
Semantic Image Compression using Textual
Transforms

Lara Arikan and Tsachy Weissman
Department of Electrical Engineering

Stanford University
Stanford, CA, USA

Emails: {arikan, tsachy}@stanford.edu

Abstract—Image textual transforms can be much smaller than
JPEGs with comparable degrees of semantic similarity to the
original image. Using human semantic satisfaction scores, we
demonstrate that the highest-performing textual transforms are
often rated similar to JPEGs at both lower (80% by size)
and higher (90% by size) degrees of compression, though the
captions are orders of magnitude smaller than the smallest
JPEG. AI-based captioners are competitive with humans in
textual transform rate-semantic distortion tradeoffs. We compare
human captions to those of two AI models (BLIP and GPT-4),
accounting for human perceptions of specific semantic content
and affect elements in the original and reconstructed images.
GPT-4 captions are shorter on average than human captions,
and also capture similar semantic elements and achieve similar
semantic fidelity to the original image. Our results recommend
textual transforms as a semantic compression method with better
rate-semantic distortion performance than traditional methods.
We look forward to specialized semantic loss functions to optimize
end-to-end image captioning and reconstruction models.

I. INTRODUCTION

Image compression succinctly represents the information
contained in images for efficient storage and transmission.
Lossless compression devises invertible encodings preserving
all of this information, while lossy compression strives to
retain the information needed by the user of the decompressed
image.

We consider the information in an image to consist of
"visual" and "semantic" information. Visual information, such
as the position, hue, or intensity of each pixel, is denotative.
Semantic information is connotative: it emerges from the
relative positions of the pixels, by which they accumulate into
identifiable elements.

The Joint Photographic Experts Group (JPEG) standard
[1] is a lossy image compression algorithm which excises a
subset of the visual information (such as color frequencies
and sharp hue or intensity transitions) through frequency-
domain quantization. At higher resolutions, JPEGs mainly
excise visually imperceptible information and are practically
indistinguishable from much larger raw images.

Image captioning is a textual transform which preserves
different details of image content and affect at different reso-
lutions [2]. Bhown et al. have demonstrated that humans can
recreate the content of images by following another person’s
written instructions [3], [4]. We regard these instructions as an
image caption in exhaustive detail, affirming the hypothesis

that a sufficiently advanced textual transform of an image
can store a basis set of its semantic content and affective
qualities, from which a semantically equivalent image can be
reconstructed.

Our investigation seeks to demonstrate the usefulness and
feasibility of automated and optimized textual transform com-
pression schemes for extremely low-rate use and transmission
of semantically equivalent images. To motivate their automa-
tion and optimization, we address the following questions:

1) Can images recreated from textual transforms be viable
alternatives to JPEGs in terms of their semantic similar-
ity to the original image?

2) Can images recreated from AI-generated captions pro-
vide an alternative to those based on human captions in
terms of their semantic similarity to the original image?

By answering these questions, we wish to verify that tex-
tual transforms can truly provide similar levels of semantic
distortion to the current lossy standard, and at massively
lower rates. We also wish to determine whether current AI
captioning capabilities can supplant human effort for practical
use of textual transforms in compression. In the process, we
aim to identify those elements of content and affect which
contribute to varying degrees of human satisfaction regarding
the semantic similarity of original and reconstructed images.
This is intended to inform the training of end-to-end AI image
captioning and reconstruction pipelines for efficient textual
transform compression.

II. RELATED WORK

In the context of image compression, textual transforms
require an image-to-text (captioning) and text-to-image (recon-
struction) pipeline. Since we are interested in the potential for
high-performing textual transforms using AI image captioning
and reconstruction, we review the related frameworks:

A. Image captioning.

Novel image-to-text methods are often grounded in deep
learning, which helps manage the complexity of harmonizing
image content with text syntax and semantics. Unsupervised
attempts [5], [6] reduce the cost of sourcing image-sentence
datasets and make the caption length and content more flexible.



However, much research continues in supervised deep learn-
ing captioners, including those explicitly trained to consider
semantic content [7], [8].

Instead of these more semantically specialized models, we
choose Bootstrapping Language-Image Pre-training (BLIP) [9]
and Generative Pre-Trained Transformer 4 (GPT-4) [10] as our
captioners in this paper. A simple justification is that the two
methods work at very different resolutions; BLIP captions are
much less detailed (see Fig. 2 as a reconstruction of Fig. 1),
while GPT-4 captions are often as complete as human ones and
permit reconstructions that reflect this completeness (see Fig.
3). Section IV (Methods) provides further explanation of this
choice, and of the functioning principles in BLIP and GPT-4.

B. Image reconstruction.
Many recent text-to-image tools are founded on Contrastive

Language-Image Pre-training (CLIP) [11], which learns text
and image embeddings in a joint space. These embeddings
can be leveraged by various methods to transfer textual into
visual semantics. Such methods include generative adversarial
networks (GAN) [12], [13] and diffusion models [14], [15].
DALL-E 2 [16] is a prime example of a successful CLIP-
diffusion pairing.

Transformers have opened up new possibilities for image
generation [17], sometimes in combination with diffusion
techniques [18] and, at times, also with CLIP [19]. Although
some of these advances report greater success than DALL-
E 2, we prefer to use DALL-E as our reconstruction method
because of its accessibility and popularity, and because of its
continuity with GPT-4 (another OpenAI product).

C. Semantic information.
Definitions of semantic information have ranged over the

past decades from logical-foundational [20], [21], [22] to
practical or task-oriented [23], [24], [25]. However, none of
these definitions have been accepted as canonical. In the
absence of such a unified measure of semantic information, we
find sufficient a general description of how semantic content
emerges from technical content, separating semantic from
visual information without quantifying semantic information
along the compression pipeline.

Our definition distinguishes the technical content of the im-
age (visual information) from the conceptual content (semantic
information). Conceptual content is emergent from technical
content; a picture of a table is made up of its pixels, and does
not exist without them. In this paper, the word content will
exclusively reference conceptual content. Technical content
will henceforth be referred to only as visual information for
clarity. The effect on the viewer of these concepts and their
interactions will be referred to as affect.

D. Semantic similarity.
Semantic similarity measures can operate inter- or in-

tramodally [26], [27], comparing concept or token embeddings
[28], taxonomies [29], or image contexts [30], among other
methods. Semantic similarity (or distortion) measures there-
fore suffer from the same multiplicity of definition as semantic

information, leaving room for fundamentalist interpretations
such as ours. We use human perceptions of the closeness of
two images in their content and affect as our main indication
of semantic similarity, as well as our basis for a finer decompo-
sition of the elements that constitute content and affect. This
is based on the concept of perceptual distortion [31] which
in a non-semantic context is the foundation of many lossy
compression schemes [32], [33] - including JPEG [34], [35],
[36].

E. Semantic compression.

Finally, we consider alternative semantic image compression
methods. Image captions can be combined with useful side in-
formation, such as the "compressed spatial conditioning map"
in [37], to more exactly preserve semantic features like object
or element arrangement and orientation. It has been proposed
that images can be preserved as cascading hierarchical repre-
sentations of extracted semantic features [38]. Deep learning
has also been integrated into semantic compression, facilitating
end-to-end training of semantic compression pipelines where
the intermediate representation is not textual, but rather a
semantic feature coding or embedding [39], [40], [41].

III. METHODS

We choose three images from five different categories to
investigate the following content questions:

1) One central object. Can captions preserve the per-
ceived centrality of an object (its obvious and superior
importance to the viewer’s understanding of the image
compared to any other object in its surroundings)?

2) Multiple scattered objects. Does the caption create
false centrality for any object?

3) One single person. What features of a human face and
body does the caption communicate?

4) Group of people. Can the caption convey tone and
geometry in the relations between people?

5) Landscape. Can the caption represent a distant and
general environment without any central objects?

All chosen images are presented in our Github repository
(https://github.com/lara-arikan/textualtransform24), sorted by
category. We compress each image to .jpegs at lower (reduc-
ing filesize by 90%) and higher (reducing filesize by 80%)
operating points, and caption it using three methods:

1) Human captioning. The human writes a sentence in-
cluding these ordered elements if relevant:

a) central or foreground objects with attributes (color,
shape, appearance, expressions, disposition)

b) geometry of central or foreground objects (side by
side, in a group...)

c) action with attributes of central or foreground
objects (standing stiffly, staring sweetly...)

d) immediate context (by a table, on a road, on a
bench, at a counter...)

e) background context (in a forest, in a schoolyard,
in a train station...)



f) temporal context (on a bright summer morning, in
red evening light...)

An example caption for the dog in Fig. 1a would be
A fluffy German shepherd, mouth open and tongue
hanging, prancing merrily on a road in a forest in
the afternoon light.

Fig. 1. (a) Left: Prancing dog. Image credit to Charlotte Reeves Photography.
(b) Right: DALL-E 2 reconstruction of human caption of (a).

2) Bootstrapping Language-Image Pre-training (BLIP).
Devised by Li et al [9], BLIP encodes image features
using a visual transformer and pre-trains the model using
a multimodal mixture of encoder-decoder. We chose
BLIP because it is appropriate for "understanding-based,
generation-based tasks"; because its relation to a well-
studied language model such as BERT enhances its
interpretability; and because it is readily available for use
as part of the Library for Language-Vision Intelligence
maintained by Salesforce.
BLIP captions are often much shorter and less detailed
than human captions in our syntax. For instance, Fig. 1a
is described as a dog running down a dirt road in the
woods.

Fig. 2. BLIP (left) and GPT-4 (right) captions of Fig. 1a, reconstructed by
DALL-E 2.

3) Generative Pre-Trained Transformer (GPT-4). Ope-
nAI’s GPT-4 [10] can both caption and generate images,
and so is an excellent candidate for further experi-
ments in textual transform compression- decompression
pipelines. It also includes a near-human level of detail
in its captions, which are replete with lavish adjectives.
To curb its poetic inclinations, we prompted GPT-4
to caption each image "in a way DALL-E 2 would
understand." Fig. 1a received the GPT-4 caption A
German Shepherd dog running directly towards the

camera with a joyful expression, its tongue out, in a
sunlit forest setting with light filtering through the
trees creating a bokeh effect in the background.

These 45 captions were reconstructed using DALL-E 2, and
their performance was evaluated using three surveys:

1) Survey A: Semantic Satisfaction Survey. Quantifies
the semantic similarity of semantically or classically
decompressed images (i.e. reconstructions or JPEGs) to
the original on a scale of 1-10 (totally dissimilar to
identical).

2) Survey B: Comparative Semantic Content Survey.
Quantifies on a scale of 1-5 the similarity of original
and reconstructed images in terms of (a) their objects,
elements and people, (b) the appearance thereof, (c) the
positioning and orientation thereof, (d) the surroundings
thereof, (e) their color scheme.

3) Survey C: Detailed Semantic Content Survey. De-
composes the content and affect of each reconstruction,
asking after (a) the objects, elements and people (free
response), (b) the relationship between the two "most
important" elements as determined by the viewer (free
response), (c) three adjectives that best describe the
image (drop-down selection).

These three surveys were launched on Mechanical Turk and
received 20 responses per question, totaling 1500 question
responses for Survey A, 7500 for Survey B, and 2700 for
Survey C. The questions as presented to survey takers, with
exact wording and sample responses, can be found on our
Github repository.

To compare our experimental results with a well-known
similarity metric, we used the cosine similarity between CLIP
embeddings of original and reconstructed or compressed im-
ages, scaled to lie between 0 and 1.

IV. RESULTS AND DISCUSSION

A. Viability of textual transforms.

Fig. 3 plots human estimation of semantic similarity be-
tween the reconstructed and original images, against their
compressed size. Because Mechanical Turk data is inherently
noisy, the semantic similarity ratings in Survey A vary greatly
(with almost every reconstruction receiving a score close to 1,
and a score close to 10). We therefore use the median semantic
similarity rating for every original-reconstructed or original-
decompressed image pair as our semantic satisfaction index.
The compressed image sizes for textual transforms are simply
the 8-bit Unicode encoding length of the captions, on the order
of tens or hundreds of bytes. For the .jpegs, we use their local
storage filesizes, which constitute some tens or hundreds of
kilobytes.

We observe that the textual transforms of no image achieve a
median semantic similarity higher than 8.5 out of 10. However,
the magenta iso-satisfaction curve in Fig. 3 shows that in
certain cases, a textual transform using GPT-4 captioning is
two orders of magnitude smaller than the smallest .jpeg which
yields a median satisfaction of 8.5. Furthermore, .jpegs which



Fig. 3. Median semantic similarity rating (1-10) against compressed size, by
compression method.

surpass this value range up to four orders of magnitude larger
than the highest-performing textual transforms.

So far, our analysis has cross-compared transforms and
compressions on different images, aiming for a general eval-
uation of their relative performance. We now compare them
in the case of a single image. The human caption of "Object
3" is, at 120 bytes, the largest textual transform achieving
a median semantic similarity of 8.5 (with standard deviation
1.94). At 14,134 bytes, the higher-quality .jpeg of "Object 3"
is the smallest .jpeg that achieves the highest possible median
semantic similarity of 10 (with standard deviation 1.6). We
therefore choose this image as an eminent example of the
promise of textual transforms: that they can stand at 99%
smaller than the highest-performing .jpegs with only a 15%
loss of semantic satisfaction, as measured by human raters.

The importance of this result is difficult to determine abso-
lutely, as a 15% loss in similarity may far outweigh the 99%
size-savings for certain applications. For instance, a mother
might value a slightly blurry JPEG of her own child’s face
far above some clear reconstruction of its description, such as
"a baby playing and laughing on a red bedspread." Further, a
different similarity metric might show greater distortion.

To address this issue, we show that CLIP embedding sim-
ilarity between the original and reconstructed or compressed
images follows the same pattern. Fig. 4 shows that textual
transforms regularly perform as well as JPEGs, often achieving
over 90% similarity. As expected, the highest textual transform
similarity (97.4%) is for a human caption of a single object
- the simplest semantic setting - while the lowest, at 77.3%,
is a BLIP caption of a group of people. Textual transforms
are competitive with traditional lossy compression methods
in rate-semantic distortion performance for CLIP embedding
similarity, indicating our results may well be robust to other
semantic distortion metrics.

This conclusion is generalizable across different types of im-
ages according to Fig. 5, which colors by category the median
similarity score of each image. There is no obvious clustering
of similarity scores to identify images of single objects as more

Fig. 4. CLIP embedding cosine similarity between original and reconstructed
or compressed images, scaled to fall between 0-1.

suitable than any other type of image for meaning-preserving
textual transforms. We can therefore extend our observations
for Object 3 to other candidate images, and expect semantic
compression methods to perform at relatively low loss of
semantic satisfaction at significantly smaller file sizes.

Fig. 5. Median Semantic Similarity-Compressed Size by Image Category.

Survey B provides more specific insight into the semantic
dimensions along which different reconstructions and .jpegs
may diverge from the original. Figures 1G-4G on our Github
repository display the mean similarity on a scale of 1-5
between each original image and its reconstructions or .jpegs
in terms of (a) their objects, elements and people, (b) the
appearance thereof, (c) the positioning and orientation thereof,
(d) the surroundings thereof, (e) their color scheme (as de-
scribed in Methods).

Along all the listed dimensions, the similarity between
"Single object" images and their .jpegs and reconstructions
is marginally higher than the similarity for other image cate-
gories. This is likely due to the simplicity of content in images
of single objects, as well as a lack of complex affect asso-
ciations. However, the score distributions generally overlap
between categories, and the large standard deviations preclude
strict judgments about category-specific captioning capacities.



The lowest similarity scores for any category correspond to
colors in the original and reconstructed images, as captions
often do not incorporate detailed information about the colors
of each element.

B. Viability of AI-based textual transformers.

To address our second question, we compare the DALL-E
reconstructions of captions generated with GPT-4; with BLIP;
and with human effort in terms of how similar in feeling and
meaning they are to the original image.

Table 1 shows that human captions are the longest on aver-
age, but they do not as a rule yield reconstructions more similar
to the original image than those based on GPT-4 captions.
In fact, the average of all median semantic similarity scores
received by human caption reconstructions is 7.7, the same
as that of those received by GPT-4 caption reconstructions,
even while GPT-4 captions are shorter. This means that textual
transforms using AI captions perform just as well as those
based on human captions, and at an even lower rate.

Table 1: Mean size and semantic satisfaction for five compression modes.

To inform future selection of reconstruction methods, we
wish to gather more information about the transference of se-
mantic information from caption to reconstruction. BLIP cap-
tions frequently yield reconstructions with the lowest semantic
similarity to the original image. Since they are the shortest, we
assume they excise perceptually significant semantic informa-
tion. To identify what is excised, we turn to Survey C. Table
5G on our Github repository selects the three most frequent
answers to each question in Survey C for each captioning
method. We collapse conceptually identical answers to a single
phrase, convert plurals to singular concepts, and examine the
overlap between answers for the three methods.

As a percentage of distinct answers, we see that the most
central objects in reconstructions from GPT-4 and human
captions overlap 42% of the time, identical to the 42% of
those from GPT-4 and BLIP and barely lower than the 45%
of those from BLIP and human captions. Identified relations
between these objects are the same for all methods, while ad-
jectives describing the tone of each reconstruction overlap even
more frequently for BLIP and GPT-4 reconstructions (89%)
than GPT-4 and human caption reconstructions (73%). This
suggests that semantic similarity is significantly determined
by details whose presence is not queried by Survey C, which

are nevertheless omitted from BLIP captions. Of the semantic
components in our human captions, these determinants of
similarity may be the attributes of the central objects and their
relations, or their immediate, background or temporal context.

Finally, we acknowledge the possibility of biased or skewed
results in our study, particularly along the GPT-4 to DALL-
E pipeline. Our images were sourced from internet searches
using category labels as query terms. Either GPT-4 or DALL-
E may therefore have been trained on the same images as they
were asked to caption or reconstruct in our paper. Future work
might verify these conclusions with privately sourced images.

V. CONCLUSION

Our results suggest that textual transform based recon-
structions can provide comparable semantic satisfaction at
far lower rates than lossy compression standards like JPEG.
This encourages the development of semantic compression
pipelines using carefully selected textual transforms.

In this vein, we demonstrate that AI-based textual trans-
forms can perform comparably to human captions in the
preservation of semantic information, as in the case of GPT-4.
They are able to include the same semantic components (the
same elements, in similar orientations, with similar appear-
ance) and to have the same effect on the viewer’s perception
(a similar tone and feeling).

We further find that GPT-4 captions are preferable to human
captions because they are shorter on average. This may be
because AI usually omits the level of detail a human captioner
feels compelled to include, though the inclusion of those
details does not measurably increase semantic satisfaction after
reconstruction.

AI permits unique improvements in the realm of textual
transform coding. It opens the possibility for end-to-end
training of an encoder-decoder network that could optimize
for the most concise textual representation of an image that
would contain all the elements its own decoder would need to
create a faithful reconstruction, and would remain interpretable
to human readers. If interpretability were not a concern, the
intermediate semantic representations could turn out to be even
more compressible.

The next steps of this study might aim to integrate more
formal definitions of "semantic information" and "semantic
fidelity" into cost functions for optimized textual transform
generation. One might also explore different architectures
that make the best use of these functions, balancing the
computational complexity introduced by high-performing AI
captioners, and opening textual transform coding up for prac-
tical use.
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