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Abstract

We consider the problem of distributionally robust multimodal machine learning.
Existing approaches often rely on merging modalities on the feature level (early
fusion) or heuristic uncertainty modeling, which downplays modality-aware ef-
fects and provide limited insights. We propose a novel distributionally robust
optimization (DRO) framework that aims to study both the theoretical and practical
insights of multimodal machine learning. We first justify this setup and show the
significance of this problem through complexity analysis. We then establish both
generalization upper bounds and minimax lower bounds which provide perfor-
mance guarantees. These results are further extended in settings where we consider
encoder-specific error propogations. Empirically, we demonstrate that our approach
improves robustness in both simulation settings and real-world datasets. Together,
these findings provide a principled foundation for employing multimodal machine
learning models in high-stakes applications where uncertainty is unavoidable.

1 Introduction

Multimodal learning is increasingly incorporated into machine learning to build systems in high-stake
environmentsSoenksen et al.| [2022]], Lewington et al.| [2024]]. However, deploying these models
remain challenging despite their performance advantages, with one main criticism on such system’s
volatility when data change drastically across input settings. Classical robust learning frameworks
typically treat all features jointly after early fusion, implicitly assuming that all covariates experience
and propagate uncertainty similarly. However, in practice, each modality has its own uncertainty
structures. Moreover, cross-modal interactions matter: a shift in clinical text may correlate with a
shift in lab values (e.g., new disease presentation), while a shift in imaging resolution may not.

Multimodal learning under uncertainty raises some naturally important practical and theoretical
questions. Previous works Bezirganyan et al.|[2024] have incorporated varying belief distributions
over different modalities with prior evidence of specific modality’s reliability and provides a principled
approach to prevent over-confidnance that result in wrong predictions when modalities disagree.
Works have also been done to extend previous unimodal neural processes to multimodal NP settings
Jung et al.| [2023]], and have been applied to meta-learning settings to incorporate such uncertainty-
aware framework |Almecija et al.|[2022]. However, recent approaches have largely focused on the
demonstration of incorporating uncertainties improve out-of-distribution performance. It remains to
be justified why such setting is fundamentally different from merging all features across modalities
and modeling the uncertainties of each feature. Another line of principled approach is distributionally
robust optimization (DRO), a well-established framework that has been applied to capture uncertainty
in data covariate shifts across various machine learning models |Liu et al.| [2025]], [Lewington et al.
[2024], Blanchet et al. [2019al], Zhu et al.| [2022], [Cho et al.| [2024], [Shafieezadeh-Abadeh et al.
[2015]],/Chen and Paschalidis| [2018]], Bertsimas et al.| [2019]]. In this paper, we introduce a novel DRO
multimodal machine learning and provide theoretical and practical insights not previously studied.

The main contribution of this paper is to introduce a new framework for robust multimodal machine
learning using distributionally robust optimization. We provide theoretical justifications for the
significance of the modality-aware formulation and demonstrate its fundamental difference from early
fusion through complexity analysis. This construction enables us to obtain closed-form, tractable
formulations of the upper and lower bounds of the risk, which translates to performance guarantees
for users in practice. These bounds also incorporate the consideration of correlation structures across
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modalities. Finally, we provide empirical results in both simulation and real-world datasets that
demonstrate our approach improves computational out of sample performance.

The rest of the paper is organized as follows. Section 2 outlines the problem setting of the DRO
formulation and provides justification for the modality-aware setup. Section 3 presents the general-
ization upper bound and risk lower bounds. Section 4 demonstrates the effectiveness of the DRO
framework in both simulation and real-world settings. We conclude the paper in Section 5. In the
Appendix, we provide all the proofs as well as other additional computational results.

2 A Framework for Robust Multimodal Learning

2.1 Problem Setup and Formulation

We consider a multimodal machine learning prediction problem with K modalities. Let X =
(XM .. X(K)) denote the input, Y the target, and N the sample size. We consider predictors of
the form f o g, where g = (g(l), oo gE )) maps inputs to one-dimensional embeddings Z*) =
g (X)) € R, and f aggregates the embeddings {Z(*)} to predict Y. Specifically, adopting a one-
dimensional embedding Z*) isolates the role of cross-modal correlation without loss of conceptual
generality and provides us with analytical results.

Assumption 1 (Copula Dependence). Let Px and QQx be the nominal and perturbed joint distri-
butions over X, respectively, with marginals P)((k) and Qg;). We analyze robustness to covariate
shift in X (and thus Z), and assume that Py | x is fixed. By Sklar’s theorem, Px(x(l), RV :Z:(K)) =

C’(P)((l) (zM), ... ,P)((K) (25))Y), for a copula C that captures cross-modal dependence.
This decomposition separates each modality’s marginal behavior from their dependence structure.

Assumption 2 (Shared copula). Px and QQx share the same copula C. Let c be the copula den-
sity, the joint measures decompose as dPxy = c(P)((l), . ,P)((K)) dP)((l) e dP)((K), and dQx =

c( (;), e g()) ngp e ng(K). where modality-wise constraints DXz(Q()?) I P)((k)) < P

The shared copula assumption ensures that our following robustness analysis focuses on shifts in
the marginals while preserving cross-modal dependence. This is inline with realistic data scenarios
where marginal distributions such as image quality could shift, but modality correlations remain
relatively stable. We also acknowledge that choice of chi-square is due to its tractable formulation,
distance metrics such as Wasserstein distance should be further analyzed as well. For the analysis
under Wasserstein measure, please refer to the Appendix C.

2.2 Why Modality-Aware DRO?

A natural question is why we need to introduce this framework if one could simply concatenate
all features at the data stage and apply a traditional DRO formulation? In other words, what is the
significance of treating modalities separately, and how does our setup differ from this canonical
alternative? Following conventional machine learning terminologies, we refer the first approach
as early fusion, and the latter as late fusion. Based on the problem setting introduced above,
among the K modalities, we have for each of the modalities dimensions {d;}X ,, and covariates
X0 = {X(ij)}‘;;l. Let D = )", d;. We define the two approaches as follow:

* Early fusion: Concatenate all features and learn h : RP — Y directly.

« Late fusion: Learn 1-D embedding functions f; : XV — Z(") € R, then learn separate prediction

function g : {ZM} e RK - V.

We first observe that these two approaches exhibit different computational complexity behaviors
under different algorithmic structures.

Proposition 1. Using linear structures and ordinary least squares (OLS), early fusion has complexity
O(ND? + D?), and late fusion has complexity O(N Y, d? + 3, d3 + NK? + K?).

This indicates that the modality-wise approach is typically more computationally efficient when total
number of modalities K is large and individual embedding dimensions d; are small.

Proposition 2. Under gradient-based training (e.g., SGD), early and late fusion requires O(N D)
and O(N D+ NK ) per epoch, respectively. If parallel processing is available, the wall-clock time
per sample can be reduced from O(D) to O(max;{d;}).



We observe that instead of using an unconstrained worst-case divergence in the concatenated feature
space, the modality-aware formulation provides a bound that is decomposed across modalities and
explicitly incorporates cross-modality correlations.

3 Correlation-Aware Worst-Case Risk

In this section, we derive the generalization gap of the DRO formulation, and derive how this
gap tightens under assumptions of the encoder function. We conclude with the risk lower bound
obtained using a two-point distribution construction. We adopt the following lemma to ensure that
our downstream arguments of the distributional shift on the original input raw data remain valid in
the embedding space.

Lemma 1 (Data processing Inequality). If Z*F) = ¢*)(X®), then D 2(Q(Zk) [ P(k)) <

D, ( (k) | P k)) < pg. Under Assumptlon the joint embedded divergence admits a correlation-

aware expansion. Let % =1+ ¢, IEPW [ex] =0, EP“") [e%} < pi. Define v;; as copula-induced

correlations in embeddmg space so that Ele;e;] < 7, \/Pipj for vij > 0 (and the inequality reverses
ifvij < 0). Neglecting higher-order terms,

(@2 | P2 =Br, | (I 0+ a) 1) < Zpk + N hulvee . O

1<J

=B

Lemma 2 (Risk decomposition). Given data D = (X,Y’), a bounded loss function £(-) € [0, My]
and hypothesis classes F,G where f € F and g € G. For afixed f o g, define the worst-case risk with
a x2-ambiguity set with radius as the correlation-aware B in (I). If Var(l) < oo, it has the closed

form: r(fog, Px) := supg.. D,2(@QzIIP2)<B BPyxxQx [6(fog(X),Y)] =E[]+VB /Var(l).

_N1/2
Lemma 3 (Lipschitz property of sample SD). Let f(X1,...,Xn) = (% Zi\; (X — X)Q) with

X = % Zf\il X;. Then f is N~'/2-Lipschitz w.r.t. the {2-norm.
From Lemma[2]and 3] we derive the following bounds.

Lemma 4 (Finite-sample deviation). Let Px denote the empirical distribution over {X;}N_,. with
probability at least 1 — 2e™, for an absolute constant C': |7"(f 0g,Px) —Ep,[r(fog,Px)] | <

VB \[3 My 4\ [ Mo, and [Ep, [r(f 0 9, Px)] = r(f 0 9, Px)| < VB §.

Combining the two inqualities from Lemma [}

Theorem 1 (Generalization upper bound). Let £ € [0, M| and assume Assumpnonl 2| Then, with
probability at least 1 — 2e~¢,

’(fOQ,PX)—T(fOQ,PX < \F\/>Me+\/ Mz—l-\f

where B is the correlation-aware ambiguity radius in (I)

The upper bound can be considered as a general certificate of confidence that in essence translates
to a guarantee. Consider a high-stake environment, such as healthcare, where risk prediction (i.e.,
heart failure in the next 24-hours) is often the primary goal of most machine learning models. Such
upper bound provides care providers an estimate that “given a certain level of uncertainty, the model’s
performance degrade will not exceed X”. This is especially important to provide in deployment as
we can quantify the amount of performance and ad-hoc prepare users to adapt in advance. We can
further tighten this bound under assumptions of how perturbations in the original input propagate
through the encoder as follows.

Theorem 2 (Encoder—robust upper bound). Assume further that {(-) is Ly—Lipschitz, and g is
modality—wise Lipschitz with constant L ; in modality i. Consider an encoder perturbation only

in modality i, writing A; (@) := f@ () — fO (D). For any t > 0, with probability at least



over a sample of size n that defines Px

‘r(gof, 13)() —7r(gof, Px)| < LeLg,i(EﬁxﬂAi(X(i))\] + \/E\/Varlgx(mi(X(

+x/l§(\/2:tMe+§) -

Intuitively, this indicates that the worst-case risk cannot blow up faster than the size of the change of
an encoder on a given modality—even when the data distribution shifts. In practice, this allows prac-
titioners to safely swap, compress, or quantize an encoder (or run with a partially missing/degraded
modality) with knowledge of a hard ceiling on the performance degrade.

1—2et
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Beyond the generalization gap, it is also important to characterize the intrinsic difficulty of estimating
the worst-case risk. Consider again a healthcare setting, the lower bound can provide a realistic
estimate to the care providers by setting expectations on what is the best a certain model can do under
the distributional shift. We do so using the following minimax quantity:
My :=inf sup E‘ og,PX)—r(fog7PX)|.
fog PxeP
Theorem 3 (Risk lower bound). If the loss function € i is bounded by L > 0, then given large M > 0
and sufficiently large sample size N, My > W(]\/Il)

This provides a conservative baseline and does not preclude stronger lower bounds when P excludes
degenerate distributions or when modality-specific divergences (and their correlations) grow with K.

4 Numerical experiment

In our simulation study, let us consider four modalities {m*) ¢ R} _,. Under the training
distribution P, draw m() ~ N0 - 15, I5) and m®*® = wm® + (1 — w)e® for k = 2,3,4
with w = 0.7 and e®) " N(0,0215), 0. = 0.05. Define the response ¥ = 17571 m*) +
10 1{m(1) > 1} - 10 1{m(1) < —1}, m = %lg—m(l). The test distribution @ differs only by
a mean shift in the primary modality, m(*) ~ A(1.5 - 15, I5), while the conditional construction of

m, m3) m is unchanged, so the shift propagates across modalities through w. We observe that
by sacrificing limited performance on the majority, it improves robustness on the minority subgroup.

p Whole MSE) Whole (DRO) Minor (MSE) Minor (DRO)
0.10  4.990 +0.163 4.2304+0.133 5.521 £0.186  4.603 4+ 0.150
0.50 4.651+0.148 3.708+£0.105 5.1034+0.167 3.984+0.119
1.20 5.124+0.177 3.8254+0.101 5.676 +£0.200 4.1344+0.116
2.00 5.060£0.169 3.570+0.086 5.577+0.190 3.822 + 0.097

Table 1: Whole vs. minority subgroup for MSE and y2-DRO across optimization radius p.

In our real-world case study, we consider two real-world settings: journalism and healthcare, and
provide detailed descriptions of each of these dataset in Appendix D. The training and testing sets are
stratified chronologically. For each experiment, we train a 2-layer MLP with Adam learning rate of
0.005. We compare the standard non-robust approach to our DRO approach with p=0.5.

Dataset Method  Median Acc. IQR [Q1, Q3] Std. Dev.
Journalism  Canonical 0.5798 [0.5666, 0.5924] 0.0180
Journalism DRO 0.5853 [0.5743, 0.5951] 0.0164
Healthcare  Canonical 0.6027 [0.5903, 0.6144] 0.0185
Healthcare DRO 0.6148 [0.6026, 0.6266] 0.0169

Table 2: Test accuracy over three real world cases. Acc. = Accuracy.

5 Conclusion

In this paper, we introduce a novel distributionally robust framework for multimodal learning that
explicitly accounts for modality-specific shifts and cross-modal correlations. We established the
significance of this problem through theoretical complexity analysis, and provide guarantees for
its generalization. Empirical results across simulations and real-world datasets confirmed that our
formulation improves prediction performance. Future work will aim to extend to incorporate more
complex correlation structures and tighter analytical bounds.
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A Qualitative Advantage of Modality-Aware Fusion

Beyond computational advantages, several other important benefits motivate our modality-wise
approach:

L.

Specialized encoders: Each encoder f; can be tailored to its specific modality (e.g., CNNs for
images, Transformers for text, MLPs for tabular data). This typically produces superior feature
extraction compared to a single monolithic architecture attempting to handle all data types. The f;
encoders can be pretrained on large unimodal datasets or leverage off-the-shelf models (ResNet,
BERT, etc.), requiring only the training (or light fine-tuning) of g. This approach substantially
improves sample efficiency and represents a key reason why late fusion aligns more closely with
the essence of multimodal learning.

. Robustness to missing modalities: When modality ¢ is missing for certain data points, one

can simply skip f;. In contrast, early fusion approaches typically require imputation strategies
or retrained models. This represents a significant practical advantage in real-world multimodal
systems.

Handling heterogeneous data characteristics: Different modalities may have varying frame
rates (e.g., video vs. audio) or spatial dimensions. Per-modality encoders enable principled down-
sampling and aggregation before fusion. This natural variation across modalities motivates our
consideration of covariate shift at the modality level, as each modality possesses its own inherent
characteristics. Generalization capabilities vary across modalities, making Distributionally Robust
Optimization (DRO) an ideal framework for enhancing overall model generalizability.
Information bottleneck regularization: The embedding process creates an information bot-
tleneck |Tishby et al.|[2000], which theoretically reduces overfitting by compressing irrelevant
intra-modality noise while preserving task-relevant signals. This perspective remains somewhat
controversial, particularly given observed anomalies where additional modalities sometimes de-
grade performance. Several scholars (e.g.,|[Liang et al.[[2023]]) have attempted to explain these
phenomena through information-theoretic frameworks.

These considerations demonstrate the necessity of addressing covariate shift at the modality level,

with DRO playing a crucial role in enhancing model generalization capabilities.

B Technical Proofs
Proof. (Proof of Propositionﬂ]) Let N be the number of samples, K the number of modalities, and

d;

the (embedding) dimension of modality ¢. Set D := ZZK:1 d;.

Early fusion (single OLS on concatenated features). Form the NV x D design matrix X =
[X® ... XU and solve min,, || Xw — y||3. Using normal equations or QR/Cholesky gives
the standard costs: (i) form X " X in O(N D?) flops and X "y in O(N D); (ii) factorize/solve the
D x D system in O(D?) (solve back-substitution is O(D?) and is dominated). Hence the overall
complexity is O(ND? + D?).

Late (modality-wise) fusion.

— Stage 1: For each modality 4, fit an OLS on the N x d; block X (), costing O(Nd? + d3) by the

same argument as above. Summing over 4 gives Zf{:l O(Nd? + d3).

— Stage 2: Fuse the K per-modality outputs (one scalar per modality, or a K -vector) via a linear
head. This is an OLS in dimension K with cost O(NK? + K3).
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— Combining both stages yields

K
O( Y (Nd? +d3) + NK*+ K3 ).
(;( ) fusion head )

per-modality fits

This proves the stated bounds. O

Proof. (Proof of Proposition[2) We count one epoch as a full pass over N samples with first-order
(stochastic) gradients. All O() bounds hide constant and polylogarithmic factors, and assume dense
features; for sparse data, replace D by the average number of nonzeros per sample.

 Early fusion. With a linear (or shallow) model over the concatenated D-dimensional input, the
forward/backward cost per sample is O(D), so one epoch costs O(N D).

» Late (modality-wise) fusion. Per sample, the gradient passes through each modality-specific block
X @ (cost O(d;)) and then through the K -dimensional fusion head (cost O(K)). Summing over
modalities gives per-sample cost O( dudi + K ) = O(D + K), hence per epoch

O(N(D + K)) = O(ND + NK).

* Parallelism across modalities. If K modality blocks are processed in parallel (e.g., separate
devices/streams) and gradients are synchronized only at the fusion head, then the wall-clock per-
sample cost of the modality stage reduces from O (3" ; d;) to O(max; d;). The (typically cheap)

fusion pass adds O(K ), which is dominated when K < max; d; or absorbed in the O(-) notation.

Hence the wall-clock per-sample time can drop from O(D) to O(max; d;), as claimed.
O

Proof. (Proof of Lemma [2) Let ¢(z) := ‘Uil%f(x). The Lagrangian is £ = Ep, , xpy [((f ©
9(X),Y)p(X)] — MEpy [(¢(X) — 1)%] — B) — n(Ep,[¢(X)] — 1) .. Maximizing pointwise over
¢ (see, e.g., Rockafellar and Wets|[2009]) yields ¢*(X) = 1+ 55 (¢(f 0 g(X),Y) — n). Optimizing
over A\ > 0 and 7 gives the closed form for x2-DRO: r(f o g, Px) = E[¢] + VB /Var (). O

Proof. (Proof of Lemma [3) The derivative df /dX; is ‘— X —X] =
\/n X2 L (S, X))

|Xi—X| (Xi—X)? _ 1
s or IVl = Y et = = v -
Proof. (Proof of Lemma Let S, = £ 3" | (X; — X)?, expand S,, around po = ES,, by Tay-
2
lor’s theorem /S, = /it + A — E(SQ"_Q“) + O((Sn — w)?). It is known that Var(S,) =
n2

s

(i wz) where 1 = E[X; ~ EXJ EVS; = i - 55900° 1 O(B(S, — "), and
u

[EVS, — vl < 2o “) + O(E(S, — p)? )=$(‘“2;7;”2)+0( (Sn —u)®) < €. O

Proof. (Proof of Theorem By the x2-duality derivation in the main text, 7(f o
9. Px) = Epy xpcll(fog(X),Y)] + VB h(Pyx x Px), where h(Pyx x Px) :=
\/ Varp, , xpx (6( fog(X), Y)) The same representation holds with Py replaced by Py . Hence

|7’(fog,px) - IEPyp{ xPxT (fog,]f’X”
< f|h (Pyx x Px) — Epy e h(Py|x x Px)|

Eze EPY\XXPX ZE
i=1

where ¢; := ¢(fog(X;),Y;) and we use that the outer expectation is over the i.i.d. draw of
{(Xi, Vi) }y from Py x x Px.




* Step 1: Concentration of the empirical standard deviation. Let F'(¢y,...,¢,) = (l ST (-

n =1

_\1/2 _

€)2> with ¢ = % >~ ¢i. By Lemma 2 (Lipschitz property of empirical standard deviation), ¥
is n~'/2-Lipschitz w.r.t. the £ norm. If £(-) € [0, M,], then by the concentration inequality in
Lemma 1 (Boucheron-Lugosi—Massart), for all ¢ > 0, with probability at least 1 — 2e7 Y,

|h(Py|X pr) — EleX XPXh(PY|X XP)()’ S Mg\/ 27%
* Step 2: Concentration of the empirical mean. Since ¢(-) € [0, M/], Hoeffding’s inequality
yields, with probability at least 1 — 2e~*,

n

LS By [ fog(X), V)| < My

=1

* Step 3: Combine. Union bound gives the first displayed inequality in Theorem 1:

!r(fog7PX) - EPY‘XxPXT(fC)%pX)! S \/EMK\/ % + Me\/ ﬁ
* Step 4: Bias between population and expected empirical risks. Write
‘EPY\XXPXT(fog7 PX) —r(fog, PX)‘
=B ’Epm w e h(Pyx x Px) — h(Py x X PX)‘
By s [£ D7 6] — By i (fog(X), V)|
i=1

The mean term vanishes by linearity. By Lemma 3 (delta-method/Taylor expansion of /- around
the population variance), there exists a universal constant C' such that

Multiplying by v/B yields the second displayed inequality:
5 C
’]EPY\XXPXr(ng7PX)_r(fog?PX)’ < \/EE

Finally, recall B = ", px + 23, ; 17ijl/Pip; from the correlation-aware x* bound, which
gives the stated dependence.
O

Proof. (Proof Sketch of Theorem Start from the triangle inequality to compare r(go f , JSX) and

r(go f, Px) by introducing and subtracting r(go f, Px), producing three natural gaps (encoder
change at the same base, sampling fluctuation, and the population shift). For the encoder change,

maximize over the same y2—ball around Py and apply the inequality | supg F(Q) — supg G(Q)] <
supg |F(Q) ~ G(Q)] with F(Q) = Eqlt(go f(X).Y)] and G(Q) = Eq[f(go f(X),Y)]. The loss
and head being Lipschitz give |[£(go f(X),Y) — £(go f(X),Y)| < LyLgyi|A;(X®)|. A standard
x* change-of-measure bound then yields sup .. 2 o) 5y )< Eq|Ai(XD)| < Ep |A((XO)] +

\/B Varp (|A;(X®)]), giving the encoder term. O

Proof. (Proof of Theorem [3) We apply Le Cam’s two-point method. Consider losses supported on
{0, L}:

7 0 wp.1l—p"—39, 7 0 wp.1l—p"+34,
T\ L w.p. p* + 6, 27\L w.p. p* — 6,

with p* = % and § € (0, 3). For either distribution, 7(fog, Px) = u(f) + VB o(f), pu(f) =

E[Z], o%(f) = Var(Z) = p(1 — p)L?. Atp* = %, 5(¢) = £ for both Z; and Zs, so the variance



term cancels and |r(fog, Px 1) — r(fog, Px2)| = |1 — p2| = 2L6 =: s. Le Cam’s inequality
then gives, for any estimator based on n samples, inf7 suppe(p, | py 1 E [[F=r(fog,P)|] >

5(1 — 1Py, - P}},2||Tv). By Pinsker’s inequality, || P, — PEollrv < /% Dia(Px.a]Px.1),
and for the Bernoulli pair above (with parameters % +9),

1 1 1
14 1 145
Di(Px||Px.) = (% n 5)1og§ — (f - 6)logi 5 2(510gi
2

_TL

Choose § = W for a fixed M > 2. Then Dkl(PX 2l|Px.1) < (M-1)

under the stated choice), and hence || P¥ ; — P¥ ,||rv < 3 for sufficiently large n. Wlth s=2L =

m we conclude
inf sup E[[F —r(fog,P)|] > f(lfl):#.
7 pep ’ -2 2 4dnlog(M — 1)
This establishes the stated lower bound. O]

C Robust bound under Wasserstein distance
The Wasserstein distance between two probability distributions () and Py is defined as:

1/p
w(Qz||Pz) = min { (/_ :Cp(f’f/) dW(&f’)) (T = Qgz, T = PZ} )

where 7 is a coupling of Q7 and Pz, and ¢(¢,¢’) is a cost function where £ = (z1,- - , 2k )" and

/. . . . N — K . P Y
&' is defined similarly. For the overall cost, we use a p-norm: ¢(§,&') = (> .24 |z — 2} . We

now derive the lower and upper bounds for the Wasserstein distance between () z and Pz. The lower
bound is straightforward:

D€V<Qz||PZ>=/EX5 P, &) dn (€, ) >Z( @175))"

However, obtaining an upper bound is not easy when each modality is dependent on the others.
Fortunately, we can use the following standard tool to construct a triangle inequality for the upper
bound.

Lemma 5 (Clement and Desch|[2008])). Let (Z, d) be a separable metric space and let 1 < p < oc.
Let p*, p?, u3 € P(Z). Then

Dw (u*[|®) < Dw (' ||11*) + Dw (12| %)

Lemma 6. Define the following two distances, which measure how far each joint distribution is from
being independent (i.e., the product of its own marginals):

K
®P§”) , Ag=Dw <Qz

i=1

K
AP = DW <PZ ®Q(ZZ)> .

i=1

Then we have

K 1/p

i=1
Remark 1. Similar to the analysis under the x2-divergence, the correlation structure is captured
by the two terms Ap and Ag. In particular, if we assume the distributions are Gaussian, we can
express Ap and Aq explicitly as functions of the correlation coefficient p. Evidently, the larger the
correlation coefficient, the larger the bound becomes.

Lemma 7 (Blanchet et al.|[2019b], Shafieezadeh-Abadeh et al.[[2019]). Given Z = g(X) and a loss
Sunction £(0,&) = f(Y — 0'Z), where [ is a continuous function with Lipschitz constant 1, and the



cost function is defined as:
&, &)=z —2|lq ify=y', otherwise + oo
then we have:

min sup Epy xxqx [f(Y —0'Z2)] = minE[f(Y — 6'Z)] + B||¢],
 Dw(QzlP2)<B o

1 1 _
whereEJrgfl.

By assumption, the loss function £(-) is bounded in [0, M]. Applying Lemma(7] with probability
at least 1 — 2e~%, we have the following bound on the risk difference:

‘T(fog,Px)—T(ng,Pxﬂ < \/gMZ

Theorem 4 (Wasserstein Encoder—Robust Upper Bound). Under the conditions above, if only
modality 1 is altered then

|(gof, Px) —r(gof, Px)| < L¢ Ly, (Ep IA(XD)] + Lay \/E). )
Moreover, for any t > 0, with probability at least 1 — 2e™t over an i.i.d. sample of size n,

‘T(QOJ?JSX)—T(QOﬁPXH < LZLg,i<Eﬁ|Ai(X(i))| + LA,i\/E) + MZ\/%- 3)

Proof. Fix any admissible Q with Dy (Qz, Pz) < B and write
F(Q) =Eq[f(gof(X).Y)].  G(Q)=Eq[go f(X),Y)].
By the Lipschitz continuity of £ in its score and of ¢ in modality 7,
IF(Q) — G(Q)| < Ly Ly, Eq|Ay(XD)|,

where A;(X®) := f(i)(X(i)) — fO(X D), Let ;(z) := ’Ai(x(i)) , which measures the encoder
shift in modality 7. If ; is L a ;-Lipschitz, then by the Kantorovich—Rubinstein inequality,
[Eqei —Eppi| < Lai Dw,(Qz[|P2).

Here Dyy, denotes the 1-Wasserstein distance, and Dy, < Dyy for any choice of order p > 1 used
in Dy by the monotonicity of Wasserstein metrics (proved by Lyapunov inequality). Hence,

Eqgpi < Epy; + La; Dw(Qz||Pz) < EP|Ai(X(i))| + LaVB.

Therefore,
IF(Q) —G(Q)| < LeLg, (EP’Ai| + LA,i\/E>7

and, since |supg F' — supg G| < supg |F' — G|, we obtain (2).
For (3), decompose

|T(90ﬁﬁx)*r(gof>Px)| < |7'(90]?,ﬁx)*7’(90f>f3x)| + |7“(9°fa13X)*T(90f7PX)|~

The first term repeats the previous argument with Pin place of P. The second term is bounded by
Hoeffding’s inequality for a bounded loss:

Bl —ElA] < Mp/s

with probability at least 1 — 2e~*, yielding (3). O

D Additional Computational Results

All experiments were run on a CPU-only laptop with an Intel Core i7-12700H (14 cores/20 threads)
and 16 GB RAM. We used Python 3.12. All experiments are completed within 21-36 minutes.
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D.1 Dataset Descriptions

Healthcare The healthcare dataset HAIM-MIMIC-MM is a multimodal dataset of 34,537 samples
that contains 7279 unique hospitalizations and 6485 patients. It contains four modalities: tabular,
time-series, text and images. We consider two binary predictive tasks: mortality in the next 48
hours, and discharge in the next 48 hours. Specifically, embeddings were generated for each of these
modalities, with details to be found in|Soenksen et al.|[2022].

Language. The Huffpost dataset contains approximately 200,000 samples of news article headlines
from 11 categories (Black Voices, Business, Comedy, Crime, Entertainment, Impact, Queer Voices,
Science, Sports, Tech, Travel). The target is to identify these category tags from the original headline
text. The dataset dates from 2012 to 2018, and samples accumulated per year is considered a single
individual time period. We consider three modality-specific blocks: headline, short-description
embeddings, and metadata. We process each sample from the original language format to a respective
embedding using the BAAI FlagEmbedding model to lower-dimensional vector of size 2014. We
then use this embedding for the downstream prediction problem.

D.2 x2-divergence and Correlation
We consider two Gaussian distributions with the same covariance and a mean shift: P = N (up,X)

. 0'2 cCo10
and Q = N (g, X) with pg = pp + A, up = 0,and ¥ = (callag 015 2, le] < 1. We

fix o1 = 09 = 1 and draw a standardized mean shift z ~ N(0, 0.521. 2) independently each trial, then
set A = z ® (01, 02). For each correlation ¢ € {—0.6,—0.3,0,0.3,0.6} we run 200 trials.

c mean std min max
—0.6 5.288 29.283 0.005 379.781
—-0.3 1.286 3919 0.004 50.341

0.0 0.875 2.230  0.000 25.456
0.3 1.229 2.394  0.001 22.107
0.6 4499 16.556 0.009 166.085

Table 3: X2-divergence statistics over 200 trials with oy = g2 = 1 and 2z ~ N(0, 0.52.72).

In multimodal learning, stronger cross-modal correlation—whether positive or negative—magnifies
how covariate shifts combine across modalities, leading to a larger chi-square divergence between
source and target. When the modalities are uncorrelated, the divergence is smallest.
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