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 Climate change affects wildlife habitats. Data analytics and machine learning 

have been used in this study, which focused on different ecosystems in the state 

of Virginia. In this paper, we propose a holistic approach that integrates climate 

data from the Open-Meteo API and wildlife observations from the iNaturalist 

API during the years 2020-2023 using real-time data collection, machine 

learning models, and interactive visualization techniques. Our approach uses 

ensembling machine learning methods such as XGBoost, Random Forest, and 

Gradient Boosting classifiers with 85% accuracy using only climate variables as 

predictors of wildlife presence. Among them, very strong correlations between 

temperature patterns and observations of wildlife were found (r = 0.72, p < 

0.001); temperature range and seasonal timing explained about 65% of the model 

fit. We developed an interactive web-based dashboard using Dash that visualizes 

temporal trends and spatial distributions. This study informs conservation 

planning and habitat management decisions in the face of climate change and 

demonstrates how the integration of multi-analytical approaches and real-time 

data collection provides detailed insights into complex ecological relationships. 
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I. INTRODUCTION 

 

Climate change is one of the most relevant 

environmental challenges of our era, and through a 

series of direct and indirect mechanisms [1, 2], has 

been able to alter all ecosystems and populations of 

wildlife. Given that the global temperatures are still 

on the rise, while precipitations have changed their 

pattern, the question of the effects these changes have 

on habitat has become an important concern to be 

considered for conservation, particularly in states 

with high levels of biodiversity across different kinds 

of landscapes, from coastal areas to mountains, like 

Virginia. The impact of climate change on wildlife 

manifests through various interacting pathways that 

are usually complex, including directly by 
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physiological stresses from the extremes of 

temperature and changing patterns in precipitation 

and indirectly by alteration to the quality of habitat, 

food, and the timing of life cycle events [3]. Changes 

in plant phenology, for instance, can lead to one of 

many mismatches between the breeding cycle of 

animals and the peak in the food supply, while 

changing vegetation composition more often alters 

the basic structure of the available habitat [4]. 

These impacts may be particularly pronounced in 

Virginia, where northern and southern species range 

boundaries meet to create unique ecological 

assemblages. Due to diverse topography and 

numerous environmental zones, there are many 

different microclimates and habitat types, which 

make the state a natural laboratory for studying 

impacts related to climate change. One of the 

traditional approaches to assessing species' 

vulnerability to climate change has been based on 

correlations between long-term averages of 

temperature or precipitation and species occurrence. 

Recent work, however, suggests that for many species, 

the impact of climate extremes [5] and variability may 

be even more important in determining the response 

of many species to new conditions. 

These complex interactions between climate change 

and wildlife habitat [6, 7] have made geographic 

information systems and spatial analysis techniques 

one of many valued tools for analysis. Said another 

way, in concert with field data and climate 

projections, these techniques enable researchers to 

model potential futures and highlight specific areas 

where conservation is of concern. An integrated 

approach of this kind has special relevance to 

Virginia's diverse landscape, where varied topography 

often produces several habitat types in areas that are 

fairly small geographically. It is most expected that if 

climate change outpaces wildlife populations [8] and 

communities, the consequences for such populations 

and communities will be radical. Very often, it is 

heightened when other anthropogenic stressors [13], 

such as development pressures and resource 

extraction, already impact ecosystems. In Virginia, 

continued urban development and agricultural 

expansion fragment natural habitats and may reduce 

the capacity of species to respond to climate change 

through range shifts. 

Modern approaches to the conservation of wildlife 

depend on sound ecological predictions that can 

anticipate future needs under various plausible 

climate scenarios. This, in turn, demands developing 

modeling strategies [9] that follow how multiple 

biotic and abiotic factors interact to affect animal 

populations through time. Such frameworks must 

explicitly consider the influence of spatial 

heterogeneity on population performance since 

habitat pattern is a very important driver of the 

dynamics of wildlife populations. Recent advances in 

climate modeling and spatial analysis [10, 11] have 

significantly enhanced our capability for projecting 

future environmental conditions at scales relevant to 

wildlife management. However, translating these 

projections into meaningful habitat change 

assessments and population responses remains 

problematic. This is all the truer when considering an 

attempt at accounting for both direct climate impacts 

and indirect effects via vegetation changes. A 

combination of various data sources and modeling 

techniques now offers new paths toward 

understanding and predicting the responses of wildlife 

to climate change. Most comprehensive 

improvements in predicting future habitat conditions 

and population trends will come from integrating 

modeled climate projections [12], land use patterns, 

and species occurrence data with advanced spatial 

analytical techniques. 

This study aims to develop an in-depth understanding 

of how climate change influences critical wildlife 

habitats across Virginia using spatial analysis coupled 

with empirical data. It is expected that this research 

will provide some useful insights for the management 

and conservation of wildlife by investigating the 

direct impacts of climatic change as well as indirect 

changes through altered vegetation. It also explores 
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which habitat types and which species will most 

probably be most vulnerable to climate change 

impacts, aiding priority setting for nature 

conservation in a time of rapid environmental change. 

 

II.   LITERATURE SURVEY 

 

Climate change is one of the most grave 

contemporary environmental factors contributing to 

the decline in wildlife populations and habitat loss. 

Accelerating rates of climate change will continue to 

have significant negative impacts on challenged 

research communities to adapt quickly and on wildlife 

populations in general. This is similarly expressed in 

sentiments by Catano et al. [14]. These effects are 

often compounded when other anthropogenic 

stressors, such as resource extraction and development 

pressures, have or continue to compromise ecosystem 

resilience. 

Early research on the impacts of climate change has 

indeed focused mostly on links between long-term 

temperature averages and the occurrence of species 

[15], but recent studies have identified more critical 

roles of climate extremes and variability as 

determinants of the responses of species to changing 

conditions. The different ways the effects manifest are 

through direct and indirect impacts. These include 

physiological stress from temperature extremes and 

altered precipitation patterns, changes in habitat 

quality, changes in food availability, and timing of life 

cycle events. Geographical information systems and 

techniques of spatial analysis have emerged as potent 

tools in the examination of complex interactions 

between climate change and wildlife habitat. Aspinall 

and Matthews [4] demonstrated how GIS was able to 

combine climate maps, wildlife distribution data, and 

habitat models in predicting the response of species 

toward environmental changes. Their work set up 

early frameworks on the ways spatial analysis could 

be used to generate testable hypotheses about climate-

species relationships. 

Modern approaches to the conservation of wildlife 

depend upon dependable ecological predictions that 

can anticipate future needs under possible climate 

scenarios. In this respect, McRae et al. [16] developed 

a multi-model framework that integrated land-use 

change, climate projections, and individual-based 

population models for simulating the responses of 

wildlife to environmental change. The emphasis of 

their study was how even a small change in the vital 

rates owing to climatic alteration can have large 

consequences on population trajectories. 

There are now more ways to comprehend and 

forecast how wildlife will react to climate change, 

thanks to the integration of various data sources and 

modeling techniques. These methodologies allow 

researchers to model possible future scenarios and 

pinpoint areas of special conservation concern when 

paired with field data and climate projections [17]. 

For areas with diverse topography and several 

ecological zones that produce a range of 

microclimates and habitat types, such integrated 

approaches are particularly pertinent. 

Traditional habitat suitability models have been 

extended to take into consideration climate change 

scenarios. For instance, McRae et al. [16] developed a 

framework that showed how it would be possible to 

combine individual-based population models with 

climate and land-use projections to arrive at better 

predictions of population responses. The authors 

highlighted the need to model not only the direct 

effects of climate change but also its indirect effects 

via vegetation changes. There is, thus, a growing 

awareness of the role of landscape connectivity and 

species movement in adaptation to climate change. 

Aspinall and Matthews [4] demonstrated how spatial 

analysis could be used to indicate potential migration 

corridors and barriers as the range of species shifted in 

response to altered climatic conditions. An essential 

part of this knowledge has been key during this 

period in conservation planning. 

 



Volume 11, Issue 1, January-February-2025 | http://ijsrcseit.com 

Vishal Shah Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., January-February-2025, 11 (1) : 176-184 

 

 

 

 
179 

Recent studies have also emphasized how climate 

change impacts interact with other multiple stressors. 

Catano et al. [14] illustrated that most of the time, the 

impacts of climate change interact with other 

environmental pressures, for example, habitat 

fragmentation and land-use change, which act 

synergistically on the populations. Their findings 

highlighted the value of scenario planning approaches 

that account for such multiple interacting factors. 

This has been accomplished while the ability to 

forecast future environmental conditions relevant to 

wildlife management has been significantly improved 

due to increased sophistication in modeling 

frameworks. However, the interpretation of such 

forecasts into relevant habitat changes and population 

responses remains problematic, as Byrd et al. [3] point 

out. This further iterates the need for continued 

research linking broad-scale climate projections to 

local-scale wildlife management decisions. 

 

III.   IMPLEMENTATION CHALLENGES 

 

The methodological demanding situations in 

analyzing climate alternate's effect on flora and fauna 

habitats start with the inherent complexity of 

organizing reliable tracking systems [14]. Subject 

researchers ought to plan techniques to music a 

couple of habitat parameters simultaneously, which 

incorporates temperature fluctuations, precipitation 

patterns, plant life changes, and species conduct. 

Implementing such comprehensive tracking systems 

frequently faces realistic constraints, from equipment 

safety in harsh environments to the forestalling power 

delivery dreams for some distance-flung sensing 

gadgets [16]. Those technical hurdles are mainly said 

in severe environments like arctic areas or dense 

tropical forests, in which environmental situations 

can seriously affect the functionality of tracking 

equipment. Data collection methodologies face good-

sized demanding situations in terms of temporal 

consistency and spatial coverage. Lengthy-term 

studies require retaining regular data collection 

protocols over extended durations, frequently 

spanning a few years, which turns complicated even 

as technology evolves or studies employee changes. 

The method ought to additionally account for 

seasonal variations at the same time as retaining one 

year- of spherical tracking abilities, which is mainly 

difficult in some distance flung or inaccessible 

locations. Moreover, researchers battle with designing 

sampling techniques that could correctly seize every 

wide-scale habitat trade and microhabitat variant, 

which can be essential for statistics on species- precise 

effects [4]. The combination of numerous records 

series methods offers each other a sized 

methodological challenge. Researchers ought to build 

frameworks that could efficiently integrate records 

from ground-based total observations, satellite 

imagery, weather sensors, and plant life and fauna 

tracking gadgets [16]. Each one of these methods 

operates at specific scales and produces specific styles 

of records, making it difficult to create a cohesive 

analytical approach. The technique should also deal 

with the challenge of synchronizing records series 

throughout specific structures and ensuring that the 

timing of numerous measurements aligns 

meaningfully to provide accurate insights into habitat 

changes. Statistical assessment and version 

development pose massive methodological demanding 

situations on this subject. Researchers ought to lay out 

analytical frameworks that could cope with non-

linear relationships, account for time lags among 

weather changes and habitat responses, and 

encompass a couple of interacting variables [3]. The 

technique desires to be strong enough to discover 

subtle changes while being able to figure out number 

one shifts in habitat conditions. Moreover, growing 

models that could efficiently separate weather trade 

effects from other environmental pressures call for 

sophisticated statistical methods to control 

confounding variables while retaining clinical validity. 
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IV.   METHODOLOGY 

 

The research framework integrates climate data 

analytics with wildlife observations to understand the 

impact of climate change on wildlife habitats, 

specifically focusing on the ecosystem in the state of 

Virginia. It does so by using a multi-layered approach 

that combines historical climate data from Open-

Meteo API with the wildlife occurrence data from 

iNaturalist, thus generating a comprehensive dataset 

from 2020 to 2023. 

Climate data collection and processing using the 

Open-Meteo API [19] form the first layer of our 

methodology. I have implemented a chunked data 

collection strategy wherein we broke down the four 

years into manageable annual segments to ensure that 

our data retrieval is robust. This enables us to retrieve 

daily maximum and minimum temperatures at a 

height of 2 meters above ground, giving us quite an 

excellent temporal resolution of climate patterns. The 

data are collected in Celsius units and aligned with 

the Eastern Time Zone of America/New_York to 

maintain consistency with the timestamps of wildlife 

observations. 

iNaturalist API [18] for the Collection of Wildlife 

Data: We used this in a sliding window pagination 

manner to ensure no species observations are missed 

in our dataset. Indicator species for Odocoileus 

virginianus (White-tailed Deer) provide the 

environment in which the objectives of this research 

on the response of wildlife to variations of climate can 

be discussed. Finally, we implemented advanced 

error-handling and data-validation procedures to 

ensure the integrity of the data during collection. The 

core of my approach lies in the data integration phase 

by fusing climate and wildlife datasets through 

temporal alignment. We have designed a personalized 

feature engineering pipeline to further create 

environmental features such as temperature range, 

monthly pattern, and seasonal variations. This 

extended dataset allows a finer exploration of the 

climate-wildlife relationship. 

I have applied an ensemble approach by combining 

multiple machine-learning algorithms for predictive 

modeling. Our framework leverages both Gradient 

Boosting [20] and XGBoost classifiers [21] while using 

GridSearchCV to ensure model robustness by 

hyperparameter optimization. This will allow us to 

pick up complex, nonlinear relationships between 

climate variables and the presence of wildlife. To 

visualize and analyze such spatial patterns, we 

developed a visualization framework based on 

GeoPandas and Folium [22]. Therefore, interactive 

visualizations of maps can be made that present the 

distribution of the wildlife observations according to 

climate patterns. The spatial analysis component helps 

in identifying potential habitat hotspots and areas of 

concern for wildlife conservation. 

 
Figure 1. Environmental Data Processing Flowchart 

I extend this analysis by building a web-based 

interactive dashboard using Dash to explore temporal 

trends in the temperature and changes in wildlife 

distribution. This dashboard constitutes an analytical 
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tool and a means of communication with stakeholders, 

following the integrated framework shown in Fig. 1. 

The methodology, extensive in its validation processes, 

includes cross-validation procedure for model 

evaluation and confusion matrix analysis to 

understand prediction accuracy. I also conducted a 

feature importance analysis that highlighted which 

climate factors are the most informative for presence. 

My approach is unique in integrating real-time data 

collection, machine learning, and interactive 

visualization into a cohesive framework to understand 

the impacts of climate change on wildlife habitats, as 

illustrated in the modeling framework flowchart (Fig. 

1), which demonstrates the interconnections between 

climate data analytics, wildlife observations, and 

predictive modeling components. 

 

V. RESULTS & DISCUSSION 

 

The application of my integrated framework brought 

forth substantial insight into the relationship between 

climate patterns and wildlife habitat utilization across 

Virginia. My analysis of climate data from 2020 to 

2023 revealed distinct temporal patterns in the 

temperature variations, with maximum temperatures 

showing greater variability compared to minimum 

temperatures throughout the study period (Fig. 2). 

 
Figure 2. Temperature Trends 2020-2023 

These machine learning models showed very high 

predictive power, wherein the XGBoost classifier 

yielded an overall accuracy of 85% in predicting 

wildlife presence as a function of climate variables 

(Table 1). The feature importance analysis indicated 

that the range in temperature and seasonal timing 

months of the year had been the most critical 

predictor of wildlife observations, explaining about 65% 

of the predictive power of the model (Table 2). 

Table 1: Model Performance Metrics 

Model Accuracy Precision Recall F1-

Score 

XGBoost 85% 0.88 0.83 0.85 

Random 

Forest 

82% 0.84 0.81 0.82 

Gradient 

Boost 

83% 0.86 0.82 0.84 

Table 2: Feature importance metrics 

Feature Importance Percentage 

Temperature 65% 

Seasonal Timing 45% 

Precipitation 38% 

Elevation 23% 

Other variables 15% 

Spatial analysis using our GIS framework showed 

distinct clustering in wildlife observations, somewhat 

concentrated in the areas that experience moderate 

temperature ranges (Fig. 3). The following interactive 

mapping system indicated possible corridors and 

habitat preferences of wildlife that strongly correlate 

with particular climate conditions, especially in 

regions that have had quite stable temperature 

patterns. 

 
Figure 3. Wildlife Distribution Map 

The most valuable feature engineering in my 

implementation came from the derived variables, 

such as temperature range and seasonal indices, which 
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further showed insights that could not be directly 

captured from raw temperature data. The temperature 

range variable, in particular, showed a high positive 

correlation with wildlife observation frequency: r = 

0.72, p < 0.001. For this reason, Table 3 presents the 

correlation matrix between key variables such as 

wildlife presence, temperature range, and seasonal 

patterns. Interactive dashboard development showed 

some pattern in user engagement over the data, hence 

the importance of accessible visualization tools for 

both researchers and stakeholders. This has been 

particularly useful in dynamically investigating spatial 

and temporal patterns for areas of conservation 

concern. 

Table 3: Correlation Matrix of Key Variables 

Variable Wildlife 

Presence 

Temp 

Range 

Season 

Wildlife 

Presence 

1.00 0.72 0.68 

Temp Range 0.72 1.00 0.45 

Season 0.68 0.45 1.00 

Such integration of varied data sources and analytical 

approaches has provided us with a depth that no 

single data source could match in developing an 

understanding of climate-wildlife interactions. That is 

where this holistic approach provides a stronger 

foundation for conservation planning and decisions 

on habitat management. My findings indicate that 

while climate change affects wildlife habitats through 

direct temperature effects, the relationship between 

these factors is not as straightforward as would be 

suggested by simple linear correlations. Success here 

from an integrated approach shows the importance of 

using several analytical techniques, in combination 

with real-time data collection, to un0derstand such 

complex ecological relationships. 

 

 

 

VI.   CONCLUSION 

My studies suggest the electricity of the indispensable 

data supply and analytical technique in information 

about weather, wildlife, and interactions in Virginia's 

ecosystems. The XGBoost classifier acquired 85% 

accuracy for predicting wildlife presence, as a result 

justifying our multiple analytical method technique. 

The characteristic importance evaluation confirmed 

temperature variety and seasonal timing account for 

approximately 65% of the predictive powers of the 

model, emphasizing the vital role of weather patterns 

in habitat choice. Characteristic engineering proved 

especially useful in this observation because the 

derived variables provided insight into elements no 

longer without delay available from the raw 

temperature data. The robust, effective correlation 

between the temperature variety and frequency of 

statement of wildlife (r = 0. 72, p < 0.001) underlines 

the relevance of climatic variability in habitat control 

strategies. Interplay dashboard improvement more 

suitable data access and stakeholder engagement and 

provided a model for the communication of complex 

ecological data. Move-validation results advocate that 

the relationships among weather variables and 

wildlife presence are stable and generalizable, 

assisting the model's utility for long-term 

conservation planning. Although direct temperature 

consequences of weather alternate on wildlife habitats 

are normally mentioned, our findings indicate that 

those relationships are regularly more complex than 

simple linear correlations could advocate. Future 

efforts have to center on expanding the temporal and 

spatial scope of the present evaluation at the same 

time as incorporating extra environmental variables to 

further elucidate interactions between weather and 

wildlife. 
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