joint distribution pxs.188

In practice, it is necessary to empirically estimate dep(z, s), since the population distributions are189

typically unknown in most real-world scenarios.190

Definition 3. Let D = {(x1, s1,y1), · · · , (xn, sn,yn)} be the training data, containing n i.i.d.191

realizations from the joint distribution pxsy. Using, the representer theorem [45], it follows that192

f(x) = ΘE [kx(x1,x), · · · , kx(xn,x)]
T , where Θ ∈ Rr×n is a free parameter matrix.193

Lemma 3. Let an empirical estimation of covariance be194

Covx,s(fj(x), βs(s)) ≈ 1

n

n∑

i=1

fj(xi)βs(si)−
1

n2

n∑

i=1

n∑

k=1

fj(xi)βs(sk).

Then, the empirical estimator of dep(z, s) is given by195

depemp(z, s) :=
1

n2
‖ΘKxHLs‖2F , (9)

where Kx,Ks ∈ Rn×n are Gram matrices corresponding to Hx and Hs, respectively, H =196

I − 1
n11T , and Ls is a full column-rank matrix in which LsL

T
s = Ks (Cholesky factorization).197

This empirical estimator in (9) has a bias of O(n−1) and a convergence rate of O(n−1/2).198

The population and empirical dependence measures between z and y i.e., dep(z,y) and depemp(z,y),199

respectively, can be defined and obtained similarly.200

3.2 Trade-Off D201

We now turn to the the optimization problem corresponding to the trade-off D in (1). Recall that202

z = f(x) is r-dimensional, where the dimensionality r is a free variable. A common desiderata of203

learned representations is that of compactness [46] in order to avoid learning representations with204

redundant information where different dimensions are highly correlated with each other. Therefore,205

going beyond the assumption that each component of f(·) (i.e., fj(·)) belongs to a L2−universal206

RKHS Hx, we impose additional constraints on the representation. Specifically, we constrain the207

search space of the encoder f(·) to learn a disentangled representation [46] as follows,208

Ar :=
{(
f1(·), · · · , fr(·)

) ∣∣∣ fi, fj ∈ Hx, Covx(fi(x), fj(x)) + γ〈fi, fj〉Hx = δi,j

}
, (10)

where the regularization term γ〈fi, fj〉Hx , encourages orthogonality and boundedness, which in turn209

forces the representation to be compact or non-redundant. Such disentangled representations have210
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been studied in the context of independent component analysis (ICA) [39]. Now, the optimization211

problem in (1) reduces to,212

sup
f∈Ar

{
J(f(x)) := (1− τ) dep(f(x),y)− τ dep(f(x), s)

}
, 0 ≤ τ < 1, (11)

where as justified earlier the target loss function inf
fY

Ex,y[LY (fT (f(x)),y)] is substituted by213

−dep(f(x),y). Fortunately, the above optimization problem lends itself to a closed-form solu-214

tion as given by the next theorem.215

Theorem 4. A solution5 to the optimization problem in (11) is the eigenfunctions corresponding to r216

largest eigenvalues of the following generalized problem217 (
(1− τ)Σ∗yxΣyx − τ Σ∗sxΣsx

)
f = λΣxxf, (12)

where Σsx and Σyx are the covariance operators defined in (7), and Σ∗sx and Σ∗yx are the adjoint218

operators of Σsx and Σyx, respectively.219

Remark. If the trade-off parameter τ = 0 (i.e., no semantic independence constraint is imposed), the220

solution in Theorem 4 resembles a supervised version of ICA in [39] which is essentially a kernelized221

dimensionality reduction supervised by the target attribute y. On the other hand, if τ → 1 (i.e.,222

utility is ignored and only semantic independence is considered), the solution in Theorem 4 is the223

eigenfunctions corresponding to the negative eigenvalues of Σ∗sxΣsx, which are the directions that224

are least explanatory of the semantic attribute s.225

An empirical version of (11) is the following optimization problem226

sup
f∈Ar

{
J emp(f(x)) := (1− τ) depemp(f(x),y)− τ depemp(f(x), s)

}
, 0 ≤ τ < 1 (13)

where depemp(f(x), s) and depemp(f(x),y) are given in (9).227

Theorem 5. Consider the Cholesky factorization Kx = LxL
T
x , where Lx is a full column-rank228

matrix. A solution to (13) is229

f opt = Θopt
[
kx(x1, ·), · · · , kx(xn, ·)

]T

where Θopt = UT (Lx)
† and the columns of U are eigenvectors corresponding to r largest eigenval-230

ues, λ1, · · · , λr of the following generalized problem,231 (
LTx((1− τ)K̃y − τK̃s)Lx

)
u = λ

(
LTxHLx + nγI

)
u (14)

where γ is the regularization parameter from (10) and the supremum value of (13) is
∑r
j=1 λj .232

Corollary 5.1. Embedding Dimensionality: A useful corollary of Theorem 5 is optimal embedding233

dimensionality:234

arg sup
r

{
sup
f∈Ar

{
J emp(f(x)) := (1− τ) depemp(f(x),y)− τ depemp(f(x), s)

}}
,

which is the number of positive eigenvalues of the generalized eigenvalue problem in (14). To235

intuitively examine this result, consider two extreme cases: i) If there is no semantic independence236

constraint (i.e., τ = 0), adding more dimensions to the optimum r will not harm the representation237

power of z. ii) If we only care about semantic independence and ignore the target task (i.e., τ → 1),238

the optimal r would be equal to zero, indicating that a null representation is the best for discarding all239

semantic information. In this case, adding more dimension to z will necessarily violate the semantic240

independence constraint. More discussion can be found in the supplementary material.241

In the following Theorem, we prove that the empirical solution converges to its population counterpart.242

Theorem 6. Assume that ks(·, ·) and ky(·, ·) are bounded by one and f2k (xi) is bounded by M for243

any k = 1, . . . , r and i = 1, . . . , n for which f = (f1, . . . , fr) ∈ Ar. For any n > 1 and 0 < δ < 1,244

with probability at least 1− δ, we have245

∣∣∣ sup
f∈Ar

J(f(x))− sup
f∈Ar

J emp(f(x))
∣∣∣ ≤ rM

√
log(6/δ)

a2n
+O

(
1

n

)
,

where 0.22 ≤ a ≤ 1 is a constant.246

5The term ’solution’ in any optimization problem in this paper refers to a global optima.
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3.3 Trade-Off L247

We recall that label space trade-off arises when the representation z is ideal and is free to be designed248

optimally i.e., it does not necessarily depend on the input data x or the encoder’s hypothesis class.249

However, we assume that the representation z is a direct effect of the target and sensitive variables (y250

and s). Following [47], we use an additive noise model as251

z = fL(y, s) + e, e ⊥⊥ y, e ⊥⊥ s (15)

where fL(·, ·) : Rdy × Rds → Rr is a Borel-measurable function. Following Section 3.1,252

we deploy −dep(z,y), defined similar to dep(z, s) in (8), as a proxy for the loss function253

inf
gY ∈Hy

Ex,y[LT (gT (z),y)]. Recall that, the desired optimization problem is given in (2). Instead254

of directly optimizing over z ∈ L2, we optimize over all Borel-measurable functions fL(·, ·) by255

ignoring e since it is independent of both y and s:256

sup
fL∈Ar(y,s)

{
(1− τ) dep(fL(y, s),y)− τ dep(fL(y, s), s)

}
, (16)

where Ar(y, s) is defined similar to Ar in (10) by using (y, s) instead of x in the definition. Recall257

that Ar(y, s) ensures that z will not contain highly correlated (entangled) dimensions, and thus be258

minimally redundant or maximally compact.259

Remark. The optimization problem in (16) and its empirical counterpart can be solved similar to260

that of trade-off D in Theorems 5 and 6 where x is replaced with (y, s).261

3.4 Trade-Off F262

Here we define and discuss the trade-off achievable by practical realizations of representation learning263

algorithms with either fairness, invariance or semantic independence constraints.264

Definition 4. Feasible Space Trade-Off arises from the statistical dependence between the target265

feature y and the sensitive attribute s conditioned on the given input data x, the choice of hypothesis266

class for the learners involved, and the choice of dependence measure adopted. This setting can be267

formalized as,268

inf
f∈Hx

{
(1− τ) inf

gY ∈Hy

Ex,y

[
LY
(
gY (f(x)),y

)]
+ τ d̃ep(f(x), s)

}
, 0 ≤ τ < 1, (17)

whereHx andHy are the hypothesis class for the encoder network and target predictor, respectively,269

LY (·, ·) denotes the loss function of target task, and d̃ep(f(x), s) is a parametric or non-parametric270

surrogate measure of dependency quantifying the dependency between representation vector z =271

f(x) and the sensitive attribute s.272

This setting corresponds to the trade-off F in Figure 1(b), and is necessarily dominated by the273

Data Space Trade-Off D. Multiple factors may lead to such sub-optimal trade-offs. These include,274

hypothesis classes that are not universal RKHSs (e.g., [4] considered the case whereHx is universal,275

butHs andHy are linear RKHSs), the surrogate dependence measure d̃ep(f(x), s) does not account276

for all non-linear dependencies (e.g., [3, 2, 21, 4] which consider adversarially learned dependence277

measures), sub-optimal optimization of (17) in terms of achieving only local optima but not the278

global optima (e.g., when the hypothesis class is deep neural networks that are optimized through279

stochastic gradient descent, or through stochastic gradient descent-ascent in the case of adversarial280

representation learning[3, 21, 2]), and combinations thereof.281

4 Numerical Estimation of Trade-Offs282

In this section, we demonstrate the practical utility of the analytical results developed in the paper283

and validate our theoretical insights. For this purpose, we design an illustrative toy example that284

conforms to the setting studied in the paper and numerically quantify the trade-offs that we introduced.285

Experimental validation on more tasks can be found in the supplementary material.286

Consider the following Gaussian mixture model from which we generate 4000, 2000, and 2000287

v = [v1, v2] ∼ 1

2

(
N (m,Σ) +N (m′,Σ)

)
, m = [0, 1], m′ = [1, 1], Σ = diag(0.12, 0.12)
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Figure 3: (a): A mixture of two Gaussians which generates the input data as x = v1, the sensitive
attribute as s = v31 , and the target attribute as y = [v1, v

3
2 ]. (b): Two fundamental trade-offs, L and D,

together with two baseline feasible trade-offs F, ARL optimized with SGDA [21] and global optima
of ARL with a linear RKHS [4]. (c), (d): The learned embedding for τ = 0 and τ = 0.5, respectively.
An invariant representation should collapse v1 i.e., the two colors should fully overlap with each other
in the embedding. The overlap is partial for τ = 0.5 and as τ → 1, the optimal representation is zero.

independent samples for training, validation and testing, respectively. Figure 3(a) shows the test288

samples where the samples generated with m and m′ are in blue and red, respectively. The input data289

x is set to v1 (the first entry of v), the sensitive attribute s is v31 , and the target attribute y is [v1, v
3
2 ].290

In this problem both input data and target attribute are dependent on the sensitive attribute. We choose291

all three RKHSHx,Hy , andHs to be Gaussian, which is a universal RKHS. The optimal z is learned292

for the trade-off D through the closed-form solution in Theorem 5 for different invariance parameter293

values τ in [0, 1). Then, this optimal embedding is fed to a target task predictor which is a multi-layer294

perceptron (MLP) with two hidden layers, and 4, 8 neurons and optimize the mean-squared error295

(MSE). The x-axis is a normalized version of the dependence measure used in our optimization, while296

the y-axis quantifies utility normalized to [0, 1] as exp(−MSE). The same procedure is implemented297

for trade-off L, except that the input data is v, instead of x. These trade-offs are shown in Figure 3(b).298

We choose the input data to be v instead of (y, s) for trade-off L since (y, s) is fully generated from299

v and therefore, v perfectly explains (y, s). For τ = 0 and τ = 0.5, the optimal embeddings are300

illustrated in Figure 3, (c) and (d), respectively. Since the sensitive attribute is only related to v1,301

an invariant embedding should collapse the corresponding dimension and cause the two colors to302

overlap with each other.303

We make the following observations, (a) Trade-off L dominates trade-off D as expected. (b) The304

trade-offs F obtained by the baselines are dominated by trade-off D. Adversarial representation305

learning [3, 21, 2] uses sub-optimal optimization (SGDA), while Spectral-ARL [4] uses a global306

optimum solution but restricts the hypothesis class in (3) to linear RKHS. As such, the baselines are307

unable to match the global optimal solution of (13), and (c) At τ = 0.5 the embedding does indeed308

collapse v1 to an extent leading to partial overlap between the two mixtures.309

5 Conclusions and Societal Impact310

This paper developed the theoretical underpinnings for identifying and determining the fundamental311

trade-offs and limits of representation learning under competing objectives. These trade-offs included312

i) label space trade-off which is solely induced by the statistical relation between target task and313

semantic attribute; ii) data space trade-off which is due to the statistical dependence between the314

input data and both target and semantic attributes. Further, we found closed-from solutions for the315

global optima, both the population and empirical versions, for the underlying optimization problems,316

and thus quantify the trade-offs exactly. Our results shed light on the regions of the trade-off that are317

feasible or impossible to achieve by learning algorithms. Numerical results suggest that commonly318

used adversarial representation learning based techniques are unable to reach the optimal trade-offs.319

The theoretical results in this paper are useful for algorithmic fairness, privacy-preservation, and320

domain generalization applications of representation learning. Such systems are being widely321

deployed in a variety of practical applications: search engines, social media, law enforcement,322

healthcare, consumer devices, financial and judicial risk assessments, face analysis, and many more.323

Therefore, providing theoretical limits of performance is critically important for informed framing324

of regulatory policies, deployment of such solutions, and gaining societal trust. As such, we do not325

anticipate any adverse societal impacts from this work.326
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