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ABSTRACT

Network quantization methods, which have been widely studied to reduce model
size and computational cost, are now becoming well established as practical so-
lutions. Mixed-precision quantization, which assigns optimal bit widths to layers,
blocks, or other substructures, offers a promising approach to balance model per-
formance and efficiency. However, determining the optimal bit configuration is
a challenging combinatorial optimization problem, as it requires selecting dis-
crete bit widths for multiple substructures across the network. In this paper, we
propose an efficient algorithm that approximates the problem as an integer linear
program and iteratively explores the bit-configuration space. Our method utilizes
a small set of unlabeled samples with a low computational overhead, making it
compatible with both widely adopted quantization methods: post-training quanti-
zation and quantization-aware training. We demonstrate the effectiveness of our
approach in both settings, consistently achieving superior performance compared
to single-precision baselines and existing bit-selection methods. The code will be
released upon acceptance.

1 INTRODUCTION

In recent years, deep neural networks (DNNs) have achieved remarkable success across a wide
range of tasks, including image recognition (Dosovitskiy et al., 2020; He et al., 2016a; Tan & Le,
2019), object detection (Redmon et al., 2016; Ren et al., 2015), speech processing (van den Oord
et al., 2016), and natural language understanding (Vaswani et al., 2017). However, this success
comes at a significant cost: state-of-the-art models often require substantial memory footprint and
computational resources, making their deployment on low-end edge devices, such as mobile phones,
embedded systems, and IoT devices, extremely challenging due to constraints on power, memory,
and latency. To enable practical deployment in such environments, model compression has become
indispensable.

Among various compression techniques, quantization—which replaces floating-point weights and
activations with lower-precision integer representations—has emerged as one of the most hardware-
friendly approaches. Numerous quantization methods have been proposed, including both uni-
form (Jacob et al., 2018; Wei et al., 2022) and non-uniform (Li et al., 2020; Gongyo et al., 2024)
schemes, to reduce model size and computational overhead while preserving accuracy.

Quantization approaches can be broadly categorized into quantization-aware training (QAT) (Jacob
et al., 2018; Esser et al., 2019; Bhalgat et al., 2020) and post-training quantization (PTQ) (Nagel
et al., 2020; Li et al., 2021; Wei et al., 2022). QAT performs end-to-end retraining by using many
labeled data. To circumvent the non-differentiability of quantizers, the retraining often relies on
the Straight-Through Estimator (STE) (Bengio et al., 2013), which allows gradients to pass through
quantization operations unchanged during backpropagation. Although it achieves outstanding accu-
racy even at very low bit-widths (e.g., 4-bit), it is computationally expensive and time-consuming.
In contrast, PTQ uses only a small amount of unlabeled data to calibrate the quantization parameters
such as step size and threshold, and thus PTQ is considered as a more practical solution in hardware
deployment, but often sacrifices accuracy when applied at lower precisions.

Despite advances in both QAT and PTQ methods, most existing studies (Esser et al., 2019; Liu et al.,
2023) assign a uniform bit-width to all layers, with the common exception that the first and last layers
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Figure 1: Sensitivity of quantization on each layer on MobileNetV2. Each layer is quantized to 3
bits, while others are set to 8 bits.

are heuristically given higher precision (e.g., 8-bit). However, the sensitivity to quantization varies
significantly between layers. In Fig. 1, we visualize the sensitivity in the MobileNetV2 by assigning
8 bit in all layers and changing only a single layer to 3 bit. We can see that the resulting accuracy
degradation differs significantly between layers. This observation suggests that selective bit width
allocation per layer or substructure level, rather than uniform assignment, could lead to further
improvements in the accuracy-efficiency trade-off. In fact, the widespread practice of assigning
higher precision to the first and last layers implicitly acknowledges this non-uniform sensitivity and
further motivates the development of bit-selection strategies.

Bit selection, however, is inherently a combinatorial optimization problem. For instance, assigning
4-bit or 8-bit precision to each layer in ResNet-18 (He et al., 2016b) results in 218 possible configu-
rations, each requiring a loss evaluation, which makes exhaustive search computationally infeasible.
To address this challenge, we propose a novel method that formulates the bit selection problem as a
sequence of integer linear programming (ILP) problems. By iteratively solving these relaxed opti-
mization steps, our approach efficiently identifies high-performing bit allocations under quantization
constraints.

Our main contributions are summarized as follows.

• Formulation of Repeated ILP for Bit Selection (RIBS): We formulate bit selection as an
iterative ILP framework, making it computationally feasible.

• Theoretical connection between the original optimization problem and RIBS: We establish
conditions under which the minimizers of the original optimization problem coincide with
those of the ILP.

• Effectiveness of random block update and integration with reconstruction in RIBS: To
mitigate the gap between the original optimization and its ILP approximation, we intro-
duce random updates with a limited block size, and empirically identify optimal sizes for
ResNet-18, MobileNetV2, and DeiT-T. We also propose a variant of RIBS integrated with
PTQ methods that include reconstruction.

• Comprehensive evaluation in both PTQ and QAT: We validate RIBS on ResNet-18, Mo-
bileNetV2, and DeiT-T using the ImageNet dataset under diverse model size and BOP
constraints. Across all settings, RIBS consistently achieves the highest accuracy among
state-of-the-art (SOTA) single-precision and mixed-precision methods.

2 RELATED WORK

Quantization-Aware Training (QAT). Since the development of STE, numerous QAT techniques
have been developed to enable end-to-end training of quantized neural networks. One particularly
successful line of work involves jointly learning the quantization step size along with the network
weights during training (Choi et al., 2018; Esser et al., 2019; Liu et al., 2022; Nagel et al., 2022;
Gongyo et al., 2024). These methods allow the model to dynamically adapt its quantization scale
to minimize task loss, significantly improving performance, especially under low-bit below 4-bit
layer-wise settings.

Post-Training Quantization (PTQ). PTQ methods quantize pre-trained models using a small
amount of unlabeled data while aiming to preserve generalization. There are two main approaches in
PTQ. The first approach focuses only on determining step sizes (or threshold values). Initially based
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Figure 2: Overview of our method.

on min–max quantization (Krishnamoorthi, 2018), recent work has adopted MSE-based optimiza-
tion for step sizes (Li et al., 2021).This approach has been further developed in ViT architectures(Li
et al., 2023; Wu et al., 2024), combined with techniques such as reparameterizing channel-wise to
layer-wise quantization after LayerNorm and applying log

√
2 quantization to softmax activations.

The second approach is the reconstruction method that sequentially optimize the loss layer by layer
or block by block after the determination of step sizes (Nagel et al. (2020), Wu et al. (2025)). Al-
though more computationally demanding than step-size–only methods, reconstruction consistently
achieves higher accuracy and is particularly well established in CNNs. Representative methods in-
clude Adaround (Nagel et al., 2020), which locally adjusts quantized weights by deciding whether to
round up or down; BRECQ (Li et al., 2021), which shifts the optimization unit from individual layers
to blocks; and QDrop (Wei et al., 2022), which introduces stochastic blending of floating-point ac-
tivations during calibration to improve robustness. Collectively, these approaches have significantly
advanced the state of PTQ in low-bit regimes.

Mixed Precision. Bit-width selection for quantized networks is inherently a combinatorial op-
timization problem, where direct search leads to an exponential explosion of configurations and is
computationally infeasible. As a result, two main categories of alternative approaches have emerged:
metric-based search and optimization-based methods.

Metric-based methods assign importance scores to layers using criteria such as Hessian spectra (Yao
et al., 2021) or the degree of orthogonality in weights (Ma et al., 2023a). These scores are then used
to rank layers and allocate precision accordingly. These are efficient but rely on proxies rather than
true task loss, introducing approximation bias , even when adaptively selecting metrics (Dong et al.,
2023).

Optimization-based methods reduce this bias by modeling quantization impact directly through re-
inforcement learning (Wu et al., 2018; Wang et al., 2019) and differentiable architecture parameters
(Uhlich et al., 2019; Yang & Jin, 2021). However, they often require large datasets and heavy com-
putation due to the exponential search space.

In contrast, we propose a novel optimization-based method that uses only a small amount of unla-
beled calibration data, as in PTQ, and avoids computational bottlenecks by iteratively solving ILP
problems. Using the distillation loss as the task loss, our method efficiently approximates the opti-
mal bit configuration without relying on large-scale search or labeled data, bridging the gap between
performance and efficiency.

3 METHOD

In this section, we give our formalism for computing the optimal bit configuration by iteratively
solving the integer liner problem.
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3.1 PRELIMINARIES

Consider a neural network with N substructures such as layers and blocks. To reduce resource
consumption such as the latency and power usage while preserving high accuracy on edge de-
vices, we quantize each substructure by assigning a bitwidth bi ∈ B to each substructure i ∈
{1, . . . , N}, where B = {n(1), n(2), . . . , n(K)} is a discrete set of K allowable bitwidths (e.g.,
B = {2, 3, . . . , 8}). Let b = [b1, . . . , bN ] denote the vector of bit assignments across all substruc-
tures.

To measure efficiency of a mixed precision network, we use two constraints: (i) model size and (ii)
bit operations (BOPs), defined as C(b) =

∑N
i=1 bwi

bai
MACi, where MACi denotes the number

of multiply-accumulate (MAC) operations in the i-th substructure, and bwi
and bai

denote the bit-
widths of the weights and activations, respectively.

The optimal bit configuration is obtained by minimizing the task loss L(b) under a resource con-
straint C ≤ Cmax:

min
b∈BN

L(b) subject to C(b) ≤ Cmax. (1)
However, this optimization yields a combinatorial optimization problem, where each candidate con-
figuration requires evaluating the loss function. This makes the optimization process computation-
ally expensive and challenging to solve directly.

3.2 INTEGER LINEAR PROGRAMMING (ILP) PROBLEM

To avoid exhaustive search in equation 1, we first approximate the bitwidth-selection problem as a
minimization of the sum of the task loss difference relative to a reference bit configuration b0 =
[b01, . . . , b

0
N ].

min
b∈BN

N∑
i=1

∆L(bi) subject to C(b) ≤ Cmax, (2)

where ∆L(bi) denotes the loss increase when changing only the i-th substructure’s bit-width from
b0i to bi: ∆L(bi) ≡ L(b0

î
)− L(b0) with b0

î
≡ [b01, . . . , b

0
i−1, bi, b

0
i+1, . . . , b

0
N ].

This can be reformulated as a binary ILP by introducing binary decision variables xi,k ∈ 0, 1,
indicating whether bit-width n(k) is assigned to i-th substructure:

min
{xi,k}

N∑
i=1

K∑
k=1

∆Li,k · xi,k (3)

subject to
K∑

k=1

xi,k = 1, ∀i ∈ 1, . . . , N,

N∑
i=1

K∑
k=1

ci,k · xi,k ≤ Cmax, xi,k ∈ 0, 1 ∀i, k, (4)

where ∆Li,k ≡ ∆L(bi = n(k)), and ci,k denotes the resource cost (i.e., BOPs or memory) of
assigning n(k) to layer i. The first constraint ensures that each substructure is assigned exactly one
bit-width. The second constraint enforces the resource budget. Since both the objective and the
constraints are linear in the decision variables {xi,k}, this problem can be efficiently solved using
standard ILP solvers.

The original combinatorial problem in equation 1 and its ILP relaxation in equation 2 are related as
follows.

Theorem 1 Let δ > 0 be a fixed constant and let b∗ be the optimal solution for the ILP in equa-
tion 3. Suppose the following two conditions hold for all b ∈ B:∣∣∣∣∣L(b)−

N∑
i=1

L(b0
î
)−

(
L(b∗)−

N∑
i=1

L(b∗0
î
)

)∣∣∣∣∣ ≤ δ,

N∑
i=1

∆L(bi) ≥ min
b∈BN

N∑
i=1

∆L(bi) + 2δ for b ̸= b∗.

4
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Then the minimizers of the original and ILP losses coincide:
b∗ = arg min

b∈BN
L(b). (5)

From this theorem the following two corollaries can be derived, which are more intuitive.

Corollary 2 (Independent losses) Under the assumption that the bit-width of each substructure
affects only its own loss contribution, i.e., the loss decomposes as L(b) =

∑
i Li(bi) with the loss

functions per substructure Li(bi) then minb∈BN L(b) = minb∈BN

[∑N
i=1 ∆L(bi) + L(b0)

]
, and

equation 5 holds.

This implies that when inter-substructure correlations are weak, the mismatch between the ILP so-
lution and the true minimizer is small. In contrast, strong correlations often lead to substantial
mismatches. As shown in our ablation studies, this effect is particularly pronounced in PTQ with
reconstruction. The next corollary suggests another strategy to reduce such mismatches.

Corollary 3 (Local neighborhood) Under the assumption that the search space BN is restricted
to configurations satisfying dH(b,b0) = 1, where dH denotes the Hamming distance, equation 5
holds.

Corollary 3 shows that equation 5 is guaranteed when the bit-width configuration is updated by only
a single substructure (i.e., within a Hamming distance of 1). However, such strictly local updates
are inefficient: they require many iterations to make progress and are prone to being trapped in poor
local minima. This situation is analogous to gradient descent with a very small learning rate—loss
reduction is guaranteed, but convergence is slow and the risk of stagnation in local minima is high.
By analogy, just as gradient descent benefits from a moderately large learning rate, our framework
favors using a larger update size M to accelerate progress and escape poor local solutions.

3.3 REPEATED BLOCK-WISE ILP

To address these issues, we propose an iterative ILP-based optimization, as outlined in Alg.1. At
each step, the ILP is solved within a Hamming distance constraint of M(> 1) from an updated ref-
erence configuration, allowing broader, yet controlled exploration of the solution space and reducing
the risk of mismatching the optimal configuration. The ILP can be solved with equation 3 with the
following constraint:

K∑
k=1

xi,k ≤ 1, ∀i ∈ {1, . . . , N}, (6)

N∑
i=1

K∑
i=1

xi,k ≤ M,

N∑
i=1

K∑
k=1

ci,k · xi,k ≤ Cmax, xi,k ∈ {0, 1} ∀i, k, (7)

Instead of directly solving this problem, we randomly select M substructures from the total N
substructures at each step, and solve equation 3 subject to the constraints equation 4, with N replaced
by M . After Niter step, we adopt the bit configuration with the best task loss.

Moreover, to mitigate the effects of strong inter-layer correlations, we adopt a block-wise update
strategy, where each block corresponds to a standard substructure in the network—such as a Basic
Block in ResNet, an Inverted Residual Block in MobileNet, or an Attention Block in ViT. In this
formulation, the block serves as the unit of bit selection, and all layers within a block share the same
bit-width.

Update of Step size Quantization at b bit inherently involves the determination of the step sizes
or threshold values, which directly affect the performance of the model. Therefore, when evaluating
the impact of changing the bitwidth in the i-th substructure on the task loss, it is crucial to recompute
the corresponding step size for that bit setting.

In our approach, the step size at i-th substructure with b bit is determined by minimizing the mean
squared error (MSE) between the quantized and original values for both weights and activations.
For activations, we further enhance stability by using a moving average of the step size computed
at each batch of the calibration dataset. This reduces the dependence of the batch data and yields a
more stable evaluation of ∆L.
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Figure 3: Loss variation across bit candidates
with 5-bit reference point in the first block of
MobileNetV2.

Integration with reconstruction RIBS can inte-
grate with the reconstruction methods, as outlined
in Alg.1. In conventional reconstruction methods
(Li et al., 2021; Wei et al., 2022), reconstruction
proceeds sequentially from the first block to the
last. As a result, later blocks are strongly influ-
enced by earlier ones, leading to strong correla-
tions between blocks, which is far from the inde-
pendent assumption in Corollary 2. This implies
that naively estimating the loss variation by chang-
ing the bit-width of a single block and then mini-
mizing its reconstruction error introduces a signif-
icant mismatch between true and estimated varia-
tions. Indeed, as shown in Fig. 3, even when the
bit width of a block becomes increased and its representational capacity should improve, the task
loss becomes increase, yielding ∆L. Consequently, minimizing the reconstruction error only for the
modified block does not provide a reliable estimate of the true change in task loss.

To address this issue, we optimize the reconstruction error sequentially for all blocks following the
corresponding block. This adjustment ensures that the estimate more faithfully reflects the true
change in task loss. We can see that in Fig. 3, increasing the bit-width of a block results in ∆L < 0,
consistent with the expected behavior.

Algorithm 1 RIBS: Repeated ILP for Bit Selection

Input: N substructures, candidate bits B = {n(1), . . . , n(K)}, update size M , iterations Niter

Output: Optimal bit configuration b∗

1: Initialize reference configuration b0 with all 8-bit and step sizes
2: for iter = 1 to Niter do
3: Randomly select M substructures
4: for each selected substructure i do
5: for each bit n(k) ∈ B do
6: Replace with n(k), and update update step size at i-th substructure
7: if Reconstruction mode then
8: Reconstruct with new configuration b0

î
≡ [b01, . . . , b

0
i−1, n

(k), b0i+1, . . . , b
0
N ]

9: end if
10: Compute loss L(b0

î
) and ∆Li,k on calibration data

11: end for
12: end for
13: Solve ILP in equation 3 to update b0

14: end for
15: return b0 as b∗

4 EXPERIMENTS

We implement our method in PyTorch and conduct experiments on the ImageNet dataset (Deng
et al., 2009) using ResNet-18 (He et al., 2016b), MobileNetV2 (Howard et al., 2017), and DeiT-
T (Touvron et al., 2021). All pre-trained models are obtained from the timm library (tim). We
evaluate the effect of mixed precision in both PTQ and QAT settings.

Inplementation details We use 1024 calibration samples for bit selection and set Niter = 10.
The initial reference bit for all substructures is 8, and the bit candidate set is B ∈ {2, . . . , 8}.
Task loss on unlabeled data is evaluated using distillation loss (temperature = 1) between the FP
and quantized networks. To satisfy the resource constraint, we search all substructures, i.e. M =
N in the first iteration, followed by random M -substructure updates in later iterations. For BOP
constraints, weights and activations are assigned the same bit-width. In RIBS with reconstruction
under PTQ, we use 200 iterations for ResNet-18 and 1000 iterations for MobileNetV2 within each
block reconstruction.

6
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Figure 4: Task loss vs. iterations with update size 15 (left) and best task loss vs. number of update
blocks (right) on MobileNetV2.

4.1 ABLATION STUDIES

Iteration dependence We investigate the behavior of the task loss for calibration data as a function
of iteration. As Corollary 3 points out, the task loss is guaranteed to decrease when M = 1.
However, with a large number of updates, due to the mismatch between true and ILP differences, the
loss is not guaranteed to decrease. Nevertheless, as shown in Fig.4, we find that task loss generally
decreases with increasing iterations in both RIBS and RIBS with reconstruction (recRIBS). Number
of update blocks at each step We investigate how the best task loss in Niter = 10 on calibration
data varies with the update size M . As M increases, the search space expands, which helps to avoid
getting trapped in the local minima. However, this also amplifies the discrepancy between the true
task loss difference and the ILP-estimated difference. Therefore, there exists a sweet spot for the
update size, as illustrated in the right panel of Fig. 4. Based on this analysis for each model, we set
M = 5 on Resnet-18, M = 15 for MobileNetV2, and M = 28 on DeiT-T.

4.2 EVALUATION IN PTQ

We conduct the comparison in single-precision and mixed-precision PTQ methods on ResNet-18,
MobileNetV2, and DeiT-T. PTQ methods can be categorized into those with or without reconstruc-
tion. The (vanilla) RIBS searches the optimal bit configuration for the task loss without reconstruc-
tion, whereas RIBS with reconstruction searches the optimal bit configuration for the task loss with
reconstruction. Table. 1 demonstrates that RIBS achieves a significantly better trade-off by a large
margin between different model sizes and BOPs.

CNN Vanilla RIBS outperforms the baseline method that determines only the step size via MSE
optimization (MSEinit), achieving up to 26.8% improvement on 4/4-bit MobileNetV2, as shown
in Table 1 (b). In recRIBS, we employ QDROP (Wei et al., 2022), a well-established reconstruc-
tion method for CNNs. As shown in Table 1(a) and (b), our approach surpasses the state-of-the-art
(SOTA) single-precision methods. Specifically, recRIBS achieves 0.98% – 1.6% accuracy improve-
ments over 4/4-bit QDrop on ResNet-18 and MobileNetV2, while requiring smaller model sizes and
fewer BOPs. Furthermore, our method consistently outperforms the SOTA mixed-precision meth-
ods under the same or smaller model size and BOPs. In particular, recRIBS surpasses the recent
method EMQ by up to 1.2% improvement.

ViT In the DeiT experiments, we employ an improved version of RepQViT, an established PTQ
method without reconstruction for ViTs. RepQViT adopts min–max quantization with two key tech-
niques: (i) scale reparameterization, which converts channel-wise quantization of post-LayerNorm
activations into layer-wise quantization with only a slight accuracy drop, and (ii) the use of log

√
2

quantizers for post-softmax activations to better capture their non-uniform distribution.

We extend RepQViT by determining the step size via MSE optimization instead of min-max quan-
tization, and by replacing log

√
2 quantizer with the nuLSQ quantizer (Gongyo et al., 2024), which

more effectively captures their non-uniform distribution. We refer to this enhanced variant as
RepQViT+. In RIBS, we adopt RepQViT+ as the baseline: During bit selection, we employ channel-
wise quantization for post-LayerNorm activations and the nuLSQ quantizer for post-softmax activa-
tions, after which RepQViT+ quantization is applied in the selected configuration.

7
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Table 1: Comparison of single- and mixed-precision PTQ methods on ResNet-18, MobileNetV2,
and DeiT-T. Methods: OMPQ (Ma et al., 2023a), EMQ (Dong et al., 2023), QDROP (Wei et al.,
2022), HAWQ-V3 (Yao et al., 2021), BRECQ (Li et al., 2021), and MRECG (Ma et al., 2023b).
MSEinit, RepQViT (Li et al., 2023), and RepQViT+ are directly compared with RIBS, while others
are compared with recRIBS. † uses 8-bit for the first/last layers, ∗ denotes our implementation.
“MP”: mixed precision, “MS”: model size (MiB), “BOPs”: bit operations (G), “Top-1”: accuracy
(%).

(a) Results on ResNet-18
Accuracy vs. model size

Method W/A MS Top-1

FP32 32/32 44.6 72.54

QDROP† 4/4 5.81 69.62
OMPQ† MP/4 5.5 69.38
EMQ† MP/4 5.5 70.12

recRIBS (ours)∗† MP/4 5.5 70.60

BRECQ† MP/8 4.0 68.82
OMPQ† MP/8 4.0 69.41
EMQ† MP/8 4.0 69.92

recRIBS (ours)∗† MP/8 4.0 70.74

Accuracy vs. BOPs

Method W/A BOPs Top-1

FP32 32/32 1858 72.54

MSEinit∗ 4/4 29.0 52.0
RIBS (ours)∗ MP/MP 28.5 53.36

QDROP∗ 4/4 29.0 69.13
MRECG 4/4 29.0 69.46

recRIBS (ours)⋆ MP/MP 28.5 70.20

MSEinit∗ 6/6 65.3 71.61
HAWQ-V3† MP/MP 72 70.22
RIBS (ours)∗ MP/MP 64.8 71.73

(b) Results on MobileNetV2
Accuracy vs. model size

Method W/A MS Top-1

FP32 32/32 13.4 72.89

BRECQ MP/8 1.3 68.99
OMPQ MP/8 1.3 69.62
EMQ MP/8 1.3 70.72

recRIBS (ours) MP/8 1.3 70.97

BRECQ MP/8 1.5 70.28
EMQ MP/8 1.5 70.75

recRIBS (ours) MP/8 1.5 71.99

Accuracy vs. BOPs

Method W/A BOPs Top-1

FP32 32/32 307 72.89

MSEinit∗ 4/4 4.8 13.81
RIBS (ours)∗ MP/MP 4.8 40.59

QDROP∗ 4/4 4.8 66.77
recRIBS (ours)∗ MP/MP 4.8 68.36
recRIBS (ours)∗ MP/MP 5.36 69.36

(c) Results on DeiT-T
Accuracy vs. BOPs

Method W/A BOPs (G) Top-1

FP32 32/32 1284 72.13

RepQViT+∗ 6/6 45.13 71.12
RIBS (ours)∗ MP/MP 45.13 71.21

RepQViT+∗ 4/4 20.06 54.32
RIBS (ours)∗ MP/MP 20.01 59.94

RepQViT† 4/4 21.46 57.43
RepQViT+∗† 4/4 21.46 59.08
RIBS (ours)∗ MP/MP 21.39 62.15

RepQViT+∗ 3/3 11.28 12.72
RIBS (ours)∗ MP/MP 11.28 20.58
RepQViT+∗† 3/3 12.88 21.02
RIBS (ours)∗ MP/MP 12.85 32.64

As shown in Table 1(c), we show the comparison under BOPs constraints corresponding to below
3-, 4-, and 6-bits. RIBS consistently outperforms RepQViT+ under these lower BOPs constraints
with improvements of up to 11.6%.
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Figure 5: Top-1 accuracy vs. BOPs on ResNet-18 (left) and MobileNetV2 (right). Compared meth-
ods: FracBits-PACT (Yang & Jin, 2021), HAWQ-v3 (Yao et al., 2021), PROFIT (Park & Yoo, 2020),
DNAS (Wu et al., 2018), DDQ (Zhang et al., 2021), NIPQ (Shin et al., 2023), SDQ (Huang et al.,
2022), and MetaMix (Kim et al., 2024). † indicates 8-bit input activations in the first layer.

4.3 EVALUATION IN QAT

We evaluate mixed-precision QAT on ResNet-18 and MobileNetV2 under a wide range of BOP
constraints. In these experiments, after the first iteration of layer-wise bit selection using the cali-
bration data, we perform QAT with the full labeled dataset using LSQ (Esser et al., 2019), a well-
established QAT method, on the selected bit configuration. Following the strategy of MetaMix (Kim
et al., 2024), the current SOTA mixed-precision approach in QAT, we use ResNet-101 as the teacher
network for ResNet-18, and MobilenetV2 with a 1.2× width multiplier as the techer network for the
original MobilenetV2. As shown in Fig.5, RIBS consistently outperforms existing mixed-precision
methods.

5 CONCLUSION

In this paper, we propose RIBS, a novel bit-selection method. By repeatedly solving an ILP problem
for bit selection with a limited number of update blocks, RIBS mitigates the gap between the true
loss variation and its proxy, thereby yielding more optimal bit configuration for calibration data, and
leading to improved performance.

To validate the effectiveness of RIBS, we conducted comprehensive experiments and compara-
tive evaluations. We compared the performance of RIBS with SOTA single-precision and mixed-
precision quantization approaches on both PTQ and QAT settings. Our evaluation covered three net-
work architectures on the ImageNet dataset under a variety of model size and BOP constraints. The
results demonstrate that RIBS consistently outperforms single-precision methods as well as existing
SOTA mixed-precision approaches, highlighting its potential for advancing model compression.

REFERENCES

timm. https://github.com/rwightman/pytorch-image-models.
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A SENSITIVITY OF QUANTIZATION ON RESNET18

We show the quantization sensitivy in ResNet-18 in Fig.6. Similar to the case of MobileNetV2, the
sensitivity significantly varies across layers.

Figure 6: Sensitivity of quantization on each layer on RenNet-18. Each layer is quantized to 3 bits,
while others are set to 8 bits.

B PROOF OF THEOREM AND COROLLARY

B.1 PROOF OF THEOREM1

The condition of Theorem 1:∣∣∣∣∣L(b)−
N∑
i=1

L(b0
î
)−

(
L(b∗)−

N∑
i=1

L(b∗0
î
)

)∣∣∣∣∣ ≤ δ, (8)

N∑
i=1

∆L(bi) ≥ min
b∈BN

N∑
i=1

∆L(bi) + 2δ for b ̸= b∗. (9)

We define f(b) as

f(b) :=

N∑
i=1

∆L(bi), ∆L(bi) = L(b0
î
)− L(b(0)). (10)
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Let b∗ ∈ B be an optimal solution of the ILP that minimizes f over B. Define the interaction
(non-additivity) error

e(b) :=
(
L(b)− L(b(0))

)
− f(b). (11)

Using the notation, the first condition is expressed as

|e(b)− e(b∗)| =

∣∣∣∣∣L(b)−
N∑
i=1

L(b0
î
)−

(
L(b∗)−

N∑
i=1

L(b∗0
î
)

)∣∣∣∣∣ ≤ δ. (12)

For δ > 0 we have following conditions for all b ∈ B:∣∣e(b)− e(b∗)
∣∣ ≤ δ, (13)

f(b) ≥ f(b∗) + 2δ for all b ∈ B \ {b∗}. (14)

By using
L(b)− L(b∗) =

[
f(b)− f(b∗)

]
+
[
e(b)− e(b∗)

]
,

f(b)− f(b∗) ≥ 2δ, and equation 13, e(b)− e(b∗) ≥ −δ,

L(b)− L(b∗) ≥ 2δ + (−δ) = δ > 0.

Therefore L(b) > L(b∗) for all b ̸= b∗, proving that b∗ is the minimizer of L.

B.2 PROOF OF COROLLARY 2

When all substructures are independent, L(b) =
∑

i Li(bi) is satisfied. This leads to

L(b)−
N∑
i=1

L(b0
î
)−

(
L(b∗)−

N∑
i=1

L(b∗0
î
)

)
=
∑
i

Li(bi)−
∑
i

Li(bi) +
∑
j ̸=i

Lj(b
0
j )


−

∑
i

Li(b
∗
i )−

∑
i

Li(b
∗
i ) +

∑
j ̸=i

Lj(b
0
j )


= 0. (15)

Therefore δ = 0 and equation 9 is satisfied by definition.

B.3 PROOF OF COROLLARY 3

We assume that the search space BN is restricted to configurations satisfying dH(b,b0) = 1. Define
the search space as BN

0 . In this special case, all b ∈ BN
0 are expressed as b0

ĵ
for some j. By

definition,

b∗ = arg min
b∈BN

0

∆L(bi) = arg min
b∈BN

0

L(b) (16)

is satisfied. This can alternatively be proved by following Theorem 1:

L(b)−
N∑
i=1

L(b0
î
) = 0, (17)

and ∣∣∣∣∣L(b)−
N∑
i=1

L(b0
î
)−

(
L(b∗)−

N∑
i=1

L(b∗0
î
)

)∣∣∣∣∣ = 0. (18)

Thus, δ = 0 and equation 9 is satisfied by definition.
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