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ABSTRACT

An important characteristic of temporal graphs is how the directed arrow of time
influences their causal topology, i.e. which nodes can possibly influence each
other causally via time-respecting paths. The resulting patterns are often neglected
by temporal graph neural networks (TGNNs). To formally analyze the expres-
sive power of TGNNs, we lack a generalization of graph isomorphism to temporal
graphs that fully captures their causal topology. Addressing this gap, we introduce
the notion of consistent event graph isomorphism, which utilizes a time-unfolded
representation of time-respecting paths in temporal graphs. We compare this def-
inition with existing notions of temporal graph isomorphisms. We illustrate and
highlight the advantages of our approach and develop a temporal generalization of
the Weisfeiler-Leman algorithm to heuristically distinguish non-isomorphic tem-
poral graphs. Building on this theoretical foundation, we derive a novel message
passing scheme for temporal graph neural networks that operates on the event
graph representation of temporal graphs. An experimental evaluation shows that
our approach performs well in a temporal graph classification experiment.

1 MOTIVATION

Graph neural networks (GNNs) have become a cornerstone of deep learning in relational data. They
have recently been generalized to temporal GNNs (TGNNs) that capture patterns in time series data
on temporal graphs, where edges carry timestamps. Such temporal graphs are often categorized into
two different types: In discrete-time temporal graphs (DTTGs), edges carry coarse-grained times-
tamps, e.g. yearly snapshots with many edges having identical timestamps. Such temporal graphs
can naturally be represented as sequences of static snapshot, where each snapshot includes all edges
occurring at a given timestamp. The resulting sequence of snapshots naturally lends itself to a gen-
eralization of static network analysis or graph learning techniques, as each individual snapshot can
be interpreted as a static graph. In contrast, in continuous-time temporal graphs edges carry high-
resolution, possibly unique timestamps. This implies that snapshot graphs are very sparse, which
requires (i) a coarse-graining of time that –however– destroys important temporal information, or
(ii) learning techniques able to utilize full temporal information.

To address end-to-end learning tasks in temporal graphs, different TGNN architectures have been
proposed, which –depending on the architecture– capture different patterns in temporal graphs. Ex-
amples include the evolution of node embeddings in consecutive snapshots for discrete-time tem-
poral graphs, or temporal edge activation patterns in continuous-time temporal graphs Longa et al.
(2023). An important additional characteristic of temporal graphs is how the directed arrow of time
influences their causal topology, i.e., which nodes can possibly influence each other causally via
time-respecting paths. As example, consider a temporal graph with two edges connecting Alice to
Bob at timestamp t and Bob to Carol at timestamp t′. If t < t′, Alice may possibly (but not necessar-
ily) causally influence Carol via Bob. Conversely, if t′ < t, a causal influence from Alice to Carol is
impossible because it would have to propagate backwards in time. To prevent wrong interpretations
of the term causal in our work, we stress that the correct temporal order of edges is a necessary but
not a sufficient condition for causal influence. Hence, considering the arrow of time (and thus the
temporal ordering of events) is an important precondition that enables causality-aware learning in
temporal graphs.
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Numerous works, e.g. in network science, have studied how the temporal ordering of edges in
continuous-time temporal graphs influences connectivity, dynamical processes like spreading or dif-
fusion, node centralities, cluster patterns, or controllability Lentz et al. (2013); Rosvall et al. (2014);
Scholtes et al. (2014; 2016); Badie-Modiri et al. (2022); Pfitzner et al. (2013). These patterns are
often neglected by TGNNs, which can limit their performance in high-resolution time series data
on temporal graphs. To formally analyze this aspect in existing TGNNs, in line with works on the
expressivity of (static) GNNs Xu et al. (2019); Morris et al. (2019), we lack a generalization of graph
isomorphism to temporal graphs that captures how their causal topology is shaped by the arrow of
time. This could inform the development of new causality-preserving message passing schemes for
TGNNs with provable expressive power. Addressing this gap, our contributions are:

• We propose a new temporal generalization of graph isomorphism called time-respecting path iso-
morphism, which focuses on the preservation of time-respecting paths between temporal graphs.
While it can also be applied to snapshot-based temporal graphs, our definition is specifically
suitable for temporal graphs, where edges exhibit high-resolution, possibly unique timestamps.

• An important feature of our definition is that it preserves temporal reachability: if there is a
time-respecting path from u to v in G1, there must also be a time-respecting path between the
corresponding nodes u′ and v′ in any G2 isomorphic to G1. The causal structure of a temporal
graph implies a partial ordering of timestamped edges: if there is a time-respecting path that
includes edge e before edge e′, then e must occur before e′. However, if no time-respecting
path includes both e and e′, then it does not matter which one comes first. According to our
definition, two temporal graphs can be isomorphic even if the total orderings of timestamped
edges are different, as long as the partial ordering imposed by time-respecting paths is the same.

• We contrast our definition with the recently proposed timewise isomorphism, which generalizes
graph isomorphism to snapshots of discrete-time temporal graphs Walega & Rawson (2025).
We show that our definition is less strict. In particular, two temporal graphs may be timewise
non-isomorphic even if both exhibit the same time-respecting paths and temporal reachability.

• We show that time-respecting path isomorphism is equivalent to static graph isomorphism on
the augmented event graph, an auxiliary graph that (i) captures time-respecting paths in the
temporal graph through a static line graph expansion, and (ii) is augmented by the original nodes
in the temporal graph. This allows us to propose a generalization of the Weisfeiler-Leman (WL)
algorithm, which heuristically distinguishes non-isomorphic graphs, to the temporal setting.

• We use our insights to derive a novel message passing scheme operating on the augmented
event graph, which generates representations that allow to distinguish non-isomorphic temporal
graphs. We show that this has the same expressive power as the WL test on the augmented event
graph. We experimentally evaluate the TGNN architecture that follows from our theoretical
insights in a temporal graph classification task with synthetic and real datasets.

Our work contributes to the theoretical foundation of temporal graph learning, providing a basis for
the development and investigation of neural message passing architectures that consider how the
arrow of time shapes the causal topology in temporal graphs.

2 RELATED WORK

Over the past years, a number of works have introduced various generalizations of GNNs for tem-
poral data. Following the taxonomy given in Longa et al. (2023), these works can be broadly cat-
egorized into snapshot- and event-based models. Snapshot-based models operate on data with low
temporal resolution that provide a sequence of static graphs. In contrast, event-based models oper-
ate on high-resolution time series data that capture individual events like the addition or removal of
nodes or edges. Here we briefly summarize architectures for these different approaches.

The snapshot-based dynamic graph learning framework ROLAND (You et al., 2022) uses recurrent
neural networks (RNNs) to model the evolution of node embeddings generated by applying static
graph representation learning methods to a sequence of snapshots. EvolveGCN (Pareja et al., 2020)
uses a RNN or LSTM to generate evolving parameters of a graph convolutional network based on
a sequence of snapshots. Taking an event-based perspective, the temporal graph network (TGN)
architecture (Rossi et al., 2020) integrates embedding and memory modules to capture multi-faceted
patterns in sequences of timestamped edges. TGAT (Xu et al., 2020) extends the GAT attention
mechanism(Veličković et al. (2018)) to obtain temporal encodings based on the changing neighbor-
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hood of nodes in temporal graphs. Wang et al. (2021) introduces Causal Anonymous Walks (CAWs),
which are temporal random walks anonymized by node hitting counts, enabling inductive represen-
tation learning of temporal networks by capturing causal motifs without relying on node identities
or rich edge attributes. None of these methods explicitly model patterns that are due to how the
arrow of time influences time-respecting paths in temporal graphs. A number of works in network
science investigated this aspect in temporal graphs (Holme, 2015). Several works (Lentz et al., 2013;
Pfitzner et al., 2013; Oettershagen et al., 2020; Oettershagen & Mutzel, 2022; Badie-Modiri et al.,
2022) consider how correlations in the temporal ordering of edges influence connected components,
epidemic spreading, and percolation in temporal graphs. Rosvall et al. (2014) study how the tem-
poral ordering of nodes along time-respecting flows influence spreading processes, node centralities
and cluster patterns. Scholtes et al. (2014) use a higher-order Laplacian to analytically predict how
the temporal ordering of edges speeds up or slows down diffusion. Building on this idea, Scholtes
(2017) use higher-order De Bruijn graphs to model time-respecting paths in temporal graphs. Ap-
plying this idea to deep learning, Qarkaxhija et al. (2022) generalize neural message passing to
higher-order De Bruijn graphs, obtaining a TGNN that models how the arrow of time influences
time-respecting paths. Oettershagen et al. (2020) suggest a transformation into a static line-graph
for which they propose a graph kernel based on the Weisfeiler-Leman algorithm to classify dissem-
ination processes in networks. We study the connections of this model to our work in Section 4.

In recent years, there has been growing interest in understanding the expressive power of GNN
models at a theoretical level. Broadly speaking, expressivity in the context of a GNN architecture
refers to its capacity to capture complex structures and distinguish between different graphs. In this
paper, our measure of expressive power is the ability of a GNN to produce distinct representations
for non-isomorphic graphs. A key insight from recent theoretical work is that the expressive power
of message-passing GNNs is fundamentally limited by the 1-dimensional Weisfeiler-Leman (1-WL)
graph isomorphism test (Xu et al., 2019; Morris et al., 2019). Moreover, both works independently
showed that there exist GNNs that are as least as powerful as the 1-WL test (e.g., the Graph Iso-
morphism Network by Xu et al. (2019)). These insights have led to a flurry of research on pushing
GNN expressivity beyond the 1-WL barrier. One line of work builds on more powerful extensions
of the 1-WL test, such as the k-dimensional WL test (Morris et al., 2020) or a variant that incor-
porates edge directions (Rossi et al., 2023). Another line of work augments message passing with
additional structural information beyond the raw graph connectivity (e.g., Bouritsas et al. (2023)), or
use unique node identifiers (Vignac et al., 2020) or random features (Abboud et al., 2021) in order to
break symmetries. While these tricks can increase expressivity, they can also introduce challenges
such as overfitting or reliance on problem-specific features. In fact, Franks et al. (2024) show that
higher expressivity does not always imply better generalization performance. For a detailed review
on WL-based approaches and potential future directions, see, e.g., Morris et al. (2024; 2023).

Compared to the static setting, the expressive power of temporal GNNs has not been explored as
thoroughly. This is in part because the time dimension introduces an additional degree of freedom,
and thus there is no universally agreed-upon definition of temporal graph isomorphism. Beddar-
Wiesing et al. (2024) propose a notion of isomorphism for dynamic graphs, which can be seen as
snapshot-based temporal graphs, which all snapshots are considered independently of each other.
Walega & Rawson (2025) observe that this does not fully capture the expressive power of two
important classes of TGNN architectures: global and local. Instead, they propose timewise isomor-
phism, which enforces consistency between the snapshots. They show that global and local TGNNs
differ in their abilities to detect timewise isomorphism, and neither is strictly more powerful than
the other. Similarly, Gao & Ribeiro (2022) interpret a temporal graph as a static multi-relational
graph in which the timestamps are edge attributes. Hence, an isomorphism must preserve their exact
values. Souza et al. (2022) use this notion of isomorphism to propose a temporal generalization of
the 1-WL test and show that it has the same expressive power as the message passing architectures
TGN, TGAT, and CAW introduced in Rossi et al. (2020); Wang et al. (2021); Xu et al. (2020). They
then introduce PINT, a provably more expressive temporal GNN that combines injective temporal
message passing with relative positional features that encode how nodes relate in time.

To the best of our knowledge, no existing notions of temporal graph isomorphism precisely capture
the influence of time-respecting reachability, which is crucial to understand the evolution of dynam-
ical processes in temporal graphs. In particular, notions like timewise isomorphism are too strict for
our purpose as they require exact values of timestamps to be preserved, even if this has no influence
on the existence of time-respecting paths.
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3 PRELIMINARIES

A directed, labeled (static) graph G = (V,E, ℓV , ℓE) consists of a set V of nodes, a set E ⊆ V ×V
of directed edges, a node labeling ℓV : V → LV and an edge labeling ℓE : E → LE , with countable
sets LV and LE . In unlabeled graphs, we omit ℓV or ℓE accordingly. For a node v, we denote
its incoming neighbors by NI(v) = {u | (u, v) ∈ E} and its outgoing neighbors by NO(v) =
{u | (v, u) ∈ E}. Finally, we define the set of paths P (G) as the set of all alternating node/edge
sequences (v0, e1, v1, e2, . . . , ek, vk) with ei = (vi−1, vi) ∈ E for i ∈ {1, . . . , k}. Note that we do
not distinguish between walks and paths or, equivalently, do not require paths to be simple.
Definition 1 (Graph isomorphism). For two static graphs G1 = (V1, E1, ℓ

1
V , ℓ

1
E) and G2 =

(V2, E2, ℓ
2
V , ℓ

2
E), an isomorphism is a bijective mapping π : V1 → V2 with these properties:

(i) Edge-preserving: (u, v) ∈ E1 ⇐⇒ (π(u), π(v)) ∈ E2 ∀u, v ∈ V
(ii) Node label-preserving: ℓV (u) = ℓV (π(u)) ∀u ∈ V

(iii) Edge label-preserving: ℓE(u, v) = ℓE(π(u), π(v)) ∀(u, v) ∈ E

We say that the graphs G1 and G2 are isomorphic iff such a mapping π exists.

Definition 2 (Temporal graph). We define a (directed) temporal graph as Gτ = (V,Eτ ), where V
is the set of nodes and Eτ ⊆ V ×V ×N is the set of timestamped edges, i.e., an edge (u, v; t) ∈ Eτ

describes an interaction between u and v at time t.

Note that timestamped edges represent instantaneous events, i.e., (u, v; t) ∈ Eτ does not imply
(u, v; t′) ∈ Eτ for t ̸= t′. Like Oettershagen et al. (2020), we assume a unit edge traversal time.
Following Pan & Saramäki (2011), we assume a maximum time difference δ between consecutive
edges in the following definition of time-respecting paths Pan & Saramäki (2011). This is crucial as
we often consider temporal graphs where the observation period is much longer than the timescale
of processes of interest. As an example, in a social network with timestamped interactions observed
over multiple years, information typically propagates within hours or days, i.e. we are not interested
in paths where consecutive edges occur in different years.
Definition 3 (Time-respecting path). A path of length k in a temporal graph Gτ = (V,Eτ ) is
an alternating sequence of nodes and timestamped edges p = (v0, e1, v1, . . . , ek, vk) with ei =
(vi−1, vi; ti) ∈ Eτ for i ∈ {1, . . . , k}. For a maximum time difference (or waiting time) δ ∈ N,
we say that p is time-respecting if 1 ≤ ti − ti−1 ≤ δ for i ∈ {1, . . . , k}. We denote the set of
time-respecting paths in Gτ as P τ (Gτ ).

The structure of time-respecting paths can be encoded in the temporal event graph, which is a static
graph whose nodes are the timestamped edges. Two nodes are connected by an edge if the corre-
sponding timestamped edges form a time-respecting path of length two.
Definition 4 (Temporal event graph). Let Gτ = (V,Eτ ) be a temporal graph with waiting time δ.
The temporal event graph is given by GE = (Eτ , E) with

E = {((u, v; t), (v, w; t′)) | (u, v; t), (v, w; t′) ∈ Eτ , 1 ≤ t′ − t ≤ δ}.

Note that the time-respecting paths of length k ≥ 2 in Gτ correspond to the paths of length k − 1
in GE , whereas the time-respecting paths of length 1 in Gτ correspond to the nodes in GE .

Furthermore, we consider two static representations of temporal graphs.
Definition 5 (Time-aggregated/concatenated static graph). For a temporal graph Gτ = (V,Eτ ),
let tmin(G

τ ) = min{t | (u, v; t) ∈ Eτ} denote the earliest timestamp that occurs in Gτ . For
each pair of nodes u, v ∈ V , let T (u, v) = {t − tmin(G

τ ) | (u, v; t) ∈ Eτ} denote the set of
timestamps at which the edge (u, v) occurs, relative to the earliest timestamp. Then the set of static
edges is given by Es = {(u, v) | T (u, v) ̸= ∅}. The time-aggregated static graph of Gτ is the
directed, edge-labeled graph Ga = (V,Es, ℓa) with edge labels ℓa(u, v) = |T (u, v)|. The time-
concatenated static graph of Gτ is the directed, edge-labeled graph Gc = (V,Es, ℓc) with edge
labels ℓc(u, v) = T (u, v).

The time-aggregated static graph Ga is a lossy representation of a temporal graph that (i) preserves
the topology and frequency of timestamped edges, but (ii) discards information on the time. The
existence of a time-respecting path in Gτ implies the existence of a corresponding path in Ga.
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However, the converse is not true: a path between nodes u and v in Ga may exist even if there is no
time-respecting path between u and v in Ga. By contrast, the time-concatenated static graph labels
each static edge with the set of timestamps at which the edge exists, so the representation is lossless.

4 ISOMORPHISMS IN TEMPORAL GRAPHS

To motivate our temporal generalization of graph isomorphism, we make the following observation.
Observation 1. Let π : V1 → V2 be a bijective node mapping between two graphs G1 = (V1, E1)
and G2 = (V2, E2). For any edge e = (u, v) ∈ E, we write π(e) = (π(u), π(v)). Then π is edge-
preserving if and only if it is path-preserving, i.e., the following holds for all alternating node/edge
sequences (v0, e1, v1, . . . , ek−1, vk) with k ∈ N:
(v0, e1, v1, . . . , ek−1, vk) ∈ P (G1)⇐⇒ (π(v0), π(e1), π(v1), . . . , π(ek−1), π(vk)) ∈ P (G2).

This is due to the fact that adjacent edges transitively expand into paths. Thus, two isomorphic
static graphs are topologically equivalent in terms of edges and paths. Importantly, this property
does not directly translate to time-respecting paths in temporal graphs: two adjacent timestamped
edges (u, v; t) and (v, w; t′) only form a time-respecting path if 1 ≤ t′ − t ≤ δ. Hence, a temporal
generalization of graph isomorphism should preserve not only the timestamped edges, but also the
causal topology in terms of time-respecting paths. Conversely, we are interested in an isomorphism
definition that does not force the values of timestamps to be preserved, provided that the resulting
time-respecting paths in two temporal graphs are identical.
Definition 6 (Time-respecting path isomorphism). Let Gτ

1 = (V1, E
τ
1 ) and Gτ

2 = (V2, E
τ
2 ) be two

temporal graphs. We say that Gτ
1 and Gτ

2 are time-respecting path isomorphic if there is a bijective
node mapping πV : V1 → V2 and a bijective timestamped edge mapping πE : Eτ

1 → Eτ
2 such that

the following holds for all alternating node/edge sequences (v0, e1, v1, . . . , ek−1, vk) with k ∈ N:
(v0, e1, v1, . . . , ek−1, vk) ∈ P τ (Gτ

1)

⇐⇒ (πV (v0), πE(e1), πV (v1), . . . , πE(ek−1), πV (vk)) ∈ P τ (Gτ
2).

Note that in contrast to Observation 1, this definition also includes an edge mapping. In a static
graph, each edge is uniquely defined by a pair of endpoints, so the edge mapping is induced by the
node mapping. This is not the case in temporal graphs, in which multiple timestamped edges may
connect the same node pair at different times. Hence, the edge mapping is specified separately.

A drawback of this isomorphism definition is that it appears difficult to test, since the number of
time-respecting paths may be exponential in the graph size. Therefore, we derive equivalent notions
of temporal graph isomorphism that are easier to test. In order to preserve paths of length 1, which
consist of a single timestamped edge e = (u, v; t) and are always time-respecting, we must ensure
that πE(e) connects πV (u) to πV (v). We call this property node consistency. Node-consistent
mappings preserve paths, but not necessarily their time-respecting property. To ensure this, we
observe that time-respecting paths of length k ≥ 2 correspond to paths in the temporal event graph.
We can preserve them by requiring πE to be path-preserving between the temporal event graphs.
Definition 7 (Consistent event graph isomorphism). Let Gτ

1 = (V1, E
τ
1 ) and Gτ

2 = (V2, E
τ
2 ) be two

temporal graphs with corresponding temporal event graphs GE
1 = (Eτ

1 , E1) and GE
2 = (Eτ

2 , E2). A
mapping πE : Eτ

1 → Eτ
2 is a consistent event graph isomorphism if and only if

(i) there exists a mapping πV : V1 → V2 such that
∀(u, v; t) ∈ Eτ

1 ∃t′ : πE(u, v; t) = (πV (u), πV (v); t
′), and

(ii) πE is a graph isomorphism between GE
1 and GE

2 .

This definition can be simplified further by constructing an augmented event graph (see Figure 1),
which encodes the node consistency property in its topology. In this way, we reduce the problem of
testing for time-respecting path isomorphism to the problem of testing for static graph isomorphism
on the augmented event graphs.
Definition 8 (Augmented event graph). Let Gτ = (V,Eτ ) be a temporal graph with event
graph GE = (Eτ , E). The augmented event graph is the static, directed, node-labeled graph Gaug =
(V aug, Eaug, ℓ) with V aug = V ∪ Eτ , Eaug = E ∪ Eout ∪ Ein and

ℓ(v) =

{
0 if v ∈ V,

1 if v ∈ Eτ ,

Eout = {(u, (u, v; t) | (u, v; t) ∈ Eτ},
Ein = {((u, v; t), v) | (u, v; t) ∈ Eτ}.
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Figure 1: A temporal graph Gτ (left), the corresponding augmented event graph Gaug (center) and
the compressed augmented event graph Gcomp (right). In Gaug and Gcomp, gray nodes have label 0
and white nodes have label 1. Timestamped edges (u, v; t) are represented as nodes uvt. In Gcomp,
edge weights represent the number of connected components of Gaug in which the edge appears.
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Figure 2: Example illustrating different temporal graph isomorphism definitions for maximum wait-
ing time δ = 2. Edges are labeled with timestamps. G1 is time-concatenated isomorphic to G2, con-
sistent event graph isomorphic to G2 and G3, and time-aggregated isomorphic to G2, G3 and G4.

Theorem 1. (Proof in Appendix A) Let Gτ
1 and Gτ

2 be two temporal graphs with corresponding
augmented event graphs Gaug

1 and Gaug
2 . Then the following statements are equivalent:

(i) Gτ
1 and Gτ

2 are time-respecting path isomorphic.
(ii) Gτ

1 and Gτ
2 are consistent event graph isomorphic.

(iii) Gaug
1 and Gaug

2 are isomorphic.

In addition, we propose to compress the augmented event graph (see Figure 1). This is based on the
observation that the temporal event graph often contains many connected components that represent
the same set of time-respecting paths, but with different timestamps. Merging these components
reduces the size of the graph without losing any information about the causal topology.

Definition 9 (Compressed augmented event graph). Let Gτ = (V,Eτ ) be a temporal graph with
its event graph GE = (Eτ , E). For each node pair u, v, let t1, . . . , tk be the timestamps in T (u, v),
sorted in ascending order. The graph τ(GE) = (τ(Eτ ), τ(E)) replaces each temporal edge e =
(u, v; ti) ∈ Eτ with the edge τ(e) = (u, v; i), i.e., τ(Eτ ) = {τ(e) | e ∈ Eτ} and τ(E) =
{(τ(e), τ(e′)) | (e, e′) ∈ E}. Let C denote the set of connected components in GE . Two connected
components C1 and C2 are equivalent if τ(C1) = τ(C2). We compress GE by replacing each
equivalence class of C with a single representative, in which each edge is weighted with the size of
the class. The compressed augmented event graph is then built according to Definition 8.

For reasons of computational efficiency, our notion of equivalence considers the relative order of
timestamped edges between the same node pair. As discussed in Appendix B, there are cases in
which connected components are not considered equivalent even if their causal topology is the same.
In these cases, the compressed augmented event graph does not preserve all isomorphisms.

COMPARISON WITH OTHER ISOMORPHISM DEFINITIONS We reduced our notion of time-
respecting path isomorphism to graph isomorphism on a special static representation of the temporal
graph, namely the augmented event graph. We now compare this to isomorphism notions that use
different static representations, namely the time-aggregated and time-concatenated static graphs.

Definition 10 (Time-aggregated/time-concatenated isomorphism). Let Gτ
1 and Gτ

2 be two tempo-
ral graphs with the corresponding time-aggregated graphs Ga

1 and Ga
2 and the time-concatenated

6
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graphs Gc
1 and Gc

2. We say that Gτ
1 and Gτ

2 are time-aggregated isomorphic if Ga
1 and Ga

2 are
isomorphic, and that they are time-concatenated isomorphic if Gc

1 and Gc
2 are isomorphic.

An equivalent representation of the time-concatenated static graph is a labeled multi-graph in which
the timestamps are treated as edge labels. Hence, time-concatenated isomorphism is equivalent to
the notions of isomorphism considered in Gao & Ribeiro (2022); Souza et al. (2022). Furthermore,
it is similar to the notion of timewise isomorphism introduced in Walega & Rawson (2025). The
latter was defined for temporal graphs with node labels that may change over time, which are not
included in our model. In Appendix C, we show that the two notions are equivalent for temporal
graphs without node labels. The following theorem shows that our notion of consistent event graph
isomorphism is stricter than time-aggregated isomorphism, but less strict than time-concatenated
isomorphism (the proof is given in Appendix C).

Theorem 2. Let Gτ
1 = (V1, E

τ
1 ) and Gτ

2 = (V2, E
τ
2 ) be two temporal graphs with time-aggregated

graphs Ga
1 and Ga

2 and time-concatenated graphs Gc
1 and Gc

2. Then the following holds:

(i) If there exists an isomorphism πV : V1 → V2 between Gc
1 and Gc

2, then πE : Eτ
1 → Eτ

2 with

πE(u, v; t) = (π(u), π(v); tmin(G
τ
2)− tmin(G

τ
1) + t) ∀(u, v; t) ∈ Eτ

1

is a consistent event graph isomorphism.
(ii) If there exists a consistent event graph isomorphism πE : Eτ

1 → Eτ
2 , then the induced node

mapping πV : V1 → V2 is a graph isomorphism between Ga
1 and Ga

2.

Time-concatenated isomorphism preserves the values of all timestamps (aside from a constant off-
set). By contrast, time-aggregated isomorphism ignores the timestamps altogether. Instead, it only
considers the static topology and the number of temporal edges between each node pair. Consistent
event graph isomorphism lies between the two: Consider two edges e = (u, v; t) and e′ = (u′, v′; t′).
If there is a time-respecting path that includes e before e′, then t < t′ is enforced. However, if there
is no time-respecting path that includes both edges, then the relative order of t and t′ is irrelevant.

The differences are illustrated in Figure 2. The graphs G1 and G3 are not time-concatenated isomor-
phic because the timestamps of the edges (b, d) and (c, d) are flipped, but they are consistent event
graph isomorphic because neither graph has a time-respecting path that includes both edges. By
contrast, the graphs G1 and G4 are not consistent event graph isomorphic because the path formed
by (b, d; 2) and (d, e; 4) is time-respecting in G1 but not in G4. However, they are time-aggregated
isomorphic because the static topology and the number of timestamped edges are the same.

5 MESSAGE PASSING FOR THE AUGMENTED EVENT GRAPH

We use the equivalency of time-respecting path isomorphism to static isomorphism on the aug-
mented event graph to derive a message-passing GNN architecture for temporal graphs and charac-
terize its expressive power. Note that the augmented event graph is directed, even if the underlying
temporal graph is undirected. Edge directions are crucial because they represent the arrow of time,
which is why we use the directed GNN Dir-GNN Rossi et al. (2023). It iteratively computes embed-
dings f (t)(v) for each node v at layer k. This is done by aggregating embeddings of its neighbors at
layer k − 1, using

−→
f

(t)
agg for incoming neighbors and

←−
f

(t)
agg for outgoing neighbors. A function f

(t)
com

combines these with the previous embedding of v to a new embedding. Formally, we have

f (0)(v) = enc(ℓV (v)),

f (t)(v) = f (t)
com

(
f (t−1)(v),

−→
f (t)

agg({{f (t−1)(u) | u ∈ NI(v)}}),
←−
f (t)

agg({{f (t−1)(u) | u ∈ NO(v)}})
)

where f
(t)
com,
−→
f

(t)
agg and

←−
f

(t)
agg are learnable. The initial node embeddings are obtained by applying an

injective encoding function enc to the node labels. To obtain a representation of the entire graph, we
combine embeddings f (k)(v) of all nodes v on the final layer k with an injective readout function.

Our proposed GNN architecture simply applies Dir-GNNs to the augmented event graph. By using
the augmented event graph, this approach is specifically tailored towards detecting time-respecting
path isomorphism. We give an informal analysis of its expressive power (further details in Ap-
pendix D): A model M1 is at least as expressive as another model M2 if M1 distinguishes all node
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pairs that are distinguished by M2. If the reverse is also true, they are equally as expressive. Oth-
erwise, M1 is strictly more expressive. Rossi et al. (2023) prove that if f (t)

com,
−→
f

(t)
agg and

←−
f

(t)
agg are

injective, Dir-GNN has the same expressive power as a directed version of the 1-WL test, called
D-WL. Furthermore, both are strictly more expressive than undirected 1-WL and GNNs, i.e., there
are graphs in which Dir-GNNs and D-WL distinguish more nodes than 1-WL and GNNs.

Finally, we note the similarity of our approach to the temporal WL graph kernel proposed in Oet-
tershagen et al. (2020). Their approach applies 1-WL to the directed line graph expansion, which
is equivalent to applying D-WL to the (unaugmented) event graph. This does not take into account
the node consistency property (Definition 7). Furthermore, we proposed a GNN architecture, which
offers more flexibility since it can learn the combination and aggregation functions.

6 EXPERIMENTAL EVALUATION

We evaluate the message passing architecture proposed in the previous section in a graph classifica-
tion experiment. With this we seek to answer the following research questions:

(RQ1) Does the message passing scheme for temporal event graphs derived in Section 4 allow to
distinguish non-isomorphic temporal graphs in a graph classification experiment.

(RQ2) How does our model compare against existing methods in empirical datasets

To address RQ1, we evaluate the accuracy of our model for classifying synthetically generated tem-
poral graphs that exclusively differ in terms of their causal topology, i.e. which nodes are connected
via time-respecting paths. We use two stochastic models generating temporal graphs that are indis-
tinguishable based on their time-aggregated static graphs (cf. Definition 5).

Experiment A: Shuffled Timestamps We generate temporal graphs from random walks on a k-
regular graph and in a second step randomly permute timestamps for a fraction α of edges. The
original graphs and shuffled versions then share the same time-aggregated topology but differ in
causal structure. These two variants define the classes for our binary classification task. Details of
graph size, walk generation, and timestamp assignment are given in Appendix E

Exeperiment B: Cluster Connectivity Following Scholtes et al. (2014), we build temporal graphs
with two communities linked by few inter-edges. By varying a parameter σ, we control whether
cross-cluster time-respecting paths are over- (σ > 0) or underrepresented (σ < 0), while time-
aggregated structure remains identical. Graphs generated with σ = 0 and those generated with a
σ ̸= 0 form the two classes. The exact construction procedure is described in Appendix E.

For all experiments, we address a balanced, binary temporal graph classification task, i.e. given n
temporal graphs Gτ

i (i = 1, . . . , n) we want to learn a classifier C : {Gτ
i } → {0, 1}, with ground

truth classes assigned as described above. Importantly, for a Gτ
i we predict a single class rather than

multiple classes for different times t in the evolution of Gτ
i . Details are in Appendix E

Discussion Figure 3 (left panel) shows mean accuracies of our TGNN (y-axis) in experiment A for
different fractions α of shuffled timestamps (x-axis) across 100 runs. Our model classifies temporal
graphs with near-perfect accuracy for α > 0.2, while accuracy decreases for α ≈ 0. The mean
accuracy (100 runs) for experiment B (middle panel) show that our model is able to distinguish
the patterns in time-respecting paths generated for different values of σ (x-axis). Accuracy (y-axis)
increases as σ deviates from the baseline σ = 0, for which graphs are –by definition– indistin-
guishable. The right panel of Figure 3 shows mean accuracies of our TGNN where the two classes
are defined by different σ1 and σ2 (standard deviation in Figure 5 in Appendix F). Our model reli-
ably distinguishes graphs with random patterns from non-random patterns, independent of whether
cross-cluster time-respecting paths are over- (σ > 0) or under-represented (σ < 0).

To address RQ2, we compare our method against two baselines: a Graph Attention Network (GAT)
Veličković et al. (2018) applied to time-concatenated static graphs with timestamps as edge features,
and the Temporal Graph Network (TGN) Rossi et al. (2020), following the temporal graph classifica-
tion setup of Gao & Ribeiro (2022). We evaluate on five real-world datasets where class differences
arise solely from time-respecting paths rather than static topology. To create binary classification
tasks, we shuffle edge timestamps for one class and generate additional graphs by applying small
timestamp perturbations. Table 1 shows that our method substantially outperforms the baselines and
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Figure 3: Results of classification experiments A (left) and B (middle) where we use our TGNN
model to classify temporal graphs with different α (left) and σ (right) (x-axis), respectively. Results
are averaged over 100 runs. Right panel: mean classification accuracy for temporal graphs generated
with σ1 vs. σ2 (for all pairs σ1, σ2, 25 runs each).

achieves near perfect accuracies. We additionally implemented the shuffling approach from Pritam
et al. (2025) , in particular adopting the randomized edge (RE) and the configuration model (CM)
classes for our real-world data sets. The accuracy results are given in Table 4

We did not include PINT or CAW as baselines because they are designed for link prediction. Adapt-
ing them for graph classification would require pooling node embeddings at the last timestamp,
but their recency-weighted aggregation biases the graph embedding toward the most recent events,
whereas classification requires equally weighted information from the entire history.

Data Our Model GAT TGN
ants-1-1 Blonder & Dornhaus (2011) 0.87 ± 0.18 0.52± 0.04 0.86± 0.05
ants-1-2 Blonder & Dornhaus (2011) 0.93 ± 0.09 0.49± 0.08 0.99 ± 0.02
sp-workplace Génois & Barrat (2018) 0.98 ± 0.02 0.48± 0.07 0.51± 0.05
sp-hospital Vanhems et al. (2013) 1.00 ± 0.00 0.48± 0.08 0.82± 0.06
eu-email-dept2 Paranjape et al. (2017) 0.85 ± 0.20 0.58± 0.07 0.56± 0.06

Table 1: Mean classification accuracy on real-world data. For each dataset, we split the timeline into
windows of 500 timestamps, performed 10 runs per window, and report the average over all runs.

Ablation study We perform an ablation study to test which components of our proposed architecture
are necessary. The results are reported in Appendix G.

7 CONCLUSION

We theoretically investigate the expressivity of temporal graph neural networks (TGNN). We intro-
duce a natural generalization of graph isormorphism to temporal graphs by considering how the ar-
row of time shapes time-respecting paths and thus the causal topology of temporal graphs. We show
that this isomorphism can be heuristically tested by applying the directed and labeled Weisfeiler-
Leman algorithm to augmented temporal event graphs. This suggests a neural message passing
architecture that is expressive enough to distinguish temporal graphs with identical static topology
but different time-respecting paths. We evaluate our model in synthetic temporal graphs.

Limitations and Open Issues A limitation of our work is that we did not perform a comprehen-
sive comparative evaluation of our approach to other TGNN architectures. However these often
do not naturally lend themselves to the temporal graph classification task addressed in this work.
E.g. memory-based models like TGN Rossi et al. (2020) are commonly trained using batches of
timestamped edges from a single temporal graph, making it non-trivial to adapt them for training
on batches containing multiple temporal graphs as done in our work. This adaptation of existing
TGNNs goes beyond the scope of our work, which is why we leave it for future work. Focusing on a
theoretical investigation of expressivity, we further did not perform experiments in other real-world
graph learning tasks, where ground truth is available, such as node classification or link prediction.
We also did not formally compare our definition of temporal graph isomorphism to the notion of iso-
morphism on temporal computation trees, which is the basis for the analysis by Souza et al. (2022).
This is an interesting open question and an example for the research avenues opened by our work.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
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A EQUIVALENCE OF TEMPORAL GRAPH ISOMORPHISM NOTIONS

In the following we give the proof of Theorem 1.
Theorem. Let Gτ

1 = (V1, E
τ
1 ) and Gτ

2 = (V2, G
τ
2) be two temporal graphs with corresponding

augmented event graphs Gaug
1 = (V aug

1 , Eaug
1 , ℓ1) and Gaug

2 = (V aug
2 , Eaug

2 , ℓ2). Then the following
statements are equivalent:

(i) Gτ
1 and Gτ

2 are time-respecting path isomorphic.
(ii) Gτ

1 and Gτ
2 are consistent event graph isomorphic.

(iii) Gaug
1 and Gaug

2 are isomorphic.

We begin by showing the equivalence of (i) and (ii):

Proof. Let πV : V1 → V2 and πE : Eτ
1 → Eτ

2 be a node and edge mapping, respectively.
Let p = (v0, e1, v1, . . . , ek−1, vk) be an alternating sequence of nodes and timestamped edges
in Gτ

1 . We denote the corresponding sequence in Gτ
2 that is induced by πV and πE as π(p) =

(πV (v0), πE(e1), πV (v1), . . . , πE(ek−1), πV (vk)). We say that πV and πE are path-preserving be-
tween Gτ

1 and Gτ
2 if for each sequence p as defined above, p is a path in Gτ

1 if and only if π(p) is a
path in Gτ

2 . It is easy to see that πV and πE are path-preserving between Gτ
1 and Gτ

2 if and only if
πE is node-consistent with πV .

Assume therefore that πV and πE are path-preserving between Gτ
1 and Gτ

2 . We show that πE

is a graph isomorphism between the temporal event graphs GE
1 and GE

2 if and only if it is time-
preserving, i.e., a path p in Gτ

1 is time-respecting iff π(p) is time-respecting in Gτ
2 . If k = 1, this

holds trivially because all paths of length 1 are time-respecting. If k ≥ 2, then p is time-respecting if
and only if (e1, (e1, e2), e2, . . . , (ek−2, ek−1), ek−1) is a path in GE

1 . Hence, πE is time-preserving
if and only if it is path-preserving between GE

1 and GE
2 . Because the event graphs are unlabeled, this

is the case if and only if πE is a graph isomorphism by Observation 1.

Next, we show the equivalence of (ii) and (iii):

Proof. Let π : V aug
1 → V aug

2 be an isomorphism between Gaug
1 and Gaug

2 . Because π preserves the
node labels, it can be decomposed into bijective mappings πV : V1 → V2 and πE : Eτ

1 → Eτ
2 .

Then πE is an isomorphism between GE
1 and GE

2 because these are subgraphs of Gaug
1 and Gaug

2 , re-
spectively. Consider an edge e = (u, v; t) ∈ Eτ

1 . By construction, Gaug
1 includes the edges (u, e) ∈

Eout
1 and (e, v) ∈ Ein

1 . Because π is an isomorphism, it follows that (πV (u), πE(e)) ∈ Eout
2

and (πE(e), πV (v)) ∈ Ein
2 . Then it follows by construction of Gaug

2 that πE(e) = (πV (u), πV (v); t
′)

for some t′ ∈ N.

Conversely, let πE : Eτ
1 → Eτ

2 be a consistent event graph isomorphism between Gτ
1 and Gτ

2 , and
let πV : V1 → V2 be the induced node mapping such that

∀(u, v; t) ∈ Eτ
1 ∃t′ : πE(u, v; t) = (πV (u), πV (v); t

′).

Then πE and πV can be combined into a bijective mapping π : V aug
1 → V aug

2 . We show that π is an
isomorphism between Gaug

1 and Gaug
2 . By construction, π preserves the node labels. For every pair

of nodes x, y ∈ V aug
1 and every set of edges E′ ∈ {E , Eout, Ein}, we show that

(x, y) ∈ E′
1 ⇐⇒ (π(x), π(y)) ∈ E′

2.

For E′ = E , this follows from the fact that πE is an isomorphism between GE
1 and GE

2 . We show
the case E′ = Eout (the case E′ = Ein is symmetrical): We have (u, y) ∈ Eout

1 if and only
if y = (x, v; t) for some v ∈ V1 and t ∈ N. We have π(y) = πE(y) = (πV (x), πV (v); t

′) =
(π(x), π(v); t′) for some t′ ∈ N. By definition of Eout, we have (π(x), π(y)) ∈ Eout

2 .

B TEMPORAL EVENT GRAPH COMPRESSION

Figure 4 shows an example in which a consistent event graph isomorphism between two temporal
graphs Gτ

1 and Gτ
2 is lost when compressing the temporal event graph. In the temporal event graph

of both Gτ
1 and Gτ

2 , all four connected components are isomorphic, but there are two equivalence

13
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(a) Uncompressed GE
1

ab1

bc3 bc4

cd6
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bc32 bc31
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(b) Uncompressed GE
2
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2 2

2

2 2

(c) Compressed GE
1

ab1
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cd23

1

1 1

3

3 3

(d) Compressed GE
2

Figure 4: An example of two temporal graphs Gτ
1 and Gτ

2 which are consistent event graph isomor-
phic, but there is no node-consistent isomorphism between the compressed event graphs.

classes. This is due to the relative order of the two (b, c) edges: in some components, the edge that
is adjacent to (a, b) has an earlier timestamp than the other one, but in other components the order
is flipped. The cardinality of the equivalence classes differs between GE

1 and GE
2 , and therefore

the edge weights of the representatives in the compressed event graphs differs. Therefore, there is
no node-consistent isomorphism between the compressed event graphs, even though there is one
between the uncompressed ones.

This phenomenon is due to the fact that the definition of equivalence between connected compo-
nents considers the relative order of timestamped edges that connect the same node pair. This is
done to ensure that connected components can be tested for equivalence efficiently. As Figure 4
shows, it is possible for two connected components to be isomorphic even if the relative order is
different. Hence, the notion of consistent event graph isomorphism becomes slightly stricter if the
event graphs are compressed. As a result, a WL test or GNN architecture using event graph com-
pression may distinguish some graphs that should not be distinguished. We nevertheless accept this
loss in precision because the compression can significantly reduce the size of the graph and thereby
makes the GNN easier to train.

C COMPARISON WITH OTHER GRAPH ISOMORPHISMS

In the following we give the proof of Theorem 2.

Theorem. Let Gτ
1 = (V1, E

τ
1 ) and Gτ

2 = (V2, E
τ
2 ) be two temporal graphs with time-aggregated

graphs Ga
1 = (V1, E

s
1, ℓ

a
1) and Ga

2 = (V2, E
s
2, ℓ

a
2) and time-concatenated graphs Gc

1 = (V1, E
s
1, ℓ

c
1)

and Gc
2 = (V2, E

s
2, ℓ

c
2). Then the following holds:

(i) If there exists an isomorphism πV : V1 → V2 between Gc
1 and Gc

2, then πE : Eτ
1 → Eτ

2 with

πE(u, v; t) = (π(u), π(v); tmin(G
τ
2)− tmin(G

τ
1) + t) ∀(u, v; t) ∈ Eτ

1

is a consistent event graph isomorphism.
(ii) If there exists a consistent event graph isomorphism πE : Eτ

1 → Eτ
2 , then the induced node

mapping πV : V1 → V2 is a graph isomorphism between Ga
1 and Ga

2.

14
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Proof. Claim (i) follows directly from the definitions. For claim (ii), let πE : Eτ
1 → Eτ

2 be a
consistent event graph isomorphism. For every node pair u, v ∈ V1, we have

|T1(u, v)| = |{(u, v; t) ∈ Eτ
1 }|

= |{πE(u, v; t) ∈ Eτ
2 }|

= |{(πV (u), πV (v); t) ∈ Eτ
2 }|

= |T2(πV (u), πV (v))|.
Here, we use the node consistency property and the fact that πE is a bijection. It follows that

(u, v) ∈ Es
1 ⇐⇒ T1(u, v) ̸= ∅
⇐⇒ T2(πV (u), πV (v)) ̸= ∅
⇐⇒ (πV (u), πV (v)) ∈ Es

2

and

ℓa
1(u, v) = |T1(u, v)| = |T2(πV (u), πV (v))| = ℓa

2(πV (u), πV (v)).

C.1 TIMEWISE ISOMORPHISM WITH TIME-VARIANT NODE LABELS

Walega and Rawson Walega & Rawson (2025) present isomorphism definitions for snapshot-based
temporal graphs in which the nodes have labels that can vary over time.
Definition 11 (Snapshot-based temporal graph). A snapshot-based temporal graph is a se-
quence (G1, t1), . . . , (Gn, tn) with t1 < · · · < tn and Gi = (V,Ei, ci), where ci : V → LV is
a node labeling.
Definition 12 (Timewise isomorphism). Two snapshot-based temporal
graphs (G1, t1), . . . , (Gn, tn) and (Ĝ1, t̂1), . . . , (Ĝn̂, t̂n̂) are timewise isomorphic if n = n̂,
ti − t1 = t̂i − t̂1 for all 1 ≤ i ≤ n, and there is a bijection π : V → V ′ such that π is an
isomorphism between Gi and Ĝi for all 1 ≤ i ≤ n.

We consider the case that there are no node labels. In this case, a snapshot-based temporal
graph (G1, t1), . . . , (Gn, tn) has an equivalent temporal graph Gτ = (V,Eτ ) according to our
definition with

Eτ = {(u, v; ti) | (u, v) ∈ Ei, 1 ≤ i ≤ n}.

The following theorem shows that if there are no node labels, timewise isomorphism is equivalent
to isomorphism of the time-concatenated static graphs.

Theorem 3. Let (G1, t1), . . . , (Gn, tn) and (Ĝ1, t1), . . . , (Ĝn, tn) be two snapshot-based temporal
graphs without node labels, and let π : V → V̂ be a node bijection. Then π is an isomorphism
between the time-concatenated static graphs Gc = (V,Es, ℓc) and Ĝc = (V̂ , Ês, ℓ̂c) iff n = n̂,
ti − t1 = t̂i − t̂1 for all 1 ≤ i ≤ n, and π is an isomorphism between Gi and Ĝi for all 1 ≤ i ≤ n.

Proof. For each node pair u, v ∈ V , we have

T (u, v) = {t− tmin(G
τ ) | (u, v; t) ∈ Eτ} = {ti − t1 | (u, v) ∈ Ei, 1 ≤ i ≤ n}.

We note that π is an isomorphism between Gc and Ĝc iff T (u, v) = T̂ (π(u), π(v)) holds for
all u, v ∈ V . If n = n̂, ti − t1 = t̂i − t̂1 for all 1 ≤ i ≤ n, and π is an isomorphism between Gi

and Ĝi for all 1 ≤ i ≤ n, then it is easy to see that T (u, v) = T̂ (π(u), π(v)) for all u, v ∈ V . On
the other hand, assume that T (u, v) = T̂ (π(u), π(v)) for all u, v ∈ V . We have

(u, v) ∈ Ei ⇐⇒ ti − t1 ∈ T (u, v) ⇐⇒ ti − t1 ∈ T̂ (π(u), π(v))

⇐⇒ ∃j : t̂j − t̂1 = ti − t1 ∧ t̂j − t̂1 ∈ T̂ (π(u), π(v))

⇐⇒ ∃j : t̂j − t̂1 = ti − t1 ∧ (π(u), π(v)) ∈ Êj .

Within each temporal graph, all timestamps are distinct from each other, so by the pigeonholing
principle, we have n = n̂ and ti − t1 = t̂j − t̂1 for all 1 ≤ i ≤ n. Then it follows that π is an
isomorphism between Gi and Ĝi for all 1 ≤ i ≤ n.
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D EXPRESSIVE POWER OF MESSAGE PASSING ON THE AUGMENTED EVENT
GRAPH

We formally analyze the expressive power of the message passing approach presented in Section 5,
which applies Dir-GNN to the augmented event graph. Rossi et al. Rossi et al. (2023) propose a
directed version of the 1-WL test, called D-WL. It is a color refinement algorithm that iteratively
computes a node coloring c(t) : V → N for each iteration t ≥ 0 as follows:

c(0)(v) = ℓV (v)

c(t)(v) = hash
(
c(t−1)(v), {{c(t−1)(u) | u ∈ NI(v)}}, {{c(t−1)(u) | u ∈ NO(v)}}

)
.

Here, hash is an injective function. Compared to the standard 1-WL test, D-WL takes edge di-
rections into account by considering the multisets of node colors of the incoming and outgoing
neighbors separately.

The node embeddings computed by GNNs can also be interpreted as node colorings, and thus GNNs
can be seen as color refinement algorithms. The ability of color refinement algorithms to distinguish
nodes is captured by the following definition.
Definition 13 (Expressivity). A color refinement algorithm c is at least as expressive as another
color refinement algorithm ĉ if for all graphs G, all iterations t ≥ 0 and all node pairs u, v, it holds
that ĉ(t)(u) ̸= ĉ(t)(v) implies c(t)(u) ̸= c(t)(v). If the reverse implication holds as well, c and ĉ are
equally as expressive. Otherwise, c is strictly more expressive than ĉ.

Morris et al. Morris et al. (2019) show that undirected GNNs are equally as expressive as undirected
1-WL if the aggregation and combination functions are injective. Rossi et al. Rossi et al. (2023)
extend this result to the directed variants: Dir-GNN is equally as expressive as D-WL if f (t)

com,
−→
f

(t)
agg

and
←−
f

(t)
agg are injective. Furthermore, both are strictly more expressive than undirected 1-WL and

GNNs, i.e., there are graphs in which Dir-GNNs and D-WL distinguish more nodes than 1-WL and
GNNs. Because the augmented event graph is a static directed graph, these results automatically
carry over to our setting:

Theorem 4. If f (t)
com,
−→
f

(t)
agg and

←−
f

(t)
agg are injective, Dir-GNN on the augmented event graph has the

same expressive power as D-WL on the augmented event graph.

E EXPERIMENTAL PROTOCOL

In the following, we give a detailed overview of our experimental protocol.

Experiment A: Shuffled Timestamps We first use a simple shuffling model to generate temporal
graphs: Starting from a static k-regular random graph (n = 10, k = 3), we generate 250 temporal
graphs by simulating 500 random walks with length two for each of them. Traversed edges are
assigned consecutive timestamps t and t + 1 within each walk, with an additional time gap of
t+ 2 separating different walks. This leads to 250 temporal graphs with 1000 time-stamped edges,
each containing 500 time-respecting paths of lengths two (for δ = 1). For each graph we then
randomly permute timestamps for a fraction α of edges. This does not change edge frequencies, i.e.
it yields the same time-aggregated weighted graph. However, due to the arrow of time, shuffling the
timestamps of edges affects time-respecting paths and thus the causal topology. We assign original
temporal graphs to one class and graphs with shuffled timestamps to another class.

Experiment B: Cluster Connectivity In a second experiment we adopt the stochastic model pro-
posed in Scholtes et al. (2014). This model is based on a static graph with two strong communities,
each consisting of a k-regular random graph with k = 3 and n1 = n2 = 10 nodes that are intercon-
nected by two edges. Similar to experiment A, we randomly generate temporal graphs by simulating
500 second-order random walks of length two (using the same approach to assign timestamps). A
parameter σ ∈ (−1, 1) allows to tune random walk transition probabilities such that (i) for σ < 0
time-respecting paths between different communities are underrepresented compared to a shuffled
temporal graph, (ii) for σ > 0 time-respecting paths connecting different communities are over-
represented, and (iii) for all σ time-aggregated weighted graphs are identical (see (Scholtes et al.,
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Our model GAT TGN
batch size 200 50 200

weight decay 0.0001 0 0
learning rate 0.001 0.001 0.0001

DirGNN layers 32→ 16→ 8 – –
GatConv Layers – 8→ 64→ 64 –

dense layers 8→ 4→ 1 64→ 1 100→ 1
Pooling global add global mean global add

node feature dim 2 (OHE of node labels) n (OHE of nodes)
tunable parameters 3777 5825 192101

Table 2: Optimal hyperparameter values and number of tunable model parameters (i.e. model size)
for the experiments using temporal graphs generated by Model A and Model B.

Library/Software Version
CUDA cu121
torch 2.4.1+cu121

torch cluster 1.6.3+pt24cu121
torch scatter 2.1.2+pt24cu121
torch sparse 0.6.18+pt24cu121

torch geometric 2.5.1
pyg-lib 0.4.0+pt24cu121
pathpyG 0.2.0

Table 3: Version of key dependencies used in the implementation of our experimental evaluation

2014)). This model generates random temporal graphs that share the same time-aggregated static
topology, but whose causal topology differs in terms of how well nodes in different communities
are connected via time-respecting paths. We use this model to generate 250 temporal graphs for
different σ, assigning graphs generated with σ = 0 to one class and those generated with σ ̸= 0 to
another class.

We used the temporal graph learning library pathpyG to implement the random walk based models
for synthetic temporal graphs (Experiment A and B) explained in Section 6. We then used pathpyG
to generate compressed augmented event graphs for δ = 1 for all temporal graphs generated by the
two models.

We implemented the TGNN from Section 5 using pytorch-geometric (pyG) Fey & Lenssen
(2019). For message passing in the compressed augmented event graph, we use three convolutional
layers (with layer widths being hyperparameters) using pyG’s implementation of Dir-GNN (using
the GraphConv layer) proposed in Rossi et al. (2023). We use an add pooling layer and two dense
linear classification layers, where layer widths are hyperparameters. For all experiments, we address
a balanced, binary temporal graph classification task, i.e. given n temporal graphs Gτ

i (i = 1, . . . , n)
we want to learn a classifier C : {Gτ

i } → {0, 1}, with ground truth classes assigned as described
above. Importantly, for a Gτ

i we predict a single class rather than multiple classes for different
times t in the evolution of Gτ

i . We use a single output with sigmoid activation in the final layer and
train the model using binary cross entropy loss. We use a one-hot encoding of node labels in the
augmented event graph (cf. ℓV in Definition 8) as node features.

We used the binary cross entropy loss function.

For all experiments we ran the Adam optimizer with a weight decay of 0.0001 for 250 epochs with
a 80/20 training/test split, and a fixed batch size of 200 (temporal graphs). We performed a grid
search to tune hyperparameters (learning rate, width of GNN and dense classification layers). The
optimal hyperparameters used to obtain the results for experiment A, experiment B as well as the
comparison to the GAT model applied to the time-concatenated static graph as described in Section 6
are reported in Table 2.
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Figure 5: Standard deviation of accuracies of our TGNN model for classification of temporal graphs
with σ1 vs. σ2 for all pairs of σ1, σ2 (associated with right panel of Figure 3).
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Figure 6: Mean accuracy of accuracies of a GAT model for classification of temporal graphs with
σ1 vs. σ2 for all pairs of σ1, σ2. The mean standard deviation across all runs is 0.048.

More detailed information on library versions, parameter number of our models, as well as the
computational resources used during training are included in the appendix. In the appendix, we
further report the optimal hyperparameter values found in the grid search. Upon acceptance of our
manuscript, we will make the code of our experiments as well as a container description available to
ensure the reproducibility of our results.

We ran our experiments on a container-based (Singularity) HPC environment with 4.512 CPU cores
and 160 GPUs (122 x L40, 24 x L40s, 16 x H100). For our experiments we used a total of less than
30 GPU hours for training and evaluation.

F ADDITIONAL RESULTS

In this section, we include additional results for the temporal graph classification experiment B for
parameter pairs σ1, σ2, where we assign all temporal graphs generated for σ1 to one class, while all
temporal graphs generated for σ2 are assigned to the other class. In Figure 5 we show the standard
deviation of classification accuracies of our TGNN model, fitting the mean accuracies of our model
reported in the right panel of Figure 3 in Section 6.

The left panel of Figure 6 shows the mean accuracy of Graph Attention Network applied to the time-
concatenated static graph across 20 runs (mean standard deviation 0.048). We find that this model
is not able to reliably classify temporal graphs for any combination of parameters σ1, σ2.

Table 4 reports the additional results of our model and TGN on the real world datasets obtained by
adopting the shuffling approaches by Pritam et al. (2025)
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Data Our Model TGN
ants-1-1 1.00 ± 0.00 0.97± 0.02
ants-1-2 1.00 ± 0.00 0.92± 0.01
sp-workplace 1.00 ± 0.00 0.74± 0.11
sp-hospital 1.00 ± 0.00 0.82± 0.12
eu-email-dept2 1.00 ± 0.00 0.96± 0.02

Table 4: Mean classification accuracy on real-world datasets with classes obtaine from randomized
edges and configuration model (Pritam et al. (2025) For each dataset, we split the timeline into
windows of 500 timestamps, performed 10 runs per window, and report the average over all runs.

Experiment Accuracy

Compressed augmented event graph 0.95 ± 0.03

No node labels 0.66 ± 0.20
Message passing only in one direction 0.63 ± 0.18
No edge weights 0.81 ± 0.22

Table 5: Results of ablation study for experiment B (classification of temporal graphs generated for
σ = 0 vs. σ = 0.9).

G ABLATION STUDY

Table 5 shows results of an ablation study, where we selectively remove those aspects of our mes-
sage passing architecture, which –based on our theoretical analysis in Section 5– we predict to be
necessary to distinguish non-isomorphic temporal graphs. We first remove node labels that indicate
whether nodes in the augmented event graph represent nodes or time-stamped edges in the original
temporal graph (cf. ℓV in Definition 8). We then remove the bidirectional message passing dis-
cussed in Section 5. We finally ignore edge weights in the compressed event graph, as introduced
in Section 4. The results in Table 5 demonstrate that the message passing architecture proposed in
Section 5, which integrates all of those components, achieves the best performance (top-most row)
compared to other approaches (other rows).

19


	Motivation
	Related Work
	Preliminaries
	Isomorphisms in Temporal Graphs
	Message Passing for the Augmented Event Graph
	Experimental Evaluation
	Conclusion
	Equivalence of Temporal Graph Isomorphism Notions
	Temporal Event Graph Compression
	Comparison with Other Graph Isomorphisms
	Timewise Isomorphism with Time-Variant Node Labels

	Expressive Power of Message Passing on the Augmented Event Graph
	Experimental Protocol
	Additional Results
	Ablation Study

