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Abstract
Graph generative models are essential across
diverse scientific domains by capturing complex
distributions over relational data. Among them,
graph diffusion models achieve superior perfor-
mance but face inefficient sampling and limited
flexibility due to the tight coupling between
training and sampling stages. We introduce
DeFoG, a novel graph generative framework that
disentangles sampling from training, enabling
a broader design space for more effective and
efficient model optimization. DeFoG employs a
discrete flow-matching formulation that respects
the inherent symmetries of graphs. We theo-
retically ground this disentangled formulation
by explicitly relating the training loss to the
sampling algorithm and showing that DeFoG
faithfully replicates the ground truth graph
distribution. Building on these foundations, we
thoroughly investigate DeFoG’s design space
and propose novel sampling methods that sig-
nificantly enhance performance and reduce the
required number of refinement steps. Extensive
experiments demonstrate state-of-the-art perfor-
mance across synthetic, molecular, and digital
pathology datasets, covering both unconditional
and conditional generation settings. It also
outperforms most diffusion-based models with
just 5–10% of their sampling steps.

1. Introduction
Graph generation has become a fundamental task across
diverse fields, from molecular chemistry to social net-
work analysis, due to graphs’ capacity to represent com-
plex relationships and generate realistic structured data.
Diffusion-based graph generative models (Niu et al., 2020;
Jo et al., 2022), particularly those tailored for discrete data
(Vignac et al., 2022), have emerged as compelling ap-
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proaches, demonstrating pioneering performance in appli-
cations such as molecular generation (Irwin et al., 2024),
reaction pathway design (Igashov et al., 2024), neural ar-
chitecture search (Asthana et al., 2024), and combinatorial
optimization (Sun & Yang, 2024). Recently, continuous-
time discrete diffusion frameworks have further advanced
the domain of discrete graph diffusion (Xu et al., 2024;
Siraudin et al., 2024). These frameworks leverage the ro-
bustness and flexibility of continuous-time modeling, while
preserving the natural alignment with the discrete structure
of graphs.

Despite their state-of-the-art performance, the training
and sampling stages of diffusion-based models is tightly
entangled, restricting sampling options to training-phase
choices. Thus, optimizing components such as noise
schedules or rate matrices requires re-training for each
configuration, resulting in prohibitive computational costs.
Consequently, these models often adopt a single configura-
tion across graph datasets. This one-size-fits-all approach
fails to accommodate the diverse structural characteristics
of different datasets, leaving room for further improvement.

In this work, we present DeFoG, a novel graph genera-
tive framework that disentangles the training and sampling
stages (Figure 1a), addressing the inefficiencies in graph
diffusion models and achieving state-of-the-art (SOTA)
performance. DeFoG leverages a discrete flow matching
(DFM) inspired formulation (Campbell et al., 2024) that
we tailor to graph settings. It features a linear interpola-
tion noising process and a continuous-time Markov chain
(CTMC)-based denoising process, while ensuring node
permutation equivariance and addressing the model expres-
sivity limitations inherent to this data modality (Morris
et al., 2019). We demonstrate that training-sampling de-
coupling not only enhances flexibility but is also provably
sound. By theoretically establishing that training loss op-
timization leads to improved sampling dynamics, DeFoG
enables faithful replication of the ground truth graph dis-
tribution. To navigate the expanded design space enabled
by such disentanglement, we take a critical step by “defog-
ging” this space. Specifically, we explore and propose var-
ious sampling methods, including time-adaptive methods
and modifications to CTMC rate matrices, to better govern
denoising trajectories and align with the unique character-
istics of graph datasets.
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Noising        pt|1 = (1 Δ t)p0 + t ⋆ p1

<latexit sha1_base64="o5xMFkAkwmAVkNopZ8LYtyUOB3Q=">AAAB8HicdVDLSgNBEJyNrxhfUY9eBoPgadkNIZpbQA8eI5iHJEuYncwmQ2Zml5leIYR8hRcPinj1c7z5N84mEXwWNBRV3XR3hYngBjzv3cmtrK6tb+Q3C1vbO7t7xf2DlolTTVmTxiLWnZAYJrhiTeAgWCfRjMhQsHY4vsj89h3ThsfqBiYJCyQZKh5xSsBKt71LJoBgKPSLJc8t12o1z8e/ie96c5TQEo1+8a03iGkqmQIqiDFd30sgmBINnAo2K/RSwxJCx2TIupYqIpkJpvODZ/jEKgMcxdqWAjxXv05MiTRmIkPbKQmMzE8vE//yuilE58GUqyQFpuhiUZQKDDHOvscDrhkFMbGEUM3trZiOiCYUbEZZCJ+f4v9Jq+z6Vbd6XSnVK8s48ugIHaNT5KMzVEdXqIGaiCKJ7tEjenK08+A8Oy+L1pyznDlE3+C8fgBIRZAP</latexit>
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<latexit sha1_base64="CqGi6enbFtuFv0Qi/+fz0LtDD0c=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vjw4rGC/YA2lM120i7dTeLuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pR8AhbhhuB3UQhlYHATjC5zf3OEyrN4+jBTBP0JR1FPOSMmlzqC3wcVKpuzZ2DrBKvIFUo0BxUvvrDmKUSI8ME1brnuYnxM6oMZwJn5X6qMaFsQkfYszSiErWfzW+dkXOrDEkYK1uRIXP190RGpdZTGdhOSc1YL3u5+J/XS01442c8SlKDEVssClNBTEzyx8mQK2RGTC2hTHF7K2FjqigzNp6yDcFbfnmVtC9rXr1Wv7+qNtwijhKcwhlcgAfX0IA7aEILGIzhGV7hzZHOi/PufCxa15xi5gT+wPn8ARMpjjk=</latexit> <latexit sha1_base64="N1k7HwW0c8epXRur0RmZbu57UXU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W9WrXWvK7U3TyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4Ad0GMrQ==</latexit>
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<latexit sha1_base64="OyXCnz6PSeq02nTCi9oMtnXIXog=">AAACGHicbVDLSgMxFM3UV62vUZdugkVw1c6oVJcFNy4r2Ad0hpJJb9vQTGZIMmIZ+hlu/BU3LhRx251/Y9oOYlsPhBzOuZd77wlizpR2nG8rt7a+sbmV3y7s7O7tH9iHRw0VJZJCnUY8kq2AKOBMQF0zzaEVSyBhwKEZDG+nfvMRpGKReNCjGPyQ9AXrMUq0kTp22Qugz0QahERL9jTGbvkSe97CB6L763fsolNyZsCrxM1IEWWodeyJ141oEoLQlBOl2q4Taz8lUjPKYVzwEgUxoUPSh7ahgoSg/HR22BifGaWLe5E0T2g8U/92pCRUahQGptLsN1DL3lT8z2snunfjp0zEiQZB54N6Ccc6wtOUcJdJoJqPDCFUMrMrpgMiCdUmy4IJwV0+eZU0LkpupVS5vypWnSyOPDpBp+gcuegaVdEdqqE6ougZvaJ39GG9WG/Wp/U1L81ZWc8xWoA1+QGW3J41</latexit>2
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<latexit sha1_base64="cWWo/kZ3qNrdeL/sBZCV+xTNTM4=">AAACEnicbVDLSsNAFJ34rPUVdelmsAi6KYlIdVlw47KCfUATymRy0w6dTMLMRCyh3+DGX3HjQhG3rtz5N07bINp6YIbDOfdy7z1BypnSjvNlLS2vrK6tlzbKm1vbO7v23n5LJZmk0KQJT2QnIAo4E9DUTHPopBJIHHBoB8Orid++A6lYIm71KAU/Jn3BIkaJNlLPPvUC6DORBzHRkt2PsYs9DzvFByL8cXp2xak6U+BF4hakggo0evanFyY0i0FoyolSXddJtZ8TqRnlMC57mYKU0CHpQ9dQQWJQfj49aYyPjRLiKJHmCY2n6u+OnMRKjeLAVJr9Bmrem4j/ed1MR5d+zkSaaRB0NijKONYJnuSDQyaBaj4yhFDJzK6YDogkVJsUyyYEd/7kRdI6q7q1au3mvFJ3ijhK6BAdoRPkogtUR9eogZqIogf0hF7Qq/VoPVtv1vusdMkqeg7QH1gf3653nNE=</latexit>2
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<latexit sha1_base64="UVTMJ5FfxOwudynNrAPlQIqOx08=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQL2VXpHqsePFYwX5Au5Zsmm1Ds8mSzApl2Z/hxYMiXv013vw3pu0etPXBwOO9GWbmBbHgBlz32ymsrW9sbhW3Szu7e/sH5cOjtlGJpqxFlVC6GxDDBJesBRwE68aakSgQrBNMbmd+54lpw5V8gGnM/IiMJA85JWClXvyYVuV5NkjdbFCuuDV3DrxKvJxUUI7moPzVHyqaREwCFcSYnufG4KdEA6eCZaV+YlhM6ISMWM9SSSJm/HR+cobPrDLEodK2JOC5+nsiJZEx0yiwnRGBsVn2ZuJ/Xi+B8NpPuYwTYJIuFoWJwKDw7H885JpREFNLCNXc3orpmGhCwaZUsiF4yy+vkvZFzavX6veXlcZNHkcRnaBTVEUeukINdIeaqIUoUugZvaI3B5wX5935WLQWnHzmGP2B8/kD26+Q/g==</latexit>
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<latexit sha1_base64="hEilFJxusO9R2GiwMLrAChgdyvY="></latexit>
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(n)
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(n)
1

<latexit sha1_base64="iFcMSDtkKPLCYWodvTr/kUQkkmQ=">AAACHXicbVBNSwMxEM36bf1a9eglWAotSNkVqT0KHvSoYFXo1iWbpm1okl2SWaGs+wv8Ef4Gr3r2Jl7Fo//EtPZgWx8MPN6bYWZelAhuwPO+nLn5hcWl5ZXVwtr6xuaWu71zbeJUU9agsYj1bUQME1yxBnAQ7DbRjMhIsJuofzr0b+6ZNjxWVzBIWEuSruIdTglYKXRLQSSzJL/LAugxIAe4rCp5mPkPkJcD2o7h4SyESugWvao3Ap4l/pgU0RgXofsdtGOaSqaACmJM0/cSaGVEA6eC5YUgNSwhtE+6rGmpIpKZVjZ6J8clq7RxJ9a2FOCR+nciI9KYgYxspyTQM9PeUPzPa6bQqbcyrpIUmKK/izqpwBDjYTa4zTWjIAaWEKq5vRXTHtGEgk1wYkskc5uJP53ALLk+rPq1au3yqHhSH6ezgvbQPiojHx2jE3SOLlADUfSIntELenWenDfn3fn4bZ1zxjO7aALO5w84w6J/</latexit>
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<latexit sha1_base64="te9IrgMMbJuXF/uvysbBaGh6uNY=">AAACKHicbVDLSgNBEJz1/Tbq0ctgECJI2BVRwYugB49RjArZuMxOOmbIzOwy0yuGZX/Dj/AbvOrZm+SoX+Ik5uCroKGo6qa7K06lsOj7fW9sfGJyanpmdm5+YXFpubSyemmTzHCo80Qm5jpmFqTQUEeBEq5TA0zFEq7i7vHAv7oDY0WiL7CXQlOxWy3agjN0UlTyw1jl58VNHmIHkG3Tit4qohyLyn2E2zTkrQS3aHhIwxOQyChGpbJf9Yegf0kwImUyQi0qvYethGcKNHLJrG0EforNnBkUXEIxF2YWUsa77BYajmqmwDbz4WcF3XRKi7YT40ojHarfJ3KmrO2p2HUqhh372xuI/3mNDNsHzVzoNEPQ/GtRO5MUEzqIibaEAY6y5wjjRrhbKe8wwzi6MH9siVXhMgl+J/CXXO5Ug73q3tlu+ehglM4MWScbpEICsk+OyCmpkTrh5IE8kWfy4j16r96b1/9qHfNGM2vkB7yPTwIApdQ=</latexit>
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<latexit sha1_base64="6SxbCQD1hJYXw24C+wM8T//awoQ=">AAACGXicbVA9SwNBEN3zM8avqKXNahAUJNyJaMqAFpZRjBFyMextJmZxd+/YnRPCcbU/wt9gq7Wd2FpZ+k/cxBR+PRh4vDfDzLwokcKi7797E5NT0zOzhbni/MLi0nJpZfXCxqnh0OCxjM1lxCxIoaGBAiVcJgaYiiQ0o5ujod+8BWNFrM9xkEBbsWsteoIzdFKntBFGKjvLr7IQ+4Bsl27rnbyTYU7DY5DIKHZKZb/ij0D/kmBMymSMeqf0EXZjnirQyCWzthX4CbYzZlBwCXkxTC0kjN+wa2g5qpkC285Gr+R0yyld2ouNK410pH6fyJiydqAi16kY9u1vbyj+57VS7FXbmdBJiqD516JeKinGdJgL7QoDHOXAEcaNcLdS3meGcXTp/dgSqdxlEvxO4C+52KsEB5WD0/1yrTpOp0DWySbZJgE5JDVyQuqkQTi5Iw/kkTx5996z9+K9frVOeOOZNfID3tsnrYOgmQ==</latexit>
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<latexit sha1_base64="7l30X4J6nM0+wCRVg8Tu0thpYXk=">AAACFXicbVDLSgNBEJyNrxhfUY8iDAYhIoRdkZhjQA8eI5gHJHGZncwmQ2Zml5leIax78iP8Bq969iZePXv0T9w8DiZa0FBUddPd5YWCG7DtLyuztLyyupZdz21sbm3v5Hf3GiaINGV1GohAtzximOCK1YGDYK1QMyI9wZre8HLsN++ZNjxQtzAKWVeSvuI+pwRSyc0fdjwZh8ldXFQniRvDaeeKCSAY8AOGxM0X7JI9Af5LnBkpoBlqbv670wtoJJkCKogxbccOoRsTDZwKluQ6kWEhoUPSZ+2UKiKZ6caTNxJ8nCo97Ac6LQV4ov6eiIk0ZiS9tFMSGJhFbyz+57Uj8CvdmKswAqbodJEfCQwBHmeCe1wzCmKUEkI1T2/FdEA0oZAmN7fFk+NMnMUE/pLGWckpl8o354VqZZZOFh2gI1REDrpAVXSNaqiOKHpEz+gFvVpP1pv1bn1MWzPWbGYfzcH6/AG5158M</latexit>
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• 32
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<latexit sha1_base64="TnXKXpC5JmeCXW2qzuutc8VaGUQ=">AAACTHicbVBNSwMxEM3W7/pV9eglWIQWteyKqAhCwYsnqWBboVtLNk1rMMkuyaxY1v1j/gjv3vSoZ28imNYebOuDgcd7M8zMCyLBDbjui5OZmp6ZnZtfyC4uLa+s5tbWayaMNWVVGopQXwfEMMEVqwIHwa4jzYgMBKsHd2d9v37PtOGhuoJexJqSdBXvcErASq3clQ/sAbRMLkJuuOqmJ9gPZBKlN0lBFdNWAo9eik9xwduDIvZ3R10X72CYUL1WLu+W3AHwJPGGJI+GqLRyb347pLFkCqggxjQ8N4JmQjRwKlia9WPDIkLvSJc1LFVEMtNMBt+neNsqbdwJtS0FeKD+nUiINKYnA9spCdyaca8v/uc1YugcNxOuohiYor+LOrHAEOJ+lLjNNaMgepYQqrm9FdNbogkFG/jIlkCmNhNvPIFJUtsveYelw8uDfLk8TGcebaItVEAeOkJldI4qqIooekKv6B19OM/Op/PlfP+2ZpzhzAYaQWb2B6AOslo=</latexit>
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1

<latexit sha1_base64="AbTlAuV9hGjudQUh93+27EvsMts=">AAACBHicbVC7SgNBFL0bXzG+opY2g0GITdgViZYBG8sI5gHJJsxOJsmQmdllZlYIy7Z+g63WdmLrf1j6J06SLUzigQuHc+7lXE4QcaaN6347uY3Nre2d/G5hb//g8Kh4fNLUYawIbZCQh6odYE05k7RhmOG0HSmKRcBpK5jczfzWE1WahfLRTCPqCzySbMgINlbqdQORRGkvKcvLtO/2iyW34s6B1omXkRJkqPeLP91BSGJBpSEca93x3Mj4CVaGEU7TQjfWNMJkgke0Y6nEgmo/mX+dogurDNAwVHakQXP170WChdZTEdhNgc1Yr3oz8T+vE5vhrZ8wGcWGSrIIGsYcmRDNKkADpigxfGoJJorZXxEZY4WJsUUtpQQitZ14qw2sk+ZVxatWqg/XpVotaycPZ3AOZfDgBmpwD3VoAAEFL/AKb86z8+58OJ+L1ZyT3ZzCEpyvXwzYmNw=</latexit>
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<latexit sha1_base64="A55xuaR6hGOCwsgm84gNzjUrZNs=">AAACBHicbVC7SgNBFL0bXzG+opY2g0GITdgViZYBG8sI5gHJJsxOJsmQmdllZlYIy7Z+g63WdmLrf1j6J06SLUzigQuHc+7lXE4QcaaN6347uY3Nre2d/G5hb//g8Kh4fNLUYawIbZCQh6odYE05k7RhmOG0HSmKRcBpK5jczfzWE1WahfLRTCPqCzySbMgINlbqdQORRGkvKcvLtO/1iyW34s6B1omXkRJkqPeLP91BSGJBpSEca93x3Mj4CVaGEU7TQjfWNMJkgke0Y6nEgmo/mX+dogurDNAwVHakQXP170WChdZTEdhNgc1Yr3oz8T+vE5vhrZ8wGcWGSrIIGsYcmRDNKkADpigxfGoJJorZXxEZY4WJsUUtpQQitZ14qw2sk+ZVxatWqg/XpVotaycPZ3AOZfDgBmpwD3VoAAEFL/AKb86z8+58OJ+L1ZyT3ZzCEpyvXw5rmN0=</latexit>
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<latexit sha1_base64="6SxbCQD1hJYXw24C+wM8T//awoQ=">AAACGXicbVA9SwNBEN3zM8avqKXNahAUJNyJaMqAFpZRjBFyMextJmZxd+/YnRPCcbU/wt9gq7Wd2FpZ+k/cxBR+PRh4vDfDzLwokcKi7797E5NT0zOzhbni/MLi0nJpZfXCxqnh0OCxjM1lxCxIoaGBAiVcJgaYiiQ0o5ujod+8BWNFrM9xkEBbsWsteoIzdFKntBFGKjvLr7IQ+4Bsl27rnbyTYU7DY5DIKHZKZb/ij0D/kmBMymSMeqf0EXZjnirQyCWzthX4CbYzZlBwCXkxTC0kjN+wa2g5qpkC285Gr+R0yyld2ouNK410pH6fyJiydqAi16kY9u1vbyj+57VS7FXbmdBJiqD516JeKinGdJgL7QoDHOXAEcaNcLdS3meGcXTp/dgSqdxlEvxO4C+52KsEB5WD0/1yrTpOp0DWySbZJgE5JDVyQuqkQTi5Iw/kkTx5996z9+K9frVOeOOZNfID3tsnrYOgmQ==</latexit>
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<latexit sha1_base64="nfklI9kaletmb6pOhXd8d37BN7s=">AAAB/3icbVA9TwJBEJ3DL8Qv1NLmIjHBhtwZg5QkNpaYyIeBk+wte7Bhd++yu2cklyv8DbZa2xlbf4ql/8QFrhDwJZO8vDeTmXl+xKjSjvNt5dbWNza38tuFnd29/YPi4VFLhbHEpIlDFsqOjxRhVJCmppqRTiQJ4j4jbX98PfXbj0QqGoo7PYmIx9FQ0IBipI10//SQlMV52tf9YsmpODPYq8TNSAkyNPrFn94gxDEnQmOGlOq6TqS9BElNMSNpoRcrEiE8RkPSNVQgTpSXzA5O7TOjDOwglKaEtmfq34kEcaUm3DedHOmRWvam4n9eN9ZBzUuoiGJNBJ4vCmJm69Cefm8PqCRYs4khCEtqbrXxCEmEtcloYYvPU5OJu5zAKmldVNxqpXp7WarXsnTycAKnUAYXrqAON9CAJmDg8AKv8GY9W+/Wh/U5b81Z2cwxLMD6+gVUw5bL</latexit>
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<latexit sha1_base64="5n7LWHx5qdVR2sH+1ozc3auee/0=">AAACCHicbVDLSsNAFJ3UV62vqEs3g0Wom5KI1C4LblxWsA9oY5hMp+3QmUmYmRRLyA/4DW517U7c+hcu/RMnbRa29cCFwzn3ci4niBhV2nG+rcLG5tb2TnG3tLd/cHhkH5+0VRhLTFo4ZKHsBkgRRgVpaaoZ6UaSIB4w0gkmt5nfmRKpaCge9CwiHkcjQYcUI20k37b7AU+e0sekIi5TP9Gpb5edqjMHXCduTsogR9O3f/qDEMecCI0ZUqrnOpH2EiQ1xYykpX6sSITwBI1Iz1CBOFFeMv88hRdGGcBhKM0IDefq34sEcaVmPDCbHOmxWvUy8T+vF+th3UuoiGJNBF4EDWMGdQizGuCASoI1mxmCsKTmV4jHSCKsTVlLKQHPOnFXG1gn7auqW6vW7q/LjXreThGcgXNQAS64AQ1wB5qgBTCYghfwCt6sZ+vd+rA+F6sFK785BUuwvn4B2CuaXQ==</latexit>
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<latexit sha1_base64="nfklI9kaletmb6pOhXd8d37BN7s=">AAAB/3icbVA9TwJBEJ3DL8Qv1NLmIjHBhtwZg5QkNpaYyIeBk+wte7Bhd++yu2cklyv8DbZa2xlbf4ql/8QFrhDwJZO8vDeTmXl+xKjSjvNt5dbWNza38tuFnd29/YPi4VFLhbHEpIlDFsqOjxRhVJCmppqRTiQJ4j4jbX98PfXbj0QqGoo7PYmIx9FQ0IBipI10//SQlMV52tf9YsmpODPYq8TNSAkyNPrFn94gxDEnQmOGlOq6TqS9BElNMSNpoRcrEiE8RkPSNVQgTpSXzA5O7TOjDOwglKaEtmfq34kEcaUm3DedHOmRWvam4n9eN9ZBzUuoiGJNBJ4vCmJm69Cefm8PqCRYs4khCEtqbrXxCEmEtcloYYvPU5OJu5zAKmldVNxqpXp7WarXsnTycAKnUAYXrqAON9CAJmDg8AKv8GY9W+/Wh/U5b81Z2cwxLMD6+gVUw5bL</latexit>
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<latexit sha1_base64="bekDayNLb5bVYkfiJkprLlty7xQ=">AAACEnicbVDLSgNBEJyNrxhfUW96GQxCRAi7IjHHgB48RjAPSOIyO5lNhszMLjO9YlgW/Ai/wauevYlXf8Cjf+LmcTDRgoaiqpvuLi8U3IBtf1mZpeWV1bXsem5jc2t7J7+71zBBpCmr00AEuuURwwRXrA4cBGuFmhHpCdb0hpdjv3nPtOGBuoVRyLqS9BX3OSWQSm7+oOPJ+CG5i4vqJHFjOO1cMQEEA07cfMEu2RPgv8SZkQKaoebmvzu9gEaSKaCCGNN27BC6MdHAqWBJrhMZFhI6JH3WTqkikpluPPkhwcep0sN+oNNSgCfq74mYSGNG0ks7JYGBWfTG4n9eOwK/0o25CiNgik4X+ZHAEOBxILjHNaMgRikhVPP0VkwHRBMKaWxzWzw5zsRZTOAvaZyVnHKpfHNeqFZm6WTRITpCReSgC1RF16iG6oiiR/SMXtCr9WS9We/Wx7Q1Y81m9tEcrM8fjX6d5g==</latexit>
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<latexit sha1_base64="ykvw1FV/eknZKg5iEZt7XdbY5Y0=">AAACDnicbVDLSsNAFJ3UV62vqODGzWARKkJJRGqXBV24rGAf0NYymU7aoZNJmLkRS8w/+A1ude1O3PoLLv0TkzYLWz1w4XDOvZzLcQLBNVjWl5FbWl5ZXcuvFzY2t7Z3zN29pvZDRVmD+sJXbYdoJrhkDeAgWDtQjHiOYC1nfJn6rXumNPflLUwC1vPIUHKXUwKJ1DcPHu6ikjyJ+xHgU9y9YgIIhrhvFq2yNQX+S+yMFFGGet/87g58GnpMAhVE645tBdCLiAJOBYsL3VCzgNAxGbJOQiXxmO5F0/9jfJwoA+z6KhkJeKr+voiIp/XEc5JNj8BIL3qp+J/XCcGt9iIugxCYpLMgNxQYfJyWgQdcMQpikhBCFU9+xXREFKGQVDaX4nhpJ/ZiA39J86xsV8qVm/NirZq1k0eH6AiVkI0uUA1dozpqIIoe0TN6Qa/Gk/FmvBsfs9Wckd3sozkYnz+gKZu7</latexit>
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(b) Overview of DeFoG.

Figure 1: (a) DeFoG enhances graph generation by introducing training-sampling decoupling, an orthogonal improvement
within graph iterative refinement models, while preserving the sampling flexibility and inherent discreteness exploitation
of prior SOTA models. (b) One node, x(n), is selected to illustrate both noising and denoising processes. For noising,
DeFoG follows a straight path from the one-hot encoding p1 of the clean node to the initial distribution p0. For denoising,
a network parameterized by θ predicts the marginal distributions of the clean graph, there the node’s distribution p

θ,(n)
1|t (·|Gt)

is used to compute its rate matrix R
θ,(n)
t and, subsequently, its probability at the next time point t+∆t.

Our experiments show that DeFoG achieves SOTA perfor-
mance across diverse datasets, with near-saturated validity
of 99.5%, 96.5%, and 90% on planar, tree, and stochas-
tic block model (SBM) datasets, respectively. On com-
plex molecular data, it achieves 92.8% validity on MOSES
(Polykovskiy et al., 2020), surpassing the previous SOTA
of 90.5%. Moreover, DeFoG achieves 95.0% and 86.5%
validity on planar and SBM datasets, respectively, with
only 5–10% of the sampling steps used by diffusion mod-
els. This performance surpasses all but one diffusion model
on the planar dataset and ranks best on SBM, highlighting
substantial efficiency gains. To further highlight the versa-
tility of DeFoG, we also test it in conditional generation
tasks for digital pathology, where it largely outperforms
existing unconstrained models. Ablation studies further
confirm the need of each proposed sampling method and
highlight the importance of dataset-specific sampling pro-
cedures to effectively address diverse data characteristics.

Our main contributions are as follows:

• We introduce DeFoG, a novel graph generative model
that effectively exploits the training-sampling decou-
pling enabled by its flow-based formulation, signifi-
cantly enhancing sampling flexibility and efficiency.

• We provide a theoretical foundation for both our train-
ing and sampling algorithms, validating the soundness
of the disentanglement framework;

• We comprehensively explore DeFoG’s design space
with novel training and sampling approaches, high-
light critical configurations for graph data and attain
state-of-the-art performance across diverse datasets.

Overall, DeFoG enables more effective graph generation
with reduced computational costs under theoretical guar-
antees, paving the way for broader adoption of graph gen-

erative models in real-world applications.

2. Background
In generative modeling, the primary goal is to generate
new data samples from the underlying distribution that pro-
duced the original data, pdata. An effective approach is to
learn a mapping between a simpler distribution pϵ that can
be easily sampled, and pdata.

Iterative refinement models achieve this mapping through a
stochastic process over the time interval t ∈ [0, 1] for vari-
ables in discrete state spaces. For the sake of simplicity,
we describe here an univariate formulation. At any time
t, we consider a discrete variable with Z possible values,
denoted by zt ∈ Z = {1, . . . , Z}. The marginal distri-
bution of zt is represented by the vector pt ∈ ∆Z , with
∆Z =

{
u ∈ RZ |∑Z

i=1 ui = 1, ui ≥ 0, ∀i
}

. The ini-
tial distribution is set to a predefined noise distribution,
p0 = pϵ, while p1 = pdata represents the target data distri-
bution. We refer to the mapping t : 1 → 0 as the noising
process and t : 0→ 1 as the denoising process.

DFM (Campbell et al., 2024) builds upon a streamlined
noising process. In particular, the noising trajectory
pt|1(zt|z1) ∈ [0, 1] is defined through a simple linear in-
terpolation starting from a chosen datapoint z1:

pt|1(zt|z1) = t δ(zt, z1) + (1− t) p0(zt), (1)

where δ(zt, z1) is the Kronecker delta (1 when zt = z1).
A usual choice for the initial distribution is the uniform
distribution over the state space, p0 = [1/Z, . . . , 1/Z].

In the denoising stage, DFM leverages a CTMC formula-
tion. In general, a CTMC is characterized by an initial dis-
tribution, p0, and a rate matrix, Rt ∈ RZ×Z that governs
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its evolution across time t ∈ [0, 1]. Specifically, the rate
matrix defines the instantaneous transition rates between
states, such that:

pt+dt|t(zt+dt|zt) = δ(zt, zt+dt) +Rt(zt, zt+dt)dt, (2)

where Rt(zt, zt+dt) denotes an entry in the rate matrix.
Intuitively, Rt(zt, zt+dt)dt yields the probability that a
transition from state zt to state zt+dt will occur in the
next infinitesimal time step dt. By definition, we have
Rt(zt, zt+dt) ≥ 0 for zt ̸= zt+dt. Consequently, we fur-
ther have Rt(zt, zt) = −∑zt+dt ̸=zt

Rt(zt, zt+dt) to en-
sure normalization

∑
zt+dt

pt+dt|t(zt+dt|zt) = 1. Under
this definition, the marginal distribution and the rate ma-
trix of a CTCM are related by a conservation law, the Kol-
mogorov equation, given by ∂tpt = R⊤

t pt. If expanded,
this expression unveils the time derivative of the marginal
distribution as the net balance between the inflow and out-
flow of probability mass at that state.

Similarly to the noising process of Eq. (1), the denoising is
also performed under conditioning on z1. Specifically, we
consider a z1-conditional rate matrix, Rt(· , ·|z1) ∈ RZ×Z ,
that will govern the denoising in DFM. Under mild assump-
tions, Campbell et al. (2024) present a closed-form for a
valid conditional rate matrix, i.e., a matrix that verifies the
corresponding Kolmogorov equation, for zt ̸= zt+dt, de-
fined as:

R∗
t (zt, zt+dt|z1) =

ReLU[∂tpt|1(zt+dt|z1)− ∂tpt|1(zt|z1)]
Z>0
t pt|1(zt|z1)

(3)
and Z>0

t = |{zt : pt|1(zt|z1) > 0}|. Again, normaliza-
tion is performed for the case zt+dt = zt. Intuitively, R∗

t

applies a positive rate to states needing more mass than the
current state zt (details in Appendix B.5). Finally, it can be
shown that Rt(zt, zt+dt) = Ep1|t(z1|zt)[Rt(zt+dt, zt|z1)],
which is employed in Eq. (2) for denoising.

While the DFM paradigm enables training-sampling dis-
entanglement, it lacks a complete formulation and empiri-
cal validation on graph data. Moreover, how to effectively
leverage this disentanglement to enhance sampling per-
formance remains underexplored, particularly for graph-
specific tasks. We introduce DeFoG to address these gaps.

3. DeFoG Framework
In this section, we present DeFoG (Discrete Flow Match-
ing on Graphs), a novel iterative refinement framework for
graph generation that leverages the decoupling of training
and sampling stages. We begin by describing its noising
and denoising processes, highlighting how they enable this
disentanglement, as illustrated in Figure 1b. We theoret-
ically demonstrate that this flexible framework is also ro-
bust by proving that optimizing the training loss improves
sampling dynamics, ensuring that DeFoG can faithfully

replicate graph distributions. Then, we discuss the ex-
panded design space enabled by DeFoG’s disentanglement,
which drives key improvements in graph generation perfor-
mance. Finally, we establish the node permutation equiv-
ariance/invariance guarantees of DeFoG.

3.1. Learning Discrete Flows over Graphs
We instantiate undirected graphs with N nodes as G =
(x1:n:N , e1:i<j:N ), where x1:n:N = (x(n))1≤n≤N and
e1:i<j:N = (e(ij))1≤i<j≤N denote the node and edge sets,
respectively, with x(n) ∈ X = {1, . . . , X} and e(ij) ∈
E = {1, . . . , E}. Following standard practice in the field
(Vignac et al., 2022; Xu et al., 2024; Siraudin et al., 2024),
we consider an edge between every pair of nodes, where
one of the edge categories explicitly represents the absence
of an edge (i.e., a “non-existing” edge).)

Noising We now define the noising process of DeFoG.
According to Eq. (1), with shared initial distributions
across nodes and edges, denoted as pX0 and pE0 , respec-
tively, we formulate the noising trajectory by independently
adding noise to each node and each edge:

pt|1(Gt|G1) =
∏

n

pt|1
(
x
(n)
t |x(n)

1

)∏

i<j

pt|1
(
e
(ij)
t |e(ij)1

)
.

Different pX0 and pE0 are further discussed in Appendix C.1.

Sampling As formulated in Sec. 2, the denois-
ing process requires simulating a CTMC, driven by
its rate matrix Rt. We start by sampling a purely
noisy graph G0 from the predefined initial distribution
p0(G0) =

∏
n p

X
0 (x

(n)
0 )

∏
i<j p

E
0 (e

ij
0 ). Then, we progress

in the denoising process by employing independent Euler
steps for each node and edge, with a finite time step ∆t,
i.e., we iteratively sample progressively denoised graphs
from p̃t+∆t|t(Gt+∆t|Gt), given by:

∏

n

p̃
(n)
t+∆t|t(x

(n)
t+∆t|Gt)

∏

i<j

p̃
(ij)
t+∆t|t(e

(ij)
t+∆t|Gt). (4)

Each term p̃
(n)
t+∆t|t(x

(n)
t+∆t|Gt) corresponds to the Euler

step given in Eq. (2), where the transition dynamics are
governed by the rate matrix computed as:

R
(n)
t

(
x
(n)
t , x

(n)
t+dt

)
= E

p
(n)

1|t (x
(n)
1 |Gt)

[
R

(n)
t

(
x
(n)
t , x

(n)
t+∆t|x

(n)
1

)]
,

(5)
and similarly for p̃(ij)t+∆t|t(e

(ij)
t+∆t|Gt).

Training The rate matrix used in the denoising steps
above requires the knowledge of the marginal distributions
p
(n)
1|t (·|Gt) ∈ ∆X and p

(ij)
1|t (·|Gt) ∈ ∆E for all nodes and

all edges, respectively. Both are gathered in p1|t(·|Gt) =(
p1:n:N
1|t (·|Gt), p

1:i<j:N
1|t (·|Gt)

)
. Each of these compo-

nents consists of the clear marginal distribution predic-
tion given a noisy graph Gt. However, the computation
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Algorithm 1 DeFoG Training

1: Input: Graph dataset D = {G1, . . . , GM}
2: while fθ not converged do
3: Sample G ∼ D
4: Sample t ∼ T
5: Sample Gt ∼ pt|1(Gt|G) ▷ Noising
6: h← RRWP(Gt) ▷ Extra features
7: pθ

1|t(·|Gt)← fθ(Gt, h, t) ▷ Denoising prediction

8: loss← CEλ(G, pθ
1|t(·|Gt))

9: optimizer. step(loss)

Algorithm 2 DeFoG Sampling

1: Input: # graphs to sample S
2: for i = 1 to S do
3: Sample N from train set ▷ # Nodes
4: Sample G0 ∼ p0(G0)
5: for t = 0 to 1−∆t with step ∆t do
6: h← RRWP(Gt) ▷ Extra features
7: pθ

1|t(·|Gt)← fθ(Gt, h, t) ▷ Denoising prediction
8: Gt+∆t ∼ p̃t+∆t|t(Gt+∆t|Gt) ▷ Eq. (4)

9: Store G1

of these terms is generally intractable. Instead, we train a
neural network, parameterized by θ, to approximate them,
pθ
1|t(·|Gt). To cover different noise levels, we sample t ∼
T , where T is an arbitrary distribution over [0, 1]. In DFM,
T is typically set to the uniform distribution, though alter-
native choices can enhance performance, as later explored
in Sec. 3.2. The training loss is naturally formulated as:

LDeFoG = Et∼T ,p1(G1),pt|1(Gt|G1) CEλ(G1,p
θ
1|t(·|Gt)),

where CEλ(G1,p
θ
1|t(·|Gt)) is defined as:

−∑n log
(
p
θ,(n)
1|t (x

(n)
1 |Gt)

)
− λ

∑
i<j log

(
p
θ,(ij)
1|t (e

(ij)
1 |Gt)

)
.

Here, λ ∈ R+ is introduced to weight nodes and edge
differently to more flexibly capture varying topologies.

Decoupled Training and Sampling DeFoG exhibits a
clear disentanglement of training and sampling. The train-
ing phase focuses on predicting the marginal probabilities
of the clean graph pθ

1|t(·|Gt), while sampling relies on the
rate matrix formulation. Importantly, the training process
is agnostic to the choice of the z1-conditional rate ma-
trix. Thus, different z1-conditional rate matrices can be
employed at sampling time, such as R⋆(·, ·|z1) in Eq. (3).
This decoupling of sampling from training provides addi-
tional flexibility in DeFoG’s design, which can be lever-
aged to further enhance performance. Notably, we further
demonstrate that, upon this decoupling, optimizing De-
FoG’s training loss improves its sampling dynamics, en-
suring the soundness of our framework.
Corollary 1 (Bounded estimation error of rate matrix for
graphs). Given t ∈ [0, 1] and graphs Gt, Gt+dt, and G1 ∼
p1(G1), there exist constants C̄0, C̄1, C̄3 > 0 such that the
rate matrix estimation error can be upper bounded by:

|Rt(Gt, Gt+dt)−Rθ
t (Gt, Gt+dt)|2 ≤ C̄0+

+ C̄1 Ep1(G1)

[
pt|1(Gt|G1)

∑

n

− log p
θ,(n)
1|t (x

(n)
1 |Gt)

]

+ C̄2 Ep1(G1)


pt|1(Gt|G1)

∑

i<j

− log p
θ,(ij)
1|t (e

(ij)
1 |Gt)


 .

By taking the expectation over t ∼ T and summing over
Gt, minimizing the derived upper bound of rate matrix es-
timation error in Theorem 1 with respect to θ corresponds
directly to minimizing the loss function of DeFoG with
λ = 1. Therefore, we guarantee that our training loss min-
imization is aligned with accurate rate matrix estimation.

Upon this result, we are now in conditions of justifying De-
FoG’s approximated denoising algorithm.
Corollary 2 (Bounded deviation of the generated graph
distribution). Let p1 be the marginal distribution at
t = 1 of a groundtruth CTMC, {Gt}0≤t≤1, and p̃1 be
the marginal distribution at t = 1 of its independent-
dimensional Euler sampling approximation, with a
maximum step size ∆t. Then, under Theorem 6, the
following total variation bound holds:

∥p(G1)− pdata∥TV ≤ Ū

(
XN + E

N(N − 1)

2

)

+ B̄

(
XN + E

N(N − 1)

2

)2

∆t+ O(∆t),

where Ū and B̄ are constant upper bounds for the bound
from Theorem 1 and for the denoising process relative to
its noising counterpart, respectively, for any t ∈ [0, 1].

The first term of the bound captures the estimation er-
ror introduced by using the neural network approximation
Rθ

t (Gt, Gt+dt). From Theorem 1, this term is bounded.
The remaining terms arise from the discretization of the
CTMC and can be controlled by reducing the step size ∆t.
Consequently, the deviation introduced by this approxima-
tion can be made arbitrarily small, ensuring that the gener-
ated distribution remains close to the groundtruth and vali-
dating our graph sampling scheme.

The resulting training and sampling processes are detailed
in Algs. 1 and 2. The proofs of Theorems 1 and 2 are pro-
vided in Appendix D.1.

3.2. Design Space of DeFoG
As described in the previous section, DeFoG benefits from
greater flexibility due to its training-sampling decoupling.
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For example, it allows the number and size of sampling
steps to be adjusted dynamically, unlike the fixed steps in
discrete-time diffusion (Vignac et al., 2022), and enables
adjustment of the rate matrix without retraining, address-
ing limitations of continuous-time diffusion graph mod-
els (Siraudin et al., 2024; Xu et al., 2024). This decoupling
supports extensive, training-free performance optimization
during the sampling stage, which is crucial for improving
performance and reducing the number of sampling steps.
Below, we propose the key components of DeFoG that are
enabled by this disentanglement.

Sample Distortion In DFM’s sampling process, the
discretization is performed using equally sized time steps
(Alg. 2, line 5). However, this uniformity may fail to
preserve key properties during critical intervals where finer
control is needed. For instance, smaller steps are essential
near the final stages of sampling to prevent sudden edge
alterations that could compromise global properties such
as planarity. To overcome this limitation, we propose using
variable step sizes, allocating smaller, more frequent steps
during these critical intervals to better capture essential
graph characteristics. Specifically, we apply to each
timestep t a bijective, increasing distortion function f
defined for t ∈ [0, 1], yielding t′ = f(t). For example, the
choice f(t) = 2t−t2 (referred to as polydec) creates mono-
tonically decreasing step sizes, emphasizing the final stages
of sampling, where error correction can be most critical.
The specific distortion functions employed are described in
Appendix B.1. Importantly, we can efficiently (i.e., without
re-training) adjust the sample distortion adopted for each
dataset to better accommodate its graphs characteristics,
leading to significant performance improvements.

Train Distortion Once the optimal sampling distortion is
identified, it can guide training by highlighting the critical
time ranges for graph generation in a specific dataset. This
enables adjustments to the training distribution T , skew-
ing it toward these ranges to focus the model’s capacity on
the most relevant regions. The skewed distributions are ob-
tained by passing uniformly sampled times t through the
same distortion functions. While similar strategies in other
modalities, such as image generation (Esser et al., 2024),
often emphasize intermediate time ranges, we find that op-
timal time ranges in graph generation vary across datasets.
Aligning the distortion function in training with sampling
typically enhances the algorithm by focusing on critical
time ranges. For instance, for larger datasets, such as drug-
sized molecular graphs, the polydec distortion function ac-
celerates convergence significantly and provides noticeable
performance improvements.

Target Guidance The application of time distortions is
not the sole avenue for optimizing the sampling process;
the design of the conditional rate matrices also offers sig-
nificant potential for improvement. One promising direc-

tion arises from the goal of better guiding the generation
process toward the clean data distribution (Song et al.,
2020a). This also aligns with the fundamental design of
diffusion and flow matching models, which are structured
to predict clean data directly and subsequently use that pre-
diction to generate the denoising trajectory (Ho et al., 2020;
Lipman et al., 2023; Vignac et al., 2022). Inspired by these
principles, we propose an alternative sampling mechanism
that seeks to further amplify the influence of the denois-
ing neural network’s predictions in the designed rate ma-
trices, by setting Rt(zt, zt+dt|z1) = R∗

t (zt, zt+dt|z1) +
Rω

t (zt, zt+dt|z1) for zt ̸= zt+dt, such that:

Rω
t (zt, zt+dt|z1) = ω

δ(zt+dt, z1)

Z>0
t pt|1(zt|z1)

. (6)

This adjustment increases the weight of transitions in the
rate matrix when zt+dt = z1, where z1 is the predicted
clean data. While moderate increases in ω significantly en-
hances performance by steering the generation toward high
confidence domains, excessively high ω leads to perfor-
mance drop. This behavior is explained in Theorem 10,
in Appendix B.2, where we show that target guidance in-
troduces an O(ω) violation of the Kolmogorov equation.
Consequently, finding an optimal value for ω is essential.

Stochasticity Orthogonal to target guidance, there also
exists unexplored potential in the design space of condi-
tional rate matrices that preserve the Kolmogorov equa-
tion as the standard formulation of R∗

t (zt, zt+dt|z1) does
not fully capture this space. As demonstrated by Camp-
bell et al. (2024), for any rate matrix RDB

t satisfying the
detailed balance condition pt|1(zt|z1)RDB

t (zt, zt+dt|z1) =
pt|1(zt+dt|z1)RDB

t (zt+dt, zt|z1), the modified rate matrix
Rη

t = R∗
t + ηRDB

t , with η ∈ R+, is also valid. In-
tuitively, increasing η facilitates more transitions to other
states while reducing the likelihood of remaining in the
same state, thereby increasing stochasticity in the trajectory
of the denoising process. This approach can be interpreted
as a correction mechanism, as it draws transitions back to
states that would otherwise be forbidden according to the
rate matrix formulation, as described in Appendix B.5. Ad-
ditionally, different designs of RDB

t encode different priors
for preferred transitions between states, which we investi-
gate in detail in Appendix B.3.

3.3. Permutation Invariance Guarantees
Graph generative models should respect the inherent per-
mutation symmetries of graphs. Accordingly, DeFoG’s
training and sampling algorithms should be independent of
node ordering. This requires that both DeFoG’s loss func-
tion during training and its probability of generating a spe-
cific graph during sampling be permutation invariant. We
formally demonstrate these results in Theorem 3, whose
proof is in Appendix D.2.1.
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Lemma 3 (Node Permutation Equivariance and Invariance
Properties of DeFoG). For any permutation equivariant
denoising neural network, the loss function of DeFoG is
permutation invariant, and its sampling probability is per-
mutation invariant.

We further describe the permutation equivariant denoising
neural network of DeFoG in Sec. 5.

4. Related Work
Graph Generative Models Graph generation has ap-
plications across various domains, including molecular
generation (Mercado et al., 2021), combinatorial optimiza-
tion (Sun & Yang, 2024), and inverse protein folding (Yi
et al., 2024). Existing methods for this task generally fall
into two main categories. First, autoregressive models
progressively grow the graph by inserting nodes and
edges (You et al., 2018; Liao et al., 2019). Although these
methods offer high flexibility in sampling and facilitate
the integration of domain-specific knowledge (e.g., for
molecule generation, Liu et al. (2018) perform valency
checks at each iteration), they suffer from a fundamental
drawback: the need to learn a node ordering (Kong
et al., 2023; Han et al., 2023), or use a predefined node
ordering (You et al., 2018) to avoid the overly large
learning space. In contrast, one-shot models circumvent
such limitation by predicting the entire graph in a single
step, enabling the straightforward incorporation of node
permutation equivariance/invariance properties. Examples
of these approaches include graph-adapted versions of
VAEs (Kipf & Welling, 2016), GANs (De Cao & Kipf,
2018), or normalizing flows (Liu et al., 2019). Among one-
shot methods, diffusion models have gained prominence
for their state-of-the-art performance, attributed to their
iterative mapping between noise and data distributions.

Graph Diffusion One of the initial research directions
in graph diffusion sought to adapt continuous diffusion
frameworks (Sohl-Dickstein et al., 2015; Ho et al., 2020;
Song et al., 2020b) for graph-structured data (Niu et al.,
2020; Jo et al., 2022; 2024). Those however faced chal-
lenges in preserving the inherent discreteness of graphs.
In response, discrete diffusion models (Austin et al., 2021)
were effectively extended to the graph domain (Vignac
et al., 2022; Haefeli et al., 2022), utilizing Discrete-Time
Markov Chains to model the stochastic diffusion process.
However, this method restricts sampling to the discrete
time points used during training. To address this limitation,
continuous-time discrete diffusion models incorporating
CTMCs have emerged (Campbell et al., 2022), and have
been recently applied to graph generation (Siraudin et al.,
2024; Xu et al., 2024). Despite employing a continuous-
time framework, their optimization space is constrained
by training-dependent choices like fixed-rate matrices,
limiting further performance gains.

Discrete Flow Matching Flow matching (FM) models
emerged as a compelling alternative to diffusion models
among iterative refinement generative approaches for con-
tinuous state spaces (Lipman et al., 2023; Liu et al., 2023).
FM frameworks have been empirically shown to enhance
performance and efficiency in image generation (Esser
et al., 2024; Ma et al., 2024). To address discrete state
spaces, a DFM formulation has been introduced (Campbell
et al., 2024; Gat et al., 2024). This approach streamlines its
diffusion counterpart by employing a linear interpolation
noising process and a more flexible CTMC-based denois-
ing process, whose rate matrices, unlike diffusion models,
need not be fixed during training. While other flow-based
formulations for graphs have been proposed (Eijkelboom
et al., 2024), DeFoG stands out as the first DFM-based
model for graphs, leveraging a training-sampling decou-
pled formulation for improved performance.

5. Experiments
This section highlights DeFoG’s SOTA performance, en-
abled by its highly decoupled framework and effective sam-
pling methods. We present DeFoG’s performance in gen-
erating graphs with diverse topological structures and in
molecular datasets with rich prior information. We also
provide ablations to showcase the effectiveness and neces-
sity of each proposed sampling method. We highlight the
best result and the second-best method. Results for gen-
eration with 5-10% of steps used by previous SOTA dif-
fusion models are also provided to demonstrate DeFoG’s
sampling efficiency. We show DeFoG’s versatility on con-
ditional generation for digital pathology in Appendix G.1. 1

Setup To isolate the effect of the network architecture,
we build DeFoG on the best-performing graph transformer
on generative tasks (Vignac et al., 2022). To enhance ex-
pressivity, we incorporate Relative Random Walk Proba-
bilities (RRWP) (Ma et al., 2023; Siraudin et al., 2024)
as node and edge features. More details on the archi-
tecture in Appendix F.1. Our ablations in Appendix G.4
show that, while RRWP features encode structural proper-
ties more efficiently and effectively than prior alternatives,
DeFoG’s disentangled framework is the primary driver of
performance gains. Importantly, the overall architecture,
together with RRWP features, is guaranteed to be permuta-
tion equivariant (see Appendix D.2.1).

5.1. Graph Generation Performance
Synthetic Graph Generation We evaluate DeFoG using
the widely adopted Planar, SBM (Martinkus et al., 2022),
and Tree datasets (Bergmeister et al., 2023), along with the
associated evaluation methodology. In Tab. 1, we report
the proportion of generated graphs that are valid, unique,

1Code at github.com/manuelmlmadeira/DeFoG.
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Table 1: Graph generation performance on the synthetic datasets: Planar, Tree and SBM. We present the results from five
sampling runs, each generating 40 graphs, reported as the mean ± standard deviation. Full version in Tab. 7.

Planar Tree SBM

Model Class V.U.N. ↑ Ratio ↓ V.U.N. ↑ Ratio ↓ V.U.N. ↑ Ratio ↓
Train set — 100 1.0 100 1.0 85.9 1.0

GraphRNN (You et al., 2018) Autoregressive 0.0 490.2 0.0 607.0 5.0 14.7
GRAN (Liao et al., 2019) Autoregressive 0.0 2.0 0.0 607.0 25.0 9.7
SPECTRE (Martinkus et al., 2022) GAN 25.0 3.0 — — 52.5 2.2
DiGress (Vignac et al., 2022) Diffusion 77.5 5.1 90.0 1.6 60.0 1.7
EDGE (Chen et al., 2023) Diffusion 0.0 431.4 0.0 850.7 0.0 51.4
BwR (EDP-GNN) (Diamant et al., 2023) Diffusion 0.0 251.9 0.0 11.4 7.5 38.6
BiGG (Dai et al., 2020) Autoregressive 5.0 16.0 75.0 5.2 10.0 11.9
GraphGen (Goyal et al., 2020) Autoregressive 7.5 210.3 95.0 33.2 5.0 48.8
HSpectre (Bergmeister et al., 2023) Diffusion 95.0 2.1 100.0 4.0 75.0 10.5
GruM (Jo et al., 2024) Diffusion 90.0 1.8 — — 85.0 1.1
CatFlow (Eijkelboom et al., 2024) Flow 80.0 — — — 85.0 —
DisCo (Xu et al., 2024) Diffusion 83.6±2.1 — — — 66.2±1.4 —
Cometh (Siraudin et al., 2024) Diffusion 99.5±0.9 — — — 75.0±3.7 —

DeFoG (5% steps) Flow 95.0±3.2 3.2±1.1 73.5±9.0 2.5±1.0 86.5±5.3 2.2±0.3

DeFoG Flow 99.5±1.0 1.6±0.4 96.5±2.6 1.6±0.4 90.0±5.1 4.9±1.3

Table 2: Large molecule generation performance. Only iterative denoising-based methods are reported here. Respective
full versions in Tab. 10 (Guacamol) and Tab. 9 (MOSES), Appendix G.3.

Guacamol MOSES

Model Val. ↑ V.U. ↑ V.U.N.↑ KL div ↑ FCD ↑ Val. ↑ Unique. ↑ Novelty ↑ Filters ↑ FCD ↓ SNN ↑ Scaf ↑
Training set 100.0 100.0 0.0 99.9 92.8 100.0 100.0 0.0 100.0 0.01 0.64 99.1

DiGress (Vignac et al., 2022) 85.2 85.2 85.1 92.9 68.0 85.7 100.0 95.0 97.1 1.19 0.52 14.8
DisCo (Xu et al., 2024) 86.6 86.6 86.5 92.6 59.7 88.3 100.0 97.7 95.6 1.44 0.50 15.1
Cometh (Siraudin et al., 2024) 98.9 98.9 97.6 96.7 72.7 90.5 99.9 92.6 99.1 1.27 0.54 16.0

DeFoG (10% steps) 91.7 91.7 91.2 92.3 57.9 83.9 99.9 96.9 96.5 1.87 0.50 23.5
DeFoG 99.0 99.0 97.9 97.7 73.8 92.8 99.9 92.1 98.9 1.95 0.55 14.4

and novel (V.U.N.), as well as the average ratio of the
usual distances between graph statistics of the generated
and test sets relative to the train and test sets (Ratio) to
assess sample quality. As shown in Tab. 1, for the Planar
dataset, DeFoG achieves the best performance across both
metrics, with a nearly saturated V.U.N. value of 99.5%.
On the Tree dataset, it is only surpassed by HSpectre,
which leverages a local expansion procedure particularly
well-suited to hierarchical structures like trees. On the
SBM dataset, DeFoG achieves the highest V.U.N. score
among all methods, even with just 50 steps.

Molecular Graph Generation Molecular design is a
prominent real-world application of graph generation. We
evaluate DeFoG’s performance on this task using the QM9
(Wu et al., 2018), ZINC250k (Sterling & Irwin, 2015),
MOSES (Polykovskiy et al., 2020), and Guacamol (Brown
et al., 2019) datasets. For QM9, we follow the dataset split
and evaluation metrics from Vignac et al. (2022), present-
ing the results in Appendix F.2.2, Tab. 8. For ZINC250k,
we provide the experimental setup in Appendix F. For
the larger MOSES and Guacamol datasets, we adhere to
the training setup and evaluation metrics established by
Polykovskiy et al. (2020) and Brown et al. (2019), re-

spectively, with results in Tabs. 9 and 10. As illustrated
in Tab. 2, on Guacamol, it ranks best across all metrics,
achieving a nearly saturated validity of 99.0%. Notably,
DeFoG achieves over 90% validity with just 10% of the
sampling steps, surpassing the well-established baseline
DiGress with 500 steps. On MOSES, DeFoG also outper-
forms diffusion models, achieving SOTA validity of 92.8%
while maintaining a high uniqueness of 99.9%.

5.2. Efficiency Improvement
We now show that DeFoG enhances both training and sam-
pling efficiency significantly across diverse datasets.

Sampling Efficiency Figure 2a highlights the cumula-
tive benefits of sampling approaches from Sec. 3.2. Start-
ing with a vanilla DeFoG model (initially slightly below
DiGress), each optimization step, denoted by + symbols,
progressively improves performance, culminating in signif-
icant gains using only 50 steps on the Planar dataset. This
demonstrates that the three sampling approaches are each
essential components for optimizing generation.

Training Efficiency Figure 2b illustrates convergence
curves for the tree and MOSES datasets. We observe that
incorporating sampling distortion enhances performance
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Figure 2: DeFoG’s improvements on efficiency.

significantly beyond the vanilla implementation, making it
particularly useful for generation with undertrained mod-
els in resource-constrained settings (see Appendix B.6).
Additionally, applying the same optimal distortion found
in sampling during training typically yields further gains
in convergence (see Appendix C.2). The convergence on
some graph datasets may also benefit from an appropriate
initial distribution, as shown for SBM in Appendix C.1.

5.3. Ablations
Here, we focus on evaluating the impact of different sam-
pling approaches. We start from the vanilla sampling
setup and sweep over sample distortion, target guidance, or
stochasticity independently. More details in Appendix B.4.
For illustration, here we focus on the Planar dataset:

Sample Distortion In Figure 3a, we observe that cos and
polydec distortions which emphasize refinement at later
steps, perform better on the Planar dataset. This aligns
with the intuition that, unlike continuous data undergoing
gradual refinement, graphs often experience abrupt transi-
tions due to the random sampling of categorical data. These
transitions can violate hard constraints, such as planarity, as
categorical values shift abruptly (e.g., from 0 to 1 in one-
hot encoding) when t approaches 1. These later steps are
thus critical for error detection and correction. On the con-
trary, for datasets like SBM, where properties are not deter-
ministic and such strict constraints are absent, this refine-
ment does not provide any advantage (see Appendix B.1).

Target Guidance As shown in Figure 3b, ω improves
both V.U.N. and Ratio by biasing generation toward pre-
dicted clean data. However, excessive ω skews the gen-
erated distribution to the high density regions of train-
ing set distribution, leading to higher planarity (reflected
by V.U.N.) but increased divergence from test graphs (re-
flected by Ratio). We also observe that the Ratio only
begins to worsen at 0.1 with 50 steps, compared to 0.02
with 1000 steps. This demonstrates that target guidance is
particularly effective with fewer steps, where the genera-
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Figure 3: Effect of proposed sampling approaches on the
Planar dataset. Higher values on the vertical axis corre-
spond to more favorable values for both V.U.N. and Ratio.

tion process becomes more challenging due to larger tran-
sitions, as it steers the model toward higher-confidence re-
gions, safeguarding generative performance.

Stochasticity As shown in Figure 3c, a moderate level
of stochasticity benefits both metrics, while extreme values
introduce excessive noise, disrupting the generation pro-
cess. This indicates a sweet spot exists between effective
error correction and over-stochasticity. Furthermore, the
V.U.N. of generated graphs decreases with increasing η val-
ues when more steps are utilized (drop after η = 100 for
1000 steps vs. η = 10 for 50 steps). As this approach
preserves the Kolmogorov equation, it benefits from more
sampling steps to mitigate simulation errors.

6. Conclusion
We introduce DeFoG, a novel discrete flow matching
framework for graphs. This formulation enables training-
sampling decoupling, which we ground theoretically to en-
sure faithful graph distribution modeling. Extensive ex-
periments demonstrate the importance of our proposed
strategies in achieving state-of-the-art performance on syn-
thetic and molecular graph generation tasks. DeFoG cur-
rently employs a simple but efficient hyperparameter search
for sampling, yielding impressive results and underscoring
its potential for further improvement with more advanced
search algorithms. Future work will further explore purely
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sampling-stage methods to enhance performance. Generat-
ing high-quality graphs in even fewer steps and scaling to
larger graphs also remain key challenges.
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Appendix Overview
In the Appendix, we provide additional details organized as follows:

1. Appendix A: Contextualizing Related Research.

2. Appendix B: Sample Optimization.

3. Appendix C: Train Optimization.

4. Appendix D: Theoretical Results.

5. Appendix E: Conditional Generation.

6. Appendix F: Experimental Details.

7. Appendix G: Additional Results.
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A. Contextualizing Related Research
In this section, we further contextualize DeFoG within the scope of related work. We begin by introducing the methods
used for comparison with DeFoG in Appendix A.1. Subsequently, we outline the key distinctions between DeFoG and
existing diffusion-based graph generative models in Appendix A.2.

A.1. Overview of Compared Methods

In Sec. 5, we evaluate DeFoG against a diverse set of graph generative models, which we introduce below:

• GraphRNN (You et al., 2018) and GRAN (Liao et al., 2019), two pioneering autoregressive models for graph genera-
tion;

• SPECTRE (Martinkus et al., 2022), a spectrally conditioned GAN-based model for graph generation;
• DiGress (Vignac et al., 2022), the first discrete diffusion model for graph generation;
• EDGE (Chen et al., 2023), a discrete diffusion model leveraging graph sparsity and degree guidance for scalability.
• BwR (Diamant et al., 2023), which focuses on efficient graph representations via bandwidth restriction schemes that

are compatible with various graph generation models. We report its results in combination with EDP-GNN (Niu et al.,
2020), which was the first graph diffusion model;

• BiGG (Dai et al., 2020), an autoregressive model that exploits graph sparsity and training parallelization to scale to
larger graphs;

• GraphGen (Goyal et al., 2020), a scalable autoregressive approach utilizing graph canonization with minimum DFS
codes, notable for being domain-agnostic and inherently supporting attributed graphs;

• HSpectre (Bergmeister et al., 2023), a hierarchical graph generation method that utilizes a score-based formulation
for iterative local expansion steps;

• DisCo (Xu et al., 2024) and Cometh (Siraudin et al., 2024), two continuous-time discrete diffusion models for graph
generation;

• GruM (Jo et al., 2024), which employs a diffusion mixture to explicitly learn the final graph topology and structure;
• CatFlow (Eijkelboom et al., 2024), which results from the instantiation of variational flow matching to graph genera-

tion.

A.2. DeFoG and Graph Diffusion Models

In this section, we contextualize DeFoG in relation to existing graph diffusion models.

A.2.1. FROM CONTINUOUS TO DISCRETE STATE-SPACES

Early diffusion-based graph generative models extended continuous diffusion and score-based methods from image gener-
ation to graphs by relaxing adjacency matrices into continuous state-spaces (Niu et al., 2020; Jo et al., 2022). However, this
approach overlooks the inherent discreteness of graph-structured data, resulting in topologically uninformed noising pro-
cesses. For instance, these methods often destroy graph sparsity and generate noisy complete graphs (Vignac et al., 2022;
Xu et al., 2024; Siraudin et al., 2024), making it more challenging for denoising neural networks to recover meaningful
structural properties from the noisy inputs. Some recent formulations operating on continuous state-spaces have tried to
overcome these limitations: GruM (Jo et al., 2024) introduces an endpoint-conditioned diffusion mixture strategy to en-
hance accuracy by explicitly learning final graph structures, while CatFlow (Eijkelboom et al., 2024) proposes variational
flow matching to handle categorical data more effectively.

Alternatively, discrete diffusion models have emerged as a more natural solution, directly preserving the discrete nature of
graph data (Vignac et al., 2022; Haefeli et al., 2022). These models have demonstrated state-of-the-art performance across
a variety of applications, including neural architecture search (Asthana et al., 2024), combinatorial optimization (Sun &
Yang, 2024), molecular generation (Irwin et al., 2024), and reaction pathway design (Igashov et al., 2024).

DeFoG aligns with this second family of methods, modeling nodes and edges in discrete state-spaces to leverage the
structural properties of graph data effectively.

14



DeFoG: Discrete Flow Matching for Graph Generation

A.2.2. FROM DISCRETE TO CONTINUOUS TIME

The initial discrete-time diffusion frameworks for graph generation (Vignac et al., 2022; Haefeli et al., 2022) were built
upon Discrete Denoising Diffusion Probabilistic Models (D3PMs) (Austin et al., 2021), which operate with a fixed parti-
tioning of time. This discretization constrains the model to denoise at specific time points and ties the sampling process to
the same fixed time steps used during training, leading to a rigid coupling between the training and sampling stages. Such
inflexibility in time discretization can limit the quality of generated graphs.

In contrast, continuous-time discrete diffusion frameworks (Campbell et al., 2022; Sun et al., 2023) overcome these lim-
itations by enabling the model to denoise at arbitrary time points within a continuous interval (typically between 0 and
1). This flexibility allows the time discretization strategy for sampling to be selected post-training, enabling the use of ad-
vanced sampling techniques (Jolicoeur-Martineau et al., 2021; Zhang & Chen, 2023; Salimans & Ho, 2022; Chung et al.,
2022; Song et al., 2020b; Dockhorn et al., 2022) to improve generation performance. These continuous-time frameworks
have been successfully extended to graph generative models (Xu et al., 2024; Siraudin et al., 2024), achieving notable
improvements.

DeFoG follows a continuous-time formulation, leveraging its flexibility in sampling to achieve enhanced performance
while maintaining the strengths of discrete state-space modeling.

A.2.3. FROM CONTINUOUS-TIME DISCRETE DIFFUSION TO DISCRETE FLOW MATCHING

While both continuous-time discrete diffusion and discrete flow matching (DFM) share the CTMC formulation for the
denoising process, they differ fundamentally in the formulation of the noising process. Continuous-time discrete diffusion-
based graph generative models (Xu et al., 2024; Siraudin et al., 2024) define the noising process as a CTMC, akin to the
denoising process. However, this approach imposes two significant limitations:

1. Incomplete Coupling of Training and Sampling: The rate matrices of the noising and denoising processes are
explicitly interrelated, and the noising rate matrix must be fixed during training. This restricts the sampling stage,
preventing full decoupling of training and sampling.

2. Limited Design Space: The noising process must be derived analytically, which is not straightforward and is only
feasible for rate matrices suitable for matrix exponentiation. Additionally, the denoising rate matrix is implicitly
defined during training, constraining the flexibility of the denoising trajectory at sampling time (e.g., fixing the level
of stochasticity).

In contrast, DeFoG allows for direct prescription of the noising process, pt|1, without these constraints. The rate matrix
for the denoising process is selected exclusively at sampling time, fully decoupling the training and sampling stages. This
flexibility enables performance optimization during sampling, such as tuning the stochasticity of the denoising trajectory
via RDB

t or adjusting target guidance magnitude with Rω
t .

The benefits of this decoupled framework are evident in Figures 2, 7 and 8, which demonstrate that the vanilla DeFoG con-
figuration alone does not outperform existing diffusion-based graph generative models. However, our extensive sampling
optimization pipeline capitalizes on DeFoG’s flexible design space to achieve state-of-the-art results. These observations
align with findings in iterative refinement methods across other data modalities. For instance, Karras et al. (2022) elaborate
on the benefits of stochasticity adjustment in denoising trajectories within diffusion models for image generation.

For a comprehensive discussion of the differences between continuous-time discrete diffusion and DFM frameworks, see
Appendix H of Campbell et al. (2024).

A.2.4. MIXED INTEGRATION OF CONTINUOUS AND DISCRETE STATE-SPACES

Integrating continuous and categorical data within graph generative models is an important challenge, as many real-world
applications involve heterogeneous data types (e.g., molecular graphs containing atomic coordinates alongside categorical
atom and bond types). A recent example addressing this challenge is GBD (Liu et al., 2024), which incorporates beta
diffusion to jointly model both continuous and discrete variables. Similarly, DeFoG is amenable to formulations involving
mixed data types by leveraging an approach akin to MiDi (Vignac et al., 2023), independently factorizing continuous and
discrete variables. However, explicitly exploring this integration is beyond the scope of this work.
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B. Sample Optimization
In this section, we explore the proposed sampling optimization in more detail. We start by analysing the different time
distortion functions in Appendix B.1. Next, in Appendix B.2, we prove that the proposed target guidance mechanism
actually satisfies the Kolmogorov equation, thus yielding valid rate matrices and, in Appendix B.3, we provide more
details about the detailed balance equation and how it widens the design space of rate matrices. In Appendix B.4, we also
describe the adopted sampling optimization pipeline. Finally, in Appendix B.5, we provide more details to better clarify
the dynamics of the sampling process.

B.1. Time Distortion Functions

In Sec. 3, we explore the utilization of different distortion functions, i.e., functions that are used to transform time. The
key motivation for employing such functions arises from prior work on flow matching in image generation, where skewing
the time distribution during training has been shown to significantly enhance empirical performance (Esser et al., 2024).
In practical terms, this implies that the model is more frequently exposed to specific time intervals. Mathematically, this
transformation corresponds to introducing a time-dependent re-weighting factor in the loss function, biasing the model to
achieve better performance in particular time ranges.

In our case, we apply time distortions to the probability density function (PDF) by introducing a function f that transforms
the original uniformly sampled time t, such that t′ = f(t) for t ∈ [0, 1]. These time distortion functions must satisfy
certain conditions: they must be monotonic, with f(0) = 0 and f(1) = 1. Although the space of functions that satisfy
these criteria is infinite, we focus on five distinct functions that yield fundamentally different profiles for the PDF of t′.
Our goal is to gain intuition about which time ranges are most critical for graph generation and not to explore that function
space exhaustively. Specifically:

• Polyinc: f(t) = t2, yielding a PDF that decreases monotonically with t′;

• Cos: f(t) = 1−cosπt
2 , creating a PDF with high density near the boundaries t′ = 0 and t′ = 1, and low for intermediate

t′;

• Identity: f(t) = t, resulting in a uniform PDF for t′ ∈ [0, 1];

• Revcos: f(t) = 2t− 1−cosπt
2 , leading to high PDF density for intermediate t′ and low density at the extremes t′ = 0

and t′ = 1;

• Polydec: f(t) = 2t− t2, where the PDF increases monotonically with t′.

The PDF resulting from applying a monotonic function f to a random variable t is given by:

ϕt′(t
′) = ϕt(t)

∣∣∣∣
d

dt′
f−1(t′)

∣∣∣∣ ,

where ϕt(t) and ϕt′(t
′) denote the PDFs of t and t′, respectively. In our case, ϕt(t) = 1 for t ∈ [0, 1]. The distortion

functions and their corresponding PDFs are illustrated in Figure 4.

One of the strategies the proposed in sampling optimization procedure is the use of variable step sizes throughout the
denoising process. This is achieved by mapping evenly spaced time points (DeFoG’s vanilla version) through a transfor-
mation that follows the same constraints as the training time distortions discussed earlier. We employ the same set of time
distortion functions, again not to exhaustively explore the space of applicable functions, but to gain insight into how vary-
ing step sizes affect graph generation. The expected step sizes for each distortion can be directly inferred from Figure 4.
For instance, the polydec function leads to progressively smaller time steps, suggesting more refined graph edits in the
denoising process as t′ approaches 1.

Note that even though we apply the same time distortions for both training and sample stages, in each setting they have
different roles: in training, the time distortions skew the PDFs from where t′ is sampled, while in sampling they vary the
denoising step sizes.

16



DeFoG: Discrete Flow Matching for Graph Generation

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

F
u

n
ct

io
n

va
lu

e

Distortions

Polyinc

Cos

Identity

Revcos

Polydec

(a)

0.0 0.2 0.4 0.6 0.8 1.0
f(t)

0

1

2

3

4

5

P
D

F
s

PDFs for Different Distortions

Polyinc

Cos

Identity

Revcos

Polydec

(b)

Figure 4: (a) The five distortion functions explored. (b) The resulting PDFs for the five distortion functions. For polydec,
identity, and polyinc, they were computed in closed-form. For revcos and cos, they were simulated with 104 repetitions.

B.2. Target Guidance

In this section, we demonstrate that the proposed target guidance design for the rate matrices violates the Kolmogorov
equation with an error that is linear in ω. This result indicates that a small guidance factor effectively helps fit the distri-
bution, whereas a larger guidance factor, as shown in Figure 9, while enhancing topological properties such as planarity,
increases the distance between generated and training data on synthetic datasets according to the metrics of average ratio.
Similarly, for molecular datasets, this also leads to an increase in validity and a decrease in novelty by forcing the generated
data to closely resemble the training data.

Lemma 10 (Rate matrices for target guidance). Let Rω
t (zt, zt+dt|z1) be defined as:

Rω
t (zt, zt+dt|z1) = ω

δ(z1, zt+dt)

Z>0
t pt|1(zt|z1)

. (7)

Then, the univariate rate matrix RTG
t (zt, zt+dt|z1) = R∗

t (zt, zt+dt|z1) +Rω
t (zt, zt+dt|z1) violates the Kolmogorov equa-

tion with an error of − ω
Z>0

t

when zt ̸= z1, and an error of ωZ>0
t −1

Z>0
t

when zt = z1.

Proof. In the remaining of the proof, we consider the case zt ̸= z1. We consider the same assumptions as Campbell et al.
(2024):

• pt|1(zt|z1) = 0⇒ R∗
t (zt, zt+dt|z1) = 0;

• pt|1(zt|z1) = 0⇒ ∂tpt|1(zt|z1) = 0 (“dead states cannot ressurect”).

The z1-conditioned Kolmogorov equation is given by:

∂tpt|1(zt|z1) =
∑

zt+dt ̸=zt

Rt(zt+dt, zt|z1)pt+dt|1(zt+dt|z1) −
∑

zt+dt ̸=zt

Rt(zt, zt+dt|z1)pt|1(zt|z1) (8)

We denote by RHS and LHS the right-hand side and left-hand side, respectively, of Eq. (8). For the case in which
pt|1(zt|z1) > 0, we have:
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RHS =
∑

zt+dt ̸=zt,pt+dt|1(zt+dt|z1)>0

(R∗
t (zt+dt, zt|z1) +Rω

t (zt+dt, zt|z1))pt+dt|1(zt+dt|z1)

−
∑

zt+dt ̸=zt,pt+dt|1(zt+dt|z1)>0

(R∗
t (zt, zt+dt|z1) +Rω

t (zt, zt+dt|z1))pt|1(zt|z1)

=
∑

zt+dt ̸=zt,pt+dt|1(zt+dt|z1)>0

R∗
t (zt+dt, zt|z1)pt+dt|1(zt+dt|z1)−R∗

t (zt, zt+dt|z1)pt|1(zt|z1)

+
∑

zt+dt ̸=zt,pt+dt|1(zt+dt|z1)>0

Rω
t (zt+dt, zt|z1)pt+dt|1(zt+dt|z1)−Rω

t (zt, zt+dt|z1)pt|1(zt|z1),

For the first sum, we have:
∑

zt+dt ̸=zt,pt+dt|1(zt+dt|z1)>0

R∗
t (zt+dt, zt|z1)pt+dt|1(zt+dt|z1)−R∗

t (zt, zt+dt|z1)pt|1(zt|z1)

= ∂tpt|1(zt|z1).

since the z1-conditioned R∗
t generates pt|1.

For the second sum, we have:
∑

zt+dt ̸=zt,pt+dt|1(zt+dt|z1)>0

Rω
t (zt+dt, zt|z1)pt+dt|1(zt+dt|z1)−Rω

t (zt, zt+dt|z1)pt|1(zt|z1) =

=
∑

zt+dt ̸=zt,pt+dt|1(zt+dt|z1)>0

ω
δ(z1, zt)

Z>0
t pt+dt|1(zt+dt|z1)

pt+dt|1(zt+dt|z1)

−
∑

zt+dt ̸=zt,pt+dt|1(zt+dt|z1)>0

ω
δ(z1, zt+dt)

Z>0
t pt|1(zt|z1)

pt|1(zt|z1)

=
ω

Z>0
t

∑

zt+dt ̸=zt,pt+dt|1(zt+dt|z1)>0

(δ(z1, zt)− δ(z1, zt+dt))

If z1 ̸= zt, we have:

∑

zt+dt ̸=zt,pt+dt|1(zt+dt|z1)>0

Rω
t (zt+dt, zt|z1)pt+dt|1(zt+dt|z1)−Rω

t (zt, zt+dt|z1)pt|1(zt|z1) =

=
ω

Z>0
t

∑

zt+dt ̸=zt,pt+dt|1(zt+dt|z1)>0

(δ(z1, zt)− δ(z1, zt+dt))

=
ω

Z>0
t

∑

zt+dt ̸=zt,pt+dt|1(zt+dt|z1)>0

(0− δ(z1, zt+dt))

= − ω

Z>0
t

,

Here, we apply the property that zt ̸= z1, which indicates that δ(z1, zt) = 0 and that there exists one and only one
zt+dt ∈ {zt+dt, zt+dt ̸= zt} such that zt+dt = z1, which verifies that pt+dt|1(zt+dt|z1) > 0 — a condition satisfied by
any initial distribution proposed in this work when t strictly positive—the sum simplifies to − ω

Z>0
t

.

If z1 = zt, we have:
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∑

zt+dt ̸=zt,pt+dt|1(zt+dt|z1)>0

Rω
t (zt+dt, zt|z1)pt+dt|1(zt+dt|z1)−Rω

t (zt, zt+dt|z1)pt(zt|z1) =

=
ω

Z>0
t

∑

zt+dt ̸=zt,pt+dt|1(zt+dt|z1)>0

(δ(z1, zt)− δ(z1, zt+dt))

=
ω

Z>0
t

∑

zt+dt ̸=zt,pt+dt|1(zt+dt|z1)>0

(1− 0)

= ω
Z>0
t − 1

Z>0
t

,

Intuition The aim of target guidance is to reinforce the transition rate to the state predicted by the probabilistic model,
z1. The ω term is an hyperparameter used to control the target guidance magnitude.

B.3. Detailed Balance, Prior Incorporation, and Stochasticity

Campbell et al. (2024) show that although their z1-conditional formulation of R∗
t generates pt|1, it does not span the full

space of valid rate matrices — those that satisfy the conditional Kolmogorov equation (Eq. (8)). They derive sufficient
conditions for identifying other valid rate matrices. Notably, they demonstrate that matrices of the form

Rη
t := R∗

t + ηRDB
t ,

with η ∈ R≥0 and RDB
t any matrix that verifies the detailed balance condition:

pt|1(zt|z1)RDB
t (zt, zt+dt|z1) = pt|1(zt+dt|z1)RDB

t (zt+dt, zt|z1), (9)

still satisfy the Kolmogorov equation. The detailed balance condition ensures that the outflow,
pt|1(zt|z1)RDB

t (zt, zt+dt|z1), and inflow, pt|1(zt+dt|z1)RDB
t (zt+dt, zt|z1), of probability mass to any given state are

perfectly balanced. Under these conditions, this additive component’s contribution to the Kolmogorov equation becomes
null (similar to the target guidance, as shown in the proof of of Theorem 10, in Appendix B.2).

A natural question is how to choose a suitable design for RDB
t from the infinite space of detailed balance rate matrices. As

depicted in Figure 5, this flexibility can be leveraged to incorporate priors into the denoising model by encouraging specific
transitions between states. By adjusting the sparsity of the matrix entries, additional transitions beyond those prescribed
by R∗

t can be introduced. In the general case, transitions between all states are possible; in the column case, a specific state
centralizes all potential transitions; and in the single-entry case, only transitions between two states are permitted. These
examples merely illustrate some possibilities and do not exhaust the range of potential RDB

t designs. The matrix entries
can be structured by considering the following reorganization of terms of Eq. (9):

RDB
t (zt+dt, zt|z1) =

pt|1(zt|z1)
pt|1(zt+dt|z1)

RDB
t (zt, zt+dt|z1).

Therefore, a straightforward approach is to assign the lower triangular entries of the rate matrix as RDB
t (zt, zt+dt|z1) =

pt|1(zt+dt|z1), and the upper triangular entries as RDB
t (zt+dt, zt|z1) = pt|1(zt|z1). The diagonal entries are computed last

to ensure that Rt(zt, zt) = −
∑

zt+dt ̸=zt
Rt(zt, zt+dt).

We incorporated various types of priors into RDB by preserving specific rows or entries in the matrix. Specifically, we
experimented with retaining the column corresponding to the state with the highest marginal distribution (Column - Max
Marginal), the column corresponding to the predicted x1 states (Column - x1), and the columns corresponding to the
state with the highest probability in pt|1. Additionally, we tested the approach of retaining only RDB(xt, i) where i is the
state with the highest marginal distribution (Entry - Max Marginal). For instance, under the absorbing initial distribution,
this state is the one to which all data is absorbed at t = 0. We note that there remains significant space for exploration
by adjusting the weights assigned to different positions within RDB, as the only condition that must be satisfied is that
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Figure 5: Examples of different rate matrices from the space of 3×3 matrices that satisfy the detailed balance condition.
Here pi denotes pt|1(i|z1).
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Figure 6: Impact of RDB with different level of sparsity.

symmetrical positions adhere to a specific proportionality. However, in practice, none of the specific designs illustrated in
Figure 5 showed a clear advantage over others in the settings we evaluated. As a result, we chose the general case for our
experiments, as it offers the most flexibility by incorporating the least prior knowledge.

Orthogonal to the design of RDB
t , we must also consider the hyperparameter η, which regulates the magnitude of stochas-

ticity in the denoising process. Specifically, setting η = 0 (thereby relying solely on R∗
t ) minimizes the expected number of

jumps throughout the denoising trajectory under certain conditions, as shown by Campbell et al. (2024) in Proposition 3.4.
However, in continuous diffusion models, some level of stochasticity has been demonstrated to enhance performance (Kar-
ras et al., 2022; Cao et al., 2023; Xu et al., 2023). Conversely, excessive stochasticity can negatively impact performance.
Campbell et al. (2024) propose that there exists an optimal level of stochasticity that strikes a balance between exploration
and accuracy. In our experiments, we observed varied behaviors as η increases, resulting in different performance outcomes
across datasets, as illustrated in Figure 10.

B.4. Hyperparameter Optimization Pipeline

A significant advantage of flow matching methods is their inherently greater flexibility in the sampling process compared
to diffusion models, as they are more disentangled from the training stage. Each of the proposed optimization strategies
exposed in Sec. 3.2 expands the search space for optimal performance. However, conducting a full grid search across
all those methodologies is impractical for the computational resources available. To address this challenge, our sampling
optimization pipeline consists of, for each of the proposed optimization strategies, all hyperparameters are held constant
at their default values except for the parameter controlling the chosen strategy, over which we perform a sweep. The
optimal values obtained for each strategy are combined to form the final configuration. In Tab. 5, we present the final
hyperparameter values obtained for each dataset. This pipeline is sufficient to achieve state-of-the-art performance, which
reinforces the expressivity of DeFoG. We expect to achieve even better results if a more comprehensive search of the
hyperparameter space was carried out.
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Figure 7: Sampling efficiency improvement over all synthetic datasets.

To better mode detailedly illustrate the influence of each sampling optimization, we show in Figures 7 and 8 in present the
impact of varying parameter values across the synthetic datasets Figure 7 and molecular datasets in Figure 8 used in this
work.

While Figures 7 and 8 are highly condensed, we provide a more fine-grained version that specifically illustrates the influ-
ence of the hyperparameters η and ω. This version highlights their impact when generating with the full number of steps
(500 and 1000 for molecular and synthetic data, respectively) and with 50 steps. As emphasized in Figures 9 and 10, the
influence of these hyperparameters varies across datasets and exhibits distinct behaviors depending on the number of steps
used.

Several key observations can be made here. First, since the stochasticity is designed around the detailed balance condition,
which holds more rigorously with increased precision, it generally provides greater benefits with the full generation steps
but leads to a more pronounced performance decrease when generating with only 50 steps. Additionally, for datasets
such as Planar, MOSES, and Guacamol, the stochasticity shows an increasing-then-decreasing behavior, indicating the
presence of an optimal value. Furthermore, while target guidance significantly improves validity across different datasets,
it can negatively affect novelty and the average ratio when set too high. This suggests that excessive target guidance may
promote overfitting to high-probability regions of the training set, distorting the overall distribution. In conclusion, each
hyperparameter should be carefully chosen based on the specific objective.

To demonstrate the benefit of each designed optimization step, we report the step-wise improvements by sequentially
adding each tuned step across the primary datasets — synthetic datasets in Figure 11 and molecular datasets in Figure 12
— used in this work.
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(b) MOSES dataset.
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(c) Guacamol dataset.

Figure 8: Sampling efficiency improvement over all molecular datasets. The Guacamol and MOSES datasets are evaluated
with 2,000 samples, and validity and novelty are computed using local implementations for efficiency instead of the original
benchmarks. For the Guacamol dataset, we apply validity metrics that account for charged molecules, reflecting the
dataset’s intrinsic characteristic of containing a significant number of such molecules.

B.5. Understanding the Sampling Dynamics of R∗
t

In this section, we aim to provide deeper intuition into the sampling dynamics imposed by the design of R∗
t , as proposed by

(Campbell et al., 2024). The explicit formulation of R∗
t can be found in Eq. (3). Notably, the denominator in the expression

serves as a normalizing factor, meaning the dynamics of each sampling step are primarily influenced by the values in the
numerator. Specifically, we observe the following relationship:

∂tpt|1(zt|z1) = δ(zt, z1) + p0(zt),

derived by directly differentiating Eq. (1). Based on this, the possible values of R∗
t for different combinations of zt and

zt+dt are outlined in Tab. 3.

Table 3: Values of the numerator of R∗
t for different zt and zt+dt.

CONDITION NUMERATOR OF R∗(xt, j|z1) INTUITION

zt = z1 , zt+dt = z1 ReLU(p0(z1)− p0(z1)) = 0 NO TRANSITION
zt = z1 , zt+dt ̸= z1 ReLU(p0(zt)− 1− p0(zt+dt)) = 0 NO TRANSITION
zt ̸= z1 , zt+dt = z1 ReLU(p0(zt)− p0(zt+dt) + 1) > 0 TRANSITION TO z1
zt ̸= z1 , zt+dt ̸= z1 ReLU(p0(zt)− p0(zt+dt)) TRANSITION TO zt+dt IF p0(zt) > p0(zt+dt)

From the first two lines of Tab. 3, we observe that once the system reaches the predicted state z1, it remains there. If not, R∗
t
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only encourages transitions to other states under two conditions: either the target state is z1 (third line), or the corresponding
entries in the initial distribution for potential next states have smaller values than the current state (fourth line). As a result,
the sampling dynamics are heavily influenced by the initial distribution, as discussed further in Appendix C.1.

For instance, with the masking distribution, the fourth line facilitates transitions to states other than the virtual “mask”
state, whereas for the uniform distribution, no transitions are allowed. For the marginal distribution, transitions are directed
toward less likely states. Note that while these behaviors hold when the rate matrix consists solely of R∗

t , additional tran-
sitions can be introduced through RDB

t (as detailed in Appendix B.3) or by applying target guidance (see Appendix B.2).

B.6. Performance Improvement for Undertrained Models

In this section, we present the performance of a model trained on the QM9 dataset and the Planar dataset using only 30%
of the epochs compared to the final model being reported. We employ the same hyperparameters as in Tab. 8 and Tab. 1
for the sampling setup, as reported in Tab. 5.

Compared to fully trained models, our model achieves 99.0 Validity (vs 99.3) and 96.4 Uniqueness (vs 96.3) on the QM9
dataset. For the Planar dataset, it attains 95.5 Validity (vs 99.5) and an average ratio of 1.4 (vs 1.6). These results
demonstrate that, even with significantly fewer training epochs, the model maintains competitive performance under a
well-designed sampling procedure, although extended training can still further improve performance. Notably, all metrics
surpass the discrete-time diffusion benchmark DiGress (Vignac et al., 2022). As a result, the optimization in the sam-
pling stage proves particularly beneficial when computational resources are limited, by enhancing the performance of an
undertrained model.
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Figure 9: Influence of target guidance over all datasets.
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Figure 10: Influence of stochasticity level over all datasets.
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Figure 11: Stepwise parameter search for sampling optimization across synthetic datasets.
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Figure 12: Stepwise parameter search for sampling optimization across molecular datasets.

27



DeFoG: Discrete Flow Matching for Graph Generation

C. Train Optimization
In this section, we provide a more detailed analysis of the influence of the various training optimization strategies intro-
duced in Sec. 3. In Appendix C.1, we empirically demonstrate the impact of selecting different initial distributions on
performance, while in Appendix C.2, we examine the interaction between training and sampling optimization.

C.1. Initial Distributions

Under DeFoG’s framework, the noising process for each dimension is modeled as a linear interpolation between the clean
data distribution (the one-hot representation of the current state) and an initial distribution, p0. As such, it is intuitive
that different initial distributions result in varying performances, depending on the denoising dynamics they induce. In
particular, they have a direct impact on the sampling dynamics through R∗

t (see Appendix B.5) and may also pose tasks of
varying difficulty for the graph transformer. In this paper, we explore four distinct initial distributions2:

Uniform: p0 =
[
1
Z , 1

Z , . . . , 1
Z

]
∈ ∆Z . Here, the probability mass is uniformly distributed across all states, as proposed by

(Campbell et al., 2024).

Masking: p0 = [0, 0, . . . , 0, 1] ∈ ∆Z+1. In this setting, all the probability mass collapses into a new “mask” state at t = 0,
as introduced by (Campbell et al., 2024).

Marginal: p0 = [m1,m2, . . . ,mZ ] ∈ ∆Z , where mi denotes the marginal probability of the i-th state in the dataset. This
approach is widely used in state-of-the-art graph generation models (Vignac et al., 2022; Xu et al., 2024; Siraudin et al.,
2024).

Absorbing: p0 = [0, . . . , 1, . . . , 0] ∈ ∆Z , representing a one-hot encoding of the most common state (akin to applying an
argmax operator to the marginal initial distribution).

We apply each of these initial distributions to both node and edges, with the corresponding dimensionalities. In Figure 13,
we present the training curves for each initial distribution for three different datasets.
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Figure 13: Influence of initial distribution over different datasets at different training steps.

We observe that the marginal distribution consistently achieves at least as good performance as the other initial distributions.
This is supported by two key observations in previous work: first, Vignac et al. (2022) demonstrate that, for any given
distribution, the closest distribution within the aforementioned class of factorizable initial distributions is the marginal
one, thus illustrating its optimality as a prior. Second, the marginal initial distribution preserves the dataset’s marginal
properties throughout the noising process, maintaining graph-theoretical characteristics like sparsity (Qin et al., 2023). We
conjecture that this fact facilitates the denoising task for the graph transformer. This reinforces its use as the default initial
distribution for DeFoG. The only dataset where marginal was surpassed was the SBM dataset, which we attribute to its
inherently different nature (stochastic, instead of deterministic). In this case, the absorbing distribution emerged as the
best-performing choice. Interestingly, the absorbing distribution tends to converge faster across datasets.

Lastly, it is worth noting that in discrete diffusion models for graphs, predicting the best limit noise distribution based solely
on dataset characteristics remains, to our knowledge, an open question (Tseng et al., 2023). We expect this complexity to
extend to discrete flow models as well. Although this is outside the scope of our work, we view this as an exciting direction
for future research.

2Recall that Z represents the cardinality of the state space, and ∆Z the associated probability simplex.
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Figure 14: Interaction between training and sampling time distortions.

C.2. Interaction between Sample and Train Distortions

From Appendix B.4, we observe that time distortions applied during the sampling stage can significantly affect perfor-
mance. This suggests that graph discrete flow models do not behave evenly across time and are more sensitive to specific
time intervals, where generative performance benefits from finer updates achieved by using smaller time steps. Building
on this observation, we extended our analysis to the training stage, exploring two main questions:

• Is there a universally optimal training time distortion for graph generation across different datasets?

• How do training and sampling time distortions interact? Is there alignment between the two? Specifically, if we
understand the effect of a time distortion at one stage (training or sampling), can we infer its impact at the other?

To investigate these questions, we conducted a grid search. For two datasets, we trained five models, each with a different
time distortion applied during training. Subsequently, we tested each model by applying the five different distortions at the
sampling stage. The results are presented in Figure 14.

The results vary by dataset. For QM9, validity appears primarily influenced by the sampling distortion method, with
a preference for distortions that encourage smaller steps at the end of the denoising process (such as polydec and cos).
However, for FCD3, the training distortion plays a more significant role.

For the planar dataset, we observe a near-perfect alignment between training and sampling distortions in terms of validity,
with a clear preference for more accurate training models and finer sampling predictions closer to t = 1. The results for
the average ratio metric, however, are less consistent and show volatility.

These findings help address our core questions: The interaction between training and sampling distortions, as well as the
best training time distortion, is dataset-dependent. Nonetheless, for the particular case of the planar dataset, we observe
a notable alignment between training and sampling distortions. This alignment suggests that times close to t = 1 which
are critical for correctly generating planar graphs. We conjecture that this alignment can be attributed to planarity being
a global property that arises from local constraints, as captured by Kuratowski’s Theorem, which states that a graph is
non-planar if and only if it contains a subgraph reducible to K5 or K3,3 through edge contraction (Kuratowski, 1930).

Loss Tracker To determine if the structural properties observed in datasets like the planar dataset can be detected and
exploited without requiring an exhaustive sweep over all possibilities, we propose developing a metric that quantifies the
difficulty of predicting the clean graph for any given time point t ∈ [0, 1). For this, we perform a sweep over t for a given
model, where for each t, we noise a sufficiently large batch of clean graphs and evaluate the model’s training loss on them.
This yields a curve that shows how the training loss varies as a function of t. We then track how this curve evolves across
epochs. To make the changes more explicit, we compute the ratio of the loss curve relative to the fully trained model’s
values. These curves are shown in Figure 15.

As expected, the curve of training loss as a function of t (left in Figure 15) is monotonically decreasing, indicating that as
graphs are decreasingly noised, the task becomes simpler. However, the most interesting insights arise from the evolution
of this curve across epochs (right in Figure 15). We observe that for smaller values of t, the model reaches its maximum
capacity early in the training process, showing no significant improvements after the initial few epochs. In contrast, for

3FCD is calculated only for valid molecules, so this metric may inherently reflect survival bias.
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Figure 15: In the left figure, we present the cross-entropy (CE) loss used for training at different time steps across various
stages of the training process. The right figure shows the ratio of each CE loss trajectory relative to the last one, illustrating
the overall training trend and emphasizing which parts of the model are predominantly learned over time.

larger values of t (closer to t = 1), the model exhibits substantial improvements throughout the training period. This
suggests that the model can continue to refine its predictions in the time range where the task is easier. These findings align
with those in Figure 14, reinforcing our expectation that training the model to be more precise in this range or providing
more refined sampling steps will naturally enhance performance in the planar dataset.

These insights offer a valuable understanding of the specific dynamics at play within the planar dataset. Nevertheless,
the unique structural characteristics of each dataset may influence the interaction between training and sampling time
distortions in ways that are not captured here. Future work could explore these dynamics across a wider range of datasets
to assess the generalizability of our findings.
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D. Theoretical Results
In this section, we provide the proofs of the different theoretical results of the paper. First, we provide results that are
domain agnostic, i.e., that hold for general discrete data, and then instantiate them for the specific case of graphs, yielding
Theorems 1 and 2. Then, we proceed to the permutation invariance/equivariance guarantees of DeFoG, and some remarks
on the expressivity of the RRWP additional features.

D.1. Theoretical Results on the Generative Framework

In Appendix D.1.1, we provide a proof of the bounded estimation error of the rate matrix for general discrete data, and
instantiate it for graphs, yielding Theorem 1. Then, in Appendix D.1.2, we prove the bounded deviation of the generated
distribution for general discrete data as well, and instantiate it for graphs, yielding Theorem 2.

Importantly, for general discrete data, we jointly model D discrete variables, (z(1), . . . , z(D)) = z1:D ∈ ZD.

D.1.1. BOUNDED ESTIMATION ERROR OF UNCONDITIONAL MULTIVARIATE RATE MATRIX

We start by introducing two important concepts, which will reveal useful for the proof of the intended result.

Unconditional Multivariate Rate Matrix As exposed in Sec. 2, the marginal distribution and the rate matrix of a CTMC
are related by the Kolmogorov equation:

∂tpt = RT
t pt

=
∑

zt+dt ̸=zt

Rt(zt+dt, zt)pt(zt+dt)

︸ ︷︷ ︸
Probability Inflow

−
∑

zt+dt ̸=zt

Rt(zt, zt+dt)pt(zt)

︸ ︷︷ ︸
Probability Outflow

.

The expansion in the second equality reveals the conservation law inherent in the Kolmogorov equation, illustrating that
the time derivative of the marginal distribution represents the net balance between the inflow and outflow of probability
mass at a given state.

Importantly, in the multivariate case, the (joint) rate matrix can be expressed through the following decomposition:

Rt(z
1:D
t , z1:Dt+dt) =

D∑

d=1

δ(z
1:D\(d)
t , z

1:D\(d)
t+dt ) R

(d)
t (z1:Dt , z

(d)
t+dt) (10)

=

D∑

d=1

δ(z
1:D\(d)
t , z

1:D\(d)
t+dt ) E

p1|t(z
(d)
1 |z1:D

t )

[
R

∗(d)
t (z

(d)
t , z

(d)
t+dt|z

(d)
1 )
]
. (11)

In the first equality, 1 : D \ (d) refers to all dimensions except d and the δ term restricts contributions to rate matrices
that account for at most one dimension transitioning at a time, since the probability of two or more independently noised
dimensions transitioning simultaneously is zero under a continuous time framework (Campbell et al., 2022; 2024). In the
second equality, the unconditional rate matrix is retrieved by taking the expectation over the z1-conditioned rate matrices.
Specifically, R∗(d)

t (z
(d)
t , z

(d)
t+dt|z

(d)
1 ) denotes the univariate rate matrix corresponding to dimension d (see Eq. (3))

Total Variation The total variation (TV) distance is a distance measure between probability distributions. While it can
be defined more generally, this paper focuses on its application to discrete probability distributions over a finite sample
space Z . In particular, for two discrete probability distributions P and Q, their total variation distance is defined as:

∥P −Q∥TV =
1

2

∑

z∈Z
|P (z)−Q(z)| (12)

We are now prepared to proceed with the proof of Theorem 11.

Theorem 11 (Bounded estimation error of unconditional multivariate rate matrix). Given t ∈ [0, 1], z1:Dt , z1:Dt+dt ∈ ZD,
and z1:D1 ∼ p1(z

1:D
1 ), let Rt(z

1:D
t , z1:Dt+dt) be the groundtruth rate matrix of the CTMC, which we approximate with
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Rθ
t (z

1:D
t , z1:Dt+dt). The corresponding estimation error is upper-bounded as follows:

|Rt(z
1:D
t , z1:Dt+dt)−Rθ

t (z
1:D
t , z1:Dt+dt)|2 ≤ C0 + C1Ep1(z1:D

1 )

[
pt|1(z1:Dt |z1:D1 )

∑D
d=1− log p

θ,(d)
1|t (z

(d)
1 |z1:Dt )

]
, (13)

where

• C0 = 2D supd∈{1,...,D}{C2
z(d)}

∑
z
(d)
1 ∈Z p

(d)
1|t (z

(d)
1 |z1:Dt ) log p

(d)
1|t (z

(d)
1 |z1:Dt );

• C1 = 2D supd∈{1,...,D}{C2
z(d)}/p1(z1:D1 );

with Cz(d) = δ(z
1:D\(d)
t , z

1:D\(d)
t+dt ) sup

z
(d)
1 ∈Z

{R(d)
t (z

(d)
t , z

(d)
t+dt|z

(d)
1 )}.

Proof. This proof is an adaptation of the proof of Theorem 3.3 from Xu et al. (2024) to the discrete flow matching setting.

By definition (Eq. (11)), we have:

Rt(z
1:D
t , z1:Dt+dt) =

D∑

d=1

δ(z
1:D\(d)
t , z

1:D\(d)
t+dt ) R

(d)
t (z1:Dt , z

(d)
t+dt)

=

D∑

d=1

δ(z
1:D\(d)
t , z

1:D\(d)
t+dt ) E

p
(d)

1|t (z
(d)
1 |z1:D

t )

[
R

(d)
t (z

(d)
t , z

(d)
t+dt|z

(d)
1 )
]

=

D∑

d=1

δ(z
1:D\(d)
t , z

1:D\(d)
t+dt )

∑

z
(d)
1

p
(d)
1|t (z

(d)
1 |z1:Dt )R

(d)
t (z

(d)
t , z

(d)
t+dt|z

(d)
1 )

Thus:

|Rt(z
1:D
t ,z1:Dt+dt)−Rθ

t (z
1:D
t , z1:Dt+dt)| =

=

∣∣∣∣∣∣∣

D∑

d=1

δ(z
1:D\(d)
t , z

1:D\(d)
t+dt )

∑

z
(d)
1

[R
(d)
t (z

(d)
t , z

(d)
t+dt|z

(d)
1 )

(
p
(d)
1|t (z

(d)
1 |z1:Dt )− p

θ,(d)
1|t (z

(d)
1 |z1:Dt )

)
]

∣∣∣∣∣∣∣

≤
D∑

d=1

δ(z
1:D\(d)
t , z

1:D\(d)
t+dt )

∣∣∣∣∣∣∣

∑

z
(d)
1

[
R

(d)
t (z

(d)
t , z

(d)
t+dt|z

(d)
1 )

(
p
(d)
1|t (z

(d)
1 |z1:Dt )− p

θ,(d)
1|t (z

(d)
1 |z1:Dt )

)]
∣∣∣∣∣∣∣

≤
D∑

d=1

δ(z
1:D\(d)
t , z

1:D\(d)
t+dt ) sup

z
(d)
1

{R(d)
t (z

(d)
t , z

(d)
t+dt|z

(d)
1 )}

∑

z
(d)
1

∣∣∣p(d)1|t (z
(d)
1 |z1:Dt )− p

θ,(d)
1|t (z

(d)
1 |z1:Dt )

∣∣∣

=

D∑

d=1

2Cz(d) ∥p(d)1|t (z
(d)
1 |z1:Dt )− p

θ,(d)
1|t (z

(d)
1 |z1:Dt )∥TV (14)

≤
D∑

d=1

Cz(d)

√
2DKL

(
p
(d)
1|t (z

(d)
1 |z1:Dt ) ∥ pθ,(d)1|t (z

(d)
1 |z1:Dt )

)
(15)

=

D∑

d=1

√√√√√2 C2
z(d)

∑

z
(d)
1

p
(d)
1|t (z

(d)
1 |z1:Dt ) log

p(d)(1|tz
(d)
1 |z1:Dt )

p
θ,(d)
1|t (z

(d)
1 |z1:Dt )

.
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In Eq. (14), we use the definition of TV distance as defined in Eq. (12) and Eq. (15) results from direct application
of Pinsker’s inequality. Now, we change the ordering of the sum and of the square root through the Cauchy-Schwarz

inequality:
∑D

d=1

√
xd ≤

∑D
d=1

√
xd . 1 ≤

√∑D
d=1

√
xd

2
√∑D

d=1

√
1
2 ≤

√
D
∑D

d=1 xd.

So, we obtain:

|Rt(z
1:D
t , z1:Dt+dt)−Rθ

t (z
1:D
t , z1:Dt+dt)| ≤

√√√√√2 D

D∑

d=1

C2
z(d)

∑

z
(d)
1

p
(d)
1|t (z

(d)
1 |z1:Dt ) log

p
(d)
1|t (z

(d)
1 |z1:Dt )

p
θ,(d)
1|t (z

(d)
1 |z1:Dt )

≤

√√√√√2 D sup
d∈{1,...,D}

{C2
z(d)}

D∑

d=1

∑

z
(d)
1

p
(d)
1|t (z

(d)
1 |z1:Dt )

[
log p

(d)
1|t (z

(d)
1 |z1:Dt )− log p

θ,(d)
1|t (z

(d)
1 |z1:Dt )

]

=

√√√√√√√√
C2


C3 −

D∑

d=1

∑

z
(d)
1

p
(d)
1|t (z

(d)
1 |z1:Dt ) log p

θ,(d)
1|t (z

(d)
1 |z1:Dt )

︸ ︷︷ ︸


,

where in the last step we rearrange the terms independent of the approximation parametrized by θ as constants: C2 =

2D supd∈{1,...,D}{C2
z(d)}, C3 =

∑
z
(d)
1 ∈Z p

(d)
1|t (z

(d)
1 |z1:Dt ) log p

(d)
1|t (z

(d)
1 |z1:Dt ).

We now develop the underbraced term in the last equation4:

D∑

d=1

∑

z
(d)
1

p
(d)
1|t (z

(d)
1 |z1:Dt ) log p

θ,(d)
1|t (z

(d)
1 |z1:Dt ) =

=

D∑

d=1

∑

z
(d)
1

p(z
(d)
1 , z1:Dt )

pt(z1:Dt )
log p

θ,(d)
1|t (z

(d)
1 |z1:Dt )

=
1

pt(z1:Dt )

D∑

d=1

∑

z
(d)
1

∑

z
1:D\(d)
1

p(z
(d)
1 , z1:Dt , z

1:D\(d)
1 ) log p

θ,(d)
1|t (z

(d)
1 |z1:Dt )

=
1

pt(z1:Dt )

D∑

d=1

∑

z1:D
1

p(z1:D1 , z1:Dt ) log p
θ,(d)
1|t (z

(d)
1 |z1:Dt )

=
1

pt(z1:Dt )

D∑

d=1

∑

z1:D
1

p1(z
1:D
1 )pt|1(z

1:D
t |z1:D1 ) log p

θ,(d)
1|t (z

(d)
1 |z1:Dt )

=
1

pt(z1:Dt )

∑

z1:D
1

p1(z
1:D
1 )pt|1(z

1:D
t |z1:D1 )

D∑

d=1

log p
θ,(d)
1|t (z

(d)
1 |z1:Dt )

= −C4 Ep1(z1:D
1 )



pt|1(z

1:D
t |z1:D1 )

D∑

d=1

− log p
θ,(d)
1|t (z

(d)
1 |z1:Dt )

︸ ︷︷ ︸
Cross-entropy



,

where C4 = 1/p(z1:D1 ).

4In this step, we omit some subscripts from joint probability distributions as they are not defined in the main paper, but they can be
inferred from context.
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Replacing back the obtained expression into the original equation, we obtain:
∣∣Rt(z

1:D
t , z1:Dt+dt)−Rθ

t (z
1:D
t , z1:Dt+dt)

∣∣2 ≤ C2C3 + C2C4Ep1(z1:D
1 )

[
pt|1(z1:Dt |z1:D1 )

∑D
d=1− log p

θ,(d)
1|t (z

(d)
1 |z1:Dt )

]
,

retrieving the intended result.

Corollary 1 (Bounded estimation error of unconditional rate matrix for graphs). Given t ∈ [0, 1], graphs Gt, Gt+dt, and
G1 ∼ p1(G1), let Rt(Gt, Gt+dt) be the groundtruth rate matrix of the CTMC, which we approximate with Rθ

t (Gt, Gt+dt).
Then, there exist constants C̄0, C̄1, C̄3 such that:

|Rt(Gt, Gt+dt)−Rθ
t (Gt, Gt+dt)|2 ≤

≤C̄0 + C̄1 Ep1(G1)

[
pt|1(Gt|G1)

N∑

n=1

− log p
θ,(n)
1|t (x

(n)
1 |Gt)

]

+ C̄2 Ep1(G1)


pt|1(Gt|G1)

∑

1≤i<j≤N

− log p
θ,(ij)
1|t (e

(ij)
1 |Gt)


 .

Proof. Recall that a graph G is defined as the set of nodes and edges G = (x1:n:N , e1:i<j:N ), such that x(n) ∈ X =
{1, . . . , X}, e(ij) ∈ E = {1, . . . , E}, so we can develop Eq. (11) as follows:

Rt(Gt, Gt+dt) =

N∑

n=1

δ
(
G

\(n)
t , G

\(n)
t+dt

)
E
p1|t(x

(n)
1 |Gt)

[
R

(n)
t (x

(n)
t , x

(n)
t+dt|x

(n)
1 )
]

︸ ︷︷ ︸
Rt(x1:n:N

t ,x1:n:N
t+dt )

+
∑

1≤i<j≤X

δ
(
G

\(ij)
t , G

\(ij)
t+dt

)
E
p1|t(e

(ij)
1 |Gt)

[
R

(ij)
t (e

(ij)
t , e

(ij)
t+dt|e

(ij)
1 )

]

︸ ︷︷ ︸
Rt(e

1:i<j:N
t ,e1:i<j:N

t+dt )

, (16)

where G\(n) and G\(ij) denote the whole graph except the node n and the edge connecting node i to node j, respectively.

Therefore, the result from Theorem 11 implies:

|Rt(Gt, Gt+dt)−Rθ
t (Gt, Gt+dt)| ≤

≤|Rt(x
1:n:N
t , x1:n:N

t+dt )−Rθ
t (x

1:n:N
t , x1:n:N

t+dt )|+ |Rt(e
1:i<j:N
t , e1:i<j:N

t+dt )−Rθ
t (e

1:i<j:N
t , e1:i<j:N

t+dt )|

≤

√√√√CX
0 + CX

1 Ep1(G1)

[
pt|1(Gt|G1)

N∑

n=1

− log p
θ,(n)
1|t (x

(n)
1 |Gt)

]

+

√√√√√CE
2 + CE

3 Ep1(G1)


pt|1(Gt|G1)

∑

1≤i<j≤N

− log p
θ,(ij)
1|t (e

(ij)
1 |Gt)




We now apply the identity
∑D

d=1

√
xd ≤

√
D
∑D

d=1 xd, derived from the Cauchy-Schwarz inequality in the proof of
Theorem 11, with D = 2 to obtain:

|Rt(Gt, Gt+dt)−Rθ
t (Gt, Gt+dt)| ≤

≤
(
C̄0 + C̄1 Ep1(G1)

[
pt|1(Gt|G1)

N∑

n=1

− log p
θ,(n)
1|t (x

(n)
1 |Gt)

]

+ C̄2 Ep1(G1)


pt|1(Gt|G1)

∑

1≤i<j≤N

− log p
θ,(ij)
1|t (e

(ij)
1 |Gt)



)1/2

,

with C̄0 = 2(CX
0 + CE

2 ), C̄1 = 2CX
1 , and C̄2 = 2CE

3 , yielding the intended result.
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D.1.2. BOUNDED DEVIATION OF THE GENERATED DISTRIBUTION

As in Appendix D.1.1, we start by introducing the necessary concepts that will reveal useful for the proof of the intended
result.

On the Choice of the CTMC Sampling Method Generating new samples using DFM amounts to simulate a multivariate
CTMC according to:

pt+dt|t(z
1:D
t+dt|z1:Dt ) = δ(z1:Dt , z1:Dt+dt) +Rt(z

1:D
t , z1:Dt+dt)dt, (17)

where Rt(z
1:D
t , z1:Dt+dt) denotes the unconditional multivariate rate matrix defined in Eq. (11). This process can be sim-

ulated exactly using Gillespie’s Algorithm (Gillespie, 1976; 1977). However, such an algorithm does not scale for large
D (Campbell et al., 2022). Although τ -leaping is a widely adopted approximate algorithm to address this limitation (Gille-
spie, 2001), it requires ordinal discrete state spaces, which is suitable for cases like text or images but not for graphs.
Therefore, we cannot apply it in the context of this paper. Additionally, directly replacing the infinitesimal step dt in
Eq. (11) with a finite time step ∆t à la Euler method is inappropriate, as Rt(z

1:D
t , z1:Dt+dt) prevents state transitions in more

than one dimension per step under the continuous framework. Instead, Campbell et al. (2024) propose an approximation
where the Euler step is applied independently to each dimension, as seen in Eq. (4).

In this section, we theoretically demonstrate that, despite its approximation, the independent-dimensional Euler sampling
method error remains bounded and can be made arbitrarily small by reducing the step size ∆t or by reducing the estimation
error of the rate matrix.

Markov Kernel of a CTMC For this proof, we also introduce the notion of Markov kernel of a CTMC. The Markov
kernel,Rt→t+∆t, is a function that provides the transition probabilities between states over a finite time interval, ∆t:

pt+∆t = R⊤
t→t+∆t pt . (18)

For example, for a univariate CTMC with a state space Z of cardinality Z, the Markov kernelRt→t+∆t is a matrix where
each entry R(ij)

t→t+∆t represents the probability that the single variable transitions from state i at time t to state j at time
t+∆t, i.e., pt+∆t|t(j|i).
The definition of Markov kernel contrasts with the one of rate matrix (or generator), Rt, which instead characterizes the
infinitesimal transition rates between states at a given time t. Thus, while the rows of the rate matrix sum to 0, the Markov
kernel matrices are stochastic, i.e.,

∑
j∈Z R

(ij)
t→t+∆t = 1, ∀i. This contrasts with the rate matrix where rows sum to 1.

Additionally, Markov kernels must also respect the initial conditionRt→t = I , where I denotes the identity matrix.

Recall from Sec. 2 that the evolution of a CTMC is governed by the rate matrix through the equation:

∂tpt = R⊤pt,

which represents a first-order differential equation. Here, we focus on the time-homogeneous case, where Rt = R in the
time interval [t; t+∆t], i.e., the rate matrix remains constant within the time interval. In that case, its solution is given by:

pt+∆t = eR
⊤∆t pt

Therefore the result above sets, by definition, the corresponding Markov kernel of a constant rate matrix in a finite time
interval ∆t as:

Rt→t+∆t = (eR
⊤∆t)⊤ = eR∆t, (19)

where the second equality is a direct consequence of the definition of the matrix exponential as a series expansion.

We are now in conditions of proceeding to the proof of Theorem 8. We start by first proving that, in the univariate case,
the time derivatives of the conditional rate matrices are upper bounded.

Lemma 5 (Upper bound time derivative of conditional univariate rate matrix). For t ∈ (0, 1), zt, zt+dt, z1 ∈ Z, with
zt ̸= zt+dt, then we have:

|∂tR∗
t (zt, zt+dt|z1)| ≤

2

pt|1(zt|z1)2
.
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Proof. Recall that pt|1(zt|z1) = t δ(zt, z1) + (1− t) p0(zt) (from Eq. (1)). Two different cases must then be considered.

In the first case, pt|1(zt|z1) = 0. This implies that both extremes of the linear interpolation are 0. In that case, the linear
interpolation will be identically 0 for t ∈ (0, 1). Thus, by definition, R∗

t (zt, zt+dt|z1) = 0 for t ∈ (0, 1), which implies
that |∂tR∗

t (zt, zt+dt|z1)| = 0.

Otherwise (pt|1(zt|z1) > 0), we recall that R∗
t (zt, zt+dt|z1) with zt ̸= zt+dt has the following form:

R∗
t (zt, zt+dt|z1) =

ReLU
(
∂tpt|1(zt+dt|z1)− ∂tpt|1(zt|z1)

)

Z>0
t pt|1(zt|z1)

, (20)

where Z>0
t = |{zt : pt|1(zt|z1) > 0}|.

By differentiating the explicit form of pt|1(zt|z1), we have that ∂2pt|1(zt|z1) = 0. As a consequence, the numerator
of Eq. (20) has zero derivative. Additionally, we also note that Z>0

t is constant. Again, since pt|1(zt|z1) is a linear
interpolation between z1 and p0 and, therefore, it is impossible for pt|1(zt|z1) to suddenly become 0 for t ∈ (0, 1).

Consequently, we have:

∂tR
∗
t (zt, zt+dt|z1) =

ReLU
(
∂tpt|1(zt+dt|z1)− ∂tpt|1(zt|z1)

)

Z>0
t

∂t

(
1

pt|1(zt|z1)

)

= −ReLU
(
∂tpt|1(zt+dt|z1)− ∂tpt|1(zt|z1)

)

Z>0
t

∂tpt|1(zt|z1)
pt|1(zt|z1)2

.

We necessarily have |∂tpt|1(zt|z1)| = |δ(zt, z1) − p0(zt)| ≤ 1, ReLU (∂tp(zt+dt|z1)− ∂tp(zt|z1)) ≤ 2, Z>0
t ≥ 1, and,

necessarily, p(zt|z1) > 0. Thus:

|∂tR∗
t (zt, zt+dt|z1)| ≤

ReLU
(
∂tpt|1(zt+dt|z1)− ∂tpt|1(zt|z1)

)

Z>0
t

|δ(zt, z1)− p0(zt)|
pt|1(zt|z1)2

≤ 2

pt|1(zt|z1)2
.

We now upper bound the time derivative of the unconditonal multivariate rate matrix. We use Theorem 5 as an intermediate
result to accomplish so. Additionally, we consider the following assumption.

Assumption 6. For z1:Dt ∈ ZD, z
(d)
1 ∈ Z and t ∈ [0, 1], for each variable z(d) of a joint variable z1:D, there exists a

constant B(d)
t > 0 such that p1|t(z

(d)
1 |z1:Dt ) ≤ B

(d)
t pt|1(z

(d)
t |z(d)1 )2.

This assumption states that the denoising process is upper bounded by a quadratic term on the noising process. This
assumption is reasonable because, while the noising term applies individually to each component of the data, the denoising
process operates on the joint variable, allowing for a more comprehensive and interdependent correction that reflects the
combined influence of all components.

Proposition 7 (Upper bound time derivative of unconditional multivariate rate matrix). For z1:Dt , z1:Dt+dt ∈ ZD and t ∈
(0, 1), under Theorem 6, we have:

|∂tR1:D
t (z1:Dt , z1:Dt+dt)| ≤ 2BtZD,

with Bt = sup
d∈1,...,D

B
(d)
t .
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Proof. From Eq. (11), the unconditional rate matrix is given by:

Rt(z
1:D
t , z1:Dt+dt) =

D∑

d=1

δ(z
1:D\(d)
t , z

1:D\(d)
t+dt ) R

(d)
t (z1:Dt , z

(d)
t+dt)

=

D∑

d=1

δ(z
1:D\(d)
t , z

1:D\(d)
t+dt ) E

p
(d)

1|t (z
(d)
1 |z1:D

t )

[
R

∗(d)
t (z

(d)
t , z

(d)
t+dt|z

(d)
1 )
]

=

D∑

d=1

δ(z
1:D\(d)
t , z

1:D\(d)
t+dt )

∑

z
(d)
1 ∈Z

p
(d)
1|t (z

(d)
1 |z1:Dt )R

∗(d)
t (z

(d)
t , z

(d)
t+dt|z

(d)
1 ).

So, by linearity of the time derivative, we have:

∣∣∂tRt(z
1:D
t , z1:Dt+dt)

∣∣ =

∣∣∣∣∣∣∣

D∑

d=1

δ(z
1:D\(d)
t , z

1:D\(d)
t+dt )

∑

z
(d)
1 ∈Z

p
(d)
1|t (z

(d)
1 |z1:Dt ) ∂tR

∗(d)
t (z

(d)
t , z

(d)
t+dt|z

(d)
1 )

∣∣∣∣∣∣∣

≤
D∑

d=1

δ(z
1:D\(d)
t , z

1:D\(d)
t+dt )

∑

z
(d)
1 ∈Z

p
(d)
1|t (z

(d)
1 |z1:Dt )

∣∣∣∂tR∗(d)
t (z

(d)
t , z

(d)
t+dt|z

(d)
1 )
∣∣∣

≤
D∑

d=1

δ(z
1:D\(d)
t , z

1:D\(d)
t+dt )

∑

z
(d)
1 ∈Z

B
(d)
t pt|1(z

(d)
t |z(d)1 )2

2

pt|1(z
(d)
t |z(d)1 )2

≤
D∑

d=1

δ(z
1:D\(d)
t , z

1:D\(d)
t+dt ) 2BtZ

≤ 2BtZD,

where in the first inequality triangular we apply triangular inequality; in the second inequality, we use Theorem 5 and
Theorem 6 to upper bound |∂tR∗(d)

t (z
(d)
t , z

(d)
t+dt|z

(d)
1 )| and p1|t(z

(d)
1 |z1:Dt ), respectively.

Now, we finally start the proof of Theorem 8.

Theorem 8 (Bounded deviation of the generated distribution). Let {z1:Dt }t∈[0,1] ∈ ZD × [0, 1] be a CTMC starting with
p0(z

1:D
0 ) = pϵ and ending with p1(z

1:D
1 ) = pdata, whose groundtruth rate matrix is Rt. Additionally, let (y1:Dk )k=0, 1

K ,...,1

be a Euler sampling approximation of that CTMC, with maximum step size ∆t = supk ∆tk and an approximate rate
matrix Rθ

t . Then, under Theorem 6, the following total variation bound holds:

∥p(y1:D1 )− pdata∥TV ≤ UZD + B(ZD)2∆t+ O(∆t),

where U = sup
t∈[0,1],

z1:D
t , z1:D

t+dt∈ZD

√
C0 + C1Ep1(z1:D

1 )

[
pt|1(z1:Dt |z1:D1 )

∑D
d=1− log pθ1|t(z

(d)
1 |z1:Dt )

]
and B =

sup
t∈[0,1], z

(d)
1 ∈Z

z1:D
t ∈ZD

B
(d)
t .

Proof. We start the proof by clarifying the notation for the Euler sampling approximation process. We denote its dis-
cretization timesteps by 0 = t0 < t1 < . . . < tK = 1, with ∆tk = tk − tk−1. It is initiated at the same limit distribution
as the groundtruth CTMC, pϵ, and the bound to be proven will quantify the deviation that the approximated procedure
incurs in comparison to the groundtruth CTMC. To accomplish so, we define Rθ,E

k = Rθ,E
tk−1→tk

as the Markov kernel
that corresponds to applying Euler sampling with the approximated rate matrix Rθ

t , moving from tk−1 to tk. Therefore,
Rθ,E = Rθ,E

1 Rθ,E
2 . . . Rθ,E

K and p(y1:DK ) = Rθ,ET
pϵ.
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We first apply the same decomposition to the left-hand side of Theorem 8, as (Campbell et al., 2022), Theorem 1:

∥p(y1:DK )− pdata∥TV = ∥Rθ,E⊤
pϵ − pdata∥TV

≤ ∥Rθ,E⊤
pϵ − P⊤

1|0pϵ∥TV + ∥pϵ − p(z1:D0 )︸ ︷︷ ︸
=pϵ

∥TV (21)

≤ ∥Rθ,E⊤
pϵ − P⊤

1|0pϵ∥TV

≤
K∑

k=1

sup
ν
∥Rθ,E

k

⊤
ν − P⊤

k ν∥TV, (22)

where, in Eq. (21), P1|0 denotes the path measure of the exact groundtruth CTMC and the difference between limit dis-
tributions (second term from Eq. (21)) is zero since in flow matching the convergence to the limit distribution via linear
interpolation is not asymptotic, in constrast to diffusion models (Austin et al., 2021), but actually attained at t = 0. In
Eq. (22), we introduce the stepwise path measure, i.e., Pk = Ptk|tk−1

, such that PT |0 = P1P2 . . .PK . Therefore, finding
the intended upper bound amounts to establish bounds on the total variation distance for each interval [tk−1, tk].

For any distribution ν:

∥Rθ,E
k

⊤
ν − P⊤

k ν∥TV ≤ ∥Rθ,E
k

⊤
ν −Rθ

k

⊤
ν +Rθ

k

⊤
ν − P⊤

k ν∥TV

≤ ∥P⊤
k ν −Rθ

k

⊤
ν∥TV + ∥Rθ

k

⊤
ν −Rθ,E

k

⊤
ν∥TV, (23)

whereRθ
k denotes the resulting Markov kernel of running a CTMC with constant rate matrix Rθ

tk−1
between tk−1 and tk.

For the first term, we use Proposition 5 from (Campbell et al., 2022) to relate the total variation distance imposed by the
Markov kernels with the difference between the corresponding rate matrices:

∥P⊤
k ν −Rθ

k

⊤
ν∥TV ≤

∫ tk

tk−1

sup
z1:D
t ∈ZD





∑

z1:D
t+dt ̸=z1:D

t

∣∣∣Rt(z
1:D
t , z1:Dt+dt)−Rθ

tk−1
(z1:Dt , z1:Dt+dt)

∣∣∣



 dt

≤
∫ tk

tk−1

sup
z1:D
t ∈ZD





∑

z1:D
t+dt ̸=z1:D

t

∣∣Rt(z
1:D
t , z1:Dt+dt)−Rtk−1

(z1:Dt , z1:Dt+dt)
∣∣


dt

︸ ︷︷ ︸
Discretization Error

+

∫ tk

tk−1

sup
z1:D
t ∈ZD





∑

z1:D
t+dt ̸=z1:D

t

∣∣∣Rtk−1
(z1:Dt , z1:Dt+dt)−Rθ

tk−1
(z1:Dt , z1:Dt+dt)

∣∣∣



 dt

︸ ︷︷ ︸
Estimation Error

The first term consists of the discretization error, where we compare the chain with groundtruth rate matrix changing
continuously between tk−1 and tk with its discretized counterpart, i.e., a chain where the rate matrix is held constant to
its value at the beginning of the interval. The second corresponds to the estimation error, where we compare the chain
generated by the discretized groundtruth rate matrix with an equally discretized chain but that uses an estimated rate matrix
instead. For the former, we have:
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∫ tk

tk−1

sup
z1:D
t ∈ZD





∑

z1:D
t+dt ̸=z1:D

t

∣∣Rt(z
1:D
t , z1:Dt+dt)−Rtk−1

(z1:Dt , z1:Dt+dt)
∣∣


dt

≤
∫ tk

tk−1

sup
z1:D
t ∈ZD





∑

z1:D
t+dt ̸=z1:D

t

∣∣∂tRtc(z
1:D
t , z1:Dt+dt)(t− tk−1))

∣∣


dt (24)

≤
∫ tk

tk−1

ZD sup
z1:D
t ,z1:D

t+dt∈ZD

{∣∣∂tRtc(z
1:D
t , z1:Dt+dt)

∣∣} |t− tk−1|dt (25)

≤ 2Z2D2

∫ tk

tk−1

Bt |t− tk−1|dt, (26)

= Bk(ZD∆tk)
2, (27)

where, in Eq. (24), we use the Mean Value Theorem, with tc ∈ (tk−1, tk); in Eq. (25), we use the fact that there are ZD
values of z1:Dt+dt that differ at most in only one coordinate from z1:Dt ; in Eq. (26), we use the result from Theorem 7 to
upper bound the time derivative of the multivariate unconditional rate matrix; and finally, in Eq. (27), we define Bk =
supt∈(tk−1,tk)

Bt.

For the estimation error term, we have:

∫ tk

tk−1

sup
z1:D
t ∈ZD





∑

z1:D
t+dt ̸=z1:D

t

∣∣∣Rtk−1
(z1:Dt , z1:Dt+dt)−Rθ

tk−1
(z1:Dt , z1:Dt+dt)

∣∣∣



dt

≤
∫ tk

tk−1

UkZD dt, (28)

≤ UkZD∆tk, (29)

where, in Eq. (28), we use again the fact that there are ZD values of z1:Dt+dt that differ at most in only one coor-
dinate from z1:Dt along with the estimation error upper bound from Theorem 11. In particular, we consider Uk =

sup
t∈[tk−1,tk],

z1:D
t , z1:D

t+dt∈ZD

U
z1:D
t →z1:D

t+dt

k , with:

U
z1:D
t →z1:D

t+dt

k =

√√√√C0 + C1Ep1(z1:D
1 )

[
pt|1(z1:Dt |z1:D1 )

D∑

d=1

− log p
θ,(d)
1|t (z

(d)
1 |z1:Dt )

]
,

i.e., the square root of the right-hand side of Eq. (13).

It remains to bound the second term from Eq. (23). We start by analyzing the Markov kernelRθ
k corresponding to a Markov

chain with constant rate matrix Rθ
tk−1

between tk−1 and tk. In that case, from Eq. (19) we obtain:

Rθ
k = e

Rθ
tk−1

∆tk

=

∞∑

i=0

(Rθ
tk−1

∆tk)
i

i!

= I +Rθ
tk−1

∆tk +
(Rθ

tk−1
∆tk)

2

2!
+

(Rθ
tk−1

∆tk)
3

3!
+ · · ·

On the other hand, we have from Eq. (4) that sampling with the Euler approximation in multivariate Markov chain corre-
sponds to:
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p̃tk|tk−1
(z1:Dtk

|z1:Dtk−1
) =

=

D∏

d=1

p̃
(d)
tk|tk−1

(z
(d)
tk
|z1:Dtk−1

)

=

D∏

d=1

δ(z
(d)
tk−1

, z
(d)
tk

) +R
θ,(d)
t

(
z1:Dtk−1

, z
(d)
tk

)
∆tk (30)

= δ
(
z1:Dtk−1

, z1:Dtk

)
+ ∆tk

∑

d=1

δ
(
z
1:D\(d)
tk−1

, z
1:D\(d)
tk

)
R

θ,(d)
t

(
z1:Dtk−1

, z
(d)
tk

)
+ O(∆tk

2),

where in Eq. (30) we have that the approximated transition rate matrix is computed according to Eq. (11) but using
p
θ,(d)
1|t (z

(d)
1 |z1:Dt ) instead of p

(d)
1|t (z

(d)
1 |z1:Dt ). To obtain Rθ,E

k , we just need to convert p̃tk|tk−1
(z1:Dtk

|z1:Dtk−1
) into matrix

form. Note that:

• δ(z1:Dtk−1
, z1:Dtk

) corresponds to I in matrix form;

• From Eq. (10),
∑

d=1 δ
(
z
1:D\(d)
tk−1

, z
1:D\(d)
tk

)
R

θ,(d)
t

(
z1:Dtk−1

, z
(d)
tk

)
corresponds to Rθ

tk−1
in matrix form.

These correspondences yield:
Rθ,E

k = I +∆tk R
θ
tk−1

+O
(
∆tk

2
)

Consequently, we have: ∥∥∥Rθ
k

⊤
ν −Rθ,E

k

⊤
ν
∥∥∥

TV
∈ O

(
∆tk

2
)
. (31)

Therefore, we get the intended result by gathering the results from Eq. (27), Eq. (29), and Eq. (31).

∥p(y1:D1 )− pdata∥TV ≤
K∑

k=1

(
UkZD∆tk + Bk(ZD∆tk)

2 + O(∆tk
2)
)

≤ UZD + B(ZD)2∆t+ O(∆t),

where ∆t = supk ∆tk is the maximum step size,
∑K

k=1 ∆tk = 1, U = supk Uk and B = supk Bk.

Below we provide a corollary of Theorem 8, which consists of its instantiation for graphs.

Corollary 2 (Bounded deviation of the generated graph distribution). Let {Gt}t∈[0,1] be a CTMC over graphs starting
with p0(G0) = pϵ and ending with p1(G1) = pdata, whose groundtruth rate matrix is Rt. Additionally, let (Ḡk)k=0,1,...,K

be a Euler sampling approximation of that CTMC. Then, we have:

∥p(G1)− pdata∥TV ≤ Ū

(
XN + E

N(N − 1)

2

)
+ B̄

(
XN + E

N(N − 1)

2

)2

∆t+ O(∆t)

where B̄ is defined similarly to B from Theorem 8 but for graphs: B̄ = sup
t∈[0,1]

sup
x
(n)
1 ∈X , e

(ij)
1 ∈E

Gt

{B̄(n)
t , B̄

(ij)
t }, with

B̄
(n)
t , B̄

(ij)
t > 0 defined according to Theorem 6:

p1|t(x
(n)
1 |Gt) ≤ B̄

(n)
t pt|1(x

(n)
t |x(n)

1 )2

p1|t(e
(ij)
1 |Gt) ≤ B̄

(ij)
t pt|1(e(ij)t|e

(ij)
1 )2,
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and

U = sup
t∈[0,1],

Gt, Gt+dt∈ZD

(
C̄0 + C̄1 Ep1(G1)

[
pt|1(Gt|G1)

N∑

n=1

− log p
θ,(n)
1|t (x

(n)
1 |Gt)

]

+ C̄2 Ep1(G1)


pt|1(Gt|G1)

∑

1≤i<j≤N

− log p
θ,(ij)
1|t (e

(ij)
1 |Gt)



) 1

2

Proof. Considering the definition of a graph as G =
(
x1:n:N,e1≤i<j≤N

)
, we proceed through the different steps of the

proof of Theorem 8.

In particular, for the discretization error, we obtain:

∫ tk

tk−1

sup
Gt





∑

Gt+dt ̸=Gt

∣∣Rt(Gt, Gt+dt)−Rtk−1
(Gt, Gt+dt)

∣∣


dt = B̄k

(
XN + E

N(N − 1)

2

)2

∆tk
2,

since there are XN + EN(N−1)
2 values of Gt+dt that differ at most in only one coordinate (node or edge) from Gt, with

B̄k = supt∈(tk−1,tk)
B̄t.

For the estimation error:

∫ tk

tk−1

sup
Gt





∑

Gt+dt ̸=Gt

∣∣∣Rtk−1
(Gt, Gt+dt)−Rθ

tk−1
(Gt, Gt+dt)

∣∣∣



dt ≤ Ūk

(
XN + E

N(N − 1)

2

)
∆tk,

since, again, there are XN + EN(N−1)
2 values of Gt+dt that differ at most in only one coordinate from Gt and Uk =

sup
t∈[tk−1,tk],
Gt, Gt+dt

Ū
Gt→Gt+dt

k , where:

Ū
Gt→Gt+dt

k =

(
C̄0 + C̄1 Ep1(G1)

[
pt|1(Gt|G1)

N∑

n=1

− log p
θ,(n)
1|t (x

(n)
1 |Gt)

]

+ C̄2 Ep1(G1)


pt|1(Gt|G1)

∑

1≤i<j≤N

− log p
θ,(ij)
1|t (e

(ij)
1 |Gt)



) 1

2

,

i.e., the square root of the right-hand side of Theorem 1.

The term ∥Rθ
k

⊤
ν −Rθ,E

k

⊤
ν∥TV remains O

(
∆tk

2
)
.

Therefore, by finally aggregating the terms above as in Theorem 8, we obtain:

∥p(G1)− pdata∥TV ≤ Ū

(
XN + E

N(N − 1)

2

)
+ B̄

(
XN + E

N(N − 1)

2

)2

∆t+ O(∆t)

D.1.3. CRITICAL ANALYSIS AND POSITIONING OF THEOREM 1 AND THEOREM 2

Theorem 1 establishes that minimizing the cross-entropy (CE) loss directly corresponds to minimizing an upper bound
on the rate matrix estimation error. This result provides a direct and principled justification for using the CE loss, as it
promotes accurate sampling from the underlying CTMC.

Prior work derive an ELBO loss and motivate using only the CE loss based on approximations upon the derived ELBO
by dropping the rate matrix-dependent terms (see Appendix C.2 in (Campbell et al., 2024)). In contrast, our bounds do
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not require such simplifications and are agnostic to rate matrix design choices (e.g., stochasticity level), reinforcing our
training-sampling decoupling claim. Additionally, we note that concurrent work also derives a tractable ELBO (Shaul
et al., 2025); however, it addresses a different family of conditional rate matrices.

Theorem 2 complements our theoretical analysis by bounding the deviation of the generated distribution from the target
distribution, combining two sources of error: the discretization error from CTMC sampling, which is O(∆t), and the rate
matrix estimation error, captured by Theorem 1. This type of bound is a standard objective in generative modeling, aiming
to guarantee that the generation process remains faithful to the underlying data distribution. For instance, Theorem 1 in
Campbell et al. (2022) presents an analogous bound in the context of discrete diffusion, though with significant differences
(e.g., they assume a bounded rate matrix estimation error, while we explicitly prove it).

D.2. Theoretical Results on Architectural Expressivity

We now proceed to the graph specific theoretical results.

D.2.1. NODE PERMUTATION EQUIVARIANCE AND INVARIANCE PROPERTIES

The different components of a graph generative model have to respect different graph symmetries. For example, the permu-
tation equivariance of the model architecture ensures the output changes consistently with any reordering of input nodes,
while permutation-invariant loss evaluates the model’s performance consistently across isomorphic graphs, regardless of
node order. We provide a proof for related properties included in Lemma 3 as follows.

Lemma 3 (Node Permutation Equivariance and Invariance Properties of DeFoG). For any permutation-equivariant de-
noising neural network, the loss function of DeFoG is permutation invariant, and its sampling probability is permutation
invariant.

Proof. Recall that we denote an undirected graph with N nodes by G = (x1:n:N , e1:i<j:N ). Here, each node variable is
represented as xn ∈ X = {1, . . . , X}, and each edge variable as e(ij) ∈ E = {1, . . . , E}. We also treat G as a multivariate
data point consisting of D discrete variables including all nodes and all edges.

We then consider a permutation function σ, which is applied to permute the graph’s node ordering. Under this permutation,
the index n will be mapped to σ(n). We denote the ordered set of nodes and edges in the original ordering by x(1:n:N) and
e(1:i<j:N), respectively, and by x′(1:n:N) and e′(1:i<j:N) after permutation. Additionally, x(n) denotes the n-th entry of the
corresponding ordered set (and analogously for edges). By definition, the relationship between the original and permuted
entries of the ordered sets is given by: x′(n) = xσ−1(n) and e′(ij) = e(σ

−1(i),σ−1(j)).

Permutation Equivariant Model We begin by proving that the DeFoG architecture is permutation-equivariant, includ-
ing the network architecture and the additional features employed.

• Permutation Equivariance of RRWP Features: Recall that the RRWP features until K − 1 steps are defined as
RRWP(M) = P = [I,M, . . . ,MK−1] ∈ Rn×n×K , where Mk = (D−1A)k, 0 ≤ k < K.

We first prove that M(A) = D−1A is permutation equivariant:

M(A′)
(ij)

= (D′−1A′)(ij)

= (1/(D′)(ii))(A′)(ij)

= (1/D(σ−1(i),σ−1(i)))(A)(σ
−1(i),σ−1(j))

= (D−1A)(σ
−1(i),σ−1(j))

= (M(A)′)
(ij)

.

To facilitate notation, in the following proofs, we consider the matrix π ∈ {0, 1}N×N representing the same per-
mutation function σ, with the permuted features represented as πMπT . We then prove that RRWP is permutation
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equivariant.

P (πMπT ) = [πIπT , πMπT , . . . , (πMπT )K−1]

= [πIπT , πMπT , . . . , (πMK−1πT )], since πTπ = IN

= π[I,M, . . . ,MK−1]πT

= πP (M)πT .

• Permutation Equivariance of Model Layers: The model layers (MLP, FiLM, PNA, and self-attention) preserve per-
mutation equivariance, as shown in prior work (e.g., Vignac et al. (2022) in Lemma 3.1).

Hence, since all of its components are permutation-equivariant, so is the DeFoG full architecture. The next results hold for
any permutation equivariant denoising neural network.

Permutation Invariant Loss Function DeFoG’s loss consists of summing the cross-entropy loss between the predicted
clean graph and the true clean graph (node and edge-wise). Vignac et al. (2022), Lemma 3.2, provide a concise proof that
this loss is permutation invariant.

Permutation Invariant Sampling Probability Given a noisy graph G0 sampled from the initial distribution, p0, the rate
matrix at any time point t ∈ [0, 1] defines the denoising process.

Recall that the conditional rate matrix for a variable zt at each time step t is defined as:

R∗
t (zt, zt+dt|z1) =

ReLU
[
∂tpt|1(zt+dt|z1)− ∂tpt|1(zt|z1)

]

Z>0
t pt|1(zt|z1)

.

In our multivariate formulation, we compute this rate matrix independently for each variable inside the graph. We denote
the concatenated rate matrix entries for all nodes with R∗

t (x
′(1:N)
t , x

′(1:N)
t+dt |x

′(1:N)
1 ).

In the following part, we demonstrate the node permutation equivariance of the rate matrix predicted by the trained equiv-
ariant network, denoted by fθ. The proof for edges follows a similar logic. Suppose that the noisy graph Gt is permuted,
and the permuted graph has nodes denoted by x

′(1:N)
t , i.e., x′(n)

t = x
σ−1(n)
t . We have:

R∗
t

(
x
′(1:N)
t , x

′(1:N)
t+dt |x

′(1:N)
1

)(n)

=R∗
t

(
x
′(n)
t , x

′(n)
t+dt|x

′(n)
1

)

=
ReLU

[
∂tpt|1(x

′(n)
t+dt|x

′(n)
1 )− ∂tpt|1(x

′(n)
t |x′(n)

1 )
]

Z>0
t pt|1(x

′(n)
t |x′(n)

1 )

=
ReLU

[
∂tpt|1(x

σ−1(n)
t+dt |x

′(n)
1 )− ∂tpt|1(x

σ−1(n)
t |x′(n)

1 )
]

Z>0
t pt|1(x

σ−1(n)
t |x′(n)

1 )
, (32)

=
ReLU

[
∂tpt|1(x

σ−1(n)
t+dt |x

σ−1(n)
1 )− ∂tpt|1(x

σ−1(n)
t |xσ−1(n)

1 )
]

Z>0
t pt|1(x

σ−1(n)
t |xσ−1(n)

1 )
, (33)

=R∗
t (x

σ−1(n)
t , x

σ−1(n)
t+dt |x

σ−1(n)
1 )

=R∗
t (x

(1:N)
t , x

(1:N)
t+dt |x

(1:N)
1 )σ

−1(n).

In Eq. (32), we use the definition of permuted ordered set for x′
t and x′

t+dt, and, in Eq. (33), we use that fθ is equivariant.
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Furthermore, the transition probability at each time step t is given by:

p̃t+∆t|t(G
1:D
t+∆t|G1:D

t ) =

D∏

d=1

p̃
(d)
t+∆t|t(G

(d)
t+∆t|G1:D

t )

=

D∏

d=1

(
δ(G

(d)
t , G

(d)
t+∆t) + E

pθ(G
(d)
1 |G1:D

t )

[
R

(d)
t (G

(d)
t , G

(d)
t+∆t|G

(d)
1 )
]
∆t
)
.

The transition probability p̃t+∆t|t(G1:D
t+∆t|G1:D

t ) is expressed as a product over all nodes and edges, an operation that
is inherently a permutation invariant function with respect to node ordering. Furthermore, as demonstrated earlier, the
term E

pθ(G
(d)
1 |G1:Dt)

[
R

(d)
t (G

(d)
t , G

(d)
t+∆t|G

(d)
1 )
]

is permutation equivariant since R
(d)
t and pθt|1(G

(d)
1 |G1:D

t ) are both per-
mutation equivariant if model fθ is permutation equivariant. Consequently, since the composition of these components
yields a permutation invariant function, we conclude that the transition probability of the considered CTMC is permutation
invariant.

We finally verify the final sampling probability, p̃1(G1:D
1 ), is permutation-invariant. To simulate G1:D

1 over K time steps
[0 = t0, t1, . . . , tK = 1], we can marginalize it first by taking the expectation over the state at the last time step tK−1.
Specifically, we have p1(G

1:D
1 ) = EptK−1

(G1:D
tK−1

)

[
p̃1|tK−1

(G1:D
1 |G1:D

tK−1
)
]
. Since the process is Markovian, this expres-

sion can be sequentially extended over the T steps through successive expectations.

p1(G
1:D
1 ) = EptK−1

(G1:D
tK−1

)

[
p̃1|tK−1

(G1:D
1 |G1:D

tK−1
)
]

= EptK−2
(G1:D

tK−2
)

[
Ep̃tK−1|tK−2

(G1:D
tK−1

|G1:D
tK−2

)

[
p̃1|tK−1

(G1:D
1 |G1:D

tK−1
)
]]

︸ ︷︷ ︸
p̃1|tK−2

(G1:D
1 |G1:D

tK−2
)

. . .

= Ep0(G1:D
0 )

[
Ep̃t1|0(G

1:D
t1

|G1:D
0 )

[
. . .Ep̃tK−1|tK−2

(G1:D
tK−1

|G1:D
tK−2

)

[
p̃1|tK−1

(G1:D
1 |G1:D

tK−1
)
]]]

Due to the fact that each function in the sequence is itself permutation-invariant and that the initial distribution p0(G
1:D
0 )

is permutation invariant (see Appendix C.1), the composition of permutation-invariant functions preserves this invariance
throughout. Thus, the final sampling probability is invariant over isomorphic graphs.

D.2.2. ADDITIONAL FEATURES EXPRESSIVITY

This section explains the expressivity of the RRWP features used in DeFoG. We summarize the findings of Ma et al. (2023)
in Theorem 7, who establish that, by encoding random walk probabilities, the RRWP positional features can be used to
arbitrarily approximate several essential graph properties when fed into an MLP. Specifically, point 1 shows that RRWP
with K − 1 steps encodes all shortest path distances for nodes up to K − 1 hops. Additionally, points 2 and 3 indicate that
RRWP features effectively capture diverse graph propagation dynamics.

Proposition 7 (Expressivity of an MLP with RRWP encoding (Ma et al., 2023)). For any n ∈ N, let Gn ⊆ {0, 1}n×n

denote all adjacency matrices of n-node graphs. For K ∈ N, and A ∈ Gn, consider the RRWP:

P = [I,M, . . . ,MK−1] ∈ Rn×n×K

Then, for any ϵ > 0, there exists an MLP : RK−1 → R acting independently across each n dimension such that MLP(P )
approximates any of the following to within ϵ error:

1. MLP(P )ij ≈ SPDK−1(i, j)

2. MLP(P ) ≈∑K−1
k=0 θk(D

−1A)k

3. MLP(P ) ≈ θ0I + θ1A
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in which SPDK−1(i, j) is the K − 1 truncated shortest path distance, and θk ∈ R are arbitrary coefficients.

Siraudin et al. (2024) experimentally validate the effectiveness of RRWP features for graph diffusion models and propose
extending their proof to additional graph properties that GNNs fail to capture (Xu et al., 2019; Morris et al., 2019). For
example, an MLP with input Mk with k = N − 1 for an N -node graph can approximate the connected component of each
node and the number of vertices in the largest connected component. Additionally, RRWP features can be used to capture
cycle-related information.
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E. Conditional Generation
In this section, we describe how to seamlessly integrate DeFoG with existing methods for CTMC-based conditioning
mechanisms. In this setting, all the examples are assumed to have a label. The objective of conditional generation is to
steer the generative process based on that label, so that at sampling time we can guide the model to which class of samples
we are interested in obtaining.

We focus on classifier-free guidance methods, as these models streamline training by avoiding task-specific classifiers.
This approach has been widely adopted for continuous state-space models, e.g., for image generation, where it has been
shown to enhance the generation quality of the generative model (Ho & Salimans, 2021; Sanchez et al., 2024). Recently,
Nisonoff et al. (2025) extended this method to discrete flow matching in a principled manner. In this paper, we adopt their
formulation.

In this framework, 90% of the training is performed with the model having access to the label of each noisy sample. This
allows the model to learn the conditional rate matrix, Rθ

t (zt, zt+dt|y). In the remaining 10% of the training procedure, the
labels of the samples are masked, forcing the model to learn the unconditional generative rate matrix Rθ

t (zt, zt+dt). The
conditional training enables targeted and accurate graph generation, while the unconditional phase ensures robustness when
no conditions are specified. The combination of both conditional and unconditional training offers a more accurate pointer
to the conditional distribution, typically described by the distance between the conditional and unconditional prediction.
In our framework, this pointer is defined through the ratio between the conditional and unconditional rate matrices, as
follows:

Rθ,γ
t (x, x̃|y) = Rθ

t (x, x̃|y)γRθ
t (x, x̃)

1−γ = Rθ
t (x, x̃|y)

(
Rθ

t (x, x̃|y)
Rθ

t (x, x̃)

)γ−1

,

where γ denotes the guidance weight. In particular, the case with γ = 1 corresponds to standard conditional genera-
tion, while γ = 0 represents standard unconditional generation. As γ increases, the conditioning effect described by(

Rθ
t (x,x̃|y)
Rθ

t (x,x̃)

)γ−1

is strengthened, thereby enhancing the quality of the generated samples. We observed γ = 2.0 to be the
best performing value for our digital pathology experiments (Appendix G.1), as detailed in Tab. 5.

Overall, conditional generation is pivotal for guiding models to produce graphs that meet specific requirements, offering
tailored solutions for complex real-world tasks. The flexibility of DeFoG, being well-suited for conditional generation,
marks an important step forward in advancing this direction, promising greater adaptability and precision in future graph-
based applications.
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F. Experimental Details
This section provides further details on the experimental settings used in the paper.

F.1. Architecture and Additional Features

Denoising Neural Architecture DeFoG’s denoising neural network takes a noisy graph Gt as input and predicts the
clean marginal probability for each node x(n) via p

θ,(n)
1|t (·|Gt) and for each edge e(ij) via p

θ,(ij)
1|t (·|Gt). This formula-

tion boils down the graph generative task to a graph-to-graph mapping. While both message-passing layers and graph
transformers can be used for this task, graph transformers have empirically outperformed message-passing layers in graph
generation (Qin et al., 2023). DeFoG thus adopts the transformer architecture of Vignac et al. (2022), using multi-head
attention layers which encode node, edge, and graph-level features while preserving node permutation equivariance.

Enhancing Model Expressivity Graph neural networks, including graph transformers, have inherent limitations in their
expressive power (Xu et al., 2019; Zhu et al., 2023). An usual approach to overcome the limited representation power of
graph neural networks consists of explicitly augmenting the inputs with features that the networks would otherwise struggle
to learn. We adopt Relative Random Walk Probabilities (RRWP) encodings that are proved to be expressive for both
discriminative (Ma et al., 2023) and generative settings (Siraudin et al., 2024). RRWP encodes the likelihood of traversing
from one node to another in a graph through random walks of varying lengths, offering insights into graph dynamics across
different hop distances. In particular, given a graph with an adjacency matrix A, we generate K − 1 powers of its degree-
normalized adjacency matrix, M = D−1A, i.e.,

[
I,M,M2, . . . ,MK−1

]
. We concatenate the diagonal entries of each

power to their corresponding node embedding, while combining and appending the non-diagonal to their corresponding
edge embeddings. In addition to their enhanced expressiveness, RRWP features are easy to compute and thus offer a
notably more efficient and scalable alternative to the resource-intensive spectral and cycle features (Vignac et al., 2022)
commonly employed in prior works (see Appendix G.4).

F.2. Dataset Details

F.2.1. SYNTHETIC DATASETS

Here, we describe the datasets employed in our experiments and outline the specific metrics used to evaluate model perfor-
mance on each dataset. Additional visualizations of example graphs from each dataset, along with generated graphs, are
provided in Figures 16 to 18.

Description We use three synthetic datasets with distinct topological structures. The first is the planar dataset (Martinkus
et al., 2022), which consists of connected planar graphs—graphs that can be drawn on a plane without any edges crossing.
The second dataset, tree (Bergmeister et al., 2023), contains tree graphs, which are connected graphs with no cycles. Lastly,
the Stochastic Block Model (SBM) dataset (Martinkus et al., 2022) features synthetic clustering graphs where nodes within
the same cluster have a higher probability of being connected.

The planar and tree datasets exhibit well-defined deterministic graph structures, while the SBM dataset, commonly used in
the literature, stands out due to its stochasticity, resulting from the random sampling process that governs its connectivity.

Metrics We follow the evaluation procedures described by Martinkus et al. (2022); Bergmeister et al. (2023), using both
dataset-agnostic and dataset-specific metrics.

First, dataset-agnostic metrics assess the alignment between the generated and training distributions for specific general
graph properties. We map the graphs to their node degrees (Deg.), clustering coefficients (Clus.), orbit count (Orbit),
eigenvalues of the normalized graph Laplacian (Spec.), and statistics derived from a wavelet graph transform (Wavelet).
We then compute the distance to the corresponding statistics calculated for the test graphs. For each statistic, we measure
the distance between the empirical distributions of the generated and test sets using Maximum Mean Discrepancy (MMD).
These distances are aggregated into the Ratio metric. To compute this, we first calculate the MMD distances between
the training and test sets for the same graph statistics. The final Ratio metric is obtained by dividing the average MMD
distance between the generated and test sets by the average MMD distance between the training and test sets. A Ratio
value of 1 is ideal, as the distance between the training and test sets represents a lower-bound reference for the generated
data’s performance.
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Next, we report dataset-specific metrics using the V.U.N. framework, which assesses the proportion of graphs that are
valid (V), unique (U), and novel (N). Validity is assessed based on dataset-specific properties: the graph must be planar, a
tree, or statistically consistent with an SBM for the planar, tree, and SBM datasets, respectively. Uniqueness captures the
proportion of non-isomorphic graphs within the generated graphs, while novelty measures how many of these graphs are
non-isomorphic to any graph in the training set.

F.2.2. MOLECULAR DATASETS

Description Molecular generation is a key real-world application of graph generation. It poses a challenging task to
current graph generation models to their rich chemistry-specific information, involving several nodes and edges classes
and leaning how to generate them jointly, and more complex evaluation pipelines. To assess DeFoG’s performance on
molecular datasets, we use three benchmarks that progressively increase in molecular complexity and size.

First, we use the QM9 dataset (Wu et al., 2018), a subset of GDB9 (Ruddigkeit et al., 2012), which contains molecules
with up to 9 heavy atoms.

Next, we evaluate DeFoG on the Moses benchmark (Polykovskiy et al., 2020), derived from the ZINC Clean Leads collec-
tion (Sterling & Irwin, 2015), featuring molecules with 8 to 27 heavy atoms, filtered by specific criteria.

Then, we include the Guacamol benchmark (Brown et al., 2019), based on the ChEMBL 24 database (Mendez et al.,
2019). This dataset comprises synthesized molecules, tested against biological targets, with sizes ranging from 2 to 88
heavy atoms.

Lastly, we also include the ZINC250k dataset (Sterling & Irwin, 2015), which contains 249,455 molecules with up to 38
heavy atoms from 9 element types. We evaluate DeFoG’s performance under the same setting of previous works (Jo et al.,
2024).

Metrics For the QM9 dataset, we follow the dataset splits and evaluation metrics outlined by Vignac et al. (2022). For
the Moses and Guacamol benchmarks, we adhere to the training setups and evaluation metrics proposed by Polykovskiy
et al. (2020) and Brown et al. (2019), respectively. Note that Guacamol includes molecules with charges; therefore, the
generated graphs are converted to charged molecules based on the relaxed validity criterion used by Jo et al. (2022) before
being translated to their corresponding SMILES representations. The validity, uniqueness, and novelty metrics reported by
the Guacamol benchmark are actually V, V.U., and V.U.N., and are referred to directly as V, V.U., and V.U.N. in the table
for clarity. For ZINC250k, we adopt the standard evaluation metrics commonly used for this benchmark (see, e.g., Jo et al.
(2024); Eijkelboom et al. (2024)), which comprise a subset of the metrics described above.

F.2.3. DIGITAL PATHOLOGY DATASETS

Description Graphs, with their natural ability to represent relational data, are widely used to capture spatial biological
dependencies in tissue images. This approach has proven successful in digital pathology tasks such as microenvironment
classification (Wu et al., 2022), cancer classification (Pati et al., 2022), and decision explainability (Jaume et al., 2020).
More recently, graph-based methods have been applied to generative tasks (Madeira et al., 2023), and an open-source
dataset was made available by Madeira et al. (2024). This dataset consists of cell graphs where the nodes represent
biological cells, categorized into 9 distinct cell types (node classes), and edges model local cell-cell interactions (a single
class). For further details, refer to Madeira et al. (2024).

Metrics Each cell graph in the dataset can be mapped to a TLS (Tertiary Lymphoid Structure) embedding, denoted
as κ = [κ0, . . . , κ5] ∈ R6, which quantifies its TLS content. A graph G is classified as having low TLS content if
κ1(G) < 0.05, and high TLS content if κ2(G) > 0.05. Based on these criteria, the dataset is split into two subsets:
high TLS and low TLS. In prior work, TLS generation accuracy was evaluated by training generative models on these
subsets separately, and verifying if the generated graphs matched the corresponding TLS content label. We compute TLS
accuracy as the average accuracy across both subsets. For DeFoG, we conditionally train it on both subsets simultaneously,
as described in Appendix E, and compute TLS accuracy based on whether the generated graphs adhere to the conditioning
label. Additionally, we report the V.U.N. metric (valid, unique, novel), similar to what is done for the synthetic datasets
(see Appendix F.2.1). A graph is considered valid in this case if it is a connected planar graph, as the graphs in these
datasets were constructed using Delaunay triangulation.
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Table 4: Training and sampling time on each dataset.

Dataset Min Nodes Max Nodes Training Time (h) Graphs Sampled Sampling Time (h)

Planar 64 64 29 40 0.07
Tree 64 64 8 40 0.07
SBM 44 187 75 40 0.07
QM9 2 9 6.5 10000 0.2
QM9(H) 3 29 55 10000 0.4
Moses 8 27 46 25000 5
Guacamol 2 88 141 10000 7
TLS 20 81 38 80 0.15
ZINC250k 6 38 14 10000 4.8

Table 5: Training and sampling parameters for full-step sampling (500 or 1000 steps for molecular and synthetic datasets,
respectively).

Train Sampling Conditional

Dataset Initial Distribution Train Distortion Sample Distortion ω (Target Guidance) η (Stochasticity) γ

Planar Marginal Identity Polydec 0.05 50 —
Tree Marginal Polydec Polydec 0.0 0.0 —
SBM Absorbing Identity Identity 0.0 0.0 —
QM9 Marginal Identity Polydec 0.0 0.0 —
QM9(H) Marginal Identity Polydec 0.05 0.0 —
Moses Marginal Polydec Polydec 0.5 200 —
Guacamol Marginal Polydec Polydec 0.1 300 —
TLS Marginal Identity Polydec 0.05 0.0 2.0
ZINC250k Marginal Identity Polydec 0.0 200 —

F.3. Resources

The training and sampling times for the different datasets explored in this paper are provided in Tab. 4. All the experiments
in this work were run on a single NVIDIA A100-SXM4-80GB GPU.

DeFoG’s memory usage matches existing diffusion models, with quadratic complexity in node number due to complete-
graph modeling. Rate matrix overhead is negligible, and RRWP features are more efficient to compute than previous
alternatives (Vignac et al., 2022; Xu et al., 2024), as shown in Appendix G.4.

F.4. Hyperparameter Tuning

The default hyperparameters for training and sampling for each dataset can be found in the provided code repository. In
Tab. 5, we specifically highlight their values for the proposed training and sampling strategies (Sec. 3 and Appendix C.1),
and conditional guidance parameter (see Appendix E). As the training process is by far the most computationally costly
stage, we aim to minimize changes to the default model training configuration. Nevertheless, we demonstrate the effec-
tiveness of these modifications on certain datasets:

1. SBM performs particularly well with absorbing distributions, likely due to its distinct clustering structure, which
differs from other graph properties. Additionally, when tested with a marginal model, SBM can achieve a V.U.N. of
80.5% and an average ratio of 2.5, which also reaches state-of-the-art performance.

2. Guacamol and MOSES are trained directly with polydec distortion to accelerate convergence, as these datasets are
very large and typically require a significantly longer training period.

3. For the tree dataset, standard training yielded suboptimal results (85.3% for V.U.N. and 1.8 for average ratio). How-
ever, a quick re-training using polydec distortion achieved state-of-the-art performance with 7 hours of training.
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(a) Planar dataset.

(b) Tree dataset.

(c) SBM dataset.

Figure 16: Uncurated set of dataset graphs (top) and generated graphs by DeFoG (bottom) for the synthetic datasets.

50



DeFoG: Discrete Flow Matching for Graph Generation

(a) QM9 dataset.

(b) MOSES dataset.

(c) Guacamol dataset.

Figure 17: Uncurated set of dataset graphs (top) and generated graphs by DeFoG (bottom) for the molecular datasets.
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(a) Low TLS dataset.

(b) High TLS dataset.

Figure 18: Uncurated set of dataset graphs (top) and generated graphs by DeFoG (bottom) for the TLS dataset.
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G. Additional Results
First, we discuss conditional generation for real-world digital pathology graph generation. Next, we provide comprehensive
tables detailing results on synthetic datasets in Appendix G.2. Then, Appendix G.3 focuses on molecular generation tasks,
including results for the QM9 dataset and the full tables for MOSES and Guacamol. Finally, in Appendix G.4, we analyze
the time complexity of various additional features that enhance expressivity in graph diffusion models.

G.1. Conditional Generation
Setup Tertiary Lymphoid Structure (TLS) graph datasets have been recently released with graphs built from digital
pathology data (Madeira et al., 2024). These graphs are split into two subsets — low TLS and high TLS — based on their
TLS content, a biologically informed metric reflecting the cell organization in the graph structure. Previously, models were
trained and evaluated separately for each subset. To demonstrate the flexibility of DeFoG, we conditionally train it across
both datasets simultaneously, using the low/high TLS content as a binary label for each graph. More details on the used
conditional framework in Appendix E.

Table 6: TLS conditional generation results.

TLS Dataset

Model V.U.N. ↑ TLS Val. ↑
Train set 0.0 100

GraphGen (Goyal et al., 2020) 40.2±3.8 25.1±1.2

BiGG (Dai et al., 2020) 0.6±0.4 16.7±1.6

SPECTRE (Martinkus et al., 2022) 7.9±1.3 25.3±0.8

DiGress+ (Madeira et al., 2024) 13.2±3.4 12.6±3.0

ConStruct (Madeira et al., 2024) 99.1±1.1 92.1±1.3

DeFoG (# steps = 50) 44.5±4.2 93.0±5.6

DeFoG (# steps = 1,000) 94.5±1.8 95.8±1.5

We evaluate two main aspects: first, how frequently the conditionally generated graphs align with the provided labels
(TLS Validity); and, second, the validity, uniqueness, and novelty of the generated graphs (V.U.N.). Graphs are considered
valid if they are planar and connected. For comparison, we report the average results of existing models across the two
subsets, as they were not trained conditionally.

Results From Tab. 6, DeFoG significantly outperforms the unconstrained models (all but ConStruct). Notably, we out-
perform ConStruct on TLS validity with even 50 steps. For V.U.N., while ConStruct is hard-constrained to achieve 100%
graph planarity, making it strongly biased toward high validity, DeFoG remarkably approaches these values without relying
on such rigid constraints.

G.2. Synthetic Graph Generation

In Tab. 7, we present the full results for DeFoG for the three different datasets: planar, tree, and SBM.
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Table 7: Graph Generation Performance on Synthetic Graphs. We present the results of DeFoG across five sampling runs,
each generating 40 graphs, reported as mean ± standard deviation. The remaining values are obtained from Bergmeister
et al. (2023). Additionally, we include results for Cometh (Siraudin et al., 2024) and DisCo (Xu et al., 2024). For the
average ratio computation, we adhere to the method outlined by (Bergmeister et al., 2023), excluding statistics where the
training set MMD is zero.

Planar Dataset

Model Deg. ↓ Clus. ↓ Orbit ↓ Spec. ↓ Wavelet ↓ Ratio ↓ Valid ↑ Unique ↑ Novel ↑ V.U.N. ↑
Train set 0.0002 0.0310 0.0005 0.0038 0.0012 1.0 100 100 0.0 0.0

GraphRNN (You et al., 2018) 0.0049 0.2779 1.2543 0.0459 0.1034 490.2 0.0 100 100 0.0
GRAN (Liao et al., 2019) 0.0007 0.0426 0.0009 0.0075 0.0019 2.0 97.5 85.0 2.5 0.0
SPECTRE (Martinkus et al., 2022) 0.0005 0.0785 0.0012 0.0112 0.0059 3.0 25.0 100 100 25.0
DiGress (Vignac et al., 2022) 0.0007 0.0780 0.0079 0.0098 0.0031 5.1 77.5 100 100 77.5
EDGE (Chen et al., 2023) 0.0761 0.3229 0.7737 0.0957 0.3627 431.4 0.0 100 100 0.0
BwR (Diamant et al., 2023) 0.0231 0.2596 0.5473 0.0444 0.1314 251.9 0.0 100 100 0.0
BiGG (Dai et al., 2020) 0.0007 0.0570 0.0367 0.0105 0.0052 16.0 62.5 85.0 42.5 5.0
GraphGen (Goyal et al., 2020) 0.0328 0.2106 0.4236 0.0430 0.0989 210.3 7.5 100 100 7.5
HSpectre (one-shot) (Bergmeister et al., 2023) 0.0003 0.0245 0.0006 0.0104 0.0030 1.7 67.5 100 100 67.5
HSpectre (Bergmeister et al., 2023) 0.0005 0.0626 0.0017 0.0075 0.0013 2.1 95.0 100 100 95.0
GruM (Jo et al., 2024) 0.0004 0.0301 0.0002 0.0104 0.0020 1.8 — — — 90.0
CatFlow (Eijkelboom et al., 2024) 0.0003 0.0403 0.0008 — — — — — — 80.0
DisCo (Xu et al., 2024) 0.0002 ±0.0001 0.0403 ±0.0155 0.0009 ±0.0004 — — — 83.6 ±2.1 100.0 ±0.0 100.0 ±0.0 83.6 ±2.1

Cometh - PC (Siraudin et al., 2024) 0.0006 ±0.0005 0.0434 ±0.0093 0.0016 ±0.0006 0.0049±0.0008 — — 99.5 ±0.9 100.0 ±0.0 100.0 ±0.0 99.5 ±0.9

DeFoG 0.0005 ±0.0002 0.0501 ±0.0149 0.0006 ±0.0004 0.0072 ±0.0011 0.0014 ±0.0002 1.6 ±0.4 99.5 ±1.0 100.0 ±0.0 100.0 ±0.0 99.5 ±1.0

Tree Dataset

Train set 0.0001 0.0000 0.0000 0.0075 0.0030 1.0 100 100 0.0 0.0

GRAN (Liao et al., 2019) 0.1884 0.0080 0.0199 0.2751 0.3274 607.0 0.0 100 100 0.0
DiGress (Vignac et al., 2022) 0.0002 0.0000 0.0000 0.0113 0.0043 1.6 90.0 100 100 90.0
EDGE (Chen et al., 2023) 0.2678 0.0000 0.7357 0.2247 0.4230 850.7 0.0 7.5 100 0.0
BwR (Diamant et al., 2023) 0.0016 0.1239 0.0003 0.0480 0.0388 11.4 0.0 100 100 0.0
BiGG (Dai et al., 2020) 0.0014 0.0000 0.0000 0.0119 0.0058 5.2 100 87.5 50.0 75.0
GraphGen (Goyal et al., 2020) 0.0105 0.0000 0.0000 0.0153 0.0122 33.2 95.0 100 100 95.0
HSpectre (one-shot) (Bergmeister et al., 2023) 0.0004 0.0000 0.0000 0.0080 0.0055 2.1 82.5 100 100 82.5
HSpectre (Bergmeister et al., 2023) 0.0001 0.0000 0.0000 0.0117 0.0047 4.0 100 100 100 100

DeFoG 0.0002 ±0.0001 0.0000 ±0.0000 0.0000 ±0.0000 0.0108 ±0.0028 0.0046 ±0.0004 1.6 ±0.4 96.5 ±2.6 100.0 ±0.0 100.0 ±0.0 96.5 ±2.6

Stochastic Block Model (nmax = 187, navg = 104)

Model Deg. ↓ Clus. ↓ Orbit ↓ Spec. ↓ Wavelet ↓ Ratio ↓ Valid ↑ Unique ↑ Novel ↑ V.U.N. ↑
Training set 0.0008 0.0332 0.0255 0.0027 0.0007 1.0 85.9 100 0.0 0.0

GraphRNN (You et al., 2018) 0.0055 0.0584 0.0785 0.0065 0.0431 14.7 5.0 100 100 5.0
GRAN (Liao et al., 2019) 0.0113 0.0553 0.0540 0.0054 0.0212 9.7 25.0 100 100 25.0
SPECTRE (Martinkus et al., 2022) 0.0015 0.0521 0.0412 0.0056 0.0028 2.2 52.5 100 100 52.5
DiGress (Vignac et al., 2022) 0.0018 0.0485 0.0415 0.0045 0.0014 1.7 60.0 100 100 60.0
EDGE (Chen et al., 2023) 0.0279 0.1113 0.0854 0.0251 0.1500 51.4 0.0 100 100 0.0
BwR (Diamant et al., 2023) 0.0478 0.0638 0.1139 0.0169 0.0894 38.6 7.5 100 100 7.5
BiGG (Dai et al., 2020) 0.0012 0.0604 0.0667 0.0059 0.0370 11.9 10.0 100 100 10.0
GraphGen (Goyal et al., 2020) 0.0550 0.0623 0.1189 0.0182 0.1193 48.8 5.0 100 100 5.0
HSpectre (one-shot) (Bergmeister et al., 2023) 0.0141 0.0528 0.0809 0.0071 0.0205 10.5 75.0 100 100 75.0
HSpectre (Bergmeister et al., 2023) 0.0119 0.0517 0.0669 0.0067 0.0219 10.2 45.0 100 100 45.0
GruM (Jo et al., 2024) 0.0015 0.0589 0.0450 0.0077 0.0012 1.1 — — — 85.0
CatFlow (Eijkelboom et al., 2024) 0.0012 0.0498 0.0357 — — — — — — 85.0
DisCo (Xu et al., 2024) 0.0006 ±0.0002 0.0266 ±0.0133 0.0510 ±0.0128 — — — 66.2 ±1.4 100.0 ±0.0 100.0 ±0.0 66.2 ±1.4

Cometh (Siraudin et al., 2024) 0.0020 ±0.0003 0.0498 ±0.0000 0.0383 ±0.0051 0.0024 ±0.0003 — — 75.0 ±3.7 100.0 ±0.0 100.0 ±0.0 75.0 ±3.7

DeFoG 0.0006 ±0.0023 0.0517 ±0.0012 0.0556 ±0.0739 0.0054 ±0.0012 0.0080 ±0.0024 4.9 ±1.3 90.0 ±5.1 90.0 ±5.1 90.0 ±5.1 90.0 ±5.1
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G.3. Molecular Graph Generation

For the molecular generation tasks, we begin by examining the results for QM9, considering both implicit and explicit
hydrogens (Vignac et al., 2022). In the implicit case, hydrogen atoms are inferred to complete the valencies, while in
the explicit case, hydrogens must be explicitly modeled, making it an inherently more challenging task. The results are
presented in Tab. 8. Notably, DeFoG achieves training set validity in both scenarios, representing the theoretical maximum.
Furthermore, DeFoG consistently outperforms other models in terms of FCD. Remarkably, even with only 10% of the
sampling steps, DeFoG surpasses many existing methods.

Table 8: Molecule generation on QM9. We present the results over five sampling runs of 10000 generated graphs each, in
the format mean ± standard deviation. We include the results of Relaxed Validity, which accounts for charged molecules
to facilitate comparison, as different methods may report varying types of validity.

Without Explicit Hydrogenes With Explicit Hydrogenes

Model Valid ↑ Relaxed Valid ↑ Unique ↑ FCD ↓ Valid ↑ Relaxed Valid ↑ Unique ↑ FCD ↓
Training set 99.3 99.5 99.2 0.03 97.8 98.9 99.9 0.01

SPECTRE (Martinkus et al., 2022) 87.3 — 35.7 — — — — —
GraphNVP (Madhawa et al., 2019) 83.1 — 99.2 — — — — —
GDSS (Jo et al., 2022) 95.7 — 98.5 2.9 — — — —
DiGress (Vignac et al., 2022) 99.0±0.0 — 96.2±0.1 — 95.4±1.1 — 97.6±0.4 —
GruM(Jo et al., 2024) 99.2 — 96.7 0.11 — — — —
CatFlow(Eijkelboom et al., 2024) — 99.8 100.0 0.44 — — — —
DisCo (Xu et al., 2024) 99.3±0.6 — — — — — — —
Cometh (Siraudin et al., 2024) 99.6±0.1 — 96.8±0.2 0.25 ±0.01 — — — —

DeFoG (# sampling steps = 50) 98.9±0.1 99.2±0.0 96.2±0.2 0.26±0.00 97.1±0.0 98.1±0.0 94.8±0.0 0.31±0.00

DeFoG (# sampling steps = 500) 99.3±0.0 99.4±0.1 96.3±0.3 0.12±0.00 98.0±0.0 98.8±0.0 96.7±0.0 0.05±0.00

Additionally, we provide the complete version of Tab. 2, presenting the results for MOSES, Guacamol and ZINC250k
datasets separately in Tab. 9, Tab. 10 and Tab. 11, respectively. We include models from classes beyond diffusion models
to better contextualize the performance achieved by DeFoG. We analyze the performance of diffusion and flow-based
methods on MOSES and Guacamol in the main paper (see Sec. 5.1). Here, we focus on the same analysis for ZINC250k.
As shown in Tab. 11, DeFoG achieves state-of-the-art performance on this benchmark. Notably, it also attains superior
FCD scores with only 50 sampling steps, surpassing existing diffusion and flow-based methods.

Table 9: Molecule generation on MOSES.

Model Class Val.↑ Unique. ↑ Novelty↑ Filters ↑ FCD ↓ SNN ↑ Scaf ↑
Training set — 100.0 100.0 0.0 100.0 0.01 0.64 99.1

VAE (Kingma & Welling, 2013) Smiles 97.7 99.8 69.5 99.7 0.57 0.58 5.9
JT-VAE (Jin et al., 2018) Fragment 100.0 100.0 99.9 97.8 1.00 0.53 10.0
GraphInvent (Mercado et al., 2021) Autoreg. 96.4 99.8 —- 95.0 1.22 0.54 12.7
DiGress (Vignac et al., 2022) One-shot 85.7 100.0 95.0 97.1 1.19 0.52 14.8
DisCo (Xu et al., 2024) One-shot 88.3 100.0 97.7 95.6 1.44 0.50 15.1
Cometh (Siraudin et al., 2024) One-shot 90.5 99.9 92.6 99.1 1.27 0.54 16.0

DeFoG (# sampling steps = 50) One-shot 83.9 99.9 96.9 96.5 1.87 0.50 23.5
DeFoG (# sampling steps = 500) One-shot 92.8 99.9 92.1 98.9 1.95 0.55 14.4
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Table 10: Molecule generation on GuacaMol. We present the results over five sampling runs of 10000 generated graphs
each, in the format mean ± standard deviation.

Model Class Val. ↑ V.U. ↑ V.U.N. ↑ KL div↑ FCD↑
Training set — 100.0 100.0 0.0 99.9 92.8

LSTM (Hochreiter & Schmidhuber, 1997) Smiles 95.9 95.9 87.4 99.1 91.3
NAGVAE (Kwon et al., 2020) One-shot 92.9 88.7 88.7 38.4 0.9
MCTS (Brown et al., 2019) One-shot 100.0 100.0 95.4 82.2 1.5
DiGress (Vignac et al., 2022) One-shot 85.2 85.2 85.1 92.9 68.0
DisCo (Xu et al., 2024) One-shot 86.6 86.6 86.5 92.6 59.7
Cometh (Siraudin et al., 2024) One-shot 98.9 98.9 97.6 96.7 72.7

DeFoG (# steps = 50) One-shot 91.7 91.7 91.2 92.3 57.9
DeFoG (# steps = 500) One-shot 99.0 99.0 97.9 97.7 73.8

Table 11: Molecular generation on ZINC250k dataset.

Model Val. ↑ Uniqueness ↑ FCD ↓ NSPDK ↓ Scaffold ↑
GruM (Jo et al., 2024) 98.65 – 2.257 0.0015 0.5299
GBD (Liu et al., 2024) 97.87 – 2.248 0.0018 0.5042
CatFlow (Eijkelboom et al., 2024) 99.21 100.00 13.211 – –

DeFoG (50 steps) 96.65±0.16 99.99±0.01 2.123±0.029 0.0022±0.0001 0.4245±0.0109
DeFoG 99.22±0.08 99.99±0.01 1.425±0.022 0.0008±0.0001 0.5903±0.0099
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Table 12: Performance comparison of RRWP-based graph encoding within the DiGress framework.

Method Planar SBM QM9

V.U.N. ↑ Ratio ↓ V.U.N. ↑ Ratio ↓ Valid ↑ Unique ↑ FCD ↓
DiGress 77.5 5.1 60.0 1.7 99.0± 0.0 96.2± 0.1 -
DiGress (RRWP) 90.0 4.0 70.0 1.7 99.1± 0.1 96.6± 0.2 -
DeFoG (RRWP, 50 steps) 95.0± 3.2 3.2± 1.1 86.5± 5.3 2.2± 0.3 98.9± 0.1 96.2± 0.2 0.26± 0.00
DeFoG (RRWP) 99.5± 1.0 1.6± 0.4 90.0± 5.1 4.9± 1.3 99.3± 0.0 96.3± 0.3 0.12± 0.00

Table 13: Computation time for different additional features. The RRWP features are computed with 12 steps.

Dataset Min Nodes Max Nodes RRWP (ms) Cycles (ms) Spectral (ms)

Moses 8 27 0.6 1.2 2.5
Planar 64 64 0.5 1.2 93.0
SBM 44 187 0.6 2.7 146.9

G.4. Impact of Additional Features

In graph diffusion methods, the task of graph generation is decomposed into a mapping of a graph to a set of marginal
probabilities for each node and edge. This problem is typically addressed using a Graph Transformer architecture, which
is augmented with additional features to capture structural aspects that the base architecture might struggle to model
effectively (Vignac et al., 2022; Xu et al., 2024; Siraudin et al., 2024) otherwise.

In this section, we evaluate the impact of using RRWP encodings as opposed to the spectral and cycle encodings (up to
6-cycles) proposed in DiGress (Vignac et al., 2022).

In Tab. 12, we present a performance comparison of these two variants across three datasets: QM9, Planar, and SBM. The
results show that RRWP achieves comparable or superior performance within the DiGress framework, validating its effec-
tiveness as a graph encoding method. Notably, despite these improvements, DiGress’s performance remains significantly
below that of DeFoG on the Planar and SBM datasets, while achieving similar validity and uniqueness on the QM9 dataset.

To further demonstrate the impact of using RRWP on sampling efficiency, we compare the performances of DeFoG,
DiGress, and DiGress augmented with RRWP (replacing the original additional features) across a varying number of
sampling steps. These results are shown in Figure 19.

We observe that, while RRWP provides improvements on the Planar and SBM datasets with fewer generation steps, it is
still significantly outperformed by the optimized DeFoG framework. This highlights that although RRWP is an efficient
and effective graph encoding method, the primary performance gains of DeFoG stem from its continuous-time formulation
featuring fully decoupled training and sampling stages.

We then perform a time complexity analysis of these methods. While both cycle and RRWP encodings primarily involve
matrix multiplications, spectral encodings require more complex algorithms for eigenvalue and eigenvector computation.
As shown in Tab. 13, cycle and RRWP encodings are more computationally efficient, particularly for larger graphs where
eigenvalue computation becomes increasingly costly. These results also support the use of RRWP encodings over the
combined utilization of cycle and spectral features.

For the graph sizes considered in this work, the additional feature computation time remains relatively small compared to
the model’s forward pass and backpropagation. However, as graph sizes increase - a direction beyond the scope of this
paper - this computational gap could become significant, making RRWP a suitable encoding for scalable graph generative
models.
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(b) Planar dataset.
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(c) SBM dataset.

Figure 19: Impact of RRWP features for sampling efficiency.
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