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We propose Lagrangian Proximal Gradient Descent (LPGD), a flexible framework
for embedding parameterized optimization layers into machine learning architec-
tures trained via gradient backpropagation. Such layers often have degenerate
derivatives, e.g. in the case of discrete optimization problems. Our method effi-
ciently computes meaningful replacements of these derivatives by re-running the
forward solver oracle on a perturbed input, capturing various previously proposed
methods as special cases. LPGD is derived as gradient descent on the envelope of
a loss linearization. Such interpretation fosters deep links between traditional and
contemporary optimization methods. We prove that LPGD updates converge to
the true gradient as the smoothening parameter approaches zero. Finally, we show
experimentally on synthetic data that LPGD converges faster than gradient descent,
even when non-degenerate derivatives exist.

1 INTRODUCTION

Optimization at inference is inherent to many prediction tasks, including autonomous driving (Paden
et al., 2016), modelling physical systems (Cranmer et al., 2020), or robotic control (Kumar et al.,
2016). Therefore, embedding optimization algorithms as building blocks of machine learning models
serves as a powerful inductive bias. A recent trend has been to embed convex optimization problems
that can efficiently be solved to optimality (Amos & Kolter, 2017a; Agrawal et al., 2019a;b; Vlastelica
et al., 2020; Sun et al., 2022; Sahoo et al., 2023).

Training such a parameterized optimization model is an instance of bi-level optimization (Gould
et al., 2016), which is generally challenging. Whenever it is possible to propagate gradients through
the optimization problem via an informative derivative of the solution mapping, the task is typically
approached with standard stochastic gradient descent (GD) (Amos & Kolter, 2017a; Agrawal et al.,
2019b). However, when the optimization problem has discrete solutions, the derivatives are typically
not informative, as small perturbations of the input do not affect the optimal solution. Previous works
have proposed several methods to overcome this challenge, ranging from differentiable relaxations
(Wang et al., 2019; Wilder et al., 2019a; Mandi & Guns, 2020; Djolonga & Krause, 2017) and
stochastic smoothing (Berthet et al., 2020; Dalle et al., 2022), over proxy losses (Paulus et al., 2021),
to finite-difference based techniques (Vlastelica et al., 2020).

The main contribution of this work is the unification of a variety of previous methods (McAllester
et al., 2010; Vlastelica et al., 2020; Domke, 2010; Sahoo et al., 2023; Elmachtoub & Grigas,
2022; Blondel et al., 2020) into a general framework called Lagrangian Proximal Gradient De-
scent (LPGD). It is motivated by traditional proximal optimization techniques (Moreau, 1962;
Rockafellar, 1970; Nesterov, 1983; Figueiredo et al., 2007; Tseng, 2008; Beck & Teboulle, 2009;
Combettes & Pesquet, 2011; Bauschke & Combettes, 2011; Nesterov, 2014; Parikh & Boyd, 2014),
thereby fostering deep links between traditional and contemporary methods.

When the derivatives of the solution mapping are degenerate, LPGD allows learning the optimization
parameters even when GD fails, generalizing Vlastelica et al. (2020) to non-linear objectives,
saddle-point problems, and learnable constraint parameters. When non-degenerate derivatives exist,
we show that they can be computed as the limit of the LPGD update, which provides a fast and
simple alternative to previous methods based on differentiating the optimality conditions (Amos
& Kolter, 2017a; Agrawal et al., 2019b; Wilder et al., 2019a; Mandi & Guns, 2020). Finally, we
show experimentally on synthetic data that LPGD results in faster convergence than GD, even when
non-degenerate derivatives are available.
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2 RELATED WORK

Numerous implicit layers have been proposed in recent years, including neural ODEs (Chen et al.,
2018; Dupont et al., 2019) and root-solving-based layers (Bai et al., 2019; 2020; Gu et al., 2020;
Winston & Kolter, 2020; Fung et al., 2021; Ghaoui et al., 2021; Geng et al., 2021). In this work, we
focus on optimization-based layers. A lot of research has been done on obtaining the gradient of such
a layer, either by using the implicit function theorem to differentiate quadratic programs (Amos &
Kolter, 2017a), conic programs (Agrawal et al., 2019b), ADMM (Sun et al., 2022), dynamic time
warping (Xu et al., 2023), or by finite-differences (Domke, 2010; McAllester et al., 2010; Song et al.,
2016; Lorberbom et al., 2019).

Another direction of related work has investigated optimization problems with degenerate derivatives
of the solution mapping. The techniques developed for training these models range from continuous
relaxations of SAT problems (Wang et al., 2019) and submodular optimization (Djolonga & Krause,
2017), over regularization of linear programs (Amos et al., 2019; Wilder et al., 2019a; Mandi & Guns,
2020; Paulus et al., 2020) to stochastic smoothing (Berthet et al., 2020; Dalle et al., 2022), learnable
proxies (Wilder et al., 2019b) and generalized straight-through-estimators (Jang et al., 2017; Sahoo
et al., 2023). Other works have built on geometric proxy losses (Paulus et al., 2021) and, again,
finite-differences (Vlastelica et al., 2020; Niepert et al., 2021; Minervini et al., 2023).

Finally, a special case of an optimization layer is to embed an optimization algorithm as the final
component of the prediction pipeline. This encompasses energy-based models (LeCun & Huang,
2005; Blondel et al., 2022), structured prediction (McAllester et al., 2010; Blondel, 2019; Blondel
et al., 2020), smart predict-then-optimize (Ferber et al., 2020; Elmachtoub & Grigas, 2022) and
symbolic methods such as SMT solvers (Fredrikson et al., 2023). We present additional details of the
closest related methods in Appendix B.

3 PROBLEM SETUP

We consider a parameterized embedded constrained optimization problem of the form

L∗(w) := min
x∈X

max
y∈Y
L(x, y, w) (1)

where w ∈ Rk are the parameters, X ⊆ Rn and Y ⊆ Rm are the primal and dual feasible set, and L
is a continuously differentiable Lagrangian. The corresponding optimal solution is

z∗(w) = (x∗(w), y∗(w)) := argmin
x∈X

max
y∈Y
L(x, y, w). (2)

For instance, this setup covers conic programs and quadratic programs, see Appendix C for details.
Note, that the solution of (2) is in general set-valued. We assume that the solution set is non-empty
and has a selection z∗(w) continuous at w.1 Throughout the paper, we assume access to an oracle
that efficiently solves (2) to high accuracy. In our experiments, (2) is a conic program which we solve
using the SCS solver (O’Donoghue et al., 2016).2

Our aim is to embed optimization problem (2) into a larger prediction pipeline. Given an input
µ ∈ Rp (e.g. an image), the parameters of the embedded optimization problem w are predicted by
a parameterized backbone model Wθ : Rp → Rk (e.g. a neural network with weights θ ∈ Rr) as
w = Wθ(µ). The embedded optimization problem (2) is then solved on the predicted parameters
w returning the predicted solution x∗(w), and its quality is measured by a loss function ℓ : Rn → R.
The backbone and the loss function are assumed to be continuously differentiable.

Our goal is to train the prediction pipeline by minimizing the loss on a dataset of inputs {µi}Ni=1

min
θ∈Rr

∑N
i=1 ℓ

(
x∗(Wθ(µi))

)
(3)

using stochastic gradient descent or variations thereof (Kingma & Ba, 2015). However, the solution
mapping does not need to be differentiable, and even when it is, the derivatives are often degenerate

1For example, these assumptions can be ensured by assuming compactness of X and Y and the existence of
a unique solution, given the continuity of L.

2We also use CVXPY (Diamond & Boyd, 2016; Agrawal et al., 2019a) which allows to automatically reduce
parameterized convex optimization problems to parameterized conic programs in a differentiable way.
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(e.g. they can be zero almost everywhere).3 Therefore, we aim to derive informative replacements for
the gradient ∇wℓ(x

∗(w)), which can then be further backpropagated to the weights θ by standard
automatic differentiation libraries (Abadi et al., 2015; Bradbury et al., 2018; Paszke et al., 2019).
Note that the loss could also be composed of further learnable components that might be trained
simultaneously. A list of all relevant symbols used in the main text is provided in Appendix H.

4 BACKGOUND: PROXIMAL GRADIENT DESCENT & MOREAU ENVELOPE

The Moreau envelope (Moreau, 1962) envτf : Rn → R of a proper, lower semi-continuous, possibly
non-smooth function f : Rn → R is defined for τ > 0 as

envτf (x̂) := infx f(x) +
1
2∥x− x̂∥22. (4)

The envelope envτf is a smoothed lower bound approximation of f (Rockafellar & Wets, 1998,
Theorem 1.25). The corresponding proximal map proxτf : Rn → Rn is given by

proxτf (x̂) := arg infx f(x) +
1
2τ ∥x− x̂∥22 = x̂− τ∇ envτf (x̂) (5)

and can be interpreted as a gradient descent step on the Moreau envelope. For a more detailed
discussion of the connection between proximal map and Moreau evelope see e.g. Rockafellar & Wets
(1998); Bauschke & Combettes (2011); Parikh & Boyd (2014).

The proximal point method (Rockafellar, 1976; Güler, 1992; Bauschke & Combettes, 2011; Parikh
& Boyd, 2014) aims to minimize f by iteratively updating x̂ 7→ proxτf (x̂). Now, assume that
f decomposes as f = g + h, with g differentiable and h potentially non-smooth, and consider a
linearization of g around x̂ given by

g̃(x) := g(x̂) + ⟨x− x̂,∇g(x̂)⟩. (6)
The corresponding proximal map reads as

proxτ(g̃+h)(x̂) = arg infx g̃(x) + h(x) + 1
2τ ∥x− x̂∥22 = proxτh

(
x̂− τ∇g(x̂)

)
(7)

and iterating x̂ 7→ proxτh
(
x̂ − τ∇g(x̂)

)
is called proximal gradient descent (Nesterov, 1983;

Combettes & Pesquet, 2011; Parikh & Boyd, 2014).

5 METHOD

Our goal is to translate the idea of proximal methods to parameterized optimization models as in
Section 3, by defining a Lagrange-Moreau envelope of the loss w 7→ ℓ(x∗(w)) on which we can
perform gradient descent. In analogy to (4), given w and corresponding optimal solution x∗, the
envelope should select an x in the proximity of x∗ with a lower loss ℓ. The key concept is to replace
the Euclidean distance with a Lagrangian divergence indicating how close x is to optimality given w.

5.1 LAGRANGIAN DIVERGENCE

First we define the Lagrangian difference for x ∈ X and w ∈ Rk as
DL(x, y|w) := L(x, y, w)− L∗(w), (8)

where L∗(w) is the optimal Lagrangian (1). We then define the Lagrangian divergence4 as

D∗
L(x|w) := sup

y∈Y
DL(x, y|w) = sup

y∈Y

[
L(x, y, w)− L∗(w)

]
≥ 0 (9)

for x ∈ X and w ∈ Rk, where the last inequality follows from the inequality
sup
y∈Y
L(x, y, w) ≥ inf

x̃∈X
sup
y∈Y
L(x̃, y, w) = L∗(w). (10)

The divergence has the key property
D∗

L(x|w) = 0 if and only if x ∈ X minimizes (2) (11)
which makes it a reasonable measure of optimality of x given w, for the proof, see Appendix F.

3Our method only requires continuity of the solution mapping which a weaker assumption than differentiabil-
ity. Therefore, whenever the true gradients exist, our continuity assumption is also fulfilled.

4In some cases, the Lagrangian divergence coincides with the Bregman divergence, a proximity measure
generalizing the squared Euclidean distance, opening connections to Mirror descent, see Appendix D.
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5.2 LAGRANGE-MOREAU ENVELOPE

Given τ > 0, we say that ℓτ : Rk → R is the lower Lagrange-Moreau envelope (L-envelope) if

ℓτ (w) := inf
x∈X

ℓ(x) + 1
τD

∗
L(x|w) = inf

x∈X
sup
y∈Y

ℓ(x) + 1
τDL(x, y|w). (12)

The corresponding lower Lagrangian proximal map zτ : Rk → Rn+m is defined as

zτ (w) := arg inf
x∈X

sup
y∈Y

ℓ(x) + 1
τDL(x, y|w) = arg inf

x∈X
sup
y∈Y
L(x, y, w) + τℓ(x). (13)

The upper L-envelope ℓτ : Rk → R is defined with maximization instead of minimization as

ℓτ (w) := sup
x∈X

ℓ(x)− 1
τD

∗
L(x|w) = sup

x∈X
inf
y∈Y

ℓ(x)− 1
τDL(x, y|w), (14)

and the corresponding upper L-proximal map zτ : Rk → Rn+m (L-proximal map) as

zτ (w) := arg sup
x∈X

inf
y∈Y

ℓ(x)− 1
τDL(x, y|w) = arg inf

x∈X
sup
y∈Y
L(x, y, w)− τℓ(x). (15)

The lower and upper L-envelope are lower and upper bound approximations of the loss w 7→
ℓ(x∗(w)), respectively. We emphasize that the solutions to (12) and (14) are in general set-valued
and we assume that they are non-empty and admit a single-valued selection that is continuous at w,
which we denote by (13) and (15). We will also work with the average L-envelope

ℓτ(w) := 1
2

[
ℓτ (w) + ℓτ (w)

]
. (16)

The different envelopes are closely related to right-, left- and double-sided directional derivatives.

5.3 LAGRANGIAN PROXIMAL POINT METHOD

Our goal will be to perform gradient descent on the L-envelope (12, 14). By Oyama & Takenawa
(2018, Proposition 4.1), the gradients of the L-envelopes read

∇ℓτ (w) = 1
τ∇w

[
L(w, zτ )− L(z∗, w)

]
and ∇ℓτ (w) = 1

τ∇w

[
L(z∗, w)− L(zτ , w)

]
, (17)

where we abbreviate zτ = zτ (w) and zτ = zτ (w). The proof is in Appendix F. In analogy to the
proximal point method (5) we refer to GD using (17) as the Lagrangian Proximal Point Method
(LPPM), or more specifically, LPPMτ , LPPMτ and LPPMτ for GD on ℓτ , ℓτ and ℓτ , respectively.
Example 1 (Direct Loss Minimization). For an input µ ∈ Rp, label xtrue ∈ X , loss ℓ : X × X → R,
feature map Ψ: X × Rp → Rk and an optimization problem of the form

x∗(w, µ) = argmin
x∈X

−⟨w,Ψ(x, µ)⟩ (18)

the LPPMτ update (17) reads

∇ℓτ (w) = 1
τ

[
Ψ(x∗, µ)−Ψ(xτ , µ)

]
, (19)

with x∗ = x∗(w, µ) and

xτ = argmin
x∈X

−⟨w,Ψ(x, µ)⟩+ τℓ(x, xtrue). (20)

This recovers the “towards-better” Direct Loss Minimization (DLM) update (McAllester et al., 2010),
while the “away-from-worse” update corresponds to the LPPMτ update, both of which were proposed
in the context of taking the limit τ → 0 to compute the true gradients.

5.4 LAGRANGIAN PROXIMAL GRADIENT DESCENT

LPPM requires computing the L-proximal map (13) or (15). This requires choosing and implement-
ing an appropriate optimization algorithm, which due to the loss term might have a much higher
complexity than the oracle used to solve the forward problem (2). Instead, we now aim to introduce
an approximation of the loss that allows solving the L-proximal map with the same solver oracle that
was used on the forward pass. We first observe that in many cases the Lagrangian takes the form

L(x, y, w) := ⟨x, c⟩+Ω(x, y, v), (21)
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Algorithm 1 Forward and Backward Pass of LPGDτ

function FORWARDPASS(w)
z∗ ← SolverOracle(w)

// Solve optimization (2)
save w, z∗ for backward pass
return z∗

function BACKWARDPASS(∇ℓ = ∇zℓ(z
∗), τ )

load (c, v) = w and z∗ from forward pass
wτ ← c+ τ∇ℓ, v // Perturb parameters
z̃τ ← SolverOracle(wτ ) // Solve (22), warmstart with z∗

∇w ℓ̃τ (w) =
1
τ∇w

[
L
(
z̃τ , w

)
− L

(
z∗, w

)]
// (24)

return ∇w ℓ̃τ (w) // Gradient of L-envelope

with linear parameters c ∈ Rn, non-linear parameters v ∈ Rk−n and continuously differentiable Ω.
Our approximation, inspired by the proximal gradient descent (7), is to consider a linearization ℓ̃ of the
loss ℓ at x∗.5 Importantly, the loss linearization is only applied after the solver and does not approx-
imate or linearize the solution mapping. Abbreviating∇ℓ = ∇ℓ(x∗), we get the L-proximal maps

z̃τ (w) := arg inf
x∈X

sup
y∈Y
⟨x, c⟩+Ω(x, y, v) + τ⟨x,∇ℓ⟩ = z∗(c+ τ∇ℓ, v), (22)

z̃ τ(w) := arg inf
x∈X

sup
y∈Y
⟨x, c⟩+Ω(x, y, v)− τ⟨x,∇ℓ⟩ = z∗(c− τ∇ℓ, v), (23)

which can be computed with the same solver oracle used to solve the forward problem (2). Note
that warm-starting the solver with z∗ can strongly accelerate the computation, often making the
evaluation of the L-proximal map much faster than the forward problem. This enables efficient
computation of the L-envelope gradient (17) as

∇ℓ̃τ (w) = 1
τ∇w

[
L
(
w, z̃τ

)
− L

(
w, z∗

)]
and ∇ℓ̃τ (w) = 1

τ∇w

[
L
(
w, z∗

)
− L

(
w, z̃ τ

)]
. (24)

In analogy to proximal gradient descent (7) we refer to GD using (24) as Lagrangian Proximal
Gradient Descent (LPGD), or more specifically, to LPGDτ , LPGDτ and LPGDτ for GD on
ℓ̃τ , ℓ̃τ and ℓ̃τ , respectively. LPGD smoothly integrates into existing automatic differentiation
frameworks (Abadi et al., 2015; Bradbury et al., 2018; Paszke et al., 2019), by simply replacing the
backward pass operation (co-derivative computation) as summarized for LPGDτ in Algorithm 1.
Example 2 (Blackbox Backpropagation). For a linear program (LP)6

x∗(c) = argmin
x∈X

⟨x, c⟩, (25)

the LPGDτ update (24) reads

∇ℓ̃τ (c) = 1
τ

[
x̃τ (c)− x∗(c)

]
= 1

τ

[
x∗(c+ τ∇ℓ)− x∗(c)

]
, (26)

which recovers the update rule in Blackbox Backpropagation (BB) (Vlastelica et al., 2020). The piece-
wise affine interpolation of the loss c 7→ ℓ̃(x∗(c)) derived in BB agrees with the lower L-envelope ℓ̃τ .
Example 3 (Implicit Differentiation by Perturbation). For a regularized linear program

x∗(c) = argmin
x∈X

⟨x, c⟩+Ω(x) (27)

with a strongly convex regularizer Ω: X → R, the LPGDτ update (24) reads

∇ℓ̃τ(c) = 1
2τ

[
x̃τ (c)− x̃τ(c)

]
= 1

2τ

[
x∗(c+ τ∇ℓ)− x∗(c− τ∇ℓ)

]
, (28)

recovering the update in Domke (2010), where only the limit case τ → 0 is considered.

5.5 REGULARIZATION & AUGMENTED LAGRANGIAN

To increase the smoothness of the L-envelope, we augment the Lagrangian with a strongly convex
regularizer

Lρ(x, y, w) := L(x, y, w) + 1
2ρ∥x− x∗∥22 (29)

5Note that other approximations of the loss can also be used depending on the functional form of the
Lagrangian. For example, for a Lagrangian with quadratic terms we could use a quadratic loss approximation.

6For an LP over a polytope X the space of possible solutions is discrete. Whenever the solution is unique,
which is true for almost every w, the solution mapping is locally constant (and hence continuous) around w.
Therefore our continuity assumptions hold for almost all w.
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Figure 1: Visualization of the upper ℓ̃τ , average ℓ̃τ , and lower ℓ̃τ Lagrange-Moreau envelope for
different temperatures τ and augmentation strengths ρ. The envelopes are smoothed approximations
of the linearized loss c 7→ ℓ̃τ (x

∗(c)), illustrated in black. In Lagrangian Proximal Gradient Descent
(LPGD) we optimize the loss by gradient descent on the Lagrange-Moreau envelope.

with ρ > 0. Equivalently, we may re-introduce the quadratic regularizer from the Moreau envelope (4)
into the L-envelope (12) and L-proximal map (13)

ℓτρ(w) := inf
x∈X

sup
y∈Y

ℓ(x) + 1
τDL(x, y|w) + 1

2ρ∥x− x∗∥22, (30)

zτρ(w) := arg inf
x∈X

sup
y∈Y

ℓ(x) + 1
τDL(x, y|w) + 1

2ρ∥x− x∗∥22. (31)

These definitions have an analogy for the upper envelope and for a linearized loss, which we omit for
brevity. The LPPMτ and LPGDτ updates then take the form

∇ℓτρ(w) = 1
τ∇w

[
L
(
w, zτρ

)
− L

(
w, z∗

)]
, ∇ℓ̃τρ(w) = 1

τ∇w

[
L
(
w, z̃τρ

)
− L

(
w, z∗

)]
. (32)

The augmentation does not alter the current optimal solution, but smoothens the Lagrange-Moreau
envelope.7 This also has connections to Jacobian-regularization in the implicit function theorem,
which we discuss in Appendix C. Note that using this quadratic regularization with LPGD requires
the solver oracle to support quadratic objectives, as is the case for the conic program solver used
in our experiments. We visualize the smoothing of the different L-envelopes of the linearized loss
c 7→ ℓ̃(x∗(c)) in Figure 1, for a quadratic loss on the solution to the linear program (25) with
X = [0, 1]n and a one-dimensional random cut through the cost space.

5.6 ASYMPTOTIC BEHAVIOR

We characterize the asymptotic behavior of the LPPM (17, 32) and LPGD (24, 32) updates. First, we
consider the limit as τ → 0, in which the LPGD update is shown to converge to the true gradient.
Theorem 5.1. Assume that L ∈ C2 and assume that the solution mapping of optimization (2) admits
a differentiable selection x∗(w) at w. Then

lim
τ→0
∇ℓ̃τ (w) = ∇wℓ(x

∗(w)) = lim
τ→0
∇ℓ̃τ (w). (33)

The proof, also highlighting the connections between L-envelopes and directional derivatives, is given
in Appendix F. Theorem 5.1 asserts that LPGD computes the same gradients in the limit as methods
based on the implicit function theorem, such as OptNet (Amos & Kolter, 2017a), regularized LPs
(Wilder et al., 2019a; Mandi & Guns, 2020), or differentiable conic programs (Agrawal et al., 2019a).

Next, we consider the limit τ →∞. Let X̂ (w) denote the effective feasible set defined as

X̂ (w) := {x ∈ X | D∗
L(x|w) <∞}, (34)

7Note that we ignore the dependence of x∗ on w in the additional term, as it only serves the purpose of a
regularizer and we do not aim to minimize ∥x− x∗∥2 directly.
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where the bar denotes the closure. First, we have the result for the primal lower L-proximal map (13).

Proposition 5.2. Let w be such that X̂ (w) is nonempty. Then

lim
τ→∞

xτ (w) = arg inf
x∈X̂ (w)

ℓ(x) (35)

whenever the limit exists. For a linearized loss, we have

lim
τ→∞

x̃τ (w) = arg inf
x∈X̂ (w)

⟨x,∇ℓ⟩ = xFW (w), (36)

where xFW is the solution to a Frank-Wolfe iteration LP (Frank & Wolfe, 1956)

Next proposition covers the case of the primal lower L-proximal map (31) with a quadratic regularizer.
Proposition 5.3. The primal lower L-proximal map (31) turns into the standard proximal map (5)

lim
τ→∞

xτρ(w) = arg inf
x∈X̂ (w)

[
ℓ(x) + 1

2ρ∥x− x∗∥22
]
= proxρℓ+IX̂(w)

(x∗), (37)

whenever the limit exists. For a linearized loss, it reduces to the Euclidean projection onto X̂ (w)

lim
τ→∞

x̃τρ(w) = arg inf
x∈X̂ (w)

[
⟨x,∇ℓ⟩+ 1

2ρ∥x− x∗∥22
]
= PX̂ (w)(x

∗ − ρ∇ℓ). (38)

The proofs can be found in Appendix F. The LPPMτ (17, 32) and LPGDτ (24, 32) updates corre-
sponding to the L-proximal maps (35, 37) and (36, 38) have the interpretation of decoupling the
update step, by first computing a “target” (e.g. xτρ via proximal gradient descent with step-size ρ),
and then minimizing the Lagrangian divergence to make the target the new optimal solution.

We discuss multiple examples that showcase the asymptotic variations of LPPM and LPGD. Here,
we will work with the finite-difference version of the updates (17, 32), which we denote by

∆ℓτ (w) := τ∇ℓτ (w), ∆ℓτ (w) := τ∇ℓτ (w), (39)

∆ℓτρ(w) := τ∇ℓτρ(w), ∆ℓ̃τρ(w) := τ∇ℓ̃τρ(w). (40)

Example 4 (Identity with Projection). For an LP (25) it is X̂ (w) = X and we get the asymptotic
regularized LPGDτ update (32) in finite-difference form (40) as

lim
τ→∞

∆ℓ̃τρ(c) = lim
τ→∞

[
x̃τρ(c)− x∗] = PX (x∗ − ρ∇ℓ)− x∗, (41)

where we used (38). In the limit of large regularization ρ → 0 with division by ρ in analogy to
Theorem 5.1, the above update converges to

lim
ρ→0

lim
τ→∞

1
ρ∆ℓ̃τρ(c) = lim

ρ→0

1
ρ

[
PX (x∗ − ρ∇ℓ)− x∗] = DPX (x∗| − ∇ℓ) = D∗PX (x∗| − ∇ℓ),

where DP and D∗P denote the directional derivative and coderivative of the projection P at x∗.
This is closely related to the Identity with Projection method by Sahoo et al. (2023), in which the true
gradient is replaced by backpropagating −∇ℓ through the projection onto a relaxation of X .8

Example 5 (Smart Predict then Optimize). The Smart Predict then Optimize (SPO) setting (Mandi
et al., 2020; Elmachtoub & Grigas, 2022) embeds an LP (25) as the final component of the prediction
pipeline and assumes access to the ground truth cost ctrue. The goal is to optimize the SPO loss
ℓSPO(x

∗(c), ctrue) = ⟨x∗(c) − x∗(ctrue), ctrue⟩. Due to the discreteness of the LP, the SPO loss has
degenerate gradients with respect to c, i.e. they are zero almost everywhere and undefined otherwise.
Choosing τ = 1

2 for the upper L-proximal map (15), we get

x
1
2 (c) = argmax

x∈X
⟨x− x∗(ctrue), ctrue⟩ − 2⟨x− x∗, c⟩ = argmax

x∈X
⟨x, ctrue − 2c⟩ (42)

8Note that this also has close ties to the one-step gradient arising in implicit differentiation of fixed-point
iterations by treating the inverse Jacobian as an identity function (Geng et al., 2021; Chang et al., 2022; Bai
et al., 2022). The projection operator arising in our setting is typically not present in these formulations as the
variables are unconstrained, leaving only the identity as a replacement for the Jacobian.
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which gives the lower and upper LPPM updates (17) in finite-difference form (39)

∆ℓτ (c) = xτ (c)− x∗ and ∆ℓ
1
2 (c) = x∗ − x

1
2 (c). (43)

Summing both the updates and taking the limit τ →∞ yields the combined LPPM update

lim
τ→∞

[
∆ℓτ (c) + ∆ℓ

1
2 (c)

]
= lim

τ→∞

[
xτ (c)− x

1
2 (c)

]
= x∗(ctrue)− x

1
2 (c) = 1

2∇ℓSPO+(c, ctrue), (44)

where we used (35). Note that as the SPO loss is already linear in x, LPPM and LPGD are equivalent.
Update (44) recovers the gradient of the SPO+ loss

ℓSPO+(c, ctrue) := sup
x∈X
⟨x, ctrue − 2c⟩+ 2⟨x∗(ctrue), c⟩ − ⟨x∗(ctrue), ctrue⟩ (45)

introduced by Elmachtoub & Grigas (2022), which has found widespread applications.
Example 6 (Fenchel-Young Losses9). In the structured prediction setting we consider the regularized
LP (27) as the final component of the prediction pipeline and assume access to the ground truth
solutions xtrue. The goal is to bring x∗(c) close to xtrue by minimizing any loss ℓ(x) that is minimized
over X at xtrue. We compute the asymptotic LPPMτ update (17) in finite-difference form (39) as

lim
τ→∞

∆ℓτ (c) = lim
τ→∞

[
xτ (c)− x∗] = xtrue − x∗ = ∇ℓFY(c, xtrue), (46)

where we used (35) to compute the limit. This recovers the gradient of the Fenchel-Young loss10

ℓFY(c, xtrue) := max
x∈X

[
⟨−c, x⟩ − Ω(x)

]
+Ω(xtrue)− ⟨−c, xtrue⟩

= ⟨c, xtrue⟩+Ω(xtrue)−min
x∈X

[
⟨c, x⟩+Ω(x)

] (47)

defined by Blondel et al. (2020). Depending on the regularizer Ω and the feasible region X , Fenchel-
Young losses cover multiple structured prediction setups, including the structured hinge (Tsochan-
taridis et al., 2005), CRF (Lafferty et al., 2001), and SparseMAP (Niculae et al., 2018) losses.

6 EXPERIMENTS

LPGD and LPPM are very useful tools for producing informative gradient replacements when the
true gradient is degenerate. This has been repeatedly demonstrated by the numerous applications of
the various special cases of LPGD and LPPM (Rolínek et al., 2020a;b; Mandi et al., 2020; Sahoo
et al., 2023; Ferber et al., 2023). On the other hand, when the true gradient is non-degenerate, other
variants of LPGD (Domke, 2010; McAllester et al., 2010) have been successfully applied to efficiently
compute this gradient as τ → 0. However, our interpretation of LPGD computing more informative
updates than normal gradients suggests that finite τ can be beneficial even in the latter case.

We explore this by comparing LPGD to gradient descent (GD) in an experimental setup in which
non-degenerate gradients exist. To this end, we consider a version of the Sudoku experiment proposed
by Amos & Kolter (2017a). The task is to learn the rules of Sudoku in the form of linear programming
constraints from pairs of incomplete and solved Sudoku puzzles, see Appendix G for details.

We build on the CVXPY ecosystem (Diamond & Boyd, 2016; Agrawal et al., 2018; 2019a) to
implement LPGD for a large class of parameterized optimization problems. CVXPY reduces
parameterized optimization problems to conic programs in a differentiable way, which are then
solved with the SCS solver (O’Donoghue et al., 2016) and differentiated based on Agrawal et al.
(2019b).11 As an alternative to the true derivative for the conic program, we implement Algorithm 1
(in all variations). This allows using LPGD for the large class of parameterized convex optimziation
problems supported by CVXPY without modification.

The results of the Sudoku experiment are reported in Figure 2. LPGDτ reaches a lower final loss than
GD, which shows that LPGDτ produces better update steps than standard gradients. LPGDτ also
outperforms LPGDτ and LPGDτ , which highlights that both lower and upper envelope carry relevant

9Note that an analogous derivation holds for generalized Fenchel-Young losses (Blondel et al., 2022), in
which the regularized LP is replaced with a regularized energy function.

10The minus signs appear because Blondel et al. (2020) consider maximization instead of minimization.
11We modify this implementation to support the regularization term as described in Appendix C.
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Figure 2: Comparison of LPGD and gradient descent (GD) on the Sudoku experiment. Reported
is the train MSE over epochs and wall-clock time, as well as the time spent in the backward and
forward passes. Statistics are over 5 restarts. Additional results can be found in Appendix G.

information for the optimization. This is intuitively understandable by considering that in Figure 1
LPGDτ and LPGDτ provide non-zero gradients in different subsets of the domain, while LPGDτ

gives informative gradients in both subsets. We observe faster convergence of all variants of LPGD
compared to GD in terms of wallclock time, which is due to the faster backward pass computation
resulting from warmstarting. Note that the forward solution time over training increases especially for
LPGDτ , as the initial random optimization problem becomes more structured as the loss decreases.

7 CONCLUSION

We propose Lagrangian Proximal Gradient Descent (LPGD), a flexible framework for learning
parameterized optimization models. LPGD unifies and generalizes various state-of-the-art con-
temporary optimization methods, including Direct Loss Minimization (McAllester et al., 2010),
Blackbox Backpropagation (Vlastelica et al., 2020), Implicit Differentiation by Perturbation (Domke,
2010), Identity with Projection (Sahoo et al., 2023), Smart Predict then Optimize (Elmachtoub &
Grigas, 2022), and Fenchel-Young losses (Blondel et al., 2020; 2022), and provides deep links to
traditional optimization methods.

LPGD computes updates as finite-differences and only requires accessing the forward solver as a black-
box oracle, which makes it extremely simple to implement. We also provide an implementation of
LPGD that smoothly integrates it into the CVXPY ecosystem (Diamond & Boyd, 2016; O’Donoghue
et al., 2016; Agrawal et al., 2018; 2019b). Formulated as gradient descent on a loss function envelope,
LPGD allows learning general objective and constraint parameters of saddlepoint problems even for
solution mappings with degenerate derivatives.

Various special cases of LPGD have shown impressive results in optimizing parameters of solution
mappings with degenerate derivatives and in speeding up computation of non-degenerate derivatives.
We explore a new direction by using LPGD to efficiently compute informative updates even when
non-degenerate derivatives exist. We find on a synthetic Sudoku experiment that LPGD achieves
faster convergence and better final results when compared to gradient descent.

9
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REPRODUCIBILITY STATEMENT

The experimental setup for the Sudoku experiment is described in detail in Appendix G. In addition,
we will make the code for reproducing the experimental results as well as the LPGD implementation
for CVXPY publicly available upon acceptance.
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A LIMITATIONS

We are aware of few limitations of our method and are committed to transparent communication
of them.

Reformulating the L-proximal map as an instance of the forward solver makes the implementation
simple and efficient. However, such reformulation is not possible in all cases since it requires access
to the linear coefficients of the Lagrangian via the solver interface. This same issue arises for the
augmentation introduced in Section 5.5, which requires accessing the quadratic coefficients of the
solver and potentially turns an LP from the forward pass into a QP on the backward pass. This does
not apply to our implementation of LPGD for the SCS solver (O’Donoghue et al., 2016) in CVXPY,
as the solver natively supports quadratic conic programs.

When considering extremely small values of τ > 0, the LPGD update requires solving the opti-
mization problem very accurately, which can be expensive. Otherwise, warm-starting the solver
on the backward pass with the forward pass solution will already satisfy the stopping criterion.
However, we advocate for larger values of τ as the increased smoothing is usually beneficial. In our
experiment, due to the convexity of the Lagrangian we are able to use the forward solver oracle to
solve the optimization problems (2) and (31) to a very high accuracy in reasonable time using the
SCS solver (O’Donoghue et al., 2016), and therefore did not observe issues arising from inexact
solutions.

Finally, choosing the right combination of hyperparameters τ and ρ can potentially require expensive
tuning, as the different terms in the objective of the L-envelope (32) can be of different magnitudes,
depending on the problem at hand. A potential remedy is to normalize the terms onto a shared
scale, which makes well-performing values of τ and ρ more transferable and interpretable. Future
work might also take inspiration from adaptive methods such as AIMLE (Minervini et al., 2023) for
automatically tuning τ and ρ on the fly.

B EXTENDED RELATED WORK

In this section we discuss the methods that are closest related to our framework.

Direct Loss Minimization. In Direct Loss Minimization (McAllester et al., 2010) the goal is to
directly optimize a structured prediction pipeline for a given task loss such as the BLEAU score,
extending previous work using structured SVMs or CRFs. Given an input µ ∈ Rp the prediction
pipeline consists of a feature map Ψ: X × Rp → Rk : (x, µ) 7→ Ψ(x, µ) and a corresponding
parameterized Lagrangian (called score function) L(x,w) = ⟨w,Ψ(x, µ)⟩. The structured prediction
is then computed by solving the embedded optimization problem

x∗(w, µ) := argmax
x∈X

⟨w,Ψ(x, µ)⟩ (48)

over a finite set of solutions X . Finally a task-specific loss ℓ : X × X → R is used to compare the
prediction to a label xtrue ∈ X . The goal is to optimize the loss over a dataset {(µi, xtrue,i)}Ni=1, and
the authors propose to optimize it using gradient descent. They show for the case X = {−1, 1} that
the gradient can be computed using the limit of the finite difference

∇wℓ(x
∗(w, µ)) = ± lim

τ→0

1
τ

[
Ψ(x±τ , µ)−Ψ(x∗, µ)

]
⟩ (49)

with

x±τ := argmax
x∈X

⟨w,Ψ(x, µ)⟩ ± τℓ(x, xtrue). (50)

Where the two sign cases are called the “away-from-worse” and the “towards-better” update. The
authors also discuss using relaxations of X as well has hidden variables that have similarities to our
dual variables. The method is applied to phoneme-to-speech alignment. The DLM framework has
also been generalized to non-linear objective functions (Song et al., 2016; Lorberbom et al., 2019),
always considering the limit τ → 0, with applications to action classification, object detection, and
semi-supervised learning of structured variational autoencoders.
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Blackbox Backpropagation. In Blackbox Backpropagation (Vlastelica et al., 2020) the authors
consider embedded combinatorial optimization problems with linear cost functions. Given a (poten-
tially high-dimensional) input µ ∈ Rp the prediction pipeline first computes the cost vector c ∈ Rn

using a backbone model W : Rp × Θ → Rn : (µ, θ) 7→ c and then solves the embedded linear
optimization problem over a combinatorial space X ⊂ Rn

x∗(c) := argmin
x∈X

⟨x, c⟩. (51)

Finally the optimal solution is used as the prediction and compared to a label xtrue ∈ X on a given loss
ℓ : X ×X → R. Because of the discrete solution space the gradient of the loss with respect to the cost
vector (and therefore also the parameters θ) is uninformative, as it is either zero or undefined. The
authors propose to replace the uninformative gradient w.r.t. c with the gradient of a piecewise-affine
loss interpolation

ℓ̃τ (c) := ℓ(x∗(c))− 1
τ min

x∈X
⟨c, x∗(c)− x̃τ (c)⟩ (52)

where we defined

x̃τ (c) := argmin
x∈X

⟨x, c+ τ∇xℓ(x
∗)⟩. (53)

It has the gradient

∇ℓ̃τ (c) = − 1
τ [x

∗ − x∗(c+ τ∇xℓ(x
∗))]. (54)

This approach has also been extended to learning discrete distributions in Niepert et al. (2021).

Implicit Differentiation by Perturbation. Implicit Differentiation by Perturbation (Domke, 2010)
was proposed in the context of graphical models and marginal inference. The parameters c now
correspond to the parameters of an exponential family distribution and X is the marginal polytope.
Computing the marginals requires solving the entropy-regularized linear program

argmax
x∈X

⟨x, c⟩+Ω(x), (55)

where Ω denotes the entropy. The final loss function ℓ depends on the computed marginals and some
data xtrue. Approximate marginal inference can be seen as approximating the marginal polytope with
a set of linear equality constraints

x∗(c) := argmax
x∈Rn,Ax=b

⟨x, c⟩+Ω(x), (56)

which can be solved by loopy/tree-reweighted belief propagation. The authors show that in this case,
as an alternative to implicit differentiation, the gradients of the loss with respect to the parameters
can be computed by

∇wℓ(x
∗(w)) = lim

τ→0

1
τ [x

∗(c+ τ∇xℓ(x
∗))− x∗(c)]. (57)

The method is applied to binary denoising, where the authors also test the double-sided perturbation
case.

Identity with Projection. In Identity with Projection (Sahoo et al., 2023) the setup is the same as
in Blackbox Backpropagation. The goal of this method is to speed up the backward pass computation
by removing the second invocation of the solver oracle on the backward pass. In the basic version,
the authors propose to replace the uninformative gradient through the solver∇cℓ(x

∗(c)) by simply
treating the solver as a negative identity, and returning ∆Id := −∇ℓ(x∗) instead. Connections are
drawn to the straight-through estimator. Further, the authors identify transformations of the cost vector
P : Rk → Rk that leave the optimal solution unchanged (e.g. normalization), i.e. x∗(P (c)) = x∗(c).
They propose to refine the vanilla identity method by differentiating through the transformation, yield-
ing the update ∆Id := P ′

x∗(−∇ℓ(x∗)). This is also shown to have an interpretation as differentiating
through a projection onto a relaxation X̃ of the feasible space, i.e.

∆Id = D∗PX̃ (x∗)(−∇ℓ(x∗)). (58)

Experimentally, the method is shown to be competitive with Blackbox Backpropagation and I-MLE.
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Smart Predict then Optimize. In Smart Predict then Optimize (Elmachtoub & Grigas, 2022)
setting the authors consider a linear program

x∗(c) := argmin
x∈X

⟨x, c⟩ (59)

as the final component of a prediction pipeline. The cost parameters c ∈ Rn are not known with
certainty at test time, and are instead predicted from an input µ ∈ Rp via a prediction model
Wθ : Rp → Rn : µ 7→ c with parameters θ ∈ Θ. What distinguishes this setup from the one
considered in e.g. Blackbox Backpropagation is that during training the true cost vectors ctrue are
available, i.e. there is a dataset {µi, ctrue,i}Ni=1. A naive approach would be to directly regress the
prediction model onto the true cost vectors by minimizing the mean squared error

ℓMSE(µ, ctrue) =
1
2∥Wθ(µ)− ctrue∥. (60)

However, the authors note that this ignores the actual downstream performance metric, which is the
regret or SPO loss

ℓSPO(x
∗(c), ctrue) = ⟨x∗(c)− x∗(ctrue), ctrue⟩. (61)

Unfortunately this loss does not have informative gradients, so the authors propose to instead optimize
a convex upper bound, the SPO+ loss

ℓSPO+(c, ctrue) := sup
x∈X
⟨x, ctrue − 2c⟩+ 2⟨x∗(ctrue), c⟩ − ⟨x∗(ctrue), ctrue⟩, (62)

a generalization of the hinge loss. Experimentally, results on shortest path problems and portfolio
optimization demonstrate that optimizing the SPO+ loss offers significant benefits over optimizing
the naive MSE loss.

Fenchel-Young Losses. Fenchel Young Losses (Blondel et al., 2020) were proposed in the context
of structured prediction, in which the final prediction is the solution of a regularized linear program

x∗(c) := argmax
x∈X

⟨x, c⟩ − Ω(x). (63)

Supervision is assumed in the form of ground truth labels xtrue. The authors propose to learn the
parameters c by minimizing the convex Fenchel Young Loss

ℓFY(c, xtrue) := max
x∈X

[
⟨c, x⟩ − Ω(x)

]
+Ω(xtrue)− ⟨c, xtrue⟩

= ⟨c, xtrue⟩+Ω(xtrue)−min
x∈X

[
⟨c, x⟩+Ω(x)

]
,

(64)

for which a variety of appealing theoretical results are presented. Many known loss functions from
structured prediction and probabilistic prediction are shown to be recovered by Fenchel-Young
losses for specific choices of feasible region X and regularizer Ω, including the structured hinge
(Tsochantaridis et al., 2005), CRF (Lafferty et al., 2001), and SparseMAP (Niculae et al., 2018)
losses.

C IMPLICIT DIFFERENTIATION WITH AUGMENTATION

We inspect how the augmentation in (29) affects existing methods for computing the adjoint derivative
of the augmented optimization problem

z∗ρ(w) = (x∗
ρ(w), y

∗
ρ(w)) := argmin

x∈X
max
y∈Y
Lρ(x, y, w). (65)

Quadratic Program. For a symmetric positive semi-definite matrix H we can write a quadratic
program with inequality constraints as

(x∗, s∗) = argmin
x,s≥0

1
2x

THx+ cT y subject to Ax+ b+ s = 0. (66)

In Lagrangian form, we can write it as

z∗ = (x∗, s∗, y∗) = arg min
x,s≥0

max
y
L(H, c,A, b, x, y) (67)
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with the Lagrangian
L(x, s, y,H,A, b, c) = 1

2x
THx+ cTx+ (Ax+ b+ s)T y. (68)

The augmentation in (29) augments the Lagrangian to
Lρ(x, s, y,H,A, b, c) = 1

2x
THx+ cTx+ (Ax+ b+ s)T y + 1

ρ∥x− x∗∥22 (69)
and we write

z∗ρ(H,A, b, c) = arg min
x,s≥0

max
y
Lρ(x, s, y,H,A, b, c). (70)

As described in (Amos & Kolter, 2017a), the optimization problem can be differentiated by treating
it as an implicit layer via the KKT optimality conditions, which are given as

Hx+AT y + c+ 2
ρ (x− x∗) = 0 diag(y)s = 0 Ax+ b+ s = 0 s ≥ 0. (71)

Assuming strict complementary slackness renders the inequality redundant and the conditions reduce
to the set of equations

0 = Fρ(x, s, y,H,A, b, c) =

Hx+AT y + c+ 2
ρ (x− x∗)

diag(y)s
Ax+ b+ s

 (72)

which admits the use of the implicit function theorem. It states that under the regularity condition
that ∂Fρ/∂z is invertible, z∗ρ(w) can be expressed as an implicit function, and we can compute its
Jacobian by linearizing the optimality conditions around the current solution

0 =
∂Fρ

∂z

∂z∗ρ
∂w

+
∂Fρ

∂w
(73)

with

∂Fρ

∂z
=

H + 2
ρI 0 AT

0 diag(ys ) I
A I 0

 . (74)

It is now possible to compute the desired Vector-Jacobian-product as

∇wℓ(x
∗(w)) =

∂z∗

∂w

T

∇ℓ(x∗) = −∂Fρ

∂w

T ∂Fρ

∂z

−T

∇ℓ(x∗), (75)

which involves solving a linear system. The augmentation term, therefore, serves as a regularizer for
this linear system.

Conic Program. A conic program (Boyd & Vandenberghe, 2014) is defined as
(x∗, s∗) = argmin

x,s∈K
cT y subject to Ax+ b+ s = 0 (76)

where K is a cone. The Lagrangian of this optimization problem is
L(x, s, y, A, b, c) = cTx+ (Ax+ b+ s)T y (77)

which allows an equivalent saddle point formulation given by
z∗ = (x∗, s∗, y∗) = arg min

x,s∈K
max

y
L(x, s, y, A, b, c). (78)

The KKT optimality conditions are
AT y + c = 0, Ax+ s+ b = 0, (s, y) ∈ K ×K∗, sT y = 0, (79)

where K∗ is the dual cone of K. The skew-symmetric mapping

Q(A, b, c) =

 0 AT c
−A 0 b
−cT −bT 0

 (80)

is used in the homogenous self-dual embedding (O’Donoghue et al., 2016; Busseti et al., 2019), a
feasibility problem that embeds the conic optimization problem. Agrawal et al. (2019b) solve and
differentiate the self-dual embedding. We use the CVXPY implementation of this method as our
baseline for computing the true adjoint derivatives of the optimization problem. The augmentation in
(29) changes the stationarity condition and, thereby, the skew-symmetric mapping as

Qρ(A, b, c) =

 2
ρI AT c

−A 0 b
−cT −bT 0

 . (81)

We adjust the CVXPY implementation accordingly for our experiments.
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D RELATION TO MIRROR DESCENT

Standard Mirror Descent. Classical mirror descent is an algorithm for minimizing a function
ℓ(x) over a closed convex set X ⊆ Rn. The algorithm is defined by the distance-generating
function (or mirror map) ϕ : Rn → R, a strictly convex continuously differentiable function. The
mirror descent algorithm also requires the assumption that the dual space of ϕ is all of Rn, i.e.
{∇ϕ(x) | x ∈ Rn} = Rn, and that the gradient of ϕ diverges as ∥x∥2 →∞.

The Bregman divergence of the mirror map is defined as

Dϕ(x, x̂) := ϕ(x)− ϕ(x̂)− ⟨x− x̂,∇ϕ(x̂)⟩. (82)

The lower12 Bregman-Moreau envelope (Bauschke et al., 2018) envϕτf : Rn → R of a possibly
non-smooth function f : Rn → R is defined for τ > 0 as

envϕτf (x̂) := min
x

f(x) + 1
τDϕ(x, x̂). (83)

The corresponding lower Bregman-Moreau proximal map proxϕτf : Rn → Rn is given by

proxτf (x̂) := arg infx f(x) +
1
τDϕ(x, x̂) (84)

The superscript ϕ distinguishes the notation from the standard Moreau envelope (4) and proximal
map (5).

Then, the mirror descent algorithm in proximal form is given by iteratively applying the Bregman-
Moreau proximal map of ℓ̃+ IX as

xk+1 = argmin
x

ℓ̃(x) + IX (x) + 1
τDϕ(x, xk) (85)

= argmin
x∈X

⟨x,∇ℓ(xk)⟩+ 1
τDϕ(x, xk). (86)

An equivalent form of this algorithm is

ηk = ∇ϕ(xk) (87)
ηk+1 = ηk − τ∇ℓ(xk) (88)

x̃k+1 = (∇ϕ)−1(ηk+1) (89)
xk+1 = argmin

x∈X
Dϕ(x, x̃k+1) (90)

which highlights that gradients are applied in the dual space of ϕ, and ∇ϕ serves as the mapping
between primal and (“mirrored”) dual space.

Lagrangian Mirror Descent. In this section, we derive Lagrangian Mirror Descent (LMD), an
alternative algorithm to LPGD inspired by mirror descent. We define

Lw(x) := sup
y∈Y
L(x, y, w) (91)

and assume that Lw is strongly convex and continuously differentiable in x. As the key step, we
define the distance-generating function (mirror map) as ϕ = Lw. This has the interpretation that
distances are measured in terms of the Lagrangian, similar to the intuition behind the previously
defined Lagrangian divergence.

This mirror map leads to the Bregman divergence

DLw(x, x̂) = Lw(x)− Lw(x̂)− ⟨x− x̂,∇Lw(x̂)⟩ (92)

satisfying

DLw
(x, x∗) ≥ 0, (93)

DLw(x, x
∗) = 0⇔ x = x∗(w) for x ∈ X . (94)

12The terms lower and upper are replaced with left and right in Bauschke et al. (2018).
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We define the lower Lagrange-Bregman-Moreau envelope at w as the Bregman-Moreau envelope at
x∗ = x∗(w), i.e.

ℓϕτ (w) := envLw

τℓ+IX
(x∗) (95)

= min
x

ℓ(x) + IX (x) + 1
τDLw

(x, x∗) (96)

= min
x∈X

ℓ(x) + 1
τ (L(x,w)− L

∗(w)− ⟨x− x∗,∇xL(x∗, w)⟩), (97)

and the corresponding lower Lagrange-Bregman-Moreau proximal map

xϕ
τ (w) := proxLw

τℓ+IX
(x∗) (98)

= argmin
x

ℓ(x) + IX (x) + 1
τDLw

(x, x∗) (99)

= argmin
x∈X

ℓ(x) + 1
τ (L(x,w)− L

∗(w)− ⟨x− x∗,∇xL(x∗, w)⟩). (100)

Again, the superscript L distinguishes the notation from the lower Lagrange-Moreau envelope (12)
and lower L-proximal map (13).

Similar to how we defined LPGD as gradient descent on the Lagrange-Moreau envelope of the
linearized loss, we define Lagrangian Mirror Descent (LMD) as gradient descent on the Lagrange-
Bregman-Moreau envelope of the linearized loss, i.e.

∇w ℓ̃
ϕ
τ (w) =

1
τ∇w[L(x̃ϕ

τ , w)− L(x∗, w)− ⟨x̃ϕ
τ − x∗,∇xL(x∗, w)⟩]. (101)

Again, the approximation allows efficiently computing the gradients using the forward solver as

x̃ϕ
τ (u, v) = arg inf

x∈X
τ⟨x,∇ℓ⟩+ ⟨x, u⟩+Ω(x, y, v)− ⟨x,∇xL(x∗, w)⟩ (102)

= x∗(u+ τ∇ℓ−∇xL(x∗, w), v). (103)

If X = Rn, then the original optimization problem (2) is unconstrained and we have the optimality
condition∇xL(x∗, w) = 0. Therefore, the Bregman divergence

DLw
(x, x∗) = Lw(x)− Lw(x

∗)− ⟨x− x∗,∇Lw(x
∗)⟩ (104)

= L(x,w)− L(x∗, w) = L(x,w)− L∗(w) = DL(x|w) (105)

is coincides with the Lagrangian divergence. It follows that, in this case, the Lagrange-Moreau
envelope and LPGD coincide with the Lagrange-Bregman-Moreau envelope and LMD, respectively.

E EXTENSION TO GENERAL LOSS FUNCTIONS

Loss on Dual Variables. In the main text we only considered losses depending only on the primal
variables, i.e. ℓ(x). For a loss on the dual variables ℓ(y), if we assume strong duality of (1), we can
reduce the situation to the primal case, as

y∗(w) = arg sup
y∈Y

inf
x∈X
L(x, y, w) = arg inf

y∈Y
sup
x∈X
−L(x, y, w). (106)

This amounts to simply negating the Lagrangian in all equations while swapping x and y.

Loss on Primal and Dual Variables. The situation becomes more involved for a loss function
L(x, y) depending on both primal and dual variables. If it decomposes into a primal and dual
component, i.e. L(x, y) = ℓp(x) + ℓd(y), we can compute the envelopes of the individual losses
independently. Note that a linearization of the loss L̃ trivially decomposes this way. Adding the
envelopes together yields a combined lower and upper envelope for the total loss as

(ℓp)τ (w) + (ℓd)τ (w) = inf
x∈X

sup
y∈Y

[ 1τL(x, y, w) + ℓp(x)]− sup
y∈Y

inf
x∈X

[ 1τL(x, y, w)− ℓd(y)], (107)

(ℓd)
τ (w) + (ℓp)

τ (w) = sup
y∈Y

inf
x∈X

[ 1τL(x, y, w) + ℓd(y)]− inf
x∈X

sup
y∈Y

[ 1τL(x, y, w)− ℓp(x)]. (108)
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Assuming strong duality of these optimization problems, this leads to

(ℓp)τ (w) + (ℓd)τ (w) = inf
x∈X

sup
y∈Y

[ 1τL(x, y, w) + ℓp(x)]− inf
x∈X

sup
y∈Y

[ 1τL(x, y, w)− ℓd(y)], (109)

(ℓd)
τ (w) + (ℓp)

τ (w) = inf
x∈X

sup
y∈Y

[ 1τL(x, y, w) + ℓd(y)]− inf
x∈X

sup
y∈Y

[ 1τL(x, y, w)− ℓp(x)]. (110)

Strong duality holds in particular for a linearized loss L̃, as this only amounts to a linear perturbation
of the original optimization problem. Unfortunately, computing the average envelope

(ℓp)τ(w) + (ℓd)τ(w) =
1
2

{
inf
x∈X

sup
y∈Y

[ 1τL(x, y, w) + ℓp(x)]− inf
x∈X

sup
y∈Y

[ 1τL(x, y, w)− ℓd(y)] (111)

+ inf
x∈X

sup
y∈Y

[ 1τL(x, y, w) + ℓd(y)]− inf
x∈X

sup
y∈Y

[ 1τL(x, y, w)− ℓp(x)]

}
(112)

or its gradient would now require four evaluations of the solver, which can be expensive. To reduce
the number of evaluations, we instead “combine” the perturbations of the primal and dual loss, i.e.
we define

Lτ (w) := inf
x∈X

sup
y∈Y

L(x, y) + 1
τ [L(x, y, w)− L

∗(w)] (113)

Lτ (w) := inf
x∈X

sup
y∈Y

L(x, y) + 1
τ [L(x, y, w)− L

∗(w)] (114)

Lτ(w) := 1
2{Lτ (w) + Lτ (w)} (115)

= inf
x∈X

sup
y∈Y

[ 1τL(x, y, w) + L(x, y)]− inf
x∈X

sup
y∈Y

[ 1τL(x, y, w)− L(x, y)]. (116)

The above definitions are valid even when we do not have strong duality of (1) and (113). Note
that Lτ and Lτ are not necessarily lower and upper bounds of the loss anymore. However, these
combined envelopes also apply to loss functions that do not separate into primal and dual variables,
and computing their gradients requires fewer additional solver evaluations. For L(x, y) = ℓ(x) we
have

Lτ (w) = ℓτ (w), Lτ(w) = ℓτ(w), Lτ (w) = ℓτ (w). (117)

For the rest of the appendix, we will work with L instead of ℓ for full generality and reduce the
situation to a primal loss ℓ with the relations above.

F PROOFS

Lemma F.1 (Equation (11)). It holds that

D∗
L(x|w) = 0 if and only if x minimizes (2) for x ∈ X . (118)

Proof of Lemma F.1. If x ∈ X minimizes (2), this means

sup
y∈Y
L(x, y, w) = inf

x̃∈X
sup
y∈Y
L(x̃, y, w) (119)

and therefore

D∗
L(x|w) = sup

y∈Y

[
L(x, y, w)− L∗(w)

]
= inf

x̃∈X
sup
y∈Y

[
L(x̃, y, w)

]
− L∗(w) = 0. (120)

If D∗
L(x|w) = 0, we have from the definition of the Lagrangian divergence (9) that

sup
y∈Y
L(x, y, w) = L∗(w) = min

x̃∈X
sup
y∈Y
L(x̃, y, w) (121)

and hence x is a minimizer of (2).
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Lemma F.2 (Equation (17)). Assume that L, ℓ ∈ C1 and assume that the solution mappings of
optimization (2, 12, 14) admit continuous selections x∗(w), xτ (w), x

τ (w) at w. Then

∇ℓτ (w) = 1
τ∇w

[
L(w, zτ )− L(z∗, w)

]
and ∇ℓτ (w) = 1

τ∇w

[
L(z∗, w)− L(zτ , w)

]
. (122)

Proof of Lemma F.2. We assumed that z∗(w) is a selection of the solution set continuous at w. We
also assumed that L and ℓ are continuously differentiable. It then follows that

∇wℓτ (w) = ∇w inf
x∈X

sup
y∈Y

ℓ(x) + 1
τDL(x, y|w) (123)

= ∇w

[
inf
x∈X

sup
y∈Y

[ℓ(x) + 1
τL(x, y, w)]− inf

x∈X
sup
y∈Y

1
τL(x, y, w)

]
(124)

= ∇w

[
inf
x∈X

sup
y∈Y

ℓ(x) + 1
τL(x, y, w)

]
−∇w

[
inf
x∈X

sup
y∈Y

1
τL(x, y, w)

]
(125)

= ∇w

[
ℓ(xτ ) +

1
τL(xτ , yτ , w)

]
−∇w

[
1
τL(x

∗, y∗, w)
]

(126)

= 1
τ∇w

[
L(w, zτ )− L(z∗, w)

]
(127)

In the fourth equation we used the result by Oyama & Takenawa (2018, Proposition 4.1). The proof
for the upper envelope is analogous.

Theorem 5.1. Assume that L ∈ C2 and assume that the solution mapping of optimization (2) admits
a differentiable selection x∗(w) at w. Then

lim
τ→0
∇ℓ̃τ (w) = ∇wℓ(x

∗(w)) = lim
τ→0
∇ℓ̃τ (w). (128)

Proof of Theorem 5.1. In this proof we work in the more general setup described in Appendix E. We
aim to show that for a linear loss approximation L̃, the LPGD update recovers the true gradient as τ
approaches zero. We again assume the same form of the Lagrangian as in (21)

L(z, w) = ⟨z, u⟩+Ω(z, v) (129)

with w = (u, v) and get from Oyama & Takenawa (2018, Proposition 4.1)

∇uL∗(u, v) = ∇uL(z∗, u, v) = z∗(u, v). (130)

We define

dw :=

(
∇zL
0

)
. (131)

Then it holds that

lim
τ→0
∇wL̃τ (w) = lim

τ→0

1
τ [∇wL∗(w + τdw)−∇wL∗(w)] (132)

=
∂2L∗

∂2w
dw =

∂2L∗

∂2w

T

dw =
∂2L∗

∂2w

T (
∇zL
0

)
(133)

=
∂2L∗

∂w∂u

T

∇zL =
∂(∇uL∗)

∂w

T

∇zL =
∂z∗

∂w

T

∇zL = ∇wL(z
∗(w)). (134)

The main step in this derivation was to identify the Jacobian of the solution mapping as a sub-matrix
of the Hessian of the optimal Lagrangian function, which is a symmetric matrix under the conditions
of Schwarz’s theorem. A sufficient condition for this is the assumption that L ∈ C2.13 Exploiting the

13Note that a similar derivation already appeared in (Domke, 2010), but only for primal variables with linear
parameters and without considering the benefits of finite values of τ .
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symmetry of the Hessian then allows computing the gradient, which is a co-derivative (backward-
mode), as the finite-difference between two solver outputs, which usually only computes a directional
(forward-mode) derivative as

∆z =
∂z∗

∂w
∆w = lim

τ→0

1
τ [z

∗(w + τ∆w)− z∗(w)] (135)

= lim
τ→0

1
τ [∇uL∗(w + τ∆w)−∇uL∗(w)]. (136)

We observe that computing the gradient of the L-envelope is the backward-mode counterpart of the
forward-mode right-sided directional derivative. This observation also gives an interpretation of the
LPGD update for finite τ : In forward-mode, checking how the solver reacts to finite perturbation of
the parameters intuitively provides higher-order information than linear sensitivities to infinitesimal
perturbations. The finite-difference in the gradient of the L-envelope serves the equivalent purpose in
backward-mode, by back-propagating higher-order information instead of linear sensitivities as in
standard directional co-derivatives (back-propagation).

Note that for L(x, y) = ℓ(x) this reduces to

lim
τ→0
∇w ℓ̃τ (w) = ∇wℓ(x

∗(w)). (137)

An analogous proof and discussion also hold for the upper envelope ℓ̃τ and average envelope ℓ̃τ ,
corresponding to the left- and double-sided directional derivatives.

Proposition 5.2. Assume ℓ is continuous and finite-valued on X . Let w be a parameter for which

X̂ (w) := {x ∈ X | D∗
L(x|w) <∞} (138)

is nonempty. Then

lim
τ→∞

xτ (w) = argmin
x∈X̂ (w)

ℓ(x) (139)

whenever the limit exists. For a linearized loss, we have

lim
τ→∞

x̃τ (w) = arg inf
x∈X̂ (w)

⟨x,∇ℓ⟩ = xFW (w), (140)

where xFW is the solution to a Frank-Wolfe iteration LP (Frank & Wolfe, 1956)

Proof of Proposition 5.2. Throughout the proof, let w be a fixed parameter. For τ > 0 we define
fτ : X → R by

fτ (x) = ℓ(x) + 1
τD

∗
L(x|τ) for x ∈ X . (141)

Since D∗
L ≥ 0 on X , we have that

fτ ≥ fτ ′ ≥ ℓ on X (142)

whenever τ ′ ≥ τ . Now let (xτ )τ>0 be minimizers of (141) such that xτ → x ∈ X as τ →∞. We
show that x minimizes ℓ(x) over X̂ (w).
To this end, let (τn)∞n=1 be a non-decreasing sequence such that τn →∞ and denote xn = xτn and
fn = fτn , for short. Since X̂ (w) is nonempty and ℓ is finite-valued on X , we have that fn(xn) <∞
and xn ∈ X̂ (w) for all x ∈ N. Since X̂ (w) is closed, also x ∈ X̂ (w). Next, by (142), the sequence
fn(xn) for n ∈ N is nonincreasing and bounded from below (by a minimum of ℓ on {xn | n ∈ N}).
Therefore, fn(xn) is convergent. By the continuity of ℓ, we have that ℓ(xn) → ℓ(x) and thus
1
τn
D∗

L(xn|w) converges to some c ≥ 0. Altogether, for any x̂ ∈ X̂ (w), we have

ℓ(x) + c = lim
n→∞

fn(xn) = lim
n→∞

ℓ(xn) +
1
τn
D∗

L(xn|w) ≤ lim
n→∞

ℓ(x̂) + 1
τn
D∗

L(x̂|w) = ℓ(x̂).

The particular choice x̂ = x shows that c = 0. Therefore ℓ(x) ≤ ℓ(x̂) for any x̂ ∈ X̂ (w) as desired.
The second part of the proposition follows directly by taking a loss linearization.
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Proposition 5.3. Assume ℓ is continuous and finite-valued on X . Let w be a parameter for which
X̂ (w) is nonempty. The primal lower L-proximal map (31) turns into the standard proximal map (5)

lim
τ→∞

xτρ(w) = arg inf
x∈X̂ (w)

[
ℓ(x) + 1

2ρ∥x− x∗∥22
]
= proxρℓ+IX̂(w)

(x∗), (143)

whenever the limit exists. For a linearized loss, it reduces to the Euclidean projection onto X̂ (w)

lim
τ→∞

x̃τρ(w) = arg inf
x∈X̂ (w)

[
⟨x,∇ℓ⟩+ 1

2ρ∥x− x∗∥22
]
= PX̂ (w)(x

∗ − ρ∇ℓ). (144)

Proof of Proposition 5.3. The proof is analogous to that of Proposition 5.2 with

fτ : X → R : x 7→ ℓ(x) + 1
τD

∗
L(x|w) + 1

2ρ∥x− x∗∥22 (145)

G EXPERIMENTS

Instead of the mini-Sudoku case (4× 4 grid) in Amos & Kolter (2017a), we consider the full 9× 9
Sudoku grid. The Sudoku board is modelled as a one-hot-encoding, with incomplete input and solved
label xinc, xtrue ∈ {0, 1}9×9×9. The optimization problem is modelled as a generic box-constrained
linear program

x∗(A, b;xinc) = argmin
x∈X

⟨x, xinc⟩ subject to Ax+ b = 0 (146)

with X = [0, 1]9×9×9 and a sufficient number of constraints m to represent the rules of the LP
Sudoku.14 In saddle-point formulation the optimization problem is

z∗(A, b;xinc) = arg inf
x∈X

sup
y∈Rm

L(x, y,A, b, xinc), (147)

with L(x, y,A, b, c) = ⟨x, c⟩+ ⟨y,Ax+ b⟩. Note that we have the effective feasible set

X̂ (A, b) = {x ∈ [0, 1]9×9×9 | Ax+ b = 0}. (148)

We follow the training protocol described by Amos & Kolter (2017a) that minimizes the mean square
error between predictions x∗(A, b;xinc) and one-hot encodings of the correctly solved Sudokus xtrue.
For evaluation, we follow Amos & Kolter (2017a) in refining the predictions by taking an argmax
over the one-hot dimension and report the percentage of violated ground-truth Sudoku constraints as
the error.

We modify the public codebase from Amos & Kolter (2017b). The dataset consists of 9000 training
and 1000 test instances. We choose the hyperparameters learning rate α, τ and ρ with a grid search.
The best hyperparameters for LPGD are τ = 104, ρ = 0.1, α = 0.1, for gradient descent they are
ρ = 10−3, α = 0.1. We use these hyperparameters in our evaluation.

Additional results, including test losses and errors, are reported in Figure 3 and 4. We observe that
there is not significant difference between train and test metrics, which shows that our formulation of
Sudoku (146) allows generalizing across instances.

14The formulation as an LP differs from the original formulation by Amos & Kolter (2017a), in which a
quadratic regularizer has to be added to meet the method requirements.
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Figure 3: Comparison of LPGD and gradient descent (GD) on the Sudoku experiment. Reported are
train and test MSE loss over epochs and wall-clock time. Statistics are over 5 restarts.
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Figure 4: Comparison of LPGD and gradient descent (GD) on the Sudoku experiment. Reported
are train and test errors over epochs and wall-clock time. The exact error refers to the proportion of
incorrect solutions (at least one violated Sudoku constraint), while the constraint error refers to the
proportion of violated Sudoku constraints. Statistics are over 5 restarts.
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H LIST OF SYMBOLS

x primal variables
s optional slack variables
y dual variables

z = (x, y) primal & dual variables
z∗ = (x∗, y∗) optimal primal & dual variables (2)
X ,Y primal and dual feasible sets
X̃ primal effective feasible set (34)
w all parameters
u linear parameters
v non-linear parameters
c linear primal parameters
b linear dual parameters
L Lagrangian
L∗ optimal Lagrangian (1)
Ω non-linear part of Lagrangian

τ perturbation strength parameter
envτf Moreau envelope of a function f (4)
proxτf Proximal map (5)

ℓ loss on primal variables
DL Lagrangian difference (8)
D∗

L Lagrangian divergence (9)
ℓτ , ℓ

τ , ℓτ Lagrange-Moreau envelopes (12, 14, 16)
zτ = (xτ , yτ ) lower L-proximal map (13)
zτ = (xτ , yτ ) upper L-proximal map (15)
∇ℓτ ,∇ℓτ ,∇ℓτ LPPM updates (17)
∆ℓτ ,∆ℓτ ,∆ℓτ LPPM finite-differences (39)

ℓ̃ linearization of ℓ at x∗ (6)
ℓ̃τ , ℓ̃

τ , ℓ̃τ Lagrange-Moreau envelopes of a linearized loss ℓ̃
z̃τ = (x̃τ , ỹτ ) corresponding lower L-proximal map (22)
z̃τ = (x̃τ , ỹτ ) corresponding upper L-proximal map (23)
∇ℓ̃τ ,∇ℓ̃τ ,∇ℓ̃τ LPGD updates (24)
∆ℓ̃τ ,∆ℓ̃τ ,∆ℓ̃τ LPGD finite-differences

ρ augmentation strength parameter
Lρ augmented Lagrangian (29)

ℓτρ, ℓ
τρ, ℓτρ augmented Lagrange-Moreau envelopes (30)

zτρ = (xτρ, yτρ) augmented lower L-proximal map (31)
zτρ = (xτρ, yτρ) augmented upper L-proximal map
∇ℓτρ,∇ℓτρ,∇ℓτρ augmented LPPM updates (32)
∆ℓτρ,∆ℓτρ,∆ℓτρ augmented LPPM finite-differences (40)

ℓ̃τρ, ℓ̃
τρ, ℓ̃τρ augmented Lagrange-Moreau envelopes of a linearized loss ℓ̃

z̃τρ = (x̃τρ, ỹτρ) corresponding augmented lower L-proximal map
z̃τρ = (x̃τρ, ỹτρ) corresponding augmented upper L-proximal map
∇ℓ̃τρ,∇ℓ̃τρ,∇ℓ̃τρ augmented LPGD updates (32)
∆ℓ̃τρ,∆ℓ̃τρ,∆ℓ̃τρ augmented LPGD finite-differences (40)

L loss on primal & dual variables
L̃ linearization of L at z∗
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