

000 001 002 003 004 005 REPEATED INTEGER LINEAR PROGRAMMING FOR BIT 006 SELECTION IN NEURAL NETWORK QUANTIZATION 007 008 009

010 **Anonymous authors**
011

012 Paper under double-blind review
013
014
015
016
017
018
019
020
021
022
023
024

025 ABSTRACT 026

027 Network quantization methods, which have been widely studied to reduce model
028 size and computational cost, are now becoming well established as practical sol-
029 lutions. Mixed-precision quantization, which assigns optimal bit widths to layers,
030 blocks, or other substructures, offers a promising approach to balance model per-
031 formance and efficiency. However, determining the optimal bit configuration is
032 a challenging combinatorial optimization problem, as it requires selecting dis-
033 crete bit widths for multiple substructures across the network. In this paper, we
034 propose an efficient algorithm that approximates the problem as an integer linear
035 program and iteratively explores the bit-configuration space. Our method utilizes
036 a small set of unlabeled samples with a low computational overhead, making it
037 compatible with both widely adopted quantization methods: post-training quanti-
038 zation and quantization-aware training. We demonstrate the effectiveness of our
039 approach in both settings, consistently achieving superior performance compared
040 to single-precision baselines and existing bit-selection methods. The code will be
041 released upon acceptance.
042

043 1 INTRODUCTION 044

045 In recent years, deep neural networks (DNNs) have achieved remarkable success across a wide
046 range of tasks, including image recognition (Dosovitskiy et al., 2020; He et al., 2016a; Tan & Le,
047 2019), object detection (Redmon et al., 2016; Ren et al., 2015), speech processing (van den Oord
048 et al., 2016), and natural language understanding (Vaswani et al., 2017). However, this success
049 comes at a significant cost: state-of-the-art models often require substantial memory footprint and
050 computational resources, making their deployment on low-end edge devices, such as mobile phones,
051 embedded systems, and IoT devices, extremely challenging due to constraints on power, memory,
052 and latency. To enable practical deployment in such environments, model compression has become
053 indispensable.

054 Among various compression techniques, quantization—which replaces floating-point weights and
055 activations with lower-precision integer representations—has emerged as one of the most hardware-
056 friendly approaches. Numerous quantization methods have been proposed, including both uni-
057 form (Jacob et al., 2018; Wei et al., 2022) and non-uniform (Li et al., 2020; Gongyo et al., 2024)
058 schemes, to reduce model size and computational overhead while preserving accuracy.

059 Quantization approaches can be broadly categorized into quantization-aware training (QAT) (Jacob
060 et al., 2018; Esser et al., 2019; Bhalgat et al., 2020) and post-training quantization (PTQ) (Nagel
061 et al., 2020; Li et al., 2021; Wei et al., 2022). QAT performs end-to-end retraining by using many
062 labeled data. To circumvent the non-differentiability of quantizers, the retraining often relies on
063 the Straight-Through Estimator (STE) (Bengio et al., 2013), which allows gradients to pass through
064 quantization operations unchanged during backpropagation. Although it achieves outstanding accu-
065 racy even at very low bit-widths (e.g., 4-bit), it is computationally expensive and time-consuming.
066 In contrast, PTQ uses only a small amount of unlabeled data to calibrate the quantization parameters
067 such as step size and threshold, and thus PTQ is considered as a more practical solution in hardware
068 deployment, but often sacrifices accuracy when applied at lower precisions.
069

070 Despite advances in both QAT and PTQ methods, most existing studies (Esser et al., 2019; Liu et al.,
071 2023) assign a uniform bit-width to all layers, with the common exception that the first and last layers
072

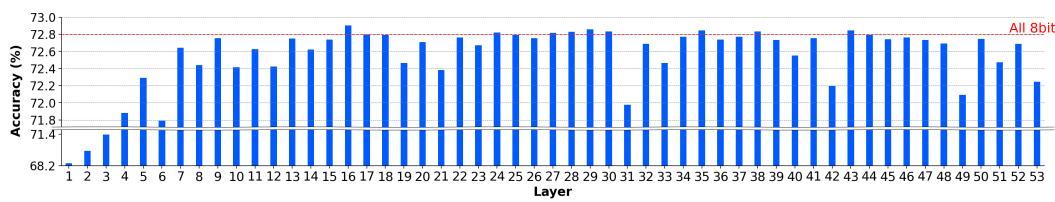


Figure 1: Sensitivity of quantization on each layer on MobileNetV2. Each layer is quantized to 3 bits, while others are set to 8 bits.

are heuristically given higher precision (e.g., 8-bit). However, the sensitivity to quantization varies significantly between layers. In Fig. 1, we visualize the sensitivity in the MobileNetV2 by assigning 8 bit in all layers and changing only a single layer to 3 bit. We can see that the resulting accuracy degradation differs significantly between layers. This observation suggests that selective bit width allocation per layer or substructure level, rather than uniform assignment, could lead to further improvements in the accuracy-efficiency trade-off. In fact, the widespread practice of assigning higher precision to the first and last layers implicitly acknowledges this non-uniform sensitivity and further motivates the development of bit-selection strategies.

Bit selection, however, is inherently a combinatorial optimization problem. For instance, assigning 4-bit or 8-bit precision to each layer in ResNet-18 (He et al., 2016b) results in 2^{18} possible configurations, each requiring a loss evaluation, which makes exhaustive search computationally infeasible. To address this challenge, we propose a novel method that formulates the bit selection problem as a sequence of integer linear programming (ILP) problems. By iteratively solving these relaxed optimization steps, our approach efficiently identifies high-performing bit allocations under quantization constraints.

Our main contributions are summarized as follows.

- Formulation of Repeated ILP for Bit Selection (RIBS): We formulate bit selection as an iterative ILP framework, making it computationally feasible.
- Theoretical connection between the original optimization problem and RIBS: We establish conditions under which the minimizers of the original optimization problem coincide with those of the ILP.
- Effectiveness of random block update and integration with reconstruction in RIBS: To mitigate the gap between the original optimization and its ILP approximation, we introduce random updates with a limited block size, and empirically identify optimal sizes for ResNet-18, MobileNetV2, and DeiT-T. We also propose a variant of RIBS integrated with PTQ methods that include reconstruction.
- Comprehensive evaluation in both PTQ and QAT: We validate RIBS on ResNet-18, MobileNetV2, and DeiT-T using the ImageNet dataset under diverse model size and BOP constraints. Across all settings, RIBS consistently achieves the highest accuracy among state-of-the-art (SOTA) single-precision and mixed-precision methods.

2 RELATED WORK

Quantization-Aware Training (QAT). Since the development of STE, numerous QAT techniques have been developed to enable end-to-end training of quantized neural networks. One particularly successful line of work involves jointly learning the quantization step size along with the network weights during training (Choi et al., 2018; Esser et al., 2019; Liu et al., 2022; Nagel et al., 2022; Gongyo et al., 2024). These methods allow the model to dynamically adapt its quantization scale to minimize task loss, significantly improving performance, especially under low-bit below 4-bit layer-wise settings.

Post-Training Quantization (PTQ). PTQ methods quantize pre-trained models using a small amount of unlabeled data while aiming to preserve generalization. There are two main approaches in PTQ. The first approach focuses only on determining step sizes (or threshold values). Initially based

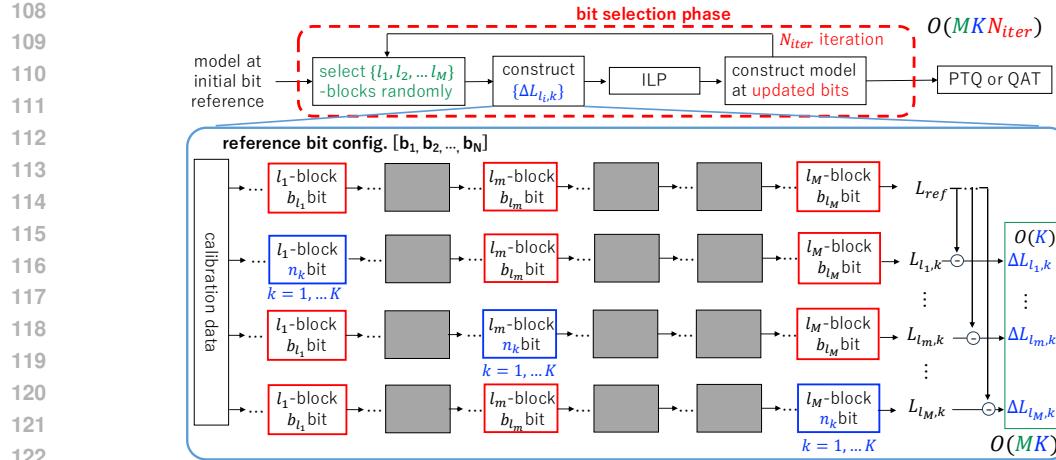


Figure 2: Overview of our method.

on min–max quantization (Krishnamoorthi, 2018), recent work has adopted MSE-based optimization for step sizes (Li et al., 2021). This approach has been further developed in ViT architectures (Li et al., 2023; Wu et al., 2024), combined with techniques such as reparameterizing channel-wise to layer-wise quantization after LayerNorm and applying $\log\sqrt{2}$ quantization to softmax activations.

The second approach is the reconstruction method that sequentially optimize the loss layer by layer or block by block after the determination of step sizes (Nagel et al. (2020), Wu et al. (2025)). Although more computationally demanding than step-size-only methods, reconstruction consistently achieves higher accuracy and is particularly well established in CNNs. Representative methods include Adaround (Nagel et al., 2020), which locally adjusts quantized weights by deciding whether to round up or down; BRECQ (Li et al., 2021), which shifts the optimization unit from individual layers to blocks; and QDrop (Wei et al., 2022), which introduces stochastic blending of floating-point activations during calibration to improve robustness. Collectively, these approaches have significantly advanced the state of PTQ in low-bit regimes.

Mixed Precision. Bit-width selection for quantized networks is inherently a combinatorial optimization problem, where direct search leads to an exponential explosion of configurations and is computationally infeasible. As a result, two main categories of alternative approaches have emerged: metric-based search and optimization-based methods.

Metric-based methods assign importance scores to layers using criteria such as Hessian spectra (Yao et al., 2021) or the degree of orthogonality in weights (Ma et al., 2023a). These scores are then used to rank layers and allocate precision accordingly. These are efficient but rely on proxies rather than true task loss, introducing approximation bias, even when adaptively selecting metrics (Dong et al., 2023).

Optimization-based methods reduce this bias by modeling quantization impact directly through reinforcement learning (Wu et al., 2018; Wang et al., 2019) and differentiable architecture parameters (Uhlich et al., 2019; Yang & Jin, 2021). However, they often require large datasets and heavy computation due to the exponential search space.

In contrast, we propose a novel optimization-based method that uses only a small amount of unlabeled calibration data, as in PTQ, and avoids computational bottlenecks by iteratively solving ILP problems. Using the distillation loss as the task loss, our method efficiently approximates the optimal bit configuration without relying on large-scale search or labeled data, bridging the gap between performance and efficiency.

3 METHOD

In this section, we give our formalism for computing the optimal bit configuration by iteratively solving the integer liner problem.

162
163

3.1 PRELIMINARIES

164
165
166
167
168
169

Consider a neural network with N substructures such as layers and blocks. To reduce resource consumption such as the latency and power usage while preserving high accuracy on edge devices, we quantize each substructure by assigning a bitwidth $b_i \in \mathcal{B}$ to each substructure $i \in \{1, \dots, N\}$, where $\mathcal{B} = \{n^{(1)}, n^{(2)}, \dots, n^{(K)}\}$ is a discrete set of K allowable bitwidths (e.g., $\mathcal{B} = \{2, 3, \dots, 8\}$). Let $\mathbf{b} = [b_1, \dots, b_N]$ denote the vector of bit assignments across all substructures.

170
171
172
173

To measure efficiency of a mixed precision network, we use two constraints: (i) model size and (ii) bit operations (BOPs), defined as $C(\mathbf{b}) = \sum_{i=1}^N b_{w_i} b_{a_i} \text{MAC}_i$, where MAC_i denotes the number of multiply-accumulate (MAC) operations in the i -th substructure, and b_{w_i} and b_{a_i} denote the bitwidths of the weights and activations, respectively.

174
175
176
177

The optimal bit configuration is obtained by minimizing the task loss $\mathcal{L}(\mathbf{b})$ under a resource constraint $C \leq C_{\max}$:

$$\min_{\mathbf{b} \in \mathcal{B}^N} \mathcal{L}(\mathbf{b}) \text{ subject to } C(\mathbf{b}) \leq C_{\max}. \quad (1)$$

178
179
180

However, this optimization yields a combinatorial optimization problem, where each candidate configuration requires evaluating the loss function. This makes the optimization process computationally expensive and challenging to solve directly.

181
182

3.2 INTEGER LINEAR PROGRAMMING (ILP) PROBLEM

183
184
185
186

To avoid exhaustive search in equation 1, we first approximate the bitwidth-selection problem as a minimization of the sum of the task loss difference relative to a reference bit configuration $\mathbf{b}^0 = [b_1^0, \dots, b_N^0]$.

$$\min_{\mathbf{b} \in \mathcal{B}^N} \sum_{i=1}^N \Delta\mathcal{L}(b_i) \text{ subject to } C(\mathbf{b}) \leq C_{\max}, \quad (2)$$

187
188
189
190
191

where $\Delta\mathcal{L}(b_i)$ denotes the loss increase when changing only the i -th substructure's bit-width from b_i^0 to b_i : $\Delta\mathcal{L}(b_i) \equiv \mathcal{L}(\mathbf{b}_i^0) - \mathcal{L}(\mathbf{b}^0)$ with $\mathbf{b}_i^0 \equiv [b_1^0, \dots, b_{i-1}^0, b_i, b_{i+1}^0, \dots, b_N^0]$.

192
193

This can be reformulated as a binary ILP by introducing binary decision variables $x_{i,k} \in \{0, 1\}$, indicating whether bit-width $n^{(k)}$ is assigned to i -th substructure:

$$\min_{\{x_{i,k}\}} \sum_{i=1}^N \sum_{k=1}^K \Delta\mathcal{L}_{i,k} \cdot x_{i,k} \quad (3)$$

194
195
196

subject to

$$\sum_{k=1}^K x_{i,k} = 1, \quad \forall i \in \{1, \dots, N\}, \quad \sum_{i=1}^N \sum_{k=1}^K c_{i,k} \cdot x_{i,k} \leq C_{\max}, \quad x_{i,k} \in \{0, 1\} \quad \forall i, k, \quad (4)$$

201
202
203
204
205

where $\Delta\mathcal{L}_{i,k} \equiv \Delta\mathcal{L}(b_i = n^{(k)})$, and $c_{i,k}$ denotes the resource cost (i.e., BOPs or memory) of assigning $n^{(k)}$ to layer i . The first constraint ensures that each substructure is assigned exactly one bit-width. The second constraint enforces the resource budget. Since both the objective and the constraints are linear in the decision variables $\{x_{i,k}\}$, this problem can be efficiently solved using standard ILP solvers.

206
207

The original combinatorial problem in equation 1 and its ILP relaxation in equation 2 are related as follows.

208
209
210

Theorem 1 Let $\delta > 0$ be a fixed constant and let \mathbf{b}^* be the optimal solution for the ILP in equation 3. Suppose the following two conditions hold for all $\mathbf{b} \in \mathcal{B}$:

211
212
213
214
215

$$\begin{aligned} & \left| \mathcal{L}(\mathbf{b}) - \sum_{i=1}^N \mathcal{L}(\mathbf{b}_i^0) - \left(\mathcal{L}(\mathbf{b}^*) - \sum_{i=1}^N \mathcal{L}(\mathbf{b}_i^{*0}) \right) \right| \leq \delta, \\ & \sum_{i=1}^N \Delta\mathcal{L}(b_i) \geq \min_{\mathbf{b} \in \mathcal{B}^N} \sum_{i=1}^N \Delta\mathcal{L}(b_i) + 2\delta \quad \text{for } \mathbf{b} \neq \mathbf{b}^*. \end{aligned}$$

216 Then the minimizers of the original and ILP losses coincide:

$$217 \quad b^* = \arg \min_{\mathbf{b} \in \mathcal{B}^N} \mathcal{L}(\mathbf{b}). \quad (5)$$

219 From this theorem the following two corollaries can be derived, which are more intuitive.

221 **Corollary 2 (Independent losses)** Under the assumption that the bit-width of each substructure
 222 affects only its own loss contribution, i.e., the loss decomposes as $\mathcal{L}(\mathbf{b}) = \sum_i L_i(b_i)$ with the loss
 223 functions per substructure $L_i(b_i)$ then $\min_{\mathbf{b} \in \mathcal{B}^N} \mathcal{L}(\mathbf{b}) = \min_{\mathbf{b} \in \mathcal{B}^N} \left[\sum_{i=1}^N \Delta \mathcal{L}(b_i) + \mathcal{L}(\mathbf{b}^0) \right]$, and
 224 equation 5 holds.

226 This implies that when inter-substructure correlations are weak, the mismatch between the ILP so-
 227 lution and the true minimizer is small. In contrast, strong correlations often lead to substantial
 228 mismatches. As shown in our ablation studies, this effect is particularly pronounced in PTQ with
 229 reconstruction. The next corollary suggests another strategy to reduce such mismatches.

230 **Corollary 3 (Local neighborhood)** Under the assumption that the search space \mathcal{B}^N is restricted
 231 to configurations satisfying $d_H(\mathbf{b}, \mathbf{b}^0) = 1$, where d_H denotes the Hamming distance, equation 5
 232 holds.

234 Corollary 3 shows that equation 5 is guaranteed when the bit-width configuration is updated by only
 235 a single substructure (i.e., within a Hamming distance of 1). However, such strictly local updates
 236 are inefficient: they require many iterations to make progress and are prone to being trapped in poor
 237 local minima. This situation is analogous to gradient descent with a very small learning rate—loss
 238 reduction is guaranteed, but convergence is slow and the risk of stagnation in local minima is high.
 239 By analogy, just as gradient descent benefits from a moderately large learning rate, our framework
 240 favors using a larger update size M to accelerate progress and escape poor local solutions.

241 3.3 REPEATED BLOCK-WISE ILP

243 To address these issues, we propose an iterative ILP-based optimization, as outlined in Alg.1. At
 244 each step, the ILP is solved within a Hamming distance constraint of $M (> 1)$ from an updated ref-
 245 erence configuration, allowing broader, yet controlled exploration of the solution space and reducing
 246 the risk of mismatching the optimal configuration. The ILP can be solved with equation 3 with the
 247 following constraint:

$$248 \quad \sum_{k=1}^K x_{i,k} \leq 1, \quad \forall i \in \{1, \dots, N\}, \quad (6)$$

$$251 \quad \sum_{i=1}^N \sum_{k=1}^K x_{i,k} \leq M, \quad \sum_{i=1}^N \sum_{k=1}^K c_{i,k} \cdot x_{i,k} \leq C_{\max}, \quad x_{i,k} \in \{0, 1\} \quad \forall i, k, \quad (7)$$

254 Instead of directly solving this problem, we randomly select M substructures from the total N
 255 substructures at each step, and solve equation 3 subject to the constraints equation 4, with N replaced
 256 by M . After N_{iter} step, we adopt the bit configuration with the best task loss.

257 Moreover, to mitigate the effects of strong inter-layer correlations, we adopt a block-wise update
 258 strategy, where each block corresponds to a standard substructure in the network—such as a Basic
 259 Block in ResNet, an Inverted Residual Block in MobileNet, or an Attention Block in ViT. In this
 260 formulation, the block serves as the unit of bit selection, and all layers within a block share the same
 261 bit-width.

262 **Update of Step size** Quantization at b bit inherently involves the determination of the step sizes
 263 or threshold values, which directly affect the performance of the model. Therefore, when evaluating
 264 the impact of changing the bitwidth in the i -th substructure on the task loss, it is crucial to recompute
 265 the corresponding step size for that bit setting.

266 In our approach, the step size at i -th substructure with b bit is determined by minimizing the mean
 267 squared error (MSE) between the quantized and original values for both weights and activations.
 268 For activations, we further enhance stability by using a moving average of the step size computed
 269 at each batch of the calibration dataset. This reduces the dependence of the batch data and yields a
 more stable evaluation of $\Delta \mathcal{L}$.

270 **Integration with reconstruction** RIBS can integrate with the reconstruction methods, as outlined in Alg.1. In conventional reconstruction methods (Li et al., 2021; Wei et al., 2022), reconstruction proceeds sequentially from the first block to the last. As a result, later blocks are strongly influenced by earlier ones, leading to strong correlations between blocks, which is far from the independent assumption in Corollary 2. This implies that naively estimating the loss variation by changing the bit-width of a single block and then minimizing its reconstruction error introduces a significant mismatch between true and estimated variations. Indeed, as shown in Fig. 3, even when the bit width of a block becomes increased and its representational capacity should improve, the task loss becomes increase, yielding $\Delta\mathcal{L}$. Consequently, minimizing the reconstruction error only for the modified block does not provide a reliable estimate of the true change in task loss.

286 To address this issue, we optimize the reconstruction error sequentially for all blocks following the
287 corresponding block. This adjustment ensures that the estimate more faithfully reflects the true
288 change in task loss. We can see that in Fig. 3, increasing the bit-width of a block results in $\Delta\mathcal{L} < 0$,
289 consistent with the expected behavior.

Algorithm 1 RIBS: Repeated ILP for Bit Selection

293 **Input:** N substructures, candidate bits $\mathcal{B} = \{n^{(1)}, \dots, n^{(K)}\}$, update size M , iterations N_{iter}
294 **Output:** Optimal bit configuration \mathbf{b}^*

295 1: Initialize reference configuration \mathbf{b}^0 with all 8-bit and step sizes
296 2: **for** $iter = 1$ to N_{iter} **do**
297 3: Randomly select M substructures
298 4: **for** each selected substructure i **do**
299 5: **for** each bit $n^{(k)} \in \mathcal{B}$ **do**
300 6: Replace with $n^{(k)}$, and update update step size at i -th substructure
301 7: **if** Reconstruction mode **then**
302 8: Reconstruct with new configuration $\mathbf{b}_i^0 \equiv [b_1^0, \dots, b_{i-1}^0, n^{(k)}, b_{i+1}^0, \dots, b_N^0]$
303 9: **end if**
304 10: Compute loss $\mathcal{L}(\mathbf{b}_i^0)$ and $\Delta\mathcal{L}_{i,k}$ on calibration data
305 11: **end for**
306 12: **end for**
307 13: Solve ILP in equation 3 to update \mathbf{b}^0
308 14: **end for**
309 15: **return** \mathbf{b}^0 as \mathbf{b}^*

4 EXPERIMENTS

313 We implement our method in PyTorch and conduct experiments on the ImageNet dataset (Deng
314 et al., 2009) using ResNet-18 (He et al., 2016b), MobileNetV2 (Howard et al., 2017), and DeiT-T
315 (Touvron et al., 2021). All pre-trained models are obtained from the timm library (tim). We
316 evaluate the effect of mixed precision in both PTQ and QAT settings.

317 **Implementation details** We use 1024 calibration samples for bit selection and set $N_{iter} = 10$.
318 The initial reference bit for all substructures is 8, and the bit candidate set is $\mathcal{B} \in \{2, \dots, 8\}$.
319 Task loss on unlabeled data is evaluated using distillation loss (temperature = 1) between the FP
320 and quantized networks. To satisfy the resource constraint, we search all substructures, i.e. $M =$
321 N in the first iteration, followed by random M -substructure updates in later iterations. For BOP
322 constraints, weights and activations are assigned the same bit-width. In RIBS with reconstruction
323 under PTQ, we use 200 iterations for ResNet-18 and 1000 iterations for MobileNetV2 within each
block reconstruction.

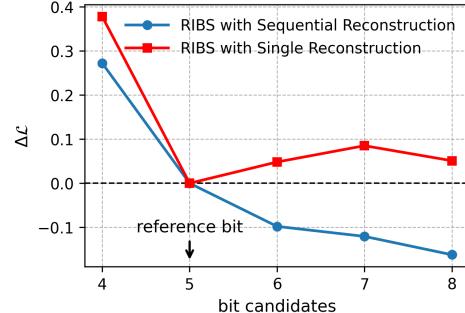


Figure 3: Loss variation across bit candidates with 5-bit reference point in the first block of MobileNetV2.

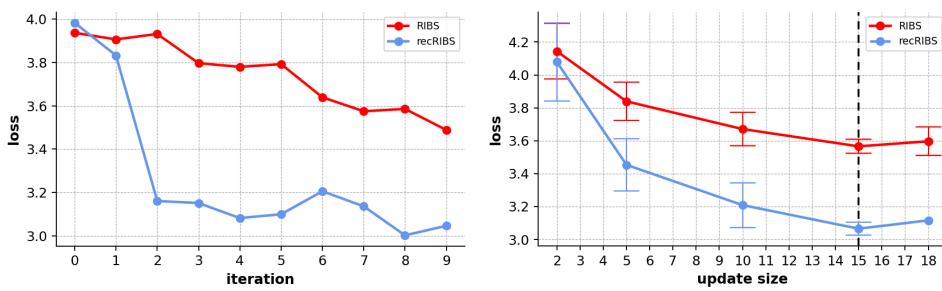


Figure 4: Task loss vs. iterations with update size 15 (left) and best task loss vs. the number of update blocks (right) on MobileNetV2.

4.1 ABLATION STUDIES

Iteration dependence We investigate the behavior of the task loss for calibration data as a function of iteration. As Corollary 3 points out, the task loss is guaranteed to decrease when $M = 1$. However, with a large number of updates, due to the mismatch between true and ILP differences, the loss is not guaranteed to decrease. Nevertheless, as shown in Fig.4, we find that task loss generally decreases with increasing iterations in both RIBS and RIBS with reconstruction (recRIBS). **Number of update blocks at each step** We investigate how the best task loss in $N_{iter} = 10$ on calibration data varies with the update size M . As M increases, the search space expands, which helps to avoid getting trapped in the local minima. However, this also amplifies the discrepancy between the true task loss difference and the ILP-estimated difference. Therefore, there exists a sweet spot for the update size, as illustrated in the right panel of Fig. 4. Based on this analysis for each model, we set $M = 5$ on Resnet-18, $M = 15$ for MobileNetV2, and $M = 28$ on DeiT-T.

4.2 EVALUATION IN PTQ

We conduct the comparison in single-precision and mixed-precision PTQ methods on ResNet-18, MobileNetV2, and DeiT-T. PTQ methods can be categorized into those with or without reconstruction. The (vanilla) RIBS searches the optimal bit configuration for the task loss without reconstruction, whereas RIBS with reconstruction searches the optimal bit configuration for the task loss with reconstruction. Table. 1 demonstrates that RIBS achieves a significantly better trade-off by a large margin between different model sizes and BOPs.

CNN Vanilla RIBS outperforms the baseline method that determines only the step size via MSE optimization (MSEinit), achieving up to 26.8% improvement on 4/4-bit MobileNetV2, as shown in Table 1 (b). In recRIBS, we employ QDROP (Wei et al., 2022), a well-established reconstruction method for CNNs. As shown in Table 1(a) and (b), our approach surpasses the state-of-the-art (SOTA) single-precision methods. Specifically, recRIBS achieves 0.98% – 1.6% accuracy improvements over 4/4-bit QDrop on ResNet-18 and MobileNetV2, while requiring smaller model sizes and fewer BOPs. Furthermore, our method consistently outperforms the SOTA mixed-precision methods under the same or smaller model size and BOPs. In particular, recRIBS surpasses the recent method EMQ by up to 1.2% improvement.

ViT In the DeiT experiments, we employ an improved version of RepQViT, an established PTQ method without reconstruction for ViTs. RepQViT adopts min–max quantization with two key techniques: (i) scale reparameterization, which converts channel-wise quantization of post-LayerNorm activations into layer-wise quantization with only a slight accuracy drop, and (ii) the use of $\log \sqrt{2}$ quantizers for post-softmax activations to better capture their non-uniform distribution.

We extend RepQViT by determining the step size via MSE optimization instead of min–max quantization, and by replacing $\log \sqrt{2}$ quantizer with the nuLSQ quantizer (Gongyo et al., 2024), which more effectively captures their non-uniform distribution. We refer to this enhanced variant as RepQViT+. In RIBS, we adopt RepQViT+ as the baseline: During bit selection, we employ channel-wise quantization for post-LayerNorm activations and the nuLSQ quantizer for post-softmax activations, after which RepQViT+ quantization is applied in the selected configuration.

378 Table 1: Comparison of single- and mixed-precision PTQ methods on ResNet-18, MobileNetV2,
 379 and DeiT-T. Methods: OMPQ (Ma et al., 2023a), EMQ (Dong et al., 2023), QDROP (Wei et al.,
 380 2022), HAWQ-V3 (Yao et al., 2021), BRECQ (Li et al., 2021), and MRECG (Ma et al., 2023b).
 381 MSEinit, RepQViT (Li et al., 2023), and RepQViT+ are directly compared with RIBS, while others
 382 are compared with recRIBS. \dagger uses 8-bit for the first/last layers, $*$ denotes our implementation.
 383 “MP”: mixed precision, “MS”: model size (MiB), “BOPs”: bit operations (G), “Top-1”: accuracy
 384 (%).

(a) Results on ResNet-18

Accuracy vs. model size				Accuracy vs. BOPs			
Method	W/A	MS	Top-1	Method	W/A	BOPs	Top-1
FP32	32/32	44.6	72.54	FP32	32/32	1858	72.54
QDROP \dagger	4/4	5.81	69.62	MSEinit $*$	4/4	29.0	52.0
OMPQ \dagger	MP/4	5.5	69.38	RIBS (ours) $*$	MP/MP	28.5	53.36
EMQ \dagger	MP/4	5.5	70.12	QDROP $*$	4/4	29.0	69.13
recRIBS (ours) *†	MP/4	5.5	70.60	MRECG	4/4	29.0	69.46
BRECQ \dagger	MP/8	4.0	68.82	recRIBS (ours) $*$	MP/MP	28.5	70.20
OMPQ \dagger	MP/8	4.0	69.41	MSEinit $*$	6/6	65.3	71.61
EMQ \dagger	MP/8	4.0	69.92	HAWQ-V3 \dagger	MP/MP	72	70.22
recRIBS (ours) *†	MP/8	4.0	70.74	RIBS (ours) $*$	MP/MP	64.8	71.73

(b) Results on MobileNetV2

Accuracy vs. model size				Accuracy vs. BOPs			
Method	W/A	MS	Top-1	Method	W/A	BOPs	Top-1
FP32	32/32	13.4	72.89	FP32	32/32	307	72.89
BRECQ	MP/8	1.3	68.99	MSEinit $*$	4/4	4.8	13.81
OMPQ	MP/8	1.3	69.62	RIBS (ours) $*$	MP/MP	4.8	40.59
EMQ	MP/8	1.3	70.72	QDROP $*$	4/4	4.8	66.77
recRIBS (ours)	MP/8	1.3	70.97	recRIBS (ours) $*$	MP/MP	4.8	68.36
BRECQ	MP/8	1.5	70.28	recRIBS (ours) $*$	MP/MP	5.36	69.36
EMQ	MP/8	1.5	70.75				
recRIBS (ours)	MP/8	1.5	71.99				

(c) Results on DeiT-T

Accuracy vs. BOPs			
Method	W/A	BOPs (G)	Top-1
FP32	32/32	1284	72.13
RepQViT+ $*$	6/6	45.13	71.12
RIBS (ours) $*$	MP/MP	45.13	71.21
RepQViT+ $*$	4/4	20.06	54.32
RIBS (ours) $*$	MP/MP	20.01	59.94
RepQViT \dagger	4/4	21.46	57.43
RepQViT+ *†	4/4	21.46	59.08
RIBS (ours) $*$	MP/MP	21.39	62.15
RepQViT+ $*$	3/3	11.28	12.72
RIBS (ours) $*$	MP/MP	11.28	20.58
RepQViT+ *†	3/3	12.88	21.02
RIBS (ours) $*$	MP/MP	12.85	32.64

430 As shown in Table 1(c), we show the comparison under BOPs constraints corresponding to below
 431 3-, 4-, and 6-bits. RIBS consistently outperforms RepQViT+ under these lower BOPs constraints
 with improvements of up to 11.6%.

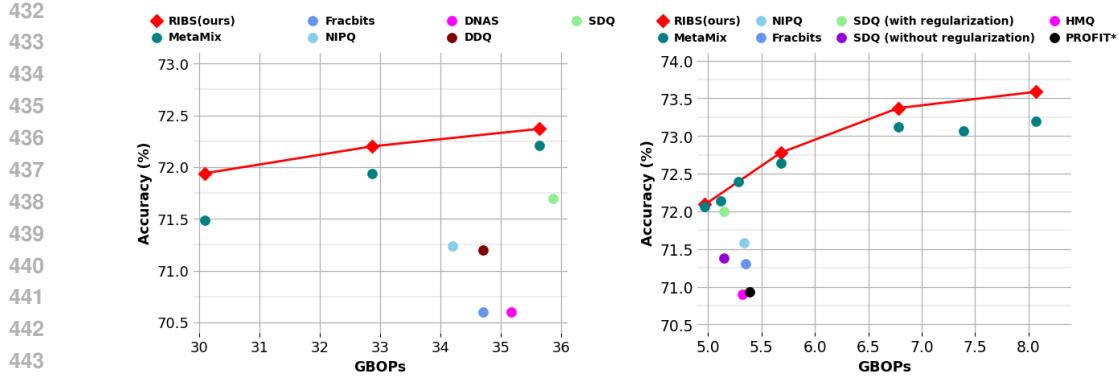


Figure 5: Top-1 accuracy vs. BOPs on ResNet-18 (left) and MobileNetV2 (right). Compared methods: FracBits-PACT (Yang & Jin, 2021), HAWQ-v3 (Yao et al., 2021), PROFIT (Park & Yoo, 2020), DNAS (Wu et al., 2018), DDQ (Zhang et al., 2021), NIPQ (Shin et al., 2023), SDQ (Huang et al., 2022), and MetaMix (Kim et al., 2024). † indicates 8-bit input activations in the first layer.

4.3 EVALUATION IN QAT

We evaluate mixed-precision QAT on ResNet-18 and MobileNetV2 under a wide range of BOP constraints. In these experiments, after the first iteration of layer-wise bit selection using the calibration data, we perform QAT with the full labeled dataset using LSQ (Esser et al., 2019), a well-established QAT method, on the selected bit configuration. Following the strategy of MetaMix (Kim et al., 2024), the current SOTA mixed-precision approach in QAT, we use ResNet-101 as the teacher network for ResNet-18, and MobilenetV2 with a $1.2\times$ width multiplier as the teacher network for the original MobilenetV2. As shown in Fig.5, RIBS consistently outperforms existing mixed-precision methods.

5 CONCLUSION

In this paper, we propose RIBS, a novel bit-selection method. By repeatedly solving an ILP problem for bit selection with a limited number of update blocks, RIBS mitigates the gap between the true loss variation and its proxy, thereby yielding more optimal bit configuration for calibration data, and leading to improved performance.

To validate the effectiveness of RIBS, we conducted comprehensive experiments and comparative evaluations. We compared the performance of RIBS with SOTA single-precision and mixed-precision quantization approaches on both PTQ and QAT settings. Our evaluation covered three network architectures on the ImageNet dataset under a variety of model size and BOP constraints. The results demonstrate that RIBS consistently outperforms single-precision methods as well as existing SOTA mixed-precision approaches, highlighting its potential for advancing model compression.

REFERENCES

- timm. <https://github.com/rwightman/pytorch-image-models>.
- Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through stochastic neurons for conditional computation. *arXiv preprint arXiv:1308.3432*, 2013.
- Yash Bhalgat, Jinwon Lee, Markus Nagel, Tijmen Blankevoort, and Nojun Kwak. Lsq+: Improving low-bit quantization through learnable offsets and better initialization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops*, pp. 696–697, 2020.
- Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and Kailash Gopalakrishnan. Pact: Parameterized clipping activation for quantized neural networks. *International Conference on Learning Representation*, 2018.

486 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
 487 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 488 pp. 248–255. Ieee, 2009.

489 Peijie Dong, Lujun Li, Zimian Wei, Xin Niu, Zhiliang Tian, and Hengyue Pan. Emq: Evolv-
 490 ing training-free proxies for automated mixed precision quantization. In *Proceedings of the*
 491 *IEEE/CVF international conference on computer vision*, pp. 17076–17086, 2023.

492 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 493 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-
 494 age is worth 16x16 words: Transformers for image recognition at scale. In *International Confer-*
 495 *ence on Learning Representations*, 2020.

496 Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dharmen-
 497 dra S Modha. Learned step size quantization. In *International Conference on Learning Repre-*
 498 *sentations*, 2019.

499 Shinya Gongyo, Jinrong Liang, Mitsuru Ambai, Rei Kawakami, and Ikuro Sato. Learning non-
 500 uniform step sizes for neural network quantization. In *Proceedings of the Asian Conference on*
 501 *Computer Vision*, pp. 4385–4402, 2024.

502 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 503 nition. In *CVPR*, pp. 770–778, 2016a.

504 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 505 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 506 770–778, 2016b.

507 Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
 508 Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
 509 mobile vision applications. *arXiv preprint arXiv:1704.04861*, 2017.

510 Xijie Huang, Zhiqiang Shen, Shichao Li, Zechun Liu, Hu Xianghong, Jeffry Wicaksana, Eric Xing,
 511 and Kwang-Ting Cheng. Sdq: Stochastic differentiable quantization with mixed precision. In
 512 *International Conference on Machine Learning*, pp. 9295–9309. PMLR, 2022.

513 Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
 514 Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
 515 efficient integer-arithmetic-only inference. In *Proceedings of the IEEE conference on computer*
 516 *vision and pattern recognition*, pp. 2704–2713, 2018.

517 Han-Byul Kim, Joo Hyung Lee, Sungjoo Yoo, and Hong-Seok Kim. Metamix: meta-state precision
 518 searcher for mixed-precision activation quantization. In *Proceedings of the AAAI Conference on*
 519 *Artificial Intelligence*, volume 38, pp. 13132–13141, 2024.

520 Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A
 521 whitepaper. *arXiv preprint arXiv:1806.08342*, 2018.

522 Yuhang Li, Xin Dong, and Wei Wang. Additive powers-of-two quantization: An efficient non-
 523 uniform discretization for neural networks. In *International Conference on Learning Representa-*
 524 *tions*, 2020. URL <https://openreview.net/forum?id=BkgXT24tDS>.

525 Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi
 526 Gu. BRECQ: Pushing the limit of post-training quantization by block reconstruction. In *ICLR*,
 527 February 2021.

528 Zhihui Li, Junrui Xiao, Lianwei Yang, and Qingyi Gu. RepQ-ViT: Scale reparameterization for
 529 post-training quantization of vision transformers. In *ICCV*, pp. 17227–17236, October 2023.

530 Shih-Yang Liu, Zechun Liu, and Kwang-Ting Cheng. Oscillation-free quantization for low-bit vision
 531 transformers. *arXiv preprint arXiv:2302.02210*, 2023.

540 Zechun Liu, Kwang-Ting Cheng, Dong Huang, Eric P Xing, and Zhiqiang Shen. Nonuniform-to-
 541 uniform quantization: Towards accurate quantization via generalized straight-through estimation.
 542 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 543 4942–4952, 2022.

544 Yuexiao Ma, Taisong Jin, Xiawu Zheng, Yan Wang, Huixia Li, Yongjian Wu, Guannan Jiang, Wei
 545 Zhang, and Rongrong Ji. Ompq: Orthogonal mixed precision quantization. In *Proceedings of the*
 546 *AAAI conference on artificial intelligence*, volume 37, pp. 9029–9037, 2023a.

548 Yuexiao Ma, Huixia Li, Xiawu Zheng, Xuefeng Xiao, Rui Wang, Shilei Wen, Xin Pan, Fei Chao,
 549 and Rongrong Ji. Solving oscillation problem in post-training quantization through a theoretical
 550 perspective. In *CVPR*, pp. 7950–7959, 2023b. doi: 10.1109/CVPR52729.2023.00768.

552 Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up
 553 or down? adaptive rounding for post-training quantization. 2020.

554 Markus Nagel, Marios Fournarakis, Yelysei Bondarenko, and Tijmen Blankevoort. Overcoming os-
 555 cillations in quantization-aware training. In *Proceedings of the 39th International Conference on*
 556 *Machine Learning*, pp. 16318–16330, 2022. URL <https://proceedings.mlr.press/v162/nagel22a.html>.

559 Eunhyeok Park and Sungjoo Yoo. Profit: A novel training method for sub-4-bit mobilenet models.
 560 In *Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,*
 561 *Proceedings, Part VI 16*, pp. 430–446. Springer, 2020.

562 Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
 563 real-time object detection. In *Proceedings of the IEEE conference on computer vision and pattern*
 564 *recognition*, pp. 779–788, 2016.

566 Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
 567 detection with region proposal networks. 28, 2015.

569 Juncheol Shin, Junhyuk So, Sein Park, Seungyeop Kang, Sungjoo Yoo, and Eunhyeok Park. Nipq:
 570 Noise proxy-based integrated pseudo-quantization. In *Proceedings of the IEEE/CVF conference*
 571 *on computer vision and pattern recognition*, pp. 3852–3861, 2023.

572 Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
 573 works. In *International conference on machine learning*, pp. 6105–6114. PMLR, 2019.

575 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
 576 Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
 577 *International conference on machine learning*, pp. 10347–10357. PMLR, 2021.

578 Stefan Uhlich, Lukas Mauch, Fabien Cardinaux, Kazuki Yoshiyama, Javier Alonso Garcia, Stephen
 579 Tiedemann, Thomas Kemp, and Akira Nakamura. Mixed precision dnns: All you need is a good
 580 parametrization. *arXiv preprint arXiv:1905.11452*, 2019.

582 Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
 583 Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for
 584 raw audio. In *9th ISCA Speech Synthesis Workshop*, pp. 125–125, 2016.

585 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 586 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*
 587 *tion processing systems*, 30, 2017.

589 Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-aware automated quan-
 590 tization with mixed precision. In *Proceedings of the IEEE/CVF conference on computer vision*
 591 *and pattern recognition*, pp. 8612–8620, 2019.

592 593 Xiuying Wei, Ruihao Gong, Yuhang Li, Xianglong Liu, and Fengwei Yu. QDrop: Randomly drop-
 594 ping quantization for extremely low-bit post-training quantization. In *ICLR*, 2022.

594 Bichen Wu, Yanghan Wang, Peizhao Zhang, Yuandong Tian, Peter Vajda, and Kurt Keutzer. Mixed
 595 precision quantization of convnets via differentiable neural architecture search. *arXiv preprint*
 596 *arXiv:1812.00090*, 2018.

597 Zhuguanyu Wu, Jiaxin Chen, Hanwen Zhong, Di Huang, and Yunhong Wang. Adalog: Post-training
 598 quantization for vision transformers with adaptive logarithm quantizer. In *European Conference*
 599 *on Computer Vision*, pp. 411–427. Springer, 2024.

600 Zhuguanyu Wu, Shihe Wang, Jiayi Zhang, Jiaxin Chen, and Yunhong Wang. Fima-q: Post-training
 601 quantization for vision transformers by fisher information matrix approximation. In *Proceedings*
 602 *of the Computer Vision and Pattern Recognition Conference*, pp. 14891–14900, 2025.

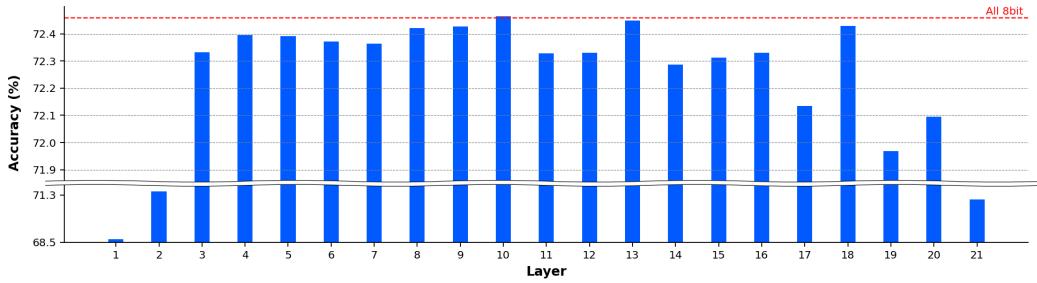
603 Linjie Yang and Qing Jin. Fracbits: Mixed precision quantization via fractional bit-widths. In
 604 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pp. 10612–10620,
 605 2021.

606 Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gholami, Jiali Yu, Eric Tan, Leyuan Wang, Qi-
 607 jing Huang, Yida Wang, Michael Mahoney, et al. Hawq-v3: Dyadic neural network quantization.
 608 In *International Conference on Machine Learning*, pp. 11875–11886. PMLR, 2021.

609 Zhaoyang Zhang, Wenqi Shao, Jinwei Gu, Xiaogang Wang, and Ping Luo. Differentiable dynamic
 610 quantization with mixed precision and adaptive resolution. In *International Conference on Ma-
 611 chine Learning*, pp. 12546–12556. PMLR, 2021.

A SENSITIVITY OF QUANTIZATION ON RESNET18

We show the quantization sensitivity in ResNet-18 in Fig.6. Similar to the case of MobileNetV2, the sensitivity significantly varies across layers.



630 Figure 6: Sensitivity of quantization on each layer on ResNet-18. Each layer is quantized to 3 bits,
 631 while others are set to 8 bits.

B PROOF OF THEOREM AND COROLLARY

B.1 PROOF OF THEOREM1

The condition of Theorem 1:

$$\left| \mathcal{L}(\mathbf{b}) - \sum_{i=1}^N \mathcal{L}(\mathbf{b}_i^0) - \left(\mathcal{L}(\mathbf{b}^*) - \sum_{i=1}^N \mathcal{L}(\mathbf{b}_i^{*0}) \right) \right| \leq \delta, \quad (8)$$

$$\sum_{i=1}^N \Delta \mathcal{L}(b_i) \geq \min_{\mathbf{b} \in \mathcal{B}^N} \sum_{i=1}^N \Delta \mathcal{L}(b_i) + 2\delta \quad \text{for } \mathbf{b} \neq \mathbf{b}^*. \quad (9)$$

We define $f(\mathbf{b})$ as

$$f(\mathbf{b}) := \sum_{i=1}^N \Delta \mathcal{L}(b_i), \quad \Delta \mathcal{L}(b_i) = \mathcal{L}(\mathbf{b}_i^0) - \mathcal{L}(\mathbf{b}^{(0)}). \quad (10)$$

648 Let $\mathbf{b}^* \in \mathcal{B}$ be an optimal solution of the ILP that minimizes f over \mathcal{B} . Define the interaction
 649 (non-additivity) error

$$650 \quad e(\mathbf{b}) := (\mathcal{L}(\mathbf{b}) - \mathcal{L}(\mathbf{b}^{(0)})) - f(\mathbf{b}). \quad (11)$$

651 Using the notation, the first condition is expressed as

$$653 \quad |e(\mathbf{b}) - e(\mathbf{b}^*)| = \left| \mathcal{L}(\mathbf{b}) - \sum_{i=1}^N \mathcal{L}(\mathbf{b}_i^0) - \left(\mathcal{L}(\mathbf{b}^*) - \sum_{i=1}^N \mathcal{L}(\mathbf{b}_i^{*0}) \right) \right| \leq \delta. \quad (12)$$

656 For $\delta > 0$ we have following conditions for all $\mathbf{b} \in \mathcal{B}$:

$$658 \quad |e(\mathbf{b}) - e(\mathbf{b}^*)| \leq \delta, \quad (13)$$

$$659 \quad f(\mathbf{b}) \geq f(\mathbf{b}^*) + 2\delta \quad \text{for all } \mathbf{b} \in \mathcal{B} \setminus \{\mathbf{b}^*\}. \quad (14)$$

660 By using

$$661 \quad \mathcal{L}(\mathbf{b}) - \mathcal{L}(\mathbf{b}^*) = [f(\mathbf{b}) - f(\mathbf{b}^*)] + [e(\mathbf{b}) - e(\mathbf{b}^*)],$$

663 $f(\mathbf{b}) - f(\mathbf{b}^*) \geq 2\delta$, and equation 13, $e(\mathbf{b}) - e(\mathbf{b}^*) \geq -\delta$,

$$664 \quad \mathcal{L}(\mathbf{b}) - \mathcal{L}(\mathbf{b}^*) \geq 2\delta + (-\delta) = \delta > 0.$$

666 Therefore $\mathcal{L}(\mathbf{b}) > \mathcal{L}(\mathbf{b}^*)$ for all $\mathbf{b} \neq \mathbf{b}^*$, proving that \mathbf{b}^* is the minimizer of \mathcal{L} .

668 B.2 PROOF OF COROLLARY 2

669 When all substructures are independent, $\mathcal{L}(\mathbf{b}) = \sum_i L_i(b_i)$ is satisfied. This leads to

$$671 \quad \mathcal{L}(\mathbf{b}) - \sum_{i=1}^N \mathcal{L}(\mathbf{b}_i^0) - \left(\mathcal{L}(\mathbf{b}^*) - \sum_{i=1}^N \mathcal{L}(\mathbf{b}_i^{*0}) \right) = \sum_i L_i(b_i) - \sum_i \left(L_i(b_i) + \sum_{j \neq i} L_j(b_j^0) \right) \\ 672 \quad - \left(\sum_i L_i(b_i^*) - \sum_i \left(L_i(b_i^*) + \sum_{j \neq i} L_j(b_j^0) \right) \right) \\ 673 \quad = 0. \quad (15)$$

679 Therefore $\delta = 0$ and equation 9 is satisfied by definition.

681 B.3 PROOF OF COROLLARY 3

683 We assume that the search space \mathcal{B}^N is restricted to configurations satisfying $d_H(\mathbf{b}, \mathbf{b}^0) = 1$. Define
 684 the search space as \mathcal{B}_0^N . In this special case, all $\mathbf{b} \in \mathcal{B}_0^N$ are expressed as \mathbf{b}_j^0 for some j . By
 685 definition,

$$686 \quad b^* = \arg \min_{\mathbf{b} \in \mathcal{B}_0^N} \Delta \mathcal{L}(b_i) = \arg \min_{\mathbf{b} \in \mathcal{B}_0^N} \mathcal{L}(\mathbf{b}) \quad (16)$$

688 is satisfied. This can alternatively be proved by following Theorem 1:

$$690 \quad \mathcal{L}(\mathbf{b}) - \sum_{i=1}^N \mathcal{L}(\mathbf{b}_i^0) = 0, \quad (17)$$

693 and

$$695 \quad \left| \mathcal{L}(\mathbf{b}) - \sum_{i=1}^N \mathcal{L}(\mathbf{b}_i^0) - \left(\mathcal{L}(\mathbf{b}^*) - \sum_{i=1}^N \mathcal{L}(\mathbf{b}_i^{*0}) \right) \right| = 0. \quad (18)$$

698 Thus, $\delta = 0$ and equation 9 is satisfied by definition.

699
 700
 701