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Abstract

Vision-language models (VLMs) have made great strides in addressing temporal
understanding tasks, which involve characterizing visual changes across a sequence
of images. However, recent works have suggested that when making predictions,
VLMs may rely on static feature biases, such as background or object features,
rather than dynamic visual changes. Static feature biases are a type of shortcut
and can contribute to systematic prediction errors on downstream tasks; as a
result, identifying and characterizing error-inducing static feature biases is critical
prior to real-world model deployment. Existing approaches for identifying such
systematic failure modes in trained models (i) are typically designed for non-
temporal settings and (ii) are challenging to evaluate in temporal settings due to
the lack of quantitative evaluation frameworks. In this work, we address these
challenges by introducing TROVE, an automated approach for discovering error-
inducing static feature biases learned by temporal VLMs. Given a trained VLM
and an annotated validation dataset associated with a downstream classification
task, TROVE extracts candidate static features from the dataset and scores each
feature by (i) the effect of the feature on classification errors as well as (ii) the
extent to which the VLM relies on the feature when making predictions. In
order to quantitatively evaluate TROVE, we introduce an evaluation framework
consisting of 101 trained temporal VLMs paired with ground-truth annotations for
learned static feature biases. We use this framework to demonstrate that TROVE
can accurately identify error-inducing static feature biases in VLMs, achieving
a 28.6% improvement over the closest baseline. Finally, we apply TROVE to
7 off-the-shelf VLMs and 2 temporal understanding tasks, surfacing previously-
unknown static feature biases and demonstrating that knowledge of learned biases
can aid in improving model performance at test time. Our code is available at
https://github.com/Stanford-AIMI/TRoVe.

1 Introduction

Vision-language models (VLMs) capable of jointly processing visual and textual data have been
shown to possess state-of-the-art reasoning abilities [1–7]. In particular, given an input sequence with
multiple images collected across varying timepoints, temporal VLMs can effectively characterize
visual changes over time, a capability known as temporal understanding [8–15]. For example, tempo-
ral VLMs can recognize human actions given a sequence of video frames [11–13] and characterize
disease progression given longitudinal medical images [8–10].

Models designed to perform temporal understanding tasks often demonstrate high overall perfor-
mance; however, recent works have demonstrated that such models may be affected by static feature
biases, a phenomenon where models utilize static patterns (e.g. image background or a particular
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object in the scene) as shortcuts when making predictions rather than analyzing dynamic visual
changes occurring across the image sequence [16–20]. As an illustrative example, consider videos
from an activity recognition dataset with the class label “climbing tree”, which depict people
climbing up or down trees (Figure 1). A temporal VLM is tasked with accepting a sequence of
video frames as input and then classifying the action being performed by the person in the scene.
In this scenario, a VLM that relies on static feature biases may base predictions for the class label
“climbing tree" solely on the presence of trees and foliage, rather than analyzing the true motion
patterns associated with a person climbing a tree. At inference time, the performance of this VLM
will depend heavily on whether the static feature is present; consequently, as illustrated in Figure 1,
the VLM is likely to make systematic prediction errors when classifying videos from other classes
(e.g. “swinging on something") with prominently visible trees.

Class Label:  climbing tree

Class Label:  swinging on something

Temporal 
VLM

climbing tree

climbing tree

swinging on 
something

Temporal 
VLM

Temporal 
VLM

Figure 1: Temporal models often rely on the pres-
ence of static feature biases, such as background
features or objects in the scene, when making
predictions. In this example, the VideoCLIP-XL
model [12] makes systematic prediction errors on
the class swinging on something when trees
are present.

Identifying learned static feature biases that con-
tribute to systematic prediction errors is critical
prior to real-world model deployment [21]. Tra-
ditional approaches for detecting such failure
modes, which typically involve a combination
of manual analysis and pixel-wise interpretabil-
ity algorithms (e.g. GradCAM), require exten-
sive human effort and are time-consuming to
implement at scale, particularly as the length
of the input sequence increases [22, 23]. This
suggests the need for automated approaches;
however, performing automated identification
of error-inducing static feature biases is chal-
lenging for the following two reasons. First,
existing automated approaches for discovering
systematic errors are designed for non-temporal
(e.g. single image) settings [24–27]. Such ap-
proaches, which typically operate by analyzing
model predictions on a labeled validation dataset
and surfacing coherent groups of misclassified
samples, are not adequate for discovering static
feature biases in settings where each data sam-
ple consists of a sequence of multiple, temporally-linked images. Second, performing quantitative
evaluations of automated approaches in the temporal setting is complicated by the fact that the
ground-truth static feature biases of pretrained models are typically unknown; as a result, it is difficult
to ascertain whether biases extracted by automated methods are indeed accurate.

In this work, we address these challenges by introducing TROVE, an automated approach for
improving Temporal Robustness of Vision-Language models. Given a pretrained VLM, our goal is
to discover learned static feature biases that contribute to systematic prediction errors on downstream
temporal understanding tasks. Knowledge of such static feature biases (e.g. trees in the previously-
discussed example) can enable a developer to better understand and address model failure modes
prior to real-world deployment. To this end, TROVE operates on a labeled validation dataset by
first decomposing each input multi-image sequence into constituent images and grouping visually-
similar images into clusters. Here, each cluster represents a particular feature occurring consistently
throughout the dataset. We then introduce a scoring function that ranks each feature by (i) the effect
of the feature on classification errors as well as (ii) the extent to which the VLM relies on the feature
when making predictions. As output, TROVE generates a list of identified static feature biases paired
with affected class labels.

In order to assess the utility of our approach, we design an evaluation framework consisting of 101
temporal VLMs trained on synthetic data. We pair each VLM with annotations for ground-truth error-
inducing static feature biases, enabling rigorous quantitative analyses. Across this suite of models,
TROVE accurately discovers error-inducing static feature biases, achieving a 28.6% improvement
over the closest baseline. We find that TROVE operates effectively across a range of static feature
bias types (background biases, object biases, and attribute biases) and input sequence lengths.

Given the strong performance of TROVE on synthetic experimental settings, we then extend TROVE
to real-world temporal VLMs. Across a suite of seven state-of-the-art VLMs and two temporal
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understanding tasks (activity recognition in videos and disease progression classification in med-
ical images), TROVE accurately surfaces previously-unknown static feature biases. We further
demonstrate that knowledge of TROVE-discovered features can aid in improving test-time VLM
performance; we present an approach for mitigating prediction errors without the need for data
augmentation or VLM retraining, resulting in performance improvements on an activity recognition
task of up to 111% on sequences containing static features.

Ultimately, TROVE demonstrates strong practical utility and can serve as an effective tool for
evaluating and improving robustness of temporal VLMs.

2 Related Work

Discovering systematic errors in non-temporal settings: Since subgroup labels are typically
unavailable in datasets, identifying and understanding critical failure modes of models can be
challenging. Early approaches paired visualization techniques with humans in the loop to identify
model failures [28, 22]; however, this approach is time-consuming and difficult to scale effectively
across large numbers of models and tasks. To address this challenge, a recent line of work has
proposed automated approaches for the task of identifying systematic prediction errors made by
models; notable methods in this domain include Domino [24], Distilling Failures [25], and George
[26], among others [29–31]. Such methods typically analyze model predictions on a labeled validation
set and identify features in the data (e.g. a specific visual cue in image settings) that systematically
contribute to mispredicted labels. Model developers can then use these identified error patterns to
update models prior to deployment [32].

Although such approaches have been shown to be effective, these methods are predominantly designed
for non-temporal settings, where each input sample (e.g. image, text) can be represented as a single
entity. In contrast, input samples in the temporal setting take the form of multi-image sequences,
and collapsing an entire sequence to a single entity provides inadequate granularity for detecting
errors resulting from static feature biases. As we demonstrate in Section 4, naive extensions of such
methods to temporal settings fail to work effectively, particularly when error-inducing features are
visible in only a subset of the sequence.

Our approach also builds upon recent fine-grained approaches in the image setting that leverage
region-level information for detecting systematic errors [27, 33]. However, these approaches are
designed and evaluated solely on non-temporal, single-image settings.

Discovering systematic errors in temporal settings: Prior works have noted that temporal models
often rely on static feature biases as shortcuts when making predictions [20, 34–36]. In such settings,
using just a single frame as input to a model can result in high performance on multi-image temporal
understanding tasks [17, 20]. A range of approaches have been proposed for reducing model reliance
on static feature biases, predominantly in the context of background biases in video-based activity
recognition tasks [37, 16, 18, 19, 38, 39]; such approaches typically involve novel optimization
procedures or data augmentation strategies. We draw a key distinction between these works and our
approach: whereas this line of work focuses explicitly on mitigating the influence of static feature
biases during the model training procedure, our work instead aims to accurately discover learned
biases given a pretrained temporal model. We also extend beyond the human activity recognition
setting, including evaluations on both a synthetic task as well as a medical imaging task.

3 Our Approach: TROVE

We now introduce TROVE, an approach for improving temporal robustness of VLMs by discovering
learned static feature biases that contribute to systematic prediction errors. In Section 3.1, we formally
describe our problem setting. We then present methodological details for TROVE in Section 3.2. An
overview of TROVE is provided in Figure 2.

3.1 Preliminaries

VLMs designed to perform temporal understanding tasks are generally trained on large-scale datasets
of the form D = {(Si, Ti)}mi=1, where Si represents a multi-image sequence and Ti represents
paired text in the form of a caption or description. Each input sequence Si can be expressed as

3



Class Label:  swinging on something Class Label:  climbing tree

Step 1
Extract candidate 
static features

Step 2 Discover error-inducing static feature biases learned by VLMs

Output: 
Discovered 

Static Feature 
Bias

swinging on 
something

Does the feature contribute to 
prediction errors?

Class 
Label

Does the feature represent a learned 
static bias?

VLM

Prediction Confidence
1000

VLM

VLM

Accuracy 100
0

Accuracy 100
0

Sequences 
with feature

Sequences 
without feature

Static 
scene

Figure 2: TROVE is an automated approach for discovering error-inducing static feature biases
learned by temporal VLMs. In this example, TROVE identifies a static feature bias associated with
trees, which results in degraded performance on the class label swinging on something [40].

Si = (I1i , I
2
i , ..., I

ni
i ), where each Ii represents a single image and ni represents the total number of

images in sequence Si. At inference time, temporal VLMs are evaluated using downstream tasks
that assess the ability of the model to understand visual changes over time (e.g. activity recognition,
disease progression classification). By definition, an effective downstream temporal understanding
task will require the model to parse a multi-image sequence and analyze dynamic visual patterns.

In this work, we focus explicitly on downstream temporal understanding tasks formulated as clas-
sification problems, where inference datasets are expressed as DV = {(Si, yi)}pi=1 for sequences
Si and class labels y ∈ Y . Here, Y represents the ground-truth label set associated with the task,
and we assume that ni > 1 for all sequences Si ∈ DV . Recent works have suggested that when
making predictions at inference time, models trained to perform temporal understanding tasks may
rely heavily on static feature biases, such as background features or objects in the scene, rather
than rely on the true dynamic visual changes [16, 34]. For example, as shown in Figure 1, the
recently-introduced VideoCLIP-XL model relies on the presence of trees, a static feature, when
assigning predictions for the class label y = climbing tree [12]. Static feature biases are a type of
shortcut and can ultimately result in systematic prediction errors at inference time; in Figure 1, this
manifests as low performance on other classes in Y \{y} when the static feature is present, such as
the class label swinging on something.

3.2 Discovering Static Feature Biases

Our key goal in this work is to discover static features that meet the following two criteria. First,
identified static features should be error-inducing, meaning that the presence of the feature within a
sequence directly contributes to prediction errors on the downstream temporal understanding task
of interest. Second, identified static features should reflect a learned model bias, suggesting that
the model relies on the presence of the feature when making predictions. However, designing an
automated algorithm that satisfies these two criteria is challenging, since image-level static features
are typically not annotated in temporal datasets and may only occur in a subset of images within a
sequence. For instance, as shown in Figure 1, image-level annotations for trees are not available, and
trees are only visible in a portion of the sequence; this complicates the process of discovering the
association between the static feature and observed prediction errors.

We now introduce TROVE, which identifies static feature biases learned by temporal VLMs. In line
with the criteria described above, TROVE aims to identify static features that both contribute directly
to downstream prediction errors and represent learned model biases. Given a pretrained VLM F and
a validation dataset DV associated with a downstream temporal understanding task, TROVE operates
by (1) extracting candidate static features that occur consistently throughout sequences in DV and (2)
scoring each feature by both its effect on prediction errors made by VLM F and the extent to which
the feature represents a learned bias by VLM F . Importantly, our proposed approach does not require
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image-level static feature annotations and can operate effectively even when static features occur in
only a subset of the sequence.

Extracting candidate static features. Given the labeled validation dataset DV , the first step in
our approach is to extract candidate static features. To this end, we begin by retrieving all multi-
image sequences Si in DV . Since our goal is to identify static feature biases that manifest at the
image level, we compute image-level embeddings for each image Ii contained within input sequence
Si = (I1i , I

2
i , ..., I

ni
i ). To generate an image-level embedding for Ii, we create a new static sequence

consisting of the single image Ii replicated ni times, effectively removing all temporal variation; we
then use the vision encoder of VLM F to compute an embedding for this sequence.

In order to identify static features that occur consistently within dataset DV , we cluster the computed
image-level embeddings using spherical K-means with cosine distance. The optimal number of
clusters is selected automatically by sweeping across a range of potential values and selecting the
number that maximizes the Silhouette score. At the end of this step, we obtain a collection of clusters
C, where each cluster C ∈ C represents a set of images with a shared feature; for instance, in the
example from Figure 2, one cluster in C may consist of frames with prominently-visible trees.

Discovering error-inducing static feature biases. The second step in our approach is to determine
the extent to which a candidate feature represented by cluster C both (i) contributes to prediction
errors and (ii) represents a static bias learned by temporal VLM F . To this end, we introduce a
two-pronged scoring function designed to characterize each of these factors. First, for a given cluster
C, the error contribution score (ECS) evaluates whether VLM F makes systematic prediction errors
on one or more classes when static features associated with C are present. Second, the static bias
score (SBS) evaluates whether VLM F has learned a bias associated with static features in C;
this involves determining the extent to which model F relies on static features in C when making
predictions. We discuss these components in detail below.

For each cluster C ∈ C representing a candidate static feature, we first identify all multi-image
sequences Si ∈ DV with at least one constituent image in cluster C. Let Yc represent the set of
ground-truth class labels associated with these sequences. For cluster C and class label y ∈ Yc, we
compute the error contribution score ECSy

C as follows:

ECSy
C = accy¬C − accyC (1)

Here, accyC represents classification accuracy on all multi-image sequences Si ∈ DV with at least one
constituent image in cluster C and ground-truth label y. Conversely, accy¬C represents classification
accuracy on all multi-image sequences Si ∈ DV with no constituent images in cluster c and ground-
truth label y. The error contribution score ECSy

C ranges between -1 and 1. Large positive values of
ECSy

C suggest that when static features associated with C are present in a sequence, the VLM F is
likely to demonstrate degraded performance on class label y.

Next, for cluster C and class label y ∈ YC , we compute the static bias score SBSy
C . Let ŷi refer to

the label predicted by model F for an input sequence Si ∈ DV . We first filter cluster C to retain only
images Ii where the corresponding sequence Si (1) has ground-truth label y and (2) is mispredicted
(i.e. ŷi ̸= y). We refer to this set as Cwrong ⊆ C. We then use VLM F to classify each image
Ii ∈ Cwrong using the full label set Y; in order to do so, we utilize the same procedure discussed
previously, where we provide a static sequence consisting of image Ii repeated ni times as input
to the vision encoder associated with model F . Our insight here is that the downstream temporal
classification task, by definition, requires a dynamic sequence with visual changes in order to be
successfully solved. As a result, a model that generates high-confidence predictions when provided
with only a static, unchanging sequence as input is likely relying on a learned static bias. Based on
this insight, we compute the static bias score:

SBSy
C =

1

|Cwrong|
∑

Ii∈Cwrong

softmax(F ([Ii, Ii, ..., Ii]))ŷi
(2)

The static bias score ranges between 0 and 1, with large values of SBSy
C suggesting that model F has

learned to rely on the static feature when making predictions. We also calibrate model confidences
via temperature scaling prior to computing the static bias score [41].

Finally, for each cluster C and label y, we compute a sum of the error contribution score and the
static bias score as follows: ECSy

C + SBSy
C . This quantity, which we refer to as the TROVE score,
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Figure 3: Example five-image sequences with injected static visual features. Our evaluation frame-
work considers three types of static visual features - background, object, and attribute - that can
contribute to biased model predictions on temporal understanding tasks.

can be used to measure the extent to which each static feature (i) contributes to prediction errors and
(ii) represents a static bias learned by VLM F . An ablation on the role of the two components of the
TROVE score is provided in Appendix B.

4 Evaluating TROVE in Synthetic Settings

Evaluating TROVE is complicated by the fact that ground-truth biases learned by a VLM are typically
unknown a priori; thus, it is challenging to assess whether discovered biases are indeed accurate. In
order to address this challenge, we introduce a large-scale quantitative evaluation framework that
leverages synthetic data. Our approach is motivated by prior works [24, 27, 42] yet introduces a
novel setup that focuses on temporal settings with multi-image sequence inputs. In Section 4.1, we
discuss details related to the construction of our evaluation framework. Then, in Section 4.2, we
demonstrate quantitatively that TROVE can effectively surface error-inducing static feature biases
learned by VLMs, achieving a 28.6% improvement over the closest baseline.

We emphasize here that the use of synthetic data provides several key advantages, chief among them
the ability to perform large-scale evaluations (we consider 101 temporal VLMs in this analysis)
as well as support for precisely controlling key parameters of the input dataset. We follow up our
synthetic evaluations with additional analyses on real-world settings in Section 5.

4.1 Designing an Evaluation Framework

In this section, we introduce our approach for quantitatively evaluating TROVE. Our insight is to
predefine a static feature b; then, we train a temporal VLM such that it learns a bias with respect
to b, resulting in classification errors at inference time on class label ỹ. This approach allows us
to pair trained VLMs with ground-truth annotations for error-inducing static feature biases b and
associated class labels ỹ. Consequently, we can evaluate TROVE by measuring its ability to identify
biases that align with the ground-truth annotations. Given this setup, we design a suite of evaluation
configurations, with each configuration consisting of the following components:

1. A vision-language training dataset with an injected predefined static feature bias. The vision-
language training dataset D = {(Si, Ti)}mi=1 consists of multi-image sequences Si paired with
textual captions Ti. We construct sequences using synthetic images, where each constituent image
in Si depicts a blue circle placed on a black background. The sequence is paired with a textual
caption Ti, indicating the direction of movement of the circle across the sequence; namely, the
circle may be “moving north", “moving south", “moving west", or “moving east".
Given this setup for dataset D, we then select one of the following static visual features: (i)
background features, where all pixels located outside the circle are colored red, (ii) object features,
where a red rectangle is inserted at a random position in the image, and (iii) attribute features,
where the color of the circle is changed to red. We then insert the selected static visual feature
of interest into dataset D such that the feature is highly prevalent in sequences where the circle
is “moving south" and low in prevalence otherwise; this procedure injects a bias into the training
dataset, contributing to errors at inference time when the static feature appears in sequences from
other classes. Examples of sequences with injected static visual features are provided in Figure 3.

2. A temporal VLM trained on this dataset. We train a temporal VLM F using training dataset D.
Since the dataset exhibits a strong bias with respect to the predefined static feature, the model is
likely to pick up on this shortcut during training.
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Table 1: TROVE reliably demonstrates strong performance across all three feature categories.

Background Object Attribute
Method P@10 P@25 P@100 R-Prec P@10 P@25 P@100 R-Prec P@10 P@25 P@100 R-Prec

Random 20.7 19.6 18.8 18.3 14.3 15.0 16.3 16.2 16.2 19.1 19.4 18.8
Domino 48.6 47.0 32.4 19.7 52.2 47.1 34.8 23.1 63.1 57.8 35.1 19.1
George 45.5 44.7 42.0 35.6 45.0 41.1 44.8 35.7 46.2 46.8 44.4 38.9
Dist. Failures 62.9 62.0 59.9 49.0 60.4 58.3 55.9 49.9 69.2 68.0 66.4 62.3
Confidence 61.0 60.6 64.6 59.5 97.8 97.0 95.6 78.0 58.5 59.4 57.9 52.5
TROVE 100.0 100.0 100.0 95.0 97.8 97.8 97.8 92.8 100.0 100.0 99.3 89.3

3. A downstream temporal understanding task. We establish a downstream temporal understand-
ing task that aligns closely with the training data; namely, given a multi-image sequence depicting
blue circles in each image, the task involves classifying the motion of the circle as one of four
classes: moving north, moving south, moving east, and moving west.

We create a large suite of evaluation configurations by varying the following hyperparameters: (i)
the type of static visual feature (background, object, or attribute), (ii) the sequence length ni, (iii)
the prevalence of sequences in the training dataset with the static feature, and (iv) the number of
images per sequence displaying the static feature. We then verify the quality of each configuration
by evaluating (i) the suitability of the proposed task and (ii) the suitability of the trained VLM.
After the quality verification stage, our framework yields a total of 101 temporal VLMs paired with
ground-truth annotations indicating the predefined static feature bias b and the downstream class label
ỹ on which the bias induces errors. Additional details are provided in Appendix A.

4.2 TROVE Accurately Discovers Error-Inducing Biases in Synthetic Settings

We now evaluate TROVE using the framework from Section 4.1. We provide the trained VLM F and
dataset DV as input. Then, for each class label in DV , TROVE outputs a list of image clusters ranked
by TROVE scores; each cluster represents an identified error-inducing static feature bias.

Recall from Section 4.1 that our framework annotates VLM F with both the ground-truth static
feature bias b (namely, the red background, red rectangle, or red circle) and the downstream class label
ỹ on which the bias induces errors. In order to score the output of TROVE, we compute Precision@K,
defined as the proportion of the top-K images in the generated ranked list for class ỹ that depict b. In
line with prior works on error discovery [24, 27], large Precision@K values suggest that a human user
can easily understand the TROVE-identified bias by simply inspecting the top-K returned images.

We compare TROVE with five methods for systematic error detection. Three state-of-the-art ap-
proaches for systematic error discovery in non-temporal settings are considered: Domino [24],
George [26], and Distilling Failures [25]. Since these methods were designed for non-temporal
settings, each input sequence is represented as a single unit; thus, these methods generate ranked
lists of sequences as output rather than ranked lists of images. We naively adapt these methods
to the temporal setting by first generating a ranking of sequences and then sorting images from
each sequence in temporal order. In addition to these methods, we also compare TROVE with a
previously-developed temporal approach that we refer to as Confidence. Confidence, which is an
application of the method proposed in Li et al. [16], ranks images from sequences in DV by their
maximum image-level prediction confidence. Finally, we consider a random baseline, where we pool
together images from all sequences in DV and then generate a random ordering.

Results are summarized in Table 1, where we report Precision@K for K = 10, 25, 100 as well
as R-precision, a variant of Precision@K where K is equal to the total number of images in DV

annotated with the ground-truth static bias. We demonstrate that TROVE outperforms all other
evaluated methods, achieving a 28.6% improvement over the closest baseline (namely, confidence).
Existing non-temporal systematic error detection methods (Domino, George, and Distilling Failures)
demonstrate low performance when directly extended to the temporal setting due to their inability to
retrieve the specific images containing the static feature from a sequence. Across all three static feature
categories explored in our framework (background, object, and attribute), TROVE demonstrates
superior performance compared to the other methods. We note that whereas baselines exhibit
significant variations in performance across the three static feature categories, TROVE consistently
achieves strong performance. Extended results and ablations are provided in Appendix B.
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Figure 4: [Left Panel] Qualitative examples of static feature biases discovered by TROVE across var-
ious temporal VLMs and downstream tasks. [Right Panel] We demonstrate that TROVE-discovered
biases satisfy desired properties.

5 Evaluating TROVE in Real-World Settings

Given the strong performance of TROVE on our synthetic experimental settings, we now utilize
TROVE to discover error-inducing static feature biases learned by real-world temporal VLMs.
As discussed in Section 4, evaluating the accuracy of discovered biases in real-world settings is
challenging. Consequently, we validate TROVE-identified biases in two ways. First, in Section 5.1,
we utilize image-level pseudolabels to verify that static feature biases surfaced by TROVE exhibit
desired properties. Second, in Section 5.2, we demonstrate that knowledge of TROVE-discovered
features can aid with mitigating prediction errors at test time, yielding substantial performance
improvements without significant model training or data augmentation. Extended implementation
details and results are in Appendix C and D.

5.1 TROVE Accurately Discovers Error-Inducing Biases in Real-World Settings

Analyzing Pretrained VLMs with TROVE: We analyze a suite of pretrained contrastive VLMs
with temporal understanding capabilities [12, 11, 8, 43] across two temporal understanding tasks -
400-class activity recognition on Kinetics400 and 2-class pneumonia progression classification on
MS-CXR-T [40, 8]. For the six pretrained VLMs evaluated on activity recognition, TROVE identifies
between 36 and 116 learned static feature biases per model. For the one pretrained VLM evaluated
on pneumonia progression classification, TROVE identifies 4 learned static feature biases.

In Figure 4 (left panel), we provide examples of static feature biases and associated class labels
surfaced by TROVE. For the VideoCLIP-XL model, TROVE surfaces a feature cluster consisting
of babies; this suggests that when static features associated with babies are present in a sequence,
VideoCLIP-XL is likely to exhibit degraded performance on the class sticking tongue out.
Similarly, on a pneumonia disease progression classification task, TROVE discovers a cluster of chest
X-rays depicting features such as bilateral opacities, medical devices, and low lung volumes, which
are indicative of severe pneumonia. This suggests that when a chest X-ray in a multi-image sequence
depicts such features, BioViL-T is likely to exhibit degraded performance on the class improving
due to a learned static feature bias. We provide additional qualitative examples in Figure 8.

Validating Discovered Biases: In Figure 4 (right panel), we validate the accuracy of biases discov-
ered by TROVE. For the activity recognition task, we utilize an open-vocabulary object detector [44]
to annotate the presence of babies in all constituent images for sequences with class label sticking
tongue out. We find that (i) classification accuracy of VideoCLIP-XL is significantly lower on
this class label (by 15.4 points) when babies are present, and (ii) VideoCLIP-XL demonstrates
high prediction confidence when classifying static sequences with babies, suggesting a learned bias.
Predicted labels for incorrectly-classified sequences in this class include baby waking up and
carrying baby, further corroborating our finding that the model is focusing on the presence of the
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baby rather than the true dynamic visual changes associated with the action sticking tongue out.
Similarly, for the pneumonia progression classification task, we utilize radiology reports as well as
a domain-specific entity extraction tool [45] in order to annotate each image with the presence of
markers associated with severe pneumonia (i.e. bilateral lung involvement, devices, and low lung
volumes). We find that (i) classification accuracy of BioViL-T is lower (by 16.7 points) when these
markers are present, and (ii) BioViL-T demonstrates high prediction confidence when classifying
static sequences with these markers. Additional validation is provided in Appendix D.

Comparing Temporal and Non-Temporal VLMs: Non-temporal VLMs (e.g. CLIP [1]) can
be applied to temporal tasks by encoding each sequence as the mean of its constituent image-level
embeddings. Intuitively, since non-temporal VLMs are trained only on static image-level features,
we should expect to see high rates of static feature biases. Indeed, we find that this intuition holds.
Across four non-temporal VLMs [1, 46] evaluated on activity recognition, TROVE discovers an
average of 134.5 ± 38.8 static feature biases per model. This is considerably larger than the six
temporal VLMs [12, 11, 43], which exhibit an average of 84.5± 27.3 static feature biases per model.

5.2 TROVE Improves Downstream VLM Classification Performance

Table 2: We show that classification accuracy
of VLMs can be improved given knowledge of
TROVE-identified static feature biases. This table
reports performance (Accuracy@5) on a subset of
videos in Kinetics400 [40] containing the top 20
static features identified by TROVE.

Model Label ỹ Overall
VideoCLIP-XL 51.7 82.2

+ TROVE 94.4 86.7
ViCLIP-B 45.3 73.4

+ TROVE 95.8 77.7
ViCLIP-L 71.4 77.1

+ TROVE 96.9 80.7

We now demonstrate that knowledge of TROVE-
identified static feature biases can aid with mit-
igating prediction errors on downstream tasks.
We specifically consider contrastive temporal
VLMs as a case study, which have demonstrated
state-of-the-art performance on many temporal
understanding tasks [12, 11].

We first run TROVE on a validation dataset DV ,
which generates as output a ranked list of im-
age clusters (representing learned static feature
biases) and associated class labels (on which
the presence of the static feature induces errors).
Let C represent an identified image cluster, such
as the cluster of trees in Figure 2, and let ỹ repre-
sent the associated error-prone class label, such
as the label swinging on something in Fig-
ure 2. Due to the learned bias, sequences with
the static feature represented by C are particularly difficult for the VLM to correctly classify.

Prior works in non-temporal settings have suggested that VLM classification accuracy can be
improved by injecting text prompts with additional fine-grained detail in order to maximize class-
level separation [47, 48]. We aim to improve VLM performance on sequences with feature C by
leveraging CoOp, an approach for automatically learning effective prompts [49]. We use CoOp to
learn prompts that achieve the best possible classification accuracy among sequences in DV with at
least one image in cluster C. All parameters in the VLM are frozen, avoiding significant training
costs. At test time, given an input sequence with an unknown label, we first use the trained clustering
model from Section 3 to determine if the sequence contains at least one image in cluster C. If so, we
use the learned prompts to perform classification; otherwise, we use default prompts.

We apply our mitigation approach to improve the performance of three contrastive temporal VLMs
on an activity recognition task (Kinetics400 [40]). In Table 2, we report classification performance
(Accuracy@5) across test set sequences with at least one image assigned to the top-20 TROVE-
identified static feature clusters. Across this set (denoted as “Overall" in Table 2), we observe strong
performance improvements when applying our mitigation approach. Notably, on sequences in this set
with ground-truth labels ỹ that are particularly impacted by static feature biases (denoted as “Label
ỹ" in Table 2), we observe performance improvements of up to 111%. We note that the “Label ỹ"
and “Overall" categories in Table 2 are analogous to worst-group and average analyses performed
in robustness literature. Our results show that knowledge of TROVE-identified biases can aid in
improving test-time VLM performance by correcting errors induced by learned static feature biases.
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6 Conclusion

In this work, we introduced TROVE, an automated approach for improving robustness of temporal
VLMs. Given a temporal VLM, TROVE discovers learned static feature biases that contribute to
prediction errors on downstream tasks. Ultimately, our work can help enable users to discover and
mitigate important failure modes in temporal VLMs prior to deployment in real-world settings.
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A Implementation Details for Synthetic Evaluations

In this section, we expand on Section 4.1 by providing additional implementation details for our
evaluation framework.

Implementation details for vision-language training datasets with injected predefined static
feature biases: Sequences in the vision-language training dataset D are composed of synthetic
images, where each image depicts a blue circle placed on a black background. To generate images,
we first create an empty image of size 60 pixels × 60 pixels. We then place a blue circle with a
diameter of 10 pixels in a random location on the image. The position of the blue circle will vary
across the sequence; specifically, the circle will be "moving north" (towards the upper border of the
image), "moving south" (towards the lower border of the image), "moving west" (towards the left
border of the image), or "moving east" (towards the right border of the image). Textual captions
paired with each sequence indicate the direction of the circle’s movement.

As stated in Section 4.1, we create a large suite of evaluation configurations by varying several
hyperparameters associated with the training dataset. We define each configuration by selecting a
single value for each hyperparameter. Hyperparameters and possible values are described in detail
below:

• Type of static visual feature. Motivated by the types of static feature biases that emerge in real-world
settings [16], we consider three categories of static features: (i) background features, where all
pixels outside the circle are colored red, (ii) object features, where a red rectangle with dimensions
15 pixels × 15 pixels is inserted in a random location, and (iii) attribute features, where the color of
the circle is changed to red. For object features, we ensure that the red rectangle does not overlap
with the blue circle when placed in the image. By design, these three categories of static features
vary in visual subtlety, with background features resulting in the most pixel-level changes and
attribute features the least.

• Sequence length. We consider four options for the sequence length ni: 2 images, 3 images, 5
images, and 10 images.

• Prevalence of sequences in the training set with the static feature. In line with prior work [50],
we use the Cramer’s V metric to ensure that the presence of the static feature in the training set is
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strongly associated with the group of sequences in which the circle is "moving south". We consider
the following values of Cramer’s V: 0.7, 0.8, 0.9, and 0.95.

• Number of images per sequence displaying the static feature. We select a nonzero integer value vi
less than or equal to the value of ni. When injecting the static feature into a selected sequence in
D, we randomly select a contiguous subsequence of vi images to depict the feature. For example,
in Figure 3, vi = 2 and ni = 5.

Implementation details for trained temporal VLMs: As part of our evaluation framework, we
train a temporal VLM F using training dataset D. Model F is implemented in the form of a simple
contrastive VLM where the vision and text encoders are based on the CLIP ViT-L/14 architecture.
For each input sequence Si, constituent images are passed through the vision encoder followed by a
trainable projection head consisting of two linear layers interspersed with a ReLU activation. Our
architecture includes a total of ni projection heads, and the appropriate projection head for each
image is selected based on its position in the sequence. We assume that ni remains constant for all
sequences in the dataset. The resulting embeddings for constituent images are concatenated together
(in order to preserve temporal information) and then passed through a projection head consisting of
three linear layers interspersed with ReLU activations. The output of this projection head is a single
embedding characterizing the sequence.

Training is performed on a single NVIDIA V100 GPU using a batch size of 256, an initial learning
rate of 1e-4, and a total of 100 epochs with early stopping based on validation set performance. All
parameters associated with the vision and text encoder remain frozen, whereas parameters associated
with the projection heads are learnable. At inference time, classification is performed by computing
the cosine similarity between the sequence-level embedding and text embeddings associated with
each class; the class with the highest cosine similarity is selected as the prediction.

Implementation details for downstream temporal understanding tasks: The downstream tem-
poral understanding task takes the form of a classification task in which the motion of the circle
must be classified in one of four categories: moving north, moving south, moving east, and moving
east. In order to reflect real-world settings, we assume that the dataset DV used in the downstream
task is drawn from the same distribution as the training dataset, where the injected static feature is
highly prevalent for the class “moving south" and less prevalent on other classes. For each evaluation
configuration in our suite, we use the same instantiations of hyperparameters for both the training
dataset and the downstream task dataset.

Quality verification: We verify the quality of each evaluation configuration across two axes: (i)
the suitability of the proposed task and (ii) the suitability of the trained VLM.

First, in order to evaluate the suitability of the proposed task, we train a temporal VLM on a version
of the training dataset with no inserted static feature, and we verify that the downstream inference
task can be successfully solved by this model. We also train a standard, non-temporal VLM on this
dataset to perform the task using only a single selected image per sequence, and we verify that the
downstream task cannot be solved by this model; here, we adopt the approach introduced by Buch
et al. [17]. In combination, this analysis confirms that in an unbiased setting, the task can only be
addressed by a temporal VLM capable of parsing visual changes across multiple images. In practice,
we retain evaluation configurations where the temporal, unbiased VLM exhibits at least a 20 point
improvement over the non-temporal, unbiased VLM; the remainder are filtered out.

Second, in order to evaluate the suitability of the trained VLM, we verify that (i) the VLM has learned
the predefined static feature bias and (ii) the presence of the static feature contributes to mispredictions.
To evaluate whether the VLM has learned the predefined static feature bias, we compute the difference
in image-level classification performance between images without the predefined static feature and
images with the predefined static feature. We retain evaluation settings where the gap in performance
is greater than 20 points on at least one class ỹ; the remainder are filtered out. To evaluate whether
the presence of the static feature bias contributes to mispredictions, we compute the difference in
sequence-level classification performance between sequences without the predefined static feature
and sequences with the predefined static feature. Again, we retain all evaluation configurations where
the gap in performance is greater than 20 points on class ỹ. In combination, this analysis confirms
that the trained VLM has learned the static feature bias of interest and that the static feature bias
contributes to errors on at least one class associated with the downstream task.
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Summary statistics: After the quality verification stage, our framework yields a total of 101 valid
evaluation configurations, each consisting of a temporal VLM paired with ground-truth annotations
indicating the learned static feature bias b and the downstream class label ỹ on which the bias induces
errors. Below, we provide a breakdown of these configurations across various factors:

• Downstream class label ỹ: Out of the 101 valid evaluation configurations, the value of ỹ equals
moving north for 17 configurations, moving west for 36 configurations, and moving east for
48 configurations.

• Type of static visual feature: Out of the 101 valid evaluation configurations, 42 exhibit a background
static feature bias, 46 exhibit an object static feature bias, and 13 exhibit an attribute static feature
bias.

• Sequence length: Out of the 101 valid evaluation configurations, 13 have sequences consisting of 2
images, 17 have sequences consisting of 3 images, 34 have sequences consisting of 5 images, and
37 have sequences consisting of 10 images.

• Prevalence of sequences in the training set with the static feature: Out of the 101 valid evaluation
configurations, 1 has a Cramer’s V score of 0.7, 12 have a Cramer’s V score of 0.8, 38 have a
Cramer’s V score of 0.9, and 50 have a Cramer’s V score of 0.95.

• Proportion of images per sequence displaying the static feature: Out of the 101 valid evaluation
configurations, 25 have between 20% and 49% of the frames per sequence depicting the static
feature, 38 have between 50% and 79% of the frames per sequence depicting the static feature, and
38 have between 80% and 100% of the frames per sequence depicting the static feature.

B Extended Results for Synthetic Evaluations

In this section, we extend the results provided in Section 4.2 with additional performance breakdowns.
In Figure 5, we provide a breakdown of TROVE performance by the number of images per sequence.
As part of our suite of 101 trained VLMs, we consider VLMs trained on datasets with varying
numbers of images ni per sequence; in particular, we consider ni ∈ {2, 3, 5, 10}. As shown in
Figure 5, TROVE demonstrates strong performance across all four categories. On the other hand, we
see considerable declines in performance for the Confidence baseline as the number of images per
sequence increases.

In Figure 6, we analyze TROVE performance with respect to the proportion of images per sequence
displaying the static feature. As part of our suite of 101 trained VLMs, we consider VLMs trained
on datasets with varying proportions of images per sequence containing the static visual feature; for
instance, in a sequence consisting of five images, a proportion of 0.4 indicates that two images in the
sequence display the static feature, as depicted in Figure 3. TROVE demonstrates strong performance
across the spectrum, whereas baselines again show considerable variation. The ability of TROVE
operate effectively even when the static feature is only visible in a portion of the sequence is a key
advantage over the non-temporal systematic error detection methods (Domino, Distilling Failures,
and George) evaluated in this work.

In Figure 7, we provide overall performance metrics across four evaluation metrics: Precision@10,
Precision@25, Precision@100, and R-Precision. Across all metrics, TROVE demonstrates superior
performance to baselines, demonstrating that our approach is effective at generating accurate ranked
lists of identified static feature biases.

In Table 3, we provide an ablation with respect to the two components that make up the TROVE score:
the Static Bias Score (SBS) and the Error Contribution Score (ECS). We demonstrate that using both
components in tandem yields significantly higher performance across our synthetic evaluations than
using SBS alone. We do not perform an ablation with the ECS alone, since using ECS alone will not
specifically target static feature biases, which are the topic of this work.

C Implementation Details for Real-World Evaluations

In this section, we provide additional implementation details associated with the analysis in Section
5.
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Figure 5: TROVE demonstrates strong performance across evaluation configurations with varying
numbers of images per sequence.
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Figure 6: TROVE consistently demonstrates strong performance regardless of the proportion of
images per sequence displaying the static feature.

We utilize TROVE to analyze seven pretrained contrastive VLMs with temporal understanding
capabilities using two temporal understanding tasks: activity recognition on Kinetics400 [40] and
pneumonia progression classification on MS-CXR-T [8].

Activity Recognition on Kinetics400: The activity recognition task on Kinetics400 involves
classifying a video into one of 400 possible classes that represent human actions, such as welding or
climbing tree. The model is presented with a sequence of video frames as input; for our analysis,
we use 8 frames per video obtained via uniform sampling. We split the validation set of Kinetics400
into a development set (used for the analysis in this section) and a test set (used for the analysis in
Section 5.2 where we mitigate biases). We compute logits and predictions for each model using a
standard zero-shot classification approach, performed by computing the cosine similarity between the
sequence embedding and text embeddings representing each class label. In line with prior work [1],
we compute text embeddings by ensembling the following prompt templates for each class label: {"a
photo of [LABEL].", "a photo of a person [LABEL].", "a photo of a person using [LABEL].", "a
photo of a person doing [LABEL].", "a photo of a person during [LABEL].", "a photo of a person
performing [LABEL].", "a photo of a person practicing [LABEL].", "a video of [LABEL].", "a video
of a person [LABEL].", "a video of a person using [LABEL].", "a video of a person doing [LABEL].",
"a video of a person during [LABEL].", "a video of a person performing [LABEL].", "a video of
a person practicing [LABEL].", "a example of [LABEL].", "a example of a person [LABEL].", "a
example of a person using [LABEL].", "a example of a person doing [LABEL].", "a example of a
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Figure 7: We compute four metrics to characterize overall performance of TROVE on our evaluation
framework: Precision@10, Precision@25, Precision@100, and R-Precision.

Table 3: Ablations with respect to the two components of the TROVE score.

Method P@10 P@25 P@100 RP
Static Bias Score (SBS) Only 76.2 76.2 75.9 78.2
Static Bias Score (SBS) & Error Contribution Score (ECS) 99.1 99.1 98.9 93.2

person during [LABEL].", "a example of a person performing [LABEL].", "a example of a person
practicing [LABEL].", "a demonstration of [LABEL].", "a demonstration of a person [LABEL].",
"a demonstration of a person using [LABEL].", "a demonstration of a person doing [LABEL].", "a
demonstration of a person during [LABEL].", "a demonstration of a person performing [LABEL].",
"a demonstration of a person practicing [LABEL]."}. Kinetics400 is open-source.

We analyze six contrastive VLMs on the activity recognition task (VideoCLIP-XL [12], ViCLIP-L
[11], ViCLIP-B [11], XCLIP-B/16 [43], XCLIP-B/32 [43], and XCLIP-L/14 [43]). As described
in Section 3, TROVE includes a clustering stage. The optimal number of clusters is selected
automatically by sweeping across a range of potential values [|Y| ∗ 2, |Y| ∗ 6) at increments of 400;
here, the bounds of the range evaluate to [800, 2400), given the fact that |Y| = 400. We classify a
prediction as correct if the ground-truth label appears in the top-5 predicted classes (i.e. Accuracy@5).
We exclude any identified static feature biases where (1) the error contribution score is low (defined as
below a predefined threshold of 0.1) and (2) the static bias score is less than or equal to random chance
(defined as 1/|Y| = 0.0025 in this case). VideoCLIP-XL is available under CC-By-NC-SA-4.0.
ViCLIP and XCLIP are available under MIT licenses. We implement TROVE using a single NVIDIA
V100 GPU.

Pneumonia Progression Classification on MS-CXR-T: The pneumonia progression classification
task on MS-CXR-T involves classifying a sequence of chest X-rays collected at varying timepoints
into one of two possible categories: improving, which suggests that pneumonia is improving over
the course of the sequence, and worsening, which suggests that pneumonia is worsening over the
course of the sequence. Each sequence contains two chest X-rays. We compute logits and predictions
using a standard zero-shot classification approach. In line with prior work [8], we compute text
embeddings by ensembling across prompt templates. For the class label improving, we utilize
the following prompts: {"pneumonia is better", "pneumonia is cleared", "pneumonia is decreased",
"pneumonia is decreasing", "pneumonia is improved", "pneumonia is improving", "pneumonia is
reduced","pneumonia is resolved", "pneumonia is resolving", "pneumonia is smaller"}. For the
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class label worsening, we utilize the following prompts: {"pneumonia is bigger", "pneumonia is
developing", "pneumonia is enlarged","pneumonia is enlarging", "pneumonia is greater", "pneumonia
is growing","pneumonia is increased", "pneumonia is increasing", "pneumonia is larger","pneumonia
is new", "pneumonia is progressing", "pneumonia is progressive","pneumonia is worse", "pneumonia
is worsened", "pneumonia is worsening"}. MS-CXR-T is available under PhysioNet Credentialed
Health Data License 1.5.0.

We analyze one contrastive VLM on the pneumonia progression classification task (BioViL-T [8]).
As described in Section 3, TROVE includes a clustering stage. The optimal number of clusters is
selected automatically by sweeping across a range of potential values [|Y| ∗ 2, |Y| ∗ 6) at increments
of 1; here, the bounds of the range evaluate to [4, 12), given the fact that |Y| = 2. We exclude
any identified static feature biases where (1) the error contribution score is low (defined as below
a predefined threshold of 0.1) and (2) the static bias score is less than or equal to random chance
(defined as 1/|Y| = 0.5 in this case). BioViL-T is available under an MIT license. We implement
TROVE using a single NVIDIA V100 GPU.

D Extended Results for Real-World Evaluations

D.1 Analysis of Pretrained Temporal VLMs
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Figure 8: Additional qualitative examples of static feature biases discovered by TROVE across
various temporal VLMs.
On the activity recognition task, we identify 104 static feature biases for VideoCLIP-XL, 104 static
feature biases for ViCLIP-L, 116 static feature biases for ViCLIP-B, 66 static feature biases for
XCLIP-B/16, 81 static feature biases for XCLIP-B/32, and 36 static feature biases for XCLIP-L/14.
On the pneumonia progression classification task, we identify 4 static feature biases for BioViL-T. We
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observe a general trend that as the size of the model increases across the same family (for example,
ViCLIP-B vs. ViCLIP-L and XCLIP-B/16 vs. XCLIP-L/14), the number of identified static feature
biases decreases, potentially suggesting that larger models are less reliant on static feature biases.
This follows logically from the fact that larger models also exhibit better overall performance with
lower error rates on the activity recognition task, suggesting that these models are more likely to have
learned true dynamic patterns. We also note here that the number of identified static feature biases is
strongly correlated with the size of dataset and the number of classes; as a result, the smaller number
of identified static feature biases for pneumonia progression classification in comparison to activity
recognition is expected.

We validate the quality of each discovered bias by verifying whether the desired properties (namely,
error-inducing and learned model bias) are satisfied. Here, we provided extended details on our
human-in-the-loop validation procedure introduced in Section 5.1. First, given a TROVE-discovered
cluster of images C and associated error-prone class label ỹ, a human reader annotates the key feature
shared among images in cluster C (e.g. "baby" in the activity recognition example provided in Figure
4). Then, for all sequences in the dataset with class label ỹ, we assign image-level pseudolabels
indicating whether the human-annotated feature (e.g. "baby" in Figure 4) is present or absent. For
the activity recognition task, image-level pseudolabels are obtained by leveraging an off-the-shelf
open-vocabulary object detector (OwlV2) [44], which is prompted to detect the presence of the
human-annotated feature. The feature is considered to be present in an image if the confidence of
OwlV2 is at least 0.3. For the pneumonia progression classification task, we obtain image-level
pseudolabels by leveraging RadGraph-XL [45], a domain-specific entity recognizer, to annotate
findings present in each image. Then, given image-level pseudolabels, we evaluate whether the
TROVE-identified bias satisfies the two desired properties:

• Does the discovered feature contribute to prediction errors? We compute classification accuracy on
sequences from class label ỹ with the human-annotated feature as well as sequences from class label
ỹ without the human-annotated feature. If the TROVE-discovered bias is accurate, then we would
expect to see lower performance on class label ỹ when sequences contain the human-annotated
feature.

• Does the discovered feature represent a learned static bias? For each constituent image per
incorrectly-classified sequence, we construct a static sequence consisting of the single image
repeated ni times. We then obtain softmax-normalized prediction logits when performing classi-
fication with the static sequence, and we extract the maximum value across all classes (i.e. the
maximum prediction confidence). If the TROVE-discovered bias is accurate, then we would expect
to see large confidence values, suggesting that the model is able to make highly-confident predic-
tions without the use of any temporal information. In particular, we would expect to see confidence
values significantly larger than the confidence values that would be expected by random chance
(i.e. 1/|Y|). In our plots in Figures 4 and 8, we provide a comparison of the mean image-level
maximum confidence values between images with the human-annotated feature and images without
the human-annotated feature.

Figure 8 provides additional qualitative examples of error-inducing static feature biases and associated
class labels discovered by TROVE, as well as associated validation results. Below, we analyze the
results in each panel:

• [Panel A]: TROVE discovers a cluster of images depicting children and toy carts, suggesting that
when features associated with children and toy carts are present in a sequence, ViCLIP-B is likely
to exhibit lower performance on the class pushing cart. ViCLIP-B mispredicts these samples
as crawling baby and crying baby, suggesting that the model is relying on static features
associated with children when making predictions. In order to validate this finding, we use OwlV2
[44] to annotate the presence of a "child with toy" in all constituent images for sequences in class
pushing cart. We find that (i) classification accuracy of ViCLIP-B is significantly lower on this
class label (23.3 points) when children and toys are present and (ii) ViCLIP-B demonstrates high
prediction confidence when classifying static sequences from this class label with children and
toys.

• [Panel B]: TROVE discovers a cluster of images consisting of trees, suggesting that when static
features associated with trees are present in a sequence, VideoCLIP-XL is likely to exhibit lower
performance on the class swinging on something. VideoCLIP-XL mispredicts these samples
as climbing tree, suggesting that the model is relying on static features associated with trees
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when making predictions. This example is highlighted in Figure 2. In order to validate this finding,
we use OwlV2 [44] to annotate the presence of a "tree" in all constituent images for sequences
in class swinging on something. We find that (i) classification accuracy of VideoCLIP-XL is
significantly lower on this class label (16.7 points) when trees are present and (ii) VideoCLIP-XL
demonstrates high prediction confidence when classifying static sequences from this class label
with trees. We note that the difference in mean image-level maximum confidence values between
images with trees and images without trees is relatively small in this example (3 points); regardless,
the prediction confidence is substantially larger than what would be expected by random chance
(0.25 vs. 42.8), suggesting that the model is relying on a learned static bias.

• [Panel C]: TROVE discovers a cluster of images consisting of babies, suggesting that when static
features associated with babies are present in a sequence, ViCLIP-L is likely to exhibit lower
performance on the class sticking tongue out. ViCLIP-L mispredicts these samples as baby
waking up, suggesting that the model is relying on static features associated with babies when
making predictions. Interestingly, this example is similar to the example provided in Figure 4 (left
panel), suggesting that ViCLIP-L and VideoCLIP-XL both learned a similar error-inducing static
feature bias. In order to validate this finding, we use OwlV2 [44] to annotate the presence of a
"baby" in all constituent images for sequences in the class sticking tongue out. We find that
(i) classification accuracy of ViCLIP-L is significantly lower on this class label (27.9 points) when
babies are present and (ii) ViCLIP-L demonstrates high prediction confidence when classifying
static sequences from this class label with babies.

• [Panel D]: TROVE discovers a cluster of images consisting of divers with swimming pool back-
grounds, suggesting that when these static features are present in a sequence, ViCLIP-L is likely to
exhibit lower performance on the class somersaulting. Frequent mispredictions in this set of
samples are the class labels springboard diving and jumping into pool, suggesting that the
model is relying on static features associated with the pool when making predictions. Importantly,
we note here that although these predictions do not align with the ground-truth label (somersaulting),
they are not necessarily incorrect in this setting; this raises the possibility of another potential
use case for TROVE in real-world settings: flagging potential labeling errors. To validate the
discovered bias, we use OwlV2 [44] to annotate the presence of a "pool" in all constituent images
for sequences in the class somersaulting. We find that (i) classification accuracy of ViCLIP-L
is significantly lower on this class label (13.5 points) when pools are present and (ii) ViCLIP-L
demonstrates high prediction confidence when classifying static sequences from this class label
with pools.

For our analysis of non-temporal VLMs on the activity recognition task, we consider four models:
CLIP-ViTB/32 [1], CLIP-ViTL/14 [1], CLIP-RN50 [1], and SigLIP [46]. We identify 195 static
feature biases for CLIP-ViTB/32, 92 static feature biases for CLIP-ViTL/14, 111 static feature biases
for CLIP-RN50, and 140 static feature biases for SigLIP.

D.2 Improving Downstream Classification Performance

We implement CoOp [49] using the default settings provided in the original implementation. For
each considered cluster C, we utilize an SGD optimizer with a learning rate of 0.002 and train for 20
epochs. In Table 2, we reported mean classification accuracy across the test set sequences containing
the top-20 TROVE-identified static features. In Table 4, we extend these results by reporting mean
classification performance (evaluated with Accuracy@5) across the test set sequences containing the
top-5 TROVE-identified static features and the top-10 TROVE-identified static features. In Table 5,
we report Accuracy@1 metrics. Table 6 lists the number of test set sequences considered under each
category when computing results in Tables 2, 4, and 5. Our mitigation approach leads to consistent
performance improvements with minimal computational cost, demonstrating the practical utility of
TROVE-identified biases.

D.3 Extending to Additional Tasks

We now extend our analysis on activity recognition to two additional tasks: 600-class activity
recognition on Kinetics600 [51] and 174-class fine-grained activity recognition on Something-
Something V2 [52]. Here, we specifically consider the VideoCLIP-XL model [12].
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Table 4: We show that classification accuracy of VLMs can be improved given knowledge of TROVE-
identified static feature biases. This table reports performance (Accuracy@5) on a subset of videos in
Kinetics400 [40] containing the top-5 TROVE-identified static features, the top-10 TROVE-identified
static features, and the top-20 TROVE-identified static features.

Model Top 5 Identified Features Top 10 Identified Features Top 20 Identified Features
Label ỹ Overall Label ỹ Overall Label ỹ Overall

VideoCLIP-XL 47.1 84.1 63.0 82.3 51.7 82.2
+ TROVE 82.4 89.4 91.3 84.7 94.4 86.7

ViCLIP-B 21.1 69.5 22.7 69.0 45.3 73.4
+ TROVE 89.5 75.9 93.2 75.5 95.8 77.7

ViCLIP-L 58.6 69.9 64.3 75.7 71.4 77.1
+ TROVE 96.6 78.2 96.4 78.8 96.9 80.7

Table 5: We show that classification accuracy of VLMs can be improved given knowledge of TROVE-
identified static feature biases. This table reports performance (Accuracy@1) on a subset of videos in
Kinetics400 [40] containing the top-5 TROVE-identified static features, the top-10 TROVE-identified
static features, and the top-20 TROVE-identified static features.

Model Top 5 Identified Features Top 10 Identified Features Top 20 Identified Features
Label ỹ Overall Label ỹ Overall Label ỹ Overall

VideoCLIP-XL 17.6 48.3 21.7 52.7 18.0 55.0
+ TROVE 41.2 58.5 45.7 55.8 61.8 57.1

ViCLIP-B 5.3 34.2 6.8 37.7 24.2 43.1
+ TROVE 15.8 43.9 50.0 47.9 62.1 50.9

ViCLIP-L 3.4 35.2 16.1 40.9 23.5 45.6
+ TROVE 48.3 46.1 53.6 48.2 63.3 50.1

We first analyze the performance of VideoCLIP-XL on Kinetics600 using TROVE. In this setting,
TROVE identifies 149 learned static feature biases; in comparison, TROVE had identified 104
learned static feature biases on Kinetics400. Intuitively, the larger number of static feature biases
discovered with Kinetics600 is expected due to the fact that Kinetics600 is an approximate superset
of Kinetics400.

We find high consistency between results on Kinetics400 and Kinetics600. For instance, the top-
ranked static feature identified by TROVE on Kinetics600 depicts a cluster of trees paired with the
class label "swinging on something", suggesting that when static features associated with trees are
present in a sequence, VideoCLIP-XL is likely to exhibit lower performance on the class "swinging
on something". An identical static feature bias was identified when evaluating VideoCLIP-XL on
Kinetics400, as shown in Figures 1, 2, and 8 [Panel B]. The ability of TROVE to yield consistent
results across two distinct evaluation settings demonstrates its reliability. TROVE also uncovers new
static feature biases not identified in Kinetics400, such as a link between static features associated
with trampolines and errors on the class label "backflip (human)".

We then analyze VideoCLIP-XL on Something-Something V2. Something-Something V2 is a chal-
lenging task in zero-shot settings due to the fine-grained nature of class labels (e.g. "putting something
on a surface", "pushing something from left to right", etc.). VideoCLIP-XL achieves an overall
zero-shot performance (Accuracy@5) of just 18.1 on Something-Something V2. When analyzing
VideoCLIP-XL with TRoVe, we discover 14 error-inducing static feature biases in this setting. The
low number of identified static feature biases in comparison to Kinetics400 and Kinetics600 aligns
with expectations, since Something-Something V2 was specifically designed to ensure that reliance
on single-frame, static content will not aid with predicting any of the classes; thus, models are
unlikely to rely on static features as shortcuts on this task. Consequently, the observed low zero-shot
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Table 6: Here, we list the number of test set sequences considered under each category when
computing results in Tables 2, 4, and 5. The "Overall" column lists the number of test set sequences
with at least one constituent image assigned to the top-K TROVE-identified static feature clusters.
The "Label ỹ" column lists the number of test set sequences with ground-truth label ỹ and at least
one constituent image assigned to the top-K TROVE-identified static feature clusters.

Model Top 5 Identified Features Top 10 Identified Features Top 20 Identified Features
Label ỹ Overall Label ỹ Overall Label ỹ Overall

VideoCLIP-XL 17 207 46 419 89 669
ViCLIP-B 19 187 44 355 95 831
ViCLIP-L 29 193 56 452 98 866

Table 7: We show that classification accuracy of VLMs on Kinetics600 and Something-Something
V2 can be substantially improved given knowledge of TROVE-identified static feature biases.

Model Kinetics600 Something-Something V2
Label ỹ Overall Label ỹ Overall

VideoCLIP-XL 54.4 80.1 7.3 30.0
+ TROVE 97.1 85.1 97.6 50.5

performance of VideoCLIP-XL on Something-Something V2 is likely a result of general reasoning
limitations rather than learned static feature biases.

Next, we extend the analysis provided in Section 5.2 by mitigating prediction errors on Kinetics600
and Something-Something V2 at test time. Table 7 shows that classification accuracy of VideoCLIP-
XL on these tasks can be substantially improved given knowledge of TROVE-identified static feature
biases.

E Additional Applications of TROVE

In this section, we highlight another potential use-case of TROVE in real-world settings: analyzing
the composition of temporal datasets. To analyze the composition of Kinetics400 [40], we construct
an ensemble of six contrastive temporal VLMs; then, for each model, we use TROVE to identify static
feature biases and corresponding class labels on which the bias induces errors. Our analysis finds that
two classes in Kinetics400, namely sneezing and cracking neck, are identified as error-prone
classes by all six models; this finding suggests that these two classes are likely to be consistently
impacted by learned static feature biases. In contrast, 185 classes like training dog and dancing
ballet are not affected by learned error-inducing static feature biases for any of the considered
models.

In Figure 9, we vary the models included in the ensemble. Figure 9 [Panel A] considers an ensemble of
two ViCLIP models (ViCLIP-B and ViCLIP-L) and identifies a total of 33 classes that are consistently
impacted by learned static feature biases across both models. The 33 identified classes (sorted by
their mean TROVE scores) include: hockey stop, sticking tongue out, sneezing, blowing nose, dining,
ski jumping, shaking head, kicking field goal, blasting sand, texting, biking through snow, passing
American football (not in game), water sliding, waxing legs, slapping, tasting food, waxing chest,
skateboarding, eating burger, shining shoes, whistling, making tea, robot dancing, cracking neck,
eating spaghetti, shuffling cards, baking cookies, surfing crowd, egg hunting, bending back, opening
bottle, tapping pen, and jumping into pool. Figure 9 [Panel B] considers an ensemble of three XCLIP
models (XCLIP-B/16, XCLIP-B/32, and XCLIP-L/14) and identifies a total of 4 classes that are
consistently impacted by learned static feature biases across all three models. The 4 identified classes
include: making a cake, sneezing, eating chips, and cracking neck.

Ultimately, given a temporal dataset associated with a task of interest, TROVE can enable identifi-
cation of challenging class labels that are particularly susceptible to systematic errors from static
feature biases, aiding with model development and evaluation.
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Figure 9: Several classes in Kinetics400 were found to be consistently impacted by learned static
feature biases across multiple trained VLMs. Panel [A] depicts Kinetics400 classes consistently
impacted by static feature biases across ViCLIP-L and ViCLIP-B. Panel [B] depicts Kinetics400
classes consistently impacted by static feature biases across XCLIP-B/16, XCLIP-B/32, and XCLIP-
L/14.

F Extended Related Work

Here, we extend Section 2 by providing a discussion on the temporal action localization (TAL)
task, which involves trimming videos to only include frames in which the action is directly visible
[53]. TAL is a useful preprocessing step for reducing the effects of noisy or irrelevant frames and
can be helpful in some cases for mitigating the influence of static feature biases; however, we note
that TAL is not a universal solution for the following two reasons. First, in activity recognition
settings, static features are not simply limited to noisy or irrelevant frames; rather, error-inducing
static features are often directly observed in relevant action frames. As a representative example,
consider Figure 8 (Panel A), where TROVE discovers that the presence of children and toy carts leads
to prediction errors on the class "pushing cart". The learned static feature bias directly involves the
subject performing the action, and trimming content will not be useful for addressing these prediction
errors. Second, existing TAL methods are designed specifically for activity recognition and cannot be
easily extended to other temporal settings. In our work, we extend beyond the traditionally-researched
human activity recognition setting and include evaluations on both a synthetic task and a medical
imaging task. TAL methods cannot be easily extended to these domains, as there is no clear analog to
"trimming" content. Thus, TAL will have no effect on the presence of static feature biases here. As a
result, static feature biases cannot be solved by only trimming videos to discard noisy or irrelevant
frames, and methods like TROVE are necessary for identifying this important failure mode.
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G Extended Discussion

Potential Societal Impacts: In this work, we demonstrate that static feature biases are a critical issue
for temporal VLMs. Static feature biases are a type of spurious correlation and can contribute to
prediction errors on downstream prediction tasks. We hope that our proposed approach can be utilized
to detect and mitigate errors resulting from static feature biases prior to real-world deployment. Such
an approach has the potential to improve robustness of temporal VLMs. This can be particularly
advantageous in safety-critical settings like healthcare, where models capable of processing medical
images across multiple timepoints are gaining increasing popularity.

Limitations and Future Work: Our work aims to discover and mitigate error-inducing static feature
biases learned by temporal VLMs. We specifically focus on image sequences in this work, where
each sequence represents a series of images collected over time (e.g. video frame sequences, medical
images collected at varying timepoints, etc.). However, temporal data exists in many other modalities,
such as audio and signals. Our work does not consider these settings, and determining the role of
static feature biases in inducing prediction errors across non-image modalities would be an interesting
direction for future work.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction reflect the contributions of
the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Appendix Section G.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided experimental details in Sections 4 and 5, with extended
implementation details and hyperparameters in Appendix Sections A and C. Our code is
available on GitHub.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code is publicly available. All implementation details and hyperparameters
are detailed in Appendix Section A and C.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided implementation details and hyperparameters for all models
used in this work. Details are in Appendix Section A and C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide error bars (95% confidence intervals) when reporting performance
of TROVE on our synthetic evaluation settings (see Figures 5, 6, and 7).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details on computational resources used when developing our evaluation
framework are provided in Appendix Section A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We provide a discussion of societal impact in Appendix Section G.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All existing data (Kinetics400, MS-CXR-T), models (VideoCLIP-XL, ViCLIP,
XCLIP, CLIP, SigLIP, and BioViL-T), and code used in this paper have been cited. Kinet-
ics400 is open source. MS-CXR-T is available under PhysioNet Credentialed Health Data
License 1.5.0. VideoCLIP-XL is available under CC-By-NC-SA-4.0. CLIP, ViCLIP, XCLIP,
and BioViL-T are available under MIT licenses. SigLIP is available under an Apache-2.0
license.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our evaluation framework and algorithm are documented in Sections 4 and 5
as well as Appendix Sections A and C.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are not a component of the core methods in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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