

000 001 002 003 004 005 DENSEMARKS: LEARNING CANONICAL EMBEDDINGS 006 FOR HUMAN HEADS IMAGES VIA POINT TRACKS 007

008
009 **Anonymous authors**
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
191

054 2019a; Cao et al., 2019) aims to follow the locations of unambiguous but isolated facial features
 055 shared by typical faces, such as the outlines of the eyes, nose line, or mouth corners. Similarly, para-
 056 metric 3D model estimation and tracking (Blanz & Vetter, 1999; Li et al., 2017b; Dai et al., 2020)
 057 assumes that most face and head geometries follow a statistical shape model and can be represented
 058 by a shared, comparatively simple mesh template.

059 However, features like hair, accessories, and clothing are often omitted from head tracking, which
 060 typically focuses on landmarks or skin. In a typical video capture, individual landmarks or entire
 061 head regions easily become occluded due to an extreme pose, expression, or a worn accessory,
 062 introducing large errors in tracking. As a result, head tracks produced by conventional approaches
 063 are fundamentally limited by their incompleteness and correspondence instability.

064 To improve robustness of correspondence search, one path forward is to extract and match repre-
 065 sentations densely in each image pixel instead of detection and alignment of isolated landmarks.
 066 Recent image-based vision foundational models (VFM) are one suitable source of such dense repre-
 067 sentations known to be effective in many vision tasks (Dutt et al., 2024; Siméoni et al., 2025).
 068 As human heads constitute a visual category with high structural similarity across instances, it is
 069 natural to expect such representations defined at unambiguous facial features to be nearly view- and
 070 time-invariant, facilitating exact correspondence search.

071 Building on these insights, we propose DenseMarks, a new learned representation for human heads
 072 designed to (1) enable high-quality dense correspondences for complete human heads, including ir-
 073 regular features such as hair or accessories, (2) achieve robust tracking under challenging conditions
 074 such as strong occlusions, and (3) produce a structured, interpretable, and smooth canonical latent
 075 space for exploration and interaction. We use a ViT neural backbone to predict dense per-pixel repre-
 076 sentations within the head mask of an input image; leveraging powerful pre-trained VFM (Siméoni
 077 et al., 2025). These representations are projected into a shared 3D space, reducing correspondence
 078 to nearest-neighbor search and enabling intuitive interactions (e.g., click-based retrieval). To train
 079 without ground-truth dense correspondences, we construct a diverse dataset of human head videos
 080 with 2D point tracks from an off-the-shelf tracker (Karaev et al., 2024a). We enforce fine-grained
 081 cross-subject consistency by optimizing a contrastive loss on matched pairs, and integrate semantic
 082 and smoothness constraints to structure the latent space and improve interpretability.

083 We benchmark against pre-trained VFM variants (Siméoni et al., 2025; Khirodkar et al., 2024; Yue
 084 et al., 2024), with assessment focused on dense image warping and geometric consistency measures.

086 2 RELATED WORK

088 **Face, Head, and Full Body Tracking.** Commonly, tracking humans in videos involves extracting
 089 relevant information for the estimation and alignment of their pose and shape. In the simplest form,
 090 this is achieved by predicting locations of characteristic landmark points with fixed semantics (Sag-
 091 onas et al., 2013; Moon et al., 2020; Jin et al., 2020) using learned models (Bulat & Tzimiropoulos,
 092 2017; Lugaressi et al., 2019a; Cao et al., 2019; Simon et al., 2017; Li et al., 2022). Ease of collecting
 093 annotations and efficiency of landmark detectors have made landmarks essential in practical tracker
 094 design, enabling initial rigid alignment (Qian, 2024; Qian et al., 2024; Grassal et al., 2021; Bogo
 095 et al., 2016; Kanazawa et al., 2018; Kocabas et al., 2020). However, relying on a finite number
 096 of isolated, sparse landmarks can compromise robustness, commonly requiring regularization or
 097 postprocessing such as temporal smoothing (Qian, 2024; Zielonka et al., 2022; Zheng et al., 2023a;
 098 Huang et al., 2022; Jiang et al., 2022).

099 Many methods for estimating and tracking parametric models of faces and bodies (3DMMs (Blanz &
 100 Vetter, 1999; Zhu et al., 2017; Li et al., 2017b; Zhang et al., 2023b; Romero et al., 2017; Loper et al.,
 101 2015; Dai et al., 2020)) are based on the *analysis-by-synthesis* paradigm (Blanz & Vetter, 1999; Zhu
 102 et al., 2017; Feng et al., 2021; Zielonka et al., 2022; Daněček et al., 2022) that involves a combination
 103 of rigid alignment and optimization of denser losses. While offering higher geometric completeness,
 104 such models rely on a simple mesh topology and a limited range of geometries captured by a PCA
 105 basis (Abdi & Williams, 2010; Jolliffe, 2011); for fitting, they commonly depend on prior landmarks
 106 estimation and optimize highly non-convex (e.g., photometric or depth) losses.

107 Our method naturally complements 3DMM-based head trackers by supplying dense, robust semantic
 108 correspondences for complete heads and includes features not trivially captured by landmarks or

108 parametric models (e.g., hair). This idea is similar to works that learn to predict texture coordinates
 109 for alignment of parametric face (Feng et al., 2018; Giebenhain et al., 2025) and body (Güler et al.,
 110 2018; Ianina et al., 2022) models, or compute multi-dimensional features, normals, and depth using
 111 foundation models optimized for the human domain (Khirodkar et al., 2024).

112 **Canonical Space Learning.** Our method represents input samples by learned embeddings in a
 113 shared (*canonical*) space. The idea of using canonical representations for category-level object local-
 114 ization and pose estimation was pioneered by Normalized Object Coordinate Space (NOCS) (Wang
 115 et al., 2019) and subsequently extended to handle sparse views, lack of dense labels, or multiple cat-
 116 egories (Min et al., 2023; Xu et al., 2024; Krishnan et al., 2024). However, directly learning NOCS
 117 representations for 3D heads is difficult as large collections of 3D models are absent in the human
 118 head domain.

119 Shape correspondence task can be formulated as a problem of finding a mapping between spaces
 120 of functions defined on shapes (Ovsjanikov et al., 2012; Rodolà et al., 2017). Existing methods
 121 applying such functional maps for finding full-body correspondences (Neverova et al., 2020; Ianina
 122 et al., 2022) require fitting parametric 3D models for supervision. To enable modeling parts of
 123 human heads absent from parametric models, we opted not to use these in our training.

124 The idea of using canonical space is widespread in 3D-aware per-scene human fitting (Gafni et al.,
 125 2021; Park et al., 2021) and human generative modeling EG3D (Chan et al., 2022; Dong et al.,
 126 2023). Similarly, several works focus on producing unsupervised shape correspondences, in part
 127 based on functional maps (Halimi et al., 2019; Cao & Bernard, 2022; Cao et al., 2023; Liu et al.,
 128 2025).

129 **Embeddings from Foundation Models.** Recent progress in ViT-based VFM (Caron et al., 2021;
 130 Oquab et al., 2023; Siméoni et al., 2025; Weinzaepfel et al., 2022; Dosovitskiy et al., 2020; Han
 131 et al., 2022) and evidence of their emerging understanding of 3D world (Zhang et al., 2024b; Sucar
 132 et al., 2025; Chen et al., 2025a) has fueled efforts to improve their 3D-awareness through fine-
 133 tuning (Yue et al., 2024; Zhang et al., 2024a). Similarly, directly training siamese ViT networks on
 134 pairs of stereo views has been shown to efficiently establish dense correspondences (Wang et al.,
 135 2024; Leroy et al., 2024; Smart et al., 2024; Chen et al., 2025b), when prompted with 2+ images.

136 Another class of VFM, pre-trained diffusion models (e.g., Stable Diffusion (Rombach et al., 2021)),
 137 allow inferring semantic correspondences from their image-based representations (Hedlin et al.,
 138 2023; Zhang et al., 2023a; Zhu et al., 2024) that could be distilled into dense surface correspon-
 139 dences across objects of arbitrary categories (Dutt et al., 2024). In our experiments, we found the
 140 correspondences arising from point tracking (cf. next paragraph) more reliable than those arising
 141 from pretrained diffusion models. Our method benefits from integrating VFM as a feature extractor;
 142 in contrast to generic pre-trained deep features correlated with visual semantics, our geometry-aware
 143 representations yield an interpretable 3D canonical space.

144 **Point Tracking.** The advent of talking heads datasets (Wang et al., 2021; Zhu et al., 2022; Ephrat
 145 et al., 2018) and point trackers calls for approaches to tracking faces and bodies, free of an underly-
 146 ing coarse parametric model. In particular, in a line of works starting from PIPs (Harley et al., 2022),
 147 deep learning based methods are proposed to track any queried point along the video. Progress in
 148 the area of point trackers has been additionally accelerated by the appearance of suitable bench-
 149 marks, such as Tap-Vid (Doersch et al., 2022) and PointOdyssey (Zheng et al., 2023b). A series
 150 of consequent improvements of track-any-point algorithms (Doersch et al., 2023; Li et al., 2024;
 151 Cho et al., 2024) led to the emerging branch of CoTracker works (Karaev et al., 2024b;a), as well
 152 as BootsTAP (Doersch et al., 2024). Similarly, a few methods rely on foundation models, such as
 153 DINO-tracker (Tumanyan et al., 2024) for tracking any point or VGGT (Wang et al., 2025) that uses
 154 point tracks for 3D understanding. Applications of modern algorithmic ideas for point tracking also
 155 led to the appearance of simultaneous reconstruction and tracking methods such as Dynamic 3D
 156 Gaussians (Luiten et al., 2024), St4rTrack (Feng et al., 2025), or Tracks-to-4D (Kasten et al., 2024).
 157 For the downstream tasks of human tracking, similar to our method, some of the recent approaches
 158 also make use of point tracking (Kim et al., 2025; Taubner et al., 2024) or motion data (Shin et al.,
 159 2024).

160
 161

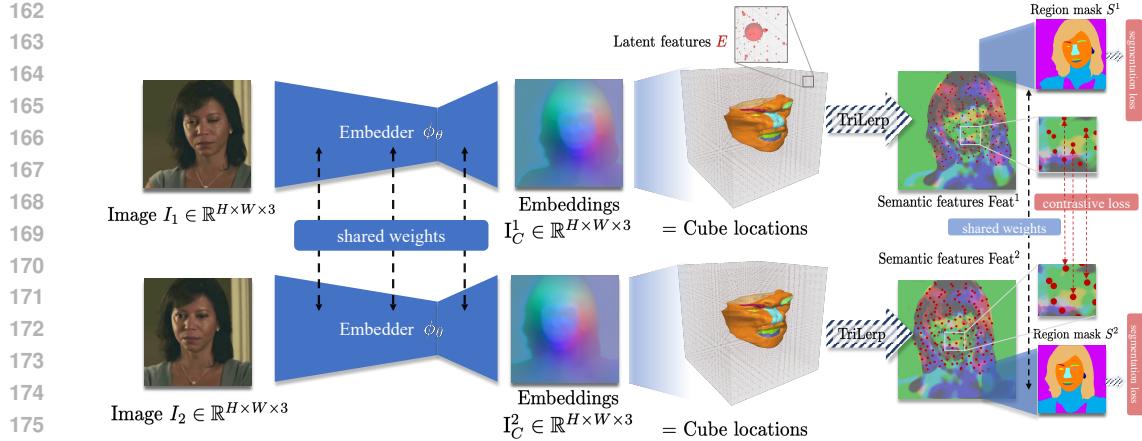


Figure 2: To learn our representation, we train an embedder network ϕ_θ in a siamese fashion. By feeding two image frames from a talking head video of the same person into the embedder independently, we obtain DenseMarks embeddings I_C^1, I_C^2 . These embeddings correspond to canonical locations in the unit cube (DenseMarks space). This cube is discretized in advance, and a learnable matrix E of latent features represents D -dimensional vectors, storing semantic info of each of the voxel grid locations. To transform each of the estimated cube locations into semantic features $\text{Feat}^1, \text{Feat}^2$, we query E at locations I_C^1, I_C^2 via trilinear interpolation (TriLerp). For the images I_1, I_2 , we have a set of pair matches $K_{\text{gt}}^1, K_{\text{gt}}^2$, estimated by an off-the-shelf point tracker (Karaev et al., 2024a). We apply contrastive loss (Radford et al., 2021) to the semantic features of images in these locations. This way, the cube locations corresponding to the same semantic feature are pushed closer together. Additionally, we estimate region masks S^1, S^2 by a semantic network S_ξ and apply segmentation loss.

3 METHOD

In this section, we define the representation (section 3.1) and the way a [2D image \rightarrow embeddings] estimator is trained (section 3.2). The method overview is illustrated in Figure 2.

3.1 DENSEMARKS SPACE

The architecture of our pipeline consists of two key components: the canonical space where the embeddings reside, and the embedder, the task of which is to map an image into this space. The requirements that we set for the space are: (1) interpretable and queryable (the user can query a point in the space by looking at a typical arrangement of regions in it); (2) structured (regions are meaningful and don't overlap); (3) complete (contains the whole head, including the parts that are not trivial to annotate, such as hair and accessories); (4) smooth and continuous (images will be mapped to a continuous manifold of the space, with regions not getting abrupt and intersecting each other).

Additionally, we know that human heads are 3D objects. Even though UV (i.e., 2D canonical space) is a typical surface representation for heads, it's not the most precise representation due to modeling a complete head, including, e.g., hair and accessories, being not trivial in UV space and featuring seams (Ianina et al., 2022). Because of this, we decide to represent our canonical space as a unit cube in 3D and make the canonical embeddings the locations in this cube.

The interpretability requirement (1) and structure requirement (2) are enforced via landmark and segmentation losses, defined further in section 3.2.

The completeness requirement (3) is enforced with the way the embedder is supervised (also see section 3.2). For that purpose, we add a latent grid on top of the cube of a given resolution $N_d \times N_d \times N_d$ and attach a D -dimensional latent feature to each element of the voxel grid, thus forming a learnable matrix $E_{\text{raw}} \in \mathbb{R}^{(N_d)^3 \times D}$. Each latent feature contains a highly-dimensional info about the given location in the canonical space.

Finally, to promote the smoothness requirement (4), we apply spatial smoothness to the matrix E_{raw} via a 3D Gaussian filter with a strength of σ , thus creating a latent feature grid $E = \text{gaussian_filter_3D}(E_{\text{raw}}, \sigma)$. This encourages the predicted embeddings from the embedder to be smoother, since the semantics of the close points in the cube will be similar and smoothly changing.

Note that the use of matrix E is inspired by the similar matrix of latent features used in functional maps, e.g., in CSE (Neverova et al., 2020), that is typically smoothed via a Laplace-Beltrami operator (Lévy, 2006). From a different standpoint, the operation of querying the space can also be seen as an attention operation, where the locations are queries (same as keys in this context) and the latent grid features are values. By aggregating the values at real-valued query locations with trilinear interpolation weights, we obtain the resulting semantic features at a given location.

3.2 EMBEDDER TRAINING

Our goal is to learn a monocular embedder $\psi_\theta : I \rightarrow I_C$, where $I \in \mathbb{R}^{H \times W \times 3}$ is an input RGB image and $I_C \in \mathbb{R}^{H \times W \times 3}$ is the predicted canonical embeddings for each pixel.

The network consists of a Vision Transformer backbone that predicts a feature map, which is further gradually upscaled through a sequence of convolutional layers to match the input resolution.

To train this network, at each training step, we pass two input images $I^1, I^2 \in \mathbb{R}^{H \times W \times 3}$ through the embedder ψ_θ and obtain corresponding predictions $I_C^1 = \psi_\theta(I_1), I_C^2 = \psi_\theta(I_2)$, both in $\mathbb{R}^{H \times W \times 3}$. For these two images, we assume having a number of ground truth pixel correspondences between them $(K_{\text{gt}}^1, K_{\text{gt}}^2) = (\{(i_1^1, j_1^1), \dots, (i_P^1, j_P^1)\}, \{(i_1^2, j_1^2), \dots, (i_P^2, j_P^2)\})$. These correspondences could be coming from any off-the-shelf pairwise matching algorithm. In our case, we obtain them from a point tracker inferred over individual talking head videos, as we found best in practice. Because of this, in our training procedure, images I_1 and I_2 are always coming from the same talking head video, but can represent arbitrarily close or far frames of the same video.

Embeddings $I_C^1 = \psi_\theta(I_1)$ and $I_C^2 = \psi_\theta(I_2)$ point to some real-valued locations in the canonical space. For each of those, we extract their corresponding D -dimensional semantic features via trilinear interpolation (Trilerp) (Bourke, 1999): $I_{\text{feat}}^1 \in \mathbb{R}^{H \times W \times D}, I_{\text{feat}}^2 \in \mathbb{R}^{H \times W \times D}$, where $(I_{\text{feat}}^1)_{ij} = \text{Trilerp}(E, (I_C^1)_{ij}), (I_{\text{feat}}^2)_{ij} = \text{Trilerp}(E, (I_C^2)_{ij})$.

In order to supervise our network, we encourage the features $I_{\text{feat}}^1, I_{\text{feat}}^2$ to be close at the positions, defined by ground truth correspondences $(K_{\text{gt}}^1, K_{\text{gt}}^2)$, and far for other pairs of points. More formally, we first extract semantic features at the integer spatial positions of the ground truth correspondences, yielding tensors of queried features $\text{Feat}^1, \text{Feat}^2 \in \mathbb{R}^{P \times D}$, $\text{Feat}_p^1 = I_{\text{feat}}^1[(K_{\text{gt}}^1)_p], \text{Feat}_p^2 = I_{\text{feat}}^2[(K_{\text{gt}}^2)_p]$. To promote the corresponding features of the first and second image to be close (*positive pairs*) and the others to be far (*negative pairs*), we construct a contrastive loss similar to CLIP Loss (Radford et al., 2021) that requires the pairwise matrix of cosine distances to be close to an identity matrix:

$$\mathcal{L}_{\theta, E}^{\text{contr}}(\text{Feat}^1, \text{Feat}^2) = \|(\text{norm}(\text{Feat}^1))(\text{norm}(\text{Feat}^1))^T - I\|_F,$$

where *norm* is a row-wise normalization operation.

Additionally, we apply a number of regularizations. To reduce ambiguity of the learned canonical space, we impose the locations of standard 300W Sagonas et al. (2013) format face landmarks to be close to the predefined locations in the cube. This is implemented via inferring an off-the-shelf landmark predictor on images I_1, I_2 , thus obtaining ground truth landmark locations $(l_1^1, \dots, l_{68}^1), (l_1^2, \dots, l_{68}^2)$, and anchoring them to the predefined locations $L_k \in \mathbb{R}^3, k = 1, \dots, 68$ in the unit cube:

$$\mathcal{L}_\theta^{\text{lmks}}(I_C | l) = \sum_{k=1}^{68} |I_C^1[l_k] - L_k|$$

To further correlate the predicted canonical embeddings with image semantics, we add a trainable segmentation head S_ξ , consisting of a single conv1x1 layer. For each of the images, this head receives the extracted semantic features (either Feat^1 or Feat^2) and returns the predicted logits of probabilities of class regions (face parsing) – either $S^1 = S_\xi(\text{Feat}^1)$, or $S^2 = S_\xi(\text{Feat}^2)$, both in $\mathbb{R}^{H \times W \times N_S}$. The segmentation loss expression compares each of the predicted masks $S \in \{S^1, S^2\}$

270 to the corresponding ground truth mask $S_{\text{gt}} \in \mathbb{R}^{H \times W \times N_S}$, obtained by an off-the-shelf face parser:
 271

$$272 \quad l^{\text{segm}}(S | S_{\text{gt}}) = \sum_{i,j} \text{cross_entropy}(S[i, j], S_{\text{gt}}[i, j]) \\ 273 \\ 274$$

275 The overall loss is as follows:
 276

$$277 \quad \mathcal{L}_{\theta, E, \xi}(\cdot) = \mathcal{L}_{\theta, E}^{\text{contr}}(\text{Feat}^1, \text{Feat}^2) \\ 278 \quad + \lambda_{\text{lmks}}(l_{\theta}^{\text{lmks}}(\mathbf{I}_C^1 | \mathbf{l}^1) + l_{\theta}^{\text{lmks}}(\mathbf{I}_C^2 | \mathbf{l}^2)) \\ 279 \quad + \lambda_{\text{segm}}(l^{\text{segm}}(S^1 | S_{\text{gt}}^1) + l^{\text{segm}}(S^2 | S_{\text{gt}}^2)) \\ 280$$

281 4 EXPERIMENTS

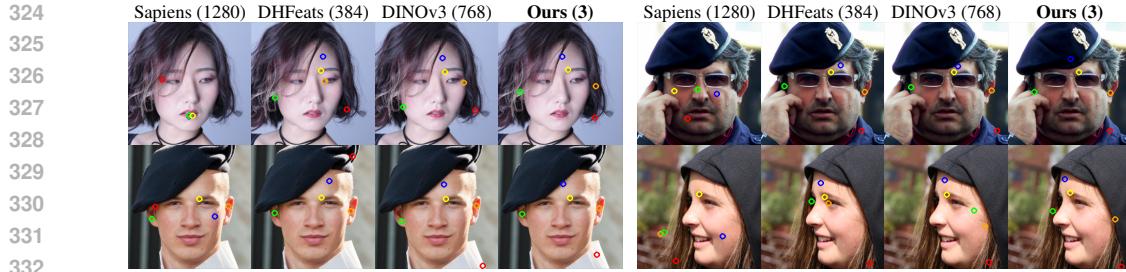
283 4.1 EXPERIMENTAL SETUP

285 **Data.** We train our method on CelebV-HQ dataset (Zhu et al., 2022) of 35K in-the-wild talking
 286 head videos of interview style. To obtain ground truth correspondences $(K_{\text{gt}}^1, K_{\text{gt}}^2)$, we run Co-
 287 Tracker3 (Karaev et al., 2024a) on these videos. As an input set of points to track, we take the whole
 288 foreground region of the first frame (estimated by GroundedSAM2 (Ren et al., 2024) prompted with
 289 the text “*person*”) and sample points uniformly in that region (see an example in Fig. 1 (*left*)).
 290 Videos were discarded if there were either too few tracks found (fewer than 80) or foreground seg-
 291 mentation failed, resulting in 32K videos left. The number of point tracks found did not exceed
 292 400. 100 randomly sampled videos have been held out for the evaluation and used in the results
 293 described below. Each training batch is formed by uniformly sampling two random frames from a
 294 sample video from the constructed annotated dataset. All videos are resized to the (512, 512) res-
 295 olution in advance and fed to the embedder in that resolution. For augmentation, we use random
 296 shift (in [-10%, 10%] range), scale ([-10%, 10%]), and rotation ([-18°, 18°]), each with a chance of
 297 50%. Points which are no longer visible after augmentation are no longer accounted in training. For
 298 the landmark loss, we extract 70 manually selected landmarks (full face border, landmarks on eyes,
 299 nose, and mouth) via Mediapipe (Lugaresi et al., 2019b). Ground truth segmentation masks are ob-
 300 tained via FaRL (Zheng et al., 2022) and are further refined on the borders via face-parsing (Jonathan
 301 Dinu, 2025; Xie et al., 2021), which works better in practice on non-face regions of the head.

302 **Architecture and training.** To make use of strong pretraining, we initialize the embedder with a
 303 pre-trained DINOv3 (Siméoni et al., 2025) checkpoint and add DPT head (Ranftl et al., 2021) to
 304 output an image of the same spatial resolution as the input (512×512). Matrix E is initialized from
 305 a Gaussian distribution $\mathcal{N}(0, 1)$. We use $\lambda_{\text{segm}} = 1$ for the segmentation loss and $\lambda_{\text{lmks}} = 50$ for
 306 the landmark loss. For optimization, we employ the AdamW (Loshchilov, 2017) optimizer with a
 307 learning rate $5 \cdot 10^{-5}$ for the backbone of ϕ_{θ} , learning rate of 10^{-4} for DPT head, and 10^{-3} for the
 308 latent features E . The schedule for all learning rates was cosine annealing with an overall number
 309 of steps of 140K and a warmup for 2'800 steps. Weight decay of 10^{-4} was applied to the network
 310 parameters θ and ξ , except for normalization layers. The whole pipeline is trained for 140k training
 311 steps using 8 pairs of images per batch on a single NVIDIA RTX 3090 Ti GPU for 1.5 days.

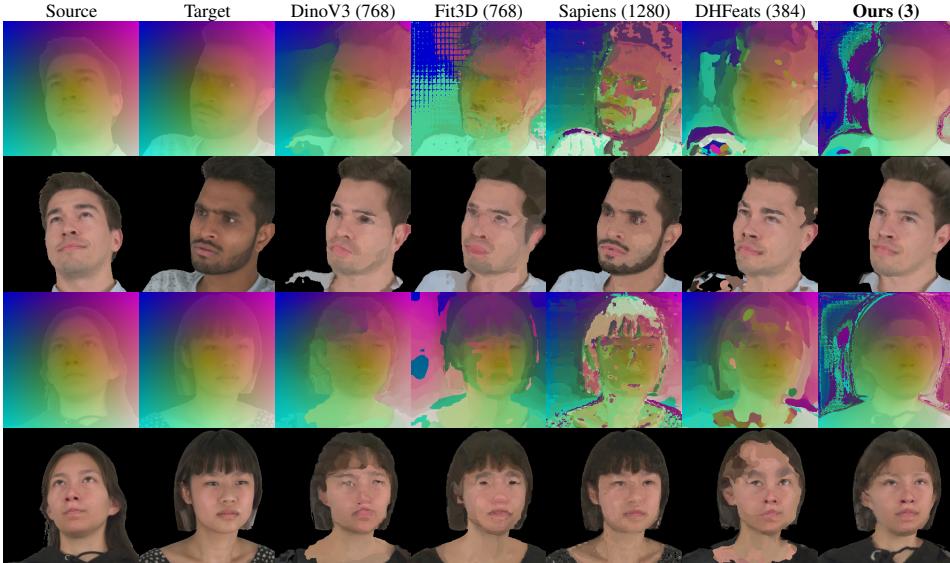
312 4.2 RESULTS

313 **Point querying.** The requirement of the canonical space is that the same semantic points will
 314 have a fixed location in the cube, regardless of the person’s identity. We test this on a number of
 315 points that have distinct semantics: points on hair, ear centers, forehead center, eyebrow corners.
 316 To find each semantic point, we manually annotated 7 sample images from CelebV-HQ, inferred
 317 the trained embedder, and averaged predicted locations in the cube for each annotated point. We
 318 use the obtained location as a reference to find the nearest neighbor in the other image among their
 319 predicted embeddings. Results are demonstrated in Fig. 3. There, we compare against state-of-
 320 the-art dense feature extractors, the embeddings of which provide rich semantic information for a
 321 neighbor search: DINOv3 (Siméoni et al., 2025) (embedding dimension: 768), Sapiens (Khirodkar
 322 et al., 2024) (1280), Diffusion Hyperfeatures (Luo et al., 2023) (384), Fit3D (Yue et al., 2024) (768).
 323 For these methods, semantic points are also estimated by averaging predicted embeddings. Despite
 324 using a significantly smaller vector dimension (3) to store semantics in the embedding, our method



333 Figure 3: Point querying. We select a specific point on a few images and find the reference embedding
 334 by averaging the embeddings predicted by each of the models in its location. Points: **red** = on
 335 the left side of long hair region, **green** = center of the right ear, **orange** = center of the left ear, **blue**
 336 = forehead center, **yellow** = left eyebrow corner. We indicate the embedding dimension in brackets.
 337

346 Figure 4: Semantic regions on head images can be located via selecting corresponding volumetric
 347 regions in the canonical space. Blue: forehead center, green and orange: ears, yellow: skin near the
 348 left eyebrow corner.
 349



369 Figure 5: Dense warping. Here, we copy pixels from source to target based on the target \rightarrow source
 370 nearest neighbors search in the space of embeddings, predicted by each model (*even rows*). For
 371 clarity, mapping of meshgrid-like coordinates, blended with RGB, is shown additionally (*odd rows*).
 372 Even though deep feature extractors provide valuable matches, they are either matching colors, not
 373 semantics (Sapiens (Khirodkar et al., 2024), DHFeats (Luo et al., 2023)), or feature significant artifacts
 374 (DinoV3 (Siméoni et al., 2025), Fit3D (Yue et al., 2024)), thus being less reliable for matching.
 375
 376
 377

can find a corresponding region for challenging views better. Note that our method is also robust to strong face or head occlusions.

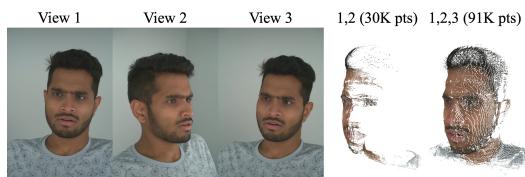
378
 379 Table 1: Quantitative comparison. On same-person pairs of images from Nerssemble (Kirschstein
 380 et al., 2023), we evaluate the quality of correspondences that arise from matching nearest neighbor
 381 embeddings. Similarly, on cross-person pairs, we evaluate the consistency and identity preservation.
 382
 383

	Same-person		Cross-person	
	Matching quality MAE ↓	RMSE ↓	ArcFace ↑	Met3R ↓
DINOv3 (Siméoni et al., 2025)	7.6	12.69	0.266	0.460
Fit3D (Yue et al., 2024)	12.75	21.83	0.236	0.558
Hyperfeatures (Luo et al., 2023)	8.26	13.29	0.329	0.454
Sapiens (Khirodkar et al., 2024)	14.88	24.12	0.167	0.595
Ours	3.68	5.9	0.384	0.388

410 Figure 6: Monocular tracking. We evaluate our method on downstream application of applying
 411 a state-of-the-art off-the-shelf head tracker (Qian, 2024) to track a 3D Morphable Model template
 412 (FLAME (Li et al., 2017a)) over a monocular video. By default, this tracker relies on standard 68
 413 face landmarks and photometric loss. Estimating a DenseMarks texture of FLAME and applying an
 414 additional photometric loss to match it with estimated embeddings greatly improves the robustness
 415 of the tracker, especially for extreme poses.

416
 417 **Region selection.** In Fig. 4, we demonstrate
 418 how the same volumetric region in the canoni-
 419 cal space is mapped onto images of people. The
 420 regions are initially selected on 7 random im-
 421 ages manually and averaged (via a voting pro-
 422 cedure) in the cube space.

423
 424 **Dense warping.** To demonstrate the seman-
 425 tic consistency of embeddings predicted for the
 426 whole image, not only specific points or re-
 427 gions, we demonstrate the warping by embed-
 428 dings in Fig. 5, evaluated on pairs of different people from the Nerssemble dataset (Kirschstein et al.,
 429 2023). For each target image pixel, we replace its color with the color of the nearest neighbor by
 430 embedding in the source. We expect the warping to be semantically meaningful and smooth. It is
 431 observed that when we match nearest neighbors by Diffusion Hyperfeatures and especially Sapiens
 432 embeddings, the matches turn out to be based on the color similarity, not the semantic similarity.
 433 DINOv3 and Fit3D appear more semantically meaningful but often feature artifacts, making the cor-
 434 respondences imprecise, as best observed in the mapping rows in the figure. To evaluate the quality



435 Figure 7: Stereo Reconstruction. We triangulate
 436 2-view and 3-view correspondences of our
 437 representations using known camera parameters in
 438 Nerssemble (Kirschstein et al., 2023).

432 of the mapping, we estimate face recognition similarity based on ArcFace (Deng et al., 2019) be-
 433 tween the source image and the mapping result, as well as the view-consistency metric Met3R (Asim
 434 et al., 2025), and show the results in Table 1.

435 **Geometric consistency.** To assess qualitatively and quantitatively the precision of the estimated cor-
 436 respondences through our embeddings, we repeat the Dense Warping experiment in a similar way
 437 for the (source, target) pairs of images of the same person, not different people, repeated over various
 438 people from the Nerensemble dataset. In Table 1, we demonstrate the evaluation of the correctness of
 439 the estimated correspondences between source and target, averaged over ten people from Nerensem-
 440 ble. As a source of ground truth correspondences, we estimate a complete head mesh from all 16
 441 cameras via GS2Mesh (Wolf et al., 2024) and sample 1K random mesh vertices. The embeddings
 442 are evaluated in the projected locations of these vertices.

443 **Losses ablation.** Even though the network can
 444 learn without introduced constraints on land-
 445 mark locations in the cube and segmentation
 446 loss, we demonstrate that the finding char-
 447 acteristic points and regions becomes more
 448 problematic in Fig. 8. This is explained by a less
 449 semantically constrained canonical space.

450 **Monocular tracking.** As an example
 451 application of our method, we take a
 452 highly-performing off-the-shelf head tracker,
 453 VHAP (Qian, 2024), which supports estima-
 454 tion of the FLAME parametric head model (Li
 455 et al., 2017a). It relies on a standard 300-W
 456 set of 68 sparse landmarks (Sagonas et al.,
 457 2013) for rigid alignment of the template and
 458 optimizes for the shape, pose, and expression
 459 parameters of FLAME, through estimating
 460 RGB texture in the FLAME UV space and
 461 applying photometric loss. Even though VHAP
 462 excels in multi-view settings, monocular
 463 videos can remain challenging due to poten-
 464 tially failing landmark detection, occlusions,
 465 and extreme viewpoints. To aid the tracker in
 466 these situations, we add another photometric
 467 loss that is based on estimating a 3-dimensional
 468 UV texture of DenseMarks embeddings that is
 469 compared to the embeddings predicted by the trained
 470 embedder for each video frame independently.
 471 We run tracking on in-the-wild monocular videos
 472 with different challenging conditions such as strong/fast head rotation, severe hair/accessories
 473 occlusions, very close/far cameras. The results are demonstrated in Figure 6. Our method improves
 474 robustness the most in cases of extreme poses and yields better alignment in challenging regions,
 475 such as neck and ears. We demonstrate the results of tracking over the complete videos in the
 476 Supplementary Video.

477 **Stereo Reconstruction.** In Fig. 7, we demon-
 478 strate that triangulating 2+ images can be done purely
 479 using embeddings from our model, on the example of a sample from Nerensemble with known camera
 480 poses and intrinsics. This way, we demon-
 481 strate the capabilities of [multi-view]-stereo and dense
 482 estimation.

483 5 CONCLUSION

484 We propose a novel representation for human head images and an embedder for dense estimation.
 485 The resulting low-dimensional (3D) embeddings are consistent across views and subjects, enabling
 486 reliable matching of challenging regions like hair. Despite their compactness, they outperform high-
 487 dimensional features from foundation models in geometry-aware tasks like tracking, while benefit-
 488 ing from VFM pretraining. Future work could extend our approach to full bodies and other domains,
 489 which would be anticipated with the appearance of publicly available high-resolution data collec-
 490 tions.

491 Figure 8: Removing the landmark or segmen-
 492 tation loss makes region finding much less reliable.
 493 **Blue:** forehead center, **green** and **orange**: ears,
 494 **yellow**: skin near the left eyebrow corner.

486 6 APPENDIX
487488 **Use of LLMs.** We used LLMs for expanding our knowledge regarding the latest related work.
489490 REFERENCES
491

492 Hervé Abdi and Lynne J Williams. Principal component analysis. *Wiley interdisciplinary reviews: 493 computational statistics*, 2(4):433–459, 2010.
494

495 Mohammad Asim, Christopher Wewer, Thomas Wimmer, Bernt Schiele, and Jan Eric Lenssen.
496 Met3r: Measuring multi-view consistency in generated images. In *Proceedings of the Computer
497 Vision and Pattern Recognition Conference*, pp. 6034–6044, 2025.

498 Volker Blanz and Thomas Vetter. A morphable model for the synthesis of 3d faces. In *Proceedings
499 of the 26th Annual Conference on Computer Graphics and Interactive Techniques*, SIGGRAPH
500 '99, pp. 187–194, USA, 1999. ACM Press/Addison-Wesley Publishing Co. ISBN 0201485605.
501 doi: 10.1145/311535.311556. URL <https://doi.org/10.1145/311535.311556>.

502 Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter Gehler, Javier Romero, and Michael J
503 Black. Keep it smpl: Automatic estimation of 3d human pose and shape from a single image. In
504 *European conference on computer vision*, pp. 561–578. Springer, 2016.
505

506 Paul Bourke. Interpolation methods. *Miscellaneous: projection, modelling, rendering*, 1(10), 1999.
507

508 Adrian Bulat and Georgios Tzimiropoulos. How far are we from solving the 2d & 3d face align-
509 ment problem? (and a dataset of 230,000 3d facial landmarks). In *International Conference on
510 Computer Vision*, 2017.

511 Dongliang Cao and Florian Bernard. Unsupervised deep multi-shape matching. In *European con-
512 ference on computer vision*, pp. 55–71. Springer, 2022.
513

514 Dongliang Cao, Paul Roetzer, and Florian Bernard. Unsupervised learning of robust spectral shape
515 matching. *arXiv preprint arXiv:2304.14419*, 2023.

516 Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh. Openpose: Realtime multi-person
517 2d pose estimation using part affinity fields. *IEEE Transactions on Pattern Analysis and Machine
518 Intelligence*, 2019.

519 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
520 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of
521 the International Conference on Computer Vision (ICCV)*, 2021.

523 Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano, Boxiao Pan, Shalini De Mello, Orazio
524 Gallo, Leonidas J Guibas, Jonathan Tremblay, Sameh Khamis, et al. Efficient geometry-aware 3d
525 generative adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision
526 and pattern recognition*, pp. 16123–16133, 2022.

527 Xingyu Chen, Yue Chen, Yuliang Xiu, Andreas Geiger, and Anpei Chen. Easi3r: Estimating disen-
528 tangled motion from dust3r without training. *arXiv preprint arXiv:2503.24391*, 2025a.
529

530 Zhuoguang Chen, Minghui Qin, Tianyuan Yuan, Zhe Liu, and Hang Zhao. Long3r: Long sequence
531 streaming 3d reconstruction. *arXiv preprint arXiv:2507.18255*, 2025b.
532

533 Seokju Cho, Jiahui Huang, Jisu Nam, Honggyu An, Seungryong Kim, and Joon-Young Lee. Local
534 all-pair correspondence for point tracking. *arXiv preprint arXiv:2407.15420*, 2024.

535 Hang Dai, Nick Pears, William Smith, and Christian Duncan. Statistical modeling of craniofacial
536 shape and texture. *International Journal of Computer Vision*, 128(2):547–571, 2020.
537

538 Radek Daněček, Michael J Black, and Timo Bolkart. Emoca: Emotion driven monocular face
539 capture and animation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition*, pp. 20311–20322, 2022.

540 Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular margin
 541 loss for deep face recognition. In *Proceedings of the IEEE/CVF conference on computer vision*
 542 and pattern recognition, pp. 4690–4699, 2019.

543 Carl Doersch, Ankush Gupta, Larisa Markeeva, Adria Recasens, Lucas Smaira, Yusuf Aytar, Joao
 544 Carreira, Andrew Zisserman, and Yi Yang. Tap-vid: A benchmark for tracking any point in a
 545 video. *Advances in Neural Information Processing Systems*, 35:13610–13626, 2022.

546 Carl Doersch, Yi Yang, Mel Vecerik, Dilara Gokay, Ankush Gupta, Yusuf Aytar, Joao Carreira,
 547 and Andrew Zisserman. Tapir: Tracking any point with per-frame initialization and temporal
 548 refinement. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp.
 549 10061–10072, 2023.

550 Carl Doersch, Pauline Luc, Yi Yang, Dilara Gokay, Skanda Koppula, Ankush Gupta, Joseph Hey-
 551 ward, Ignacio Rocco, Ross Goroshin, Joao Carreira, et al. Bootstrap: Bootstrapped training for
 552 tracking-any-point. In *Proceedings of the Asian Conference on Computer Vision*, pp. 3257–3274,
 553 2024.

554 Zijian Dong, Xu Chen, Jinlong Yang, Michael J Black, Otmar Hilliges, and Andreas Geiger. Ag3d:
 555 Learning to generate 3d avatars from 2d image collections. In *Proceedings of the IEEE/CVF*
 556 *international conference on computer vision*, pp. 14916–14927, 2023.

557 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 558 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
 559 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
 560 *arXiv:2010.11929*, 2020.

561 Niladri Shekhar Dutt, Sanjeev Muralikrishnan, and Niloy J Mitra. Diffusion 3d features (diff3f):
 562 Decorating untextured shapes with distilled semantic features. In *Proceedings of the IEEE/CVF*
 563 *Conference on Computer Vision and Pattern Recognition*, pp. 4494–4504, 2024.

564 Ariel Ephrat, Inbar Mosseri, Oran Lang, Tali Dekel, Kevin Wilson, Avinatan Hassidim, William T
 565 Freeman, and Michael Rubinstein. Looking to listen at the cocktail party: A speaker-independent
 566 audio-visual model for speech separation. *arXiv preprint arXiv:1804.03619*, 2018.

567 Haiwen Feng, Junyi Zhang, Qianqian Wang, Yufei Ye, Pengcheng Yu, Michael J Black, Trevor
 568 Darrell, and Angjoo Kanazawa. St4rtrack: Simultaneous 4d reconstruction and tracking in the
 569 world. *arXiv preprint arXiv:2504.13152*, 2025.

570 Yao Feng, Fan Wu, Xiaohu Shao, Yanfeng Wang, and Xi Zhou. Joint 3d face reconstruction and
 571 dense alignment with position map regression network. In *Proceedings of the European confer-
 572 ence on computer vision (ECCV)*, pp. 534–551, 2018.

573 Yao Feng, Haiwen Feng, Michael J Black, and Timo Bolkart. Learning an animatable detailed 3d
 574 face model from in-the-wild images. *ACM Transactions on Graphics (ToG)*, 40(4):1–13, 2021.

575 Guy Gafni, Justus Thies, Michael Zollhofer, and Matthias Nießner. Dynamic neural radiance fields
 576 for monocular 4d facial avatar reconstruction. In *Proceedings of the IEEE/CVF Conference on*
 577 *Computer Vision and Pattern Recognition*, pp. 8649–8658, 2021.

578 Simon Giebenhain, Tobias Kirschstein, Markos Georgopoulos, Martin Rünz, Lourdes Agapito, and
 579 Matthias Nießner. Mononphm: Dynamic head reconstruction from monocular videos. In *Proc.
 580 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)*, 2024.

581 Simon Giebenhain, Tobias Kirschstein, Martin Rünz, Lourdes Agapito, and Matthias Nießner.
 582 Pixel3dmm: Versatile screen-space priors for single-image 3d face reconstruction. *arXiv preprint*
 583 *arXiv:2505.00615*, 2025.

584 Philip-William Grassal, Malte Prinzler, Titus Leistner, Carsten Rother, Matthias Nießner, and Justus
 585 Thies. Neural head avatars from monocular rgb videos. *arXiv preprint arXiv:2112.01554*, 2021.

586 Rıza Alp Güler, Natalia Neverova, and Iasonas Kokkinos. Densepose: Dense human pose estimation
 587 in the wild. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 588 pp. 7297–7306, 2018.

594 Oshri Halimi, Or Litany, Emanuele Rodola, Alex M Bronstein, and Ron Kimmel. Unsupervised
 595 learning of dense shape correspondence. In *Proceedings of the IEEE/CVF Conference on Com-*
 596 *puter Vision and Pattern Recognition*, pp. 4370–4379, 2019.

597

598 Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua Liu, Yehui Tang,
 599 An Xiao, Chunjing Xu, Yixing Xu, et al. A survey on vision transformer. *IEEE transactions on*
 600 *pattern analysis and machine intelligence*, 45(1):87–110, 2022.

601 Adam W Harley, Zhaoyuan Fang, and Katerina Fragkiadaki. Particle video revisited: Tracking
 602 through occlusions using point trajectories. In *European Conference on Computer Vision*, pp.
 603 59–75. Springer, 2022.

604 James V Haxby, Elizabeth A Hoffman, and M Ida Gobbini. The distributed human neural system
 605 for face perception. *Trends in cognitive sciences*, 4(6):223–233, 2000.

606

607 Eric Hedlin, Gopal Sharma, Shweta Mahajan, Hossam Isack, Abhishek Kar, Andrea Tagliasacchi,
 608 and Kwang Moo Yi. Unsupervised semantic correspondence using stable diffusion. *Advances in*
 609 *Neural Information Processing Systems*, 36:8266–8279, 2023.

610 Yinghao Huang, Omid Taheri, Michael J Black, and Dimitrios Tzionas. Intercap: Joint markerless
 611 3d tracking of humans and objects in interaction. In *DAGM German Conference on Pattern*
 612 *Recognition*, pp. 281–299. Springer, 2022.

613

614 Anastasia Ianina, Nikolaos Sarafianos, Yuanlu Xu, Ignacio Rocco, and Tony Tung. Bodymap:
 615 Learning full-body dense correspondence map. In *Proceedings of the IEEE/CVF conference on*
 616 *computer vision and pattern recognition*, pp. 13286–13295, 2022.

617 Jiaxi Jiang, Paul Streli, Huajian Qiu, Andreas Fender, Larissa Laich, Patrick Snape, and Christian
 618 Holz. Avataposer: Articulated full-body pose tracking from sparse motion sensing. In *European*
 619 *conference on computer vision*, pp. 443–460. Springer, 2022.

620

621 Sheng Jin, Lumin Xu, Jin Xu, Can Wang, Wentao Liu, Chen Qian, Wanli Ouyang, and Ping Luo.
 622 Whole-body human pose estimation in the wild. In *European Conference on Computer Vision*,
 623 pp. 196–214. Springer, 2020.

624

625 Ian Jolliffe. Principal component analysis. In *International encyclopedia of statistical science*, pp.
 1094–1096. Springer, 2011.

626

627 Jonathan Dinu. *jonathandinu/face-parsing*: Face parsing model (fine-tuned from segformer on
 628 celebamask-hq). <https://huggingface.co/jonathandinu/face-parsing>, 2025.
 629 Accessed: 2025-09-25.

630

631 Angjoo Kanazawa, Michael J Black, David W Jacobs, and Jitendra Malik. End-to-end recovery of
 632 human shape and pose. In *Proceedings of the IEEE conference on computer vision and pattern*
 633 *recognition*, pp. 7122–7131, 2018.

634

635 Nikita Karaev, Iurii Makarov, Jianyuan Wang, Natalia Neverova, Andrea Vedaldi, and Christian
 636 Rupprecht. Cotracker3: Simpler and better point tracking by pseudo-labelling real videos. *arXiv*
 637 *preprint arXiv:2410.11831*, 2024a.

638

639 Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia Neverova, Andrea Vedaldi, and Christian
 640 Rupprecht. Cotracker: It is better to track together. In *European conference on computer vision*,
 641 pp. 18–35. Springer, 2024b.

642

643 Yoni Kasten, Wuyue Lu, and Haggai Maron. Fast encoder-based 3d from casual videos via point
 644 track processing. *Advances in Neural Information Processing Systems*, 37:96150–96180, 2024.

645

646 Rawal Khirodkar, Timur Bagautdinov, Julieta Martinez, Su Zhaoen, Austin James, Peter Selednik,
 647 Stuart Anderson, and Shunsuke Saito. Sapiens: Foundation for human vision models. In *Euro-*
 648 *pean Conference on Computer Vision*, pp. 206–228. Springer, 2024.

649

650 Inès Hyeonsu Kim, Seokju Cho, Jahyeok Koo, Junghyun Park, Jiahui Huang, Joon-Young Lee,
 651 and Seungryong Kim. Learning to track any points from human motion. *arXiv preprint*
 652 *arXiv:2507.06233*, 2025.

648 Tobias Kirschstein, Shenhan Qian, Simon Giebenhain, Tim Walter, and Matthias Nießner. Nerseme-
 649 ble: Multi-view radiance field reconstruction of human heads. *ACM Transactions on Graphics*
 650 (*TOG*), 42(4):1–14, 2023.

651 Muhammed Kocabas, Nikos Athanasiou, and Michael J Black. Vibe: Video inference for human
 652 body pose and shape estimation. In *Proceedings of the IEEE/CVF conference on computer vision*
 653 and *pattern recognition*, pp. 5253–5263, 2020.

654 Akshay Krishnan, Abhijit Kundu, Kevins-Kokitsi Maninis, James Hays, and Matthew Brown.
 655 Omnimoces: A unified noces dataset and model for 3d lifting of 2d objects. In *European Conference*
 656 on *Computer Vision*, pp. 127–145. Springer, 2024.

657 Vincent Leroy, Yohann Cabon, and Jérôme Revaud. Grounding image matching in 3d with mast3r.
 658 In *European Conference on Computer Vision*, pp. 71–91. Springer, 2024.

659 Bruno Lévy. Laplace-beltrami eigenfunctions towards an algorithm that “understands” geometry. In
 660 *IEEE International Conference on Shape Modeling and Applications 2006 (SMI’06)*, pp. 13–13.
 661 IEEE, 2006.

662 Hongyang Li, Hao Zhang, Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, and Lei Zhang. Taptr:
 663 Tracking any point with transformers as detection. In *European Conference on Computer Vision*,
 664 pp. 57–75. Springer, 2024.

665 Hui Li, Zidong Guo, Seon-Min Rhee, Seungju Han, and Jae-Joon Han. Towards accurate facial
 666 landmark detection via cascaded transformers. In *Proceedings of the IEEE/CVF conference on*
 667 *computer vision and pattern recognition*, pp. 4176–4185, 2022.

668 Tianye Li, Timo Bolkart, Michael. J. Black, Hao Li, and Javier Romero. Learning a model of facial
 669 shape and expression from 4D scans. *ACM Transactions on Graphics, (Proc. SIGGRAPH Asia)*,
 670 36(6):194:1–194:17, 2017a. URL <https://doi.org/10.1145/3130800.3130813>.

671 Tianye Li, Timo Bolkart, Michael. J. Black, Hao Li, and Javier Romero. Learning a model of facial
 672 shape and expression from 4D scans. *ACM Transactions on Graphics, (Proc. SIGGRAPH Asia)*,
 673 36(6):194:1–194:17, 2017b. URL <https://doi.org/10.1145/3130800.3130813>.

674 Minghua Liu, Mikaela Angelina Uy, Donglai Xiang, Hao Su, Sanja Fidler, Nicholas Sharp, and
 675 Jun Gao. Partfield: Learning 3d feature fields for part segmentation and beyond. *arXiv preprint*
 676 *arXiv:2504.11451*, 2025.

677 Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J. Black.
 678 SMPL: A skinned multi-person linear model. *ACM Trans. Graphics (Proc. SIGGRAPH Asia)*,
 679 34(6):248:1–248:16, October 2015.

680 I Loshchilov. Decoupled weight decay regularization. *arXiv preprint arXiv:1711.05101*, 2017.

681 Camillo Lugaressi, Jiuqiang Tang, Hadon Nash, Chris McClanahan, Esha Ubweja, Michael Hays,
 682 Fan Zhang, Chuo-Ling Chang, Ming Guang Yong, Juhyun Lee, et al. Mediapipe: A framework
 683 for building perception pipelines. *arXiv preprint arXiv:1906.08172*, 2019a.

684 Camillo Lugaressi, Jiuqiang Tang, Hadon Nash, Chris McClanahan, Esha Ubweja, Michael Hays,
 685 Fan Zhang, Chuo-Ling Chang, Ming Guang Yong, Juhyun Lee, et al. Mediapipe: A framework
 686 for building perception pipelines. *arXiv preprint arXiv:1906.08172*, 2019b.

687 Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. Dynamic 3d gaussians:
 688 Tracking by persistent dynamic view synthesis. In *2024 International Conference on 3D Vision*
 689 (*3DV*), pp. 800–809. IEEE, 2024.

690 Grace Luo, Lisa Dunlap, Dong Huk Park, Aleksander Holynski, and Trevor Darrell. Diffusion
 691 hyperfeatures: Searching through time and space for semantic correspondence. In *Advances in*
 692 *Neural Information Processing Systems*, 2023.

693 Zhixiang Min, Bingbing Zhuang, Samuel Schulter, Buyu Liu, Enrique Dunn, and Manmohan Chan-
 694 draker. Neurocs: Neural noces supervision for monocular 3d object localization. In *Proceedings of*
 695 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 21404–21414, 2023.

702 Gyeongsik Moon, Shouu-I Yu, He Wen, Takaaki Shiratori, and Kyoung Mu Lee. Interhand2.6m: A
 703 dataset and baseline for 3d interacting hand pose estimation from a single rgb image. In *European*
 704 *Conference on Computer Vision*, pp. 548–564. Springer, 2020.

705 Natalia Neverova, David Novotny, Marc Szafraniec, Vasil Khalidov, Patrick Labatut, and Andrea
 706 Vedaldi. Continuous surface embeddings. *Advances in Neural Information Processing Systems*,
 707 33:17258–17270, 2020.

708 Maxime Oquab, Timothée Darcet, Theo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov,
 709 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaeldin El-Nouby, Russell Howes, Po-Yao
 710 Huang, Hu Xu, Vasu Sharma, Shang-Wen Li, Wojciech Galuba, Mike Rabbat, Mido Assran,
 711 Nicolas Ballas, Gabriel Synnaeve, Ishan Misra, Herve Jegou, Julien Mairal, Patrick Labatut, Ar-
 712 mand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision,
 713 2023.

714 Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian Butscher, and Leonidas Guibas. Func-
 715 tional maps: a flexible representation of maps between shapes. *ACM Transactions on Graphics*
 716 (*ToG*), 31(4):1–11, 2012.

717 Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman, Steven M
 718 Seitz, and Ricardo Martin-Brualla. Nerfies: Deformable neural radiance fields. In *Proceedings of*
 719 *the IEEE/CVF international conference on computer vision*, pp. 5865–5874, 2021.

720 Shenhan Qian. Vhap: Versatile head alignment with adaptive appearance priors, sep 2024.

721 Shenhan Qian, Tobias Kirschstein, Liam Schoneveld, Davide Davoli, Simon Giebenhain, and
 722 Matthias Nießner. Gaussianavatars: Photorealistic head avatars with rigged 3d gaussians. In *Pro-
 723 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 20299–
 724 20309, 2024.

725 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 726 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 727 models from natural language supervision. In *International conference on machine learning*, pp.
 728 8748–8763. PMLR, 2021.

729 René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for dense prediction.
 730 In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 12179–12188,
 731 2021.

732 Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang Li, He Cao, Jiayu Chen, Xinyu Huang,
 733 Yukang Chen, Feng Yan, et al. Grounded sam: Assembling open-world models for diverse visual
 734 tasks. *arXiv preprint arXiv:2401.14159*, 2024.

735 Emanuele Rodolà, Luca Cosmo, Michael M Bronstein, Andrea Torsello, and Daniel Cremers. Partial
 736 functional correspondence. In *Computer graphics forum*, volume 36, pp. 222–236. Wiley Online
 737 Library, 2017.

738 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 739 resolution image synthesis with latent diffusion models, 2021.

740 Javier Romero, Dimitrios Tzionas, and Michael J. Black. Embodied hands: Modeling and capturing
 741 hands and bodies together. *ACM Transactions on Graphics, (Proc. SIGGRAPH Asia)*, 36(6),
 742 November 2017.

743 Christos Sagonas, Georgios Tzimiropoulos, Stefanos Zafeiriou, and Maja Pantic. 300 faces in-the-
 744 wild challenge: The first facial landmark localization challenge. In *Proceedings of the IEEE*
 745 *international conference on computer vision workshops*, pp. 397–403, 2013.

746 Soyong Shin, Juyong Kim, Eni Halilaj, and Michael J Black. Wham: Reconstructing world-
 747 grounded humans with accurate 3d motion. In *Proceedings of the IEEE/CVF Conference on*
 748 *Computer Vision and Pattern Recognition*, pp. 2070–2080, 2024.

756 Oriane Siméoni, Huy V. Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose,
 757 Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa, Francisco Massa, Daniel
 758 Haziza, Luca Wehrstedt, Jianyuan Wang, Timothée Darct, Théo Moutakanni, Leonel Sentana,
 759 Claire Roberts, Andrea Vedaldi, Jamie Tolan, John Brandt, Camille Couprie, Julien Mairal, Hervé
 760 Jégou, Patrick Labatut, and Piotr Bojanowski. DINOv3, 2025. URL <https://arxiv.org/abs/2508.10104>.

762 Tomas Simon, Hanbyul Joo, Iain Matthews, and Yaser Sheikh. Hand keypoint detection in single
 763 images using multiview bootstrapping. In *CVPR*, 2017.

764 Brandon Smart, Chuanxia Zheng, Iro Laina, and Victor Adrian Prisacariu. Splatt3r: Zero-shot
 765 gaussian splatting from uncalibrated image pairs. *arXiv preprint arXiv:2408.13912*, 2024.

767 Edgar Sucar, Zihang Lai, Eldar Insafutdinov, and Andrea Vedaldi. Dynamic point maps: A versatile
 768 representation for dynamic 3d reconstruction. *arXiv preprint arXiv:2503.16318*, 2025.

770 Felix Taubner, Prashant Raina, Mathieu Tuli, Eu Wern Teh, Chul Lee, and Jinmiao Huang. 3d face
 771 tracking from 2d video through iterative dense uv to image flow. In *Proceedings of the IEEE/CVF*
 772 *Conference on Computer Vision and Pattern Recognition*, pp. 1227–1237, 2024.

773 Justus Thies, Michael Zollhofer, Marc Stamminger, Christian Theobalt, and Matthias Nießner.
 774 Face2face: Real-time face capture and reenactment of rgb videos. In *Proceedings of the IEEE*
 775 *conference on computer vision and pattern recognition*, pp. 2387–2395, 2016.

776 Narek Tumanyan, Assaf Singer, Shai Bagon, and Tali Dekel. Dino-tracker: Taming dino for self-
 777 supervised point tracking in a single video. In *European Conference on Computer Vision*, pp.
 778 367–385. Springer, 2024.

779 He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin, Shuran Song, and Leonidas J Guibas.
 780 Normalized object coordinate space for category-level 6d object pose and size estimation. In
 781 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 2642–
 782 2651, 2019.

783 Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
 784 Novotny. Vggt: Visual geometry grounded transformer. In *Proceedings of the Computer Vision*
 785 *and Pattern Recognition Conference*, pp. 5294–5306, 2025.

786 Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, and Jerome Revaud. Dust3r: Ge-
 787 ometric 3d vision made easy. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 788 *and Pattern Recognition*, pp. 20697–20709, 2024.

789 Ting-Chun Wang, Arun Mallya, and Ming-Yu Liu. One-shot free-view neural talking-head synthesis
 790 for video conferencing. In *CVPR*, 2021.

791 Philippe Weinzaepfel, Vincent Leroy, Thomas Lucas, Romain Brégier, Yohann Cabon, Vaibhav
 792 Arora, Leonid Antsfeld, Boris Chidlovskii, Gabriela Csurka, and Jérôme Revaud. Croco: Self-
 793 supervised pre-training for 3d vision tasks by cross-view completion. *Advances in Neural Infor-
 794 mation Processing Systems*, 35:3502–3516, 2022.

795 Yaniv Wolf, Amit Bracha, and Ron Kimmel. Gs2mesh: Surface reconstruction from gaussian splat-
 796 ting via novel stereo views. In *European Conference on Computer Vision*, pp. 207–224. Springer,
 797 2024.

798 Enze Xie, Wenhui Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and Ping Luo. Seg-
 799 Former: Simple and efficient design for semantic segmentation with transformers. *Advances in*
 800 *neural information processing systems*, 34:12077–12090, 2021.

801 Chao Xu, Ang Li, Linghao Chen, Yulin Liu, Ruoxi Shi, Hao Su, and Minghua Liu. Sparp: Fast
 802 3d object reconstruction and pose estimation from sparse views. In *European Conference on*
 803 *Computer Vision*, pp. 143–163. Springer, 2024.

804 Yuanwen Yue, Anurag Das, Francis Engelmann, Siyu Tang, and Jan Eric Lenssen. Improving 2D
 805 Feature Representations by 3D-Aware Fine-Tuning. In *European Conference on Computer Vision*
 806 (*ECCV*), 2024.

810 Junyi Zhang, Charles Herrmann, Junhwa Hur, Luisa Polania Cabrera, Varun Jampani, Deqing Sun,
 811 and Ming-Hsuan Yang. A tale of two features: Stable diffusion complements dino for zero-shot
 812 semantic correspondence. *Advances in Neural Information Processing Systems*, 36:45533–45547,
 813 2023a.

814 Junyi Zhang, Charles Herrmann, Junhwa Hur, Eric Chen, Varun Jampani, Deqing Sun, and Ming-
 815 Hsuan Yang. Telling left from right: Identifying geometry-aware semantic correspondence. In
 816 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 817 3076–3085, 2024a.

818 Junyi Zhang, Charles Herrmann, Junhwa Hur, Varun Jampani, Trevor Darrell, Forrester Cole, De-
 819 qing Sun, and Ming-Hsuan Yang. Monst3r: A simple approach for estimating geometry in the
 820 presence of motion. *arXiv preprint arXiv:2410.03825*, 2024b.

821 Longwen Zhang, Zijun Zhao, Xinzhou Cong, Qixuan Zhang, Shuqi Gu, Yuchong Gao, Rui Zheng,
 822 Wei Yang, Lan Xu, and Jingyi Yu. Hack: Learning a parametric head and neck model for high-
 823 fidelity animation. *ACM Transactions on Graphics (TOG)*, 42(4):1–20, 2023b.

824 Xiaozheng Zheng, Zhuo Su, Chao Wen, Zhou Xue, and Xiaojie Jin. Realistic full-body tracking
 825 from sparse observations via joint-level modeling. In *Proceedings of the IEEE/CVF International
 Conference on Computer Vision*, pp. 14678–14688, 2023a.

826 Yang Zheng, Adam W Harley, Bokui Shen, Gordon Wetzstein, and Leonidas J Guibas.
 827 Pointodyssey: A large-scale synthetic dataset for long-term point tracking. In *Proceedings of
 828 the IEEE/CVF International Conference on Computer Vision*, pp. 19855–19865, 2023b.

829 Yinglin Zheng, Hao Yang, Ting Zhang, Jianmin Bao, Dongdong Chen, Yangyu Huang, Lu Yuan,
 830 Dong Chen, Ming Zeng, and Fang Wen. General facial representation learning in a visual-
 831 linguistic manner. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 832 Recognition*, pp. 18697–18709, 2022.

833 Hao Zhu, Wayne Wu, Wentao Zhu, Liming Jiang, Siwei Tang, Li Zhang, Ziwei Liu, and
 834 Chen Change Loy. Celebvhq: A large-scale video facial attributes dataset. In *European con-
 835 ference on computer vision*, pp. 650–667. Springer, 2022.

836 Junzhe Zhu, Yuanchen Ju, Junyi Zhang, Muhan Wang, Zhecheng Yuan, Kaizhe Hu, and Huazhe
 837 Xu. Densematch: Learning 3d semantic correspondence for category-level manipulation from
 838 a single demo. *arXiv preprint arXiv:2412.05268*, 2024.

839 Xiangyu Zhu, Xiaoming Liu, Zhen Lei, and Stan Z Li. Face alignment in full pose range: A 3d total
 840 solution. *IEEE transactions on pattern analysis and machine intelligence*, 41(1):78–92, 2017.

841 Wojciech Zienonka, Timo Bolkart, and Justus Thies. Towards metrical reconstruction of human
 842 faces. In *European conference on computer vision*, pp. 250–269. Springer, 2022.

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863