
Reasoning Grasping via Multimodal Large Language
Model

Shiyu Jin1, Jinxuan Xu1,2, Yutian Lei1, Liangjun Zhang1
1Baidu Research, 2Rutgers University

reasoning-grasping.github.io

Abstract: Despite significant progress in robotic systems for operation within
human-centric environments, existing models still heavily rely on explicit human
commands to identify and manipulate specific objects. This limits their effective-
ness in environments where understanding and acting on implicit human inten-
tions are crucial. In this study, we introduce a novel task: reasoning grasping,
where robots need to generate grasp poses based on indirect verbal instructions
or intentions. To accomplish this, we propose an end-to-end reasoning grasping
model that integrates a multimodal Large Language Model (LLM) with a vision-
based robotic grasping framework. In addition, we present the first reasoning
grasping benchmark dataset generated from the GraspNet-1 billion, incorporat-
ing implicit instructions for object-level and part-level grasping. Our results show
that directly integrating CLIP or LLaVA with the grasp detection model performs
poorly on the challenging reasoning grasping tasks, while our proposed model
demonstrates significantly enhanced performance both in the reasoning grasping
benchmark and real-world experiments.
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1 Introduction

Robotic grasping has long been a subject of extensive study. The utilization of CNN-based neural
networks has demonstrated efficiency in generating high-quality grasping poses from visual input [1,
2, 3, 4, 5, 6]. One significant limitation of these methods is the lack of scene understanding. The
robot cannot identify the objects they are grasping. Recent methods have introduced language-
guided grasping with instructions such as “I want a stapler” [7] or “Pick the food box in front of
the ball” [8]. However, those methods will struggle when dealing with implicit instructions, where
the desired object is not explicitly named. For example, if a user says “I need to drink water”,
an intelligent assistant robot should identify and grasp a cup from a selection of household items,
although “cup” does not appear in the user’s instruction. Such scenarios are common in real-world
settings and the solutions to them remain open questions.

Recently, the advance of large language models like ChatGPT [9] has introduced new possibilities
for language reasoning. Beyond text, numerous studies have leveraged multi-modal Large Language
Models (LLMs) for visual understanding [10, 11, 12], enabling these models to interpret and gen-
erate responses based on both textual and visual inputs. However, these approaches focus on visual
comprehension and text generation, lacking the capability to generate robotic actions. While there
have been efforts to integrate LLMs with robotics [13, 14, 15, 16, 17, 18], these concentrate on
high-level planning.

In this work, we introduce the novel task of Reasoning Grasping (Fig. 1), where a robot determines
grasp poses based on users’ “implicit” instructions. “Implicit” instructions are language instructions
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Human: <image> I am hungry and 
would like to eat.
Please output the grasping pose.

Assistant: Here is the [SPT] peach [SPT].

Human: <image> For the shampoo in the image, which part do you unscrew to open the bottle? 
Please output the grasping pose.

Assistant: Here is the [SPT] cap of shampoo [SPT].

Part Grasping

Human: <image> Pick up the marker. 
Please output the grasping pose.

Assistant: Here is the [SPT] marker [SPT].

Explicit Instruction

Human: <image> What do you see on the table? Is there a power drill? 

Assistant: Here is the [SPT] handle of power drill [SPT].

Multi-round Conversation

Assistant: Yes, there is a power drill. It is sitting on top of a workbench along with other items.
Human: What part of this power drill do you grasp to operate it? Please output the grasping pose.

Implicit Instruction

Figure 1: Overview. We integrate the reasoning abilities of multi-modal Large Language Models
with robotic grasping. The resulting model interprets complex and implicit instructions, accurately
predicts robotic grasping poses for target objects or specific parts within cluttered environments, and
supports multi-round conversations with users. In the textual output from the model, the grasping
target is indicated by two special tokens [SPT], as demonstrated in the figure. The output grasp
poses are visualized in the images with rectangles.

that do not specify the name of the grasp target. A formal definition of reasoning grasping and
implicit instruction is given in Sec 3.

To address the reasoning grasping task, we propose a model that directly output grasp poses accord-
ing to image inputs and language instructions in cluttered environments. Specifically, this model
leverages a multi-modal LLM to interpret both images and instructions. We employ a special to-
ken strategy to identify tokens that are relevant to the grasping target (i.e., names of target objects).
Subsequently, embeddings of these identified tokens are used to generate accurate grasping poses.
To train this model, we extend the GraspNet-1 billion dataset [19] with diverse implicit instructions
and object part grasping.

Our contribution can be summarized as follows: (1) We introduce a novel task of reasoning grasping,
which directs robots to grasp objects based on implicit instructions. (2) We propose a multi-modal
LLM for reasoning grasping. Our experiments demonstrate the model’s promising performance. (3)
We have developed a unique dataset for the reasoning grasping task. It includes 64 objects, 109
parts, 1,730 reasoning instructions, and around 100 million grasping poses. This dataset provides a
comprehensive resource for training and evaluating models on reasoning grasping tasks.

2 Related Work

Robotic Grasping. Robotic grasping has traditionally relied on analytical methods [20, 21, 22],
which focus on understanding the geometry of objects or analyzing contact forces. Convolutional
neural networks (CNNs) based methods [1, 2, 3, 4, 5, 6] utilize large datasets of labeled grasping
examples [23, 24, 19] to train models to predict grasps based on visual input. A critical limitation
of both analytical and CNN-based methods is their lack of scene understanding and inability to
process language instructions. They do not inherently know what they are grasping, which restricts
their application in more dynamic, human-centric environments. Recent advancements in robotic
grasping have seen the integration of language understanding, enabling robots to grasp objects based
on natural language instructions [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]. This shift allows robots
to identify and manipulate objects as specified by users, enhancing their utility in complex scenarios.
However, those models require explicit object names as the input and struggle to understand complex
and implicit language instructions.
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LLMs for Robotics. Large Language Models (LLMs) [36, 37, 9, 38] are impressive in under-
standing and generating human-like text. Multi-modal LLMs can seamlessly integrate with other
modalities, such as vision, enhancing their proficiency in tasks like visual understanding [12]. There
are also a lot of efforts integrating LLMs with robotics. Many studies [13, 14, 15, 39] have integrated
LLMs into closed-loop planning structures, decomposing language-conditioned long-horizon tasks
into small steps. Yet, the gap between language instructions and actions still remains. Furthermore,
some studies [16, 17, 18, 40] have employed program-like specifications to prompt LLMs, meld-
ing planning and action using a predefined library of action functions. There is also an increase in
research focused on utilizing LLMs for robotic grasping. Tang et al. proposed GraspGPT to use
LLMs to generate semantic knowledge and then selected task-oriented grasp pose from grasp candi-
dates [41]. Mirjalili et al. proposed LAN-grasp to identify the optimal part of an object for grasping
with LLM, treating the rest as obstacles, and then applied a traditional grasp planner to determine
the best grasp [42]. Compared to GraspGPT and LAN-grasp, which utilize modular frameworks
that depend heavily on other pre-trained grasp detection models, our method utilizes an end-to-end
training framework and can operate in cluttered scenes.

3 Reasoning Grasping

In this section, we define the task of Reasoning Grasping, which aims to generate a robotics grasp
pose g, given an input textual instruction t, an input RGB image v, and, optionally, an input depth
image vd. In the reasoning grasping task, instructions t are not limited to being straightforward,
they can also be “implicit”. We define implicit instructions as language instructions that do not
explicitly specify the name of the grasp target but provide relevant contextual cues or indicate users’
intent implying the grasp target. For example, implicit instructions may include cues such as shapes,
colors, or other attributes of grasp targets, or they may describe users’ needs or intent implying the
grasp targets based on their functionalities. Some application scenarios are “Users cannot visually
confirm the robot’s surroundings” or “Tasks that require internal knowledge for decision making”.
We include the motivations and detailed applications scenarios in Appendix A.

4 Reasoning Grasping via Multi-modal LLMs

I want some hot chocolate,
could you bring me some?
Please output grasp pose.

Input RGB Image 𝑣

Input Instruction 𝑡
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Here is the [SPT] cup [SPT] .
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Figure 2: Framework of the proposed reasoning grasping model. This model processes visual
images v and textual instructions t to output the grasp pose g for the specified target object or part.
The embeddings of the grasp target are passed to the grasping module for grasping poses detection.

In this section, we present our model for reasoning grasping that utilizes the reasoning ability of
multi-modal LLMs by integrating the extracted features from its textual outputs into the robotic
grasping prediction process.
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4.1 Architecture

The proposed model framework is illustrated in Fig. 2. As for multi-modal LLMs, we utilize the
pre-trained LLaVA [12] enhanced with LoRA [43] fine-tuning techniques. LLaVA integrates a
CLIP [44] visual encoder with LLaMA [38], an open-source Large Language Model comparable
in performance to GPT-3 [37]. And LoRA, known for its computational efficiency, is incorporated
into both the projection layer and all linear layers of multi-modal LLMs.

The key role of multi-modal LLMs in the proposed model is to interpret both instruction t and image
v, then accurately identify the grasping target. Such a target could be an object or, more challenging,
a specific part within cluttered scenes. To address the verbosity of LLM outputs, we introduce a
special token, i.e., [SPT], strategically placed around the names of the grasping target in the LLM
textual outputs. For instance, [SPT] grasping target name [SPT]. The purpose of introducing this
special token is to identify and isolate the crucial tokens, specifically, the names of the grasping
target, from the textual outputs generated by LLMs.

Once the grasping target is identified using the special token, we proceed to extract the last-layer
embeddings of its corresponding tokens. It is important to note that there could be multiple tokens
associated with the identified grasping target, and we extract embeddings for all identified tokens.
These extracted embeddings encapsulate the essential linguistic information related to the grasping
target. We then compute the average of these embeddings denoted as havg, which is passed through
a projection network to obtain the feature f . This feature f is then fed into the image-based grasping
detection process, guiding the prediction of the grasp pose.

The grasping detection in our model, rooted in the CNN-based robotic grasping framework in [2],
takes n-channel images as inputs. The input image is first passed through three convolutional layers
and five residual layers. The extracted visual features are concatenated with the embeddings ob-
tained from the reasoning module. Following this, we use the convolutional transpose operation to
up-sample this concatenated feature, increasing its size to match the input image size. The model
subsequently generates four output images, each representing different aspects of the grasp pose
g = (x, y, θ, w, q): the grasp quality score q, the rotation angle expressed in cos 2θ and sin 2θ, and
the required width w for the end-effector. The definition of the grasp pose aligns with previous
work [2, 1]. The grasp central coordinate (x, y) is determined from the output image of the grasp
quality score. This is obtained by selecting the point in the image with the highest quality score.
Notably, the depth image vd is an optional input modality for the grasping prediction, depending on
data availability.

4.2 Loss Function

The proposed end-to-end model is trained by a combination of text generation loss Ltext and grasp-
ing prediction loss Lgrasp. The overall objective L is a weighted sum of these two components,
formulated as follows:

L = λtLtext + λgLgrasp, (1)

where λt and λg are parameters that determine the relative weights of two loss terms, respectively.
Here Ltext represents the auto-regressive cross-entropy loss for the textual output generated by
LLMs, which assesses the performance of identifying the correct grasping target according to input
instructions. On the other hand, Lgrasp evaluates the accuracy of the output grasping predictions,
adhering to the loss definition detailed in [2].

4.3 Training Strategy

The proposed method leverages the pre-trained LLaVA model, with the LoRA technique for fine-
tuning during the training phase. With LoRA fine-tuning, the multi-modal LLM can generate the
grasp target within just a few epochs. Based on this observation, our training strategy involves
freezing the parameters of the LoRA-enhanced model after the initial epochs. Specifically, from
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the third epoch, we set the parameter λt in the loss function to 0 and freeze the parameters of the
LoRA-enhanced model. Our training then focuses exclusively on other parameters outside the LoRA
framework. This approach is designed to reduce the training time and expedite the convergence of
the model, particularly in terms of grasping prediction.

Regarding the datasets used for training, our model utilizes both the reasoning grasping dataset (de-
tailed in Section 5) and the original LLaVA Instruct 150K dataset [12] utilized in LLaVA’s training.
To maintain LLaVA’s visual reasoning capabilities, we initially train the model using both datasets
concurrently for the first two epochs. Starting from the third epoch, with the LoRA parameters
frozen, the model’s training proceeds solely with the reasoning grasping dataset.

5 Reasoning Grasping Dataset

To train the model for reasoning grasping tasks, we introduce our reasoning grasping dataset, which
builds upon the GraspNet-1 billion dataset [19]. GraspNet-1 billion consists of 190 indoor tabletop
RGB-D scenes, 88 objects, and 97,280 images. Its wide variety of scenes, objects, and grasp poses
provides an excellent foundation. We extend the GraspNet-1B dataset with reasoning instructions as
well as object parts grasping annotations. We provide some examples in our dataset in Appendix F.

5.1 Reasoning Instruction Generation

We developed a unique and detailed method to create reasoning text instructions for our dataset
by creating detailed object descriptions, automated generation with GPT-4, and manual review (Ap-
pendix D). The generated instructions enable robots to grasp based on nuanced, context-rich queries.

Description Creation. The initial step in our instruction generation process involved creating de-
tailed descriptions for each object and part, providing essential information such as functionalities,
physical attributes, and typical uses. For instance, a pair of scissors was detailed as “A handheld
cutting instrument with two crossing metal blades pivoted together, typically used for cutting paper
or fabric. This particular pair has a black handle with yellow inner grips.” These descriptions served
as the foundation for generating indirect questions and instructions.

Automated Generation with GPT-4. The next step involved generating instructions automatically
using GPT-4. An example prompt is provided in Appendix C. GPT-4 was employed to generate
indirect questions and instructions for various objects and their parts. The output consists of 10
strings: 5 indirect questions that reference the object’s functions or design, and 5 indirect instructions
that describe actions involving the object or its usage in certain tasks. These are crafted to be specific,
relevant, and direct for grasping tasks.

Manual Review and Refinement. Post-generation, each set of GPT-generated instructions under-
went a manual review and refinement process. The manual intervention allowed us to fine-tune the
language, enhancing the quality and applicability of the instructions for the targeted objects and
their parts. This semi-automated approach balanced the efficiency of machine-generated content
and judgment of human experts.

5.2 Part Annotation

We manually segmented the part point clouds of each object using a specially developed annotation
tool. The segmentation process was guided by an understanding of how humans typically interact
with and use various parts of an object. For instance, a knife was divided into its blade and handle,
reflecting the distinct functional roles of each part. The ground truth grasping poses are assigned to
the nearest part. We include the details of part annotation in Appendix E.

5.3 Dataset Statistics

In ensuring data quality, low-quality grasping poses were eliminated based on confidence evalua-
tions and objects lacking semantic information were removed. In total, our enhanced dataset com-
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prises an extensive collection of 1,730 instruction pairs, 64 objects, 109 segmented parts, and around
100 million associated grasping poses. Unlike other grasping datasets, we offer detailed reasoning
instructions and part-specific grasping information.

6 Experiments

In this section, we report the experiment results of the proposed method on the reasoning grasping
dataset and real-world experiments. In the following experiments, we utilize both explicit instruc-
tions, such as “Pick up the <object>”, as well as implicit instructions that do not directly mention
the grasping target.

6.1 Baselines

For the problem of reasoning grasping, we implement two baselines to compare with our proposed
model. One baseline employs a CLIP text encoder [44] to extract textual features, while the other
utilizes a modular approach incorporating the latest LLaVA model.

CLIP + GR-ConvNet Baseline. In this baseline, we combine a CLIP text encoder with a CNN-
based grasp detection model, GR-ConvNet [2]. We first utilize the CLIP text encoder to extract the
textual feature from input instructions, and this feature is then integrated into the hidden layers of
GR-ConvNet. While CLIP can effectively extract language features relevant to visual content, it
may fall short in capturing implicit reasoning compared to the VLM.

LLaVa → GR-ConvNet Baseline. This is a modular baseline that integrates the latest LLaVA-
1.6-34b [45] with a pre-trained grasping detection model GR-ConvNet. As LLaVA cannot directly
output the grasping pose, this baseline operates in two stages to obtain the grasping pose: first,
LLaVA takes an image and an instruction as the input and is prompted to output a bounding box
of the target object in the image. Then GR-ConvNet detects the optimal grasping pose within this
specified bounding box. Note that LLaVA-1.6-34b has a much higher performance than LLaVa-v0-
7b [12], which is the base model of our proposed reasoning grasping model. This baseline mirrors a
similar process to LAN-grasp.

6.2 Results

Table 1: Text generation accuracy.

Explicit Instruction Implicit Instruction
Object Grasping 99.01% 92.52%

Part Grasping 95.33% 88.79%

Text Generation. We first evaluate the preci-
sion of text generation by the fine-tuned multi-
modal LLM in the reasoning module. Ac-
curately generating special tokens and target
names is crucial, since this identified grasping
target will be utilized in the subsequent grasp-
ing module. We differentiate between explicit
instructions, which directly mention the object’s name, and implicit instructions, which hint at the
target object without stating its name. Note that the instructions used for testing were not seen dur-
ing the training phase. Results, presented in Table 1, show that our model can successfully interpret
92.52% and 88.79% of implicit instructions for object grasping and part grasping, respectively. This
demonstrates our model’s good reasoning capabilities in understanding the grasping instructions.

Reasoning Grasping Result. Table 2 shows the grasp prediction results on the reasoning grasping
dataset. Performance is reported using the rectangle evaluation metric [3]. A grasp pose is deemed
valid if it fulfills the following two conditions: 1) The Intersection over Union (IoU) score between
the predicted and ground truth rectangles exceeds 25%; 2) The angular deviation between the ori-
entations of the predicted and ground truth rectangles is less than 30 degrees. We reported R@k,
indicating the presence of valid grasps within the top-k grasp predictions. Four distinct scenarios
are evaluated, categorized by the combination of instruction types (explicit or implicit) and grasping
targets (object or part). We assess both baseline models and our reasoning grasping model with and
without depth input. Note that when depth information is utilized in the reasoning grasping model,
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Table 2: Grasp prediction accuracy on the reasoning grasping dataset.

Explicit Instruction Implicit Instruction Explicit Instruction Implicit Instruction
Object Grasping Object Grasping Part Grasping Part Grasping

Models R@1 R@3 R@1 R@3 R@1 R@3 R@1 R@3

LLaVA → GR-ConvNet 26.80% 44.66% 18.34% 31.29% 15.38% 37.93% 0.92% 8.53%
CLIP + GR-ConvNet 50.40% 66.38% 44.35% 61.09% 43.78% 59.61% 28.88% 47.37%
Reasoning Grasping 64.49% 86.92% 63.55% 77.57% 59.81% 81.31% 61.68% 83.18%

LLaVA → GR-ConvNet (with depth) 31.88% 45.95% 20.39% 34.84% 20.11% 36.63% 1.36% 11.95%
CLIP + GR-ConvNet (with depth) 54.11% 69.57% 45.89% 62.50% 45.53% 62.27% 33.06% 52.25%
Reasoning Grasping (with depth) 60.75% 76.63% 57.94% 77.46% 69.16% 77.55% 64.48% 80.37%

it only serves as input for the grasping module and is not incorporated into the reasoning module, as
shown in Fig. 2.

The results show that our reasoning grasping model outperforms the LLaVA → GR-ConvNet and
CLIP + GR-ConvNet baselines across all scenarios. The first baseline, LLaVA → GR-ConvNet,
shows limited effectiveness, as the direct combining of two models fails to convey sufficient infor-
mation for accurate grasp detection. Although the CLIP + GR-ConvNet baseline exhibits some
improvements, it still falls short, particularly in scenarios involving part grasping with implicit in-
structions. This indicates CLIP’s limited capability in processing implicit instructions. In contrast,
our model excels in all scenarios, both with and without depth input, showcasing its superior ability
to interpret implicit instructions and accurately generate the corresponding grasping poses. Note that
some common failure cases are distinguishing objects with similar appearances, such as a shampoo
bottle and a hair conditioner bottle, or identifying specific parts of complex objects like the uniformly
colored toy camel.

Visual Reasoning Ability. Besides reasoning grasping, we also examine the visual reasoning ca-
pabilities of our model. The objective is to determine whether the model, after being fine-tuned,
maintains the visual comprehension skills of the original LLaVA model. For a quantitative evalua-
tion of performance, we employ a GPT-4 judge to assess the quality of responses generated by our
model. This is inspired by the evaluation methods in [12, 46]. According to the judge of GPT-4,
the original LLaVA-7B-v0 achieves 8.25/10 when taking ground-truth textual descriptions as refer-
ences. On the other hand, our model achieves 7.43/10 under the same GPT-4 judge. This shows that
our fine-tuned model still preserves a good portion of the reasoning ability of the original LLaVA.
We include the details of the experiments in Appendix J.

6.3 Real World Experiments

Figure 3: Real world experiments with implicit in-
structions.

We conduct real-world experiments to
evaluate the proposed reasoning grasp-
ing model and the CLIP + GR-ConvNet
baseline. A 7-DoF Franka Emika Panda
equipped with a Franka Hand parallel
gripper was utilized for grasping execu-
tion. To perceive the objects, one Azure
Kinect was positioned in front of the robot.
A cropped 480 × 480 RGB image of the
workspace was utilized as the input to the
model. To execute the 2D grasps gener-
ated from the model, we always apply a
top-down grasp with the height computed
using the depth of the grasping point. In
our experiments, we randomly place 4-8
objects on a tabletop and provide either explicit or implicit language instruction to the robot to grasp
an object or a specific part, as shown in Fig. 3. We select objects that are either identical or sim-
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ilar to those in the dataset. We deliberately excluded any objects or parts that are not infeasible
for grasping, such as items too wide for the robot’s gripper. The performance is evaluated using
three evaluation metrics: the correctness of generating special tokens and grasping target names, the
accuracy of the output grasp pose, and the success in lifting the object. The results are reported in
Table 3.

Table 3: Real-world experiment results.

Model Token Accuracy Pose Accuracy Execution Success

Object / Explicit CLIP + GR-ConvNet N/A 5/10 2/10
Reasoning Grasping 10/10 7/10 5/10

Object / Implicit CLIP + GR-ConvNet N/A 3/10 2/10
Reasoning Grasping 9/10 5/10 3/10

Part / Explicit CLIP + GR-ConvNet N/A 5/10 3/10
Reasoning Grasping 10/10 7/10 4/10

Part / Implicit CLIP + GR-ConvNet N/A 2/10 2/10
Reasoning Grasping 10/10 6/10 4/10

Overall our pro-
posed model can
generate accurate
special tokens and
target names 39 out
of 40 trials. This
again shows the
excellent reasoning
capabilities of our
model to interpret
the various instruc-
tions. The failure
case involved the model incorrectly identifying a screwdriver instead of scissors in response to
a prompt requesting a tool to open a package box. We classified it as a failure solely because
it did not match the specific pairing in our dataset, which serves as the basis for our evaluation
metrics. This example underscores that even when the model’s response is technically incorrect,
it is still reasonable. In terms of grasping performance, we assessed top-3 output grasp poses and
manually selected the most feasible one for execution on the robot arm. We conducted 10 trials
for each scenario, totaling 80 trials, to compare reasoning grasping with CLIP + GR-ConvNet
baseline. The CLIP + GR-ConvNet baseline and our reasoning grasping model produced 15/40
and 25/40 accurate grasping poses, respectively, with the success rates for lifting objects are 9/40
and 16/40, respectively. The main reasons for accurate poses but fail to lift were due to the object
slipping from the gripper or the object being too heavy. The experiment results demonstrate that our
model outperforms the baseline in four distinct scenarios, showing its superior ability in reasoning
grasping tasks. It’s important to emphasize the unique challenges posed by our study, which involve
“implicit” instructions, grasping in cluttered environments, and task-oriented objects/parts grasping.
This level of complexity has not been studied before. As a comparison, a recent study [8] deals
with grasping in cluttered environments with “explicit” instructions achieves 60% for grounding
accuracy (accurate poses) and 20% for success rate (success lift), respectively.

7 Conclusion

In this paper, we introduce a novel task of reasoning grasping, where robots need to interpret and
generate grasping poses based on implicit instructions. By leveraging the reasoning ability in a
multi-modal large language model, our proposed model can understand indirect verbal commands
and generate corresponding grasping poses. In addition, we also present the first dataset for rea-
soning grasping, derived from the GraspNet-1 billion dataset, featuring implicit human instructions
alongside object and part grasping annotations. Experiment results demonstrate that our approach
can effectively comprehend implicit instructions and accurately generate corresponding grasping
poses. Overall, this work offers valuable insights bridging implicit human instructions and generat-
ing precise robot actions.

While the proposed reasoning grasping model shows promising results, the model is limited when
generating optimal grasping poses for novel objects and refining poses through conversational in-
teractions. A possible reason is that the variety of objects with grasping annotations is still limited.
For future work, the LLaVA-v0-7b model is not the state-of-the-art Visual Language Model. Other
models such as LLaVA-1.6 [45] or GPT-4V [47] have shown much better performance and stronger
ability in terms of visual understanding. Our model’s architecture, with its modular reasoning and
grasping components, allows for flexibility in upgrading to more sophisticated models in the future.
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A Motivations and Application Scenarios

We aim to advance robotic systems to not only understand direct human commands but to also
possess the reasoning capability to interpret implicit instructions. These implicit instructions can
provide a general description of users’ needs, requiring the robot to infer the grasping target on its
own, without explicitly naming the object. This is very common in real-world scenarios. Here are
several practical application scenarios where direct instructions may be unavailable:

• Users cannot visually confirm the robot’s surroundings: For example, blind people can
instruct the robot to “find a sweater in a warm color that matches the pants”. The robot
could also be asked to “find something to hold these papers together”, where it might
choose from a stapler, paper clips, or binder clips based on availability.

• Tasks that require internal knowledge for decision making: Robots can utilize their
internal knowledge for tasks like sorting in recycling facilities. They could be instructed
to “sort materials that are recyclable and compostable”, identifying items based on texture
and material type, which facilitates sorting without the need to know whether the objects
are recyclable or not.

• Naming objects is impractical or complex: In some situations, explicitly naming objects
is impractical or the names are complex and difficult to remember. For instance, telling
a robot, “I need my morning medicine”, allows the robot to use its routine knowledge to
fetch the correct medication without the user needing to recall specific drug names, which
are usually long and complex.

• Managing multiple items: Explicitly naming multiple objects can be cumbersome and
inefficient. In emergency medical situations, a medical robot might be instructed to “gather
all items necessary for suturing wounds”. It would need to discern which tools and supplies
are relevant, such as needles, thread, and antiseptics, based on the medical context provided.
For general tidying tasks in home organization, a home robot could be instructed with
phrases like “The living room is messy, tidy up by picking up toys”, allowing the robot to
identify and collect toys without naming each item individually (e.g., teddy bear, toy train,
etc.).

B Compared to Other Methods.

Here we provide detailed comparisons with similar approaches: GraspGPT [41], LAN-grasp [42],
and GPT-4v [48].

B.1 Compared to GraspGPT and LAN-grasp.

Clutted scenes. GraspGPT and LAN-grasp are designed to grasp specific parts of single objects,
whereas our method focuses on grasping in cluttered scenes. During our experiments, we intention-
ally tested our model in cluttered scenes to assess its ability to reason about grasping targets. These
targets could be entire objects or, more challenging, specific parts within cluttered scenes.

End-to-end trained. One significant distinction is that our model is an end-to-end system for di-
rectly generating numerical grasp predictions. However, GraspGPT and LAN-grasp have modular
frameworks that both employ external pre-trained models for grasp detection.

• GraspGPT, illustrated in Figure 4, has to take grasp candidates as the input. GraspGPT
serves as a grasp evaluator, selecting a grasp pose from given input grasp candidates, which
are generated from pre-trained models. This reliance on frozen models designed for single
objects limits GraspGPT’s adaptability to complex environments, such as cluttered scenes.

• LAN-grasp generates the bounding boxes of targets using Vision-Language Models (e.g.,
OWL-Vit [49]) and then uses GraspIt! [50] for determining the output grasp pose. This
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Figure 4: Comparison of our method with GraspGPT and LAN-grasp.

process without any trainable model heavily depends on the performance of utilized pre-
trained models. Also, it is challenging to adapt LAN-grasp to new tasks or scenes. More-
over, our baseline“LLaVA → GR-ConvNet” mirrors a similar process to LAN-grasp, uti-
lizing LLaVA [12] for bounding box identification and a pre-trained GR-ConvNet [2] for
grasp pose detection. However, its performance is unsatisfactory when applied to cluttered
scenes on our reasoning-grasping dataset, as shown in Table III of the paper. In contrast,
our model jointly trains language models and grasping detection models, eliminating the
need for external pre-trained models. Experimental results (Table III) demonstrate that our
end-to-end approach outperforms modular frameworks such as “LLaVA → GR-ConvNet”.

B.2 Compared to GPT-4v.

While models like GPT-4 with vision (GPT-4v) [48] show potential in tasks such as object detection,
they still face challenges in new tasks with generating unique numerical predictions like grasp poses,
despite careful prompting. To illustrate GPT-4v’s ability to generate numerical predictions for novel
tasks like robotic grasping, we conduct additional experiments using both zero-shot and few-shot
prompting techniques. Specifically, we use images from the benchmark Cornell Grasp dataset [4],
where each image contains only a single object. GPT-4v is prompted to generate grasp poses for
the object in the scene. As shown in Figure 5, adapting GPT-4v to new grasp detection tasks,
even in simple scenarios with single objects, remains challenging despite careful prompt design and
providing examples.

GPT-4vUser
<Input example image here>

Goal: Generate the numerical grasp pose used for a robot arm to grasp the 
object in the image from the top.

The grasp pose should be in the rectangle representation which contains 2D 
pixel coordinates of four corners of the rectangle. The center of this rectangle 
should be the grasping point for the gripper, normally targeting the most 
secure part of the grasping. The rectangle can be rotated between (-pi/2, pi/2) 
in radians, representing the gripper rotation angle for better grasping. 
The output grasp pose should be in the format of [[left_top_corner_x, 
left_top_corner_y], [left_bottom_corner_x, left_bottom_corner_y], 
[right_top_corner_x, right_top_corner_y], [right_bottom_corner_x, 
right_bottom_corner_y]].
Here is the ground truth grasp pose for the object in the example image:
[[263, 278], [289, 280], [290, 261], [264, 259]]

Generate the grasp pose for the object in the following input images…

Figure 5: Grasping detection with few-shot prompting using GPT-4v on Cornell Grasp dataset.
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C Prompt for Instruction Generation

You are tasked with creating specific, indirect questions and instructions that a robot 
could use to identify and interact with objects based on their names or detailed 
descriptions provided by users. When an object is given, such as a pair of scissors 
described as "A handheld cutting instrument with two crossing metal blades pivoted 
together, typically used for cutting paper or fabric. This particular pair has a black 
handle with yellow inner grips," you must formulate responses that precisely hint at the 
object's uses or features without naming it directly. The aim is to enable the robot to 
deduce the correct object through these indirect cues, enhancing its ability to understand 
and execute tasks involving the object.

Your output should include:
• Indirect Questions (5 Total): Construct questions that indirectly reference the object's 
specific functions, design attributes, or contexts in which it is used. These questions 
should guide the robot to consider the essential features or tasks the object is 
associated with, aiding in its identification without directly mentioning the object's 
name.

• Indirect Instructions (5 Total): Develop instructions that subtly describe actions 
involving the object or request its utilization for particular tasks. These instructions 
should be carefully phrased to convey the object's use or physical characteristics 
indirectly, allowing the robot to infer which object is needed without explicit naming.

Please format your responses as a list of 10 strings, organized as follows: ['Indirect 
Question 1', 'Indirect Question 2', ..., 'Indirect Question 5', 'Indirect Instruction 1', 
..., 'Indirect Instruction 5’].

In structuring your responses, prioritize:
• Specificity and Relevance: Use language that precisely hints at the object's attributes 
or uses, ensuring the robot can accurately identify and grasp the intended object.

• Directness and Functionality: While maintaining indirectness, your hints should be 
straightforward and functional, focusing on enabling the robot to understand and act 
upon the instructions or questions effectively.

• Consistency and Clarity: Ensure each hint is consistently structured and clear, avoiding 
overly creative or ambiguous phrasing that could confuse the robot's learning process.

This methodical approach is designed to improve the robot's ability to interpret indirect 
language and identify objects based on functional cues, thereby enhancing its interaction 
with and manipulation of objects in its environment.

System Prompt for Instruction Generation

Figure 6: Example Prompts used for Initial Reasoning Instruction Generation with GPT-4
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D Reasoning Instruction Generation

Figure 7: Reasoning instruction generation. The instructions generation process involves 1) Ob-
ject/Part Descriptions; 2) Automated Generation with GPT-4; and 3) Manual Review and Refine-
ments.

E Part Segmentation and Grasping Pose Annotation

Our dataset’s annotation process includes two key components: pose assignment and pose projec-
tion, for both 3D and 2D grasping poses, as shown in Fig. 8. Pose assignment involves aligning
the grasping poses with the nearest part of the object. For each object’s segmented parts, we deter-
mine the grasping center of each point. These grasping poses are then assigned to the nearest part,
ensuring an accurate association with the specific object part they correspond to. Pose projection
transforms the grasping poses of parts into both 3D and 2D representations. This is achieved using
camera matrices and object transformations. In the case of 3D, the original grasping poses are pre-
served in the spatial domain. For 2D projection, the 3D points of each segmented part are projected
onto 2D images. This results in 2D masks that depict the spatial distribution of each part on the
image plane. Grasping poses within these masks are then mapped to the corresponding parts in 2D.

Figure 8: Part grasping annotation process: 1) the object’s point cloud is manually segmented into
distinct parts; 2) annotated grasping poses are allocated to each segmented part of the object; and 3)
the grasping pose is projected to 2D and 6D.
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F Examples of Reasoning Grasping Dataset

Part GraspingObject Grasping

Figure 9: Our reasoning grasping dataset enriches the GraspNet-1 billion dataset [19] with addi-
tional annotations for part-level grasping and reasoning instructions.

G Comparison with Different Datasets

Table 4: Comparison with different datasets

Grasp

Label
Modality

Multi

Object

Num.

Objects

Grasps

per Object

Num.

Grasps

Num.

Samples

Part

Annotations

Reasoning

Instructions

LISA[51] ✗ RGB ✔ N/A N/A N/A 1,218 ✗ ✔

DectGPT [52] ✗ RGB ✔ N/A N/A N/A 5,000 ✗ ✔

Cornell [23] Rect. RGB-D ✗ 240 33 8,019 1,035 ✗ ✗

Jacquard [24] Rect. RGB-D ✗ 11,619 ∼ 20 1.1M 54,485 ✗ ✗

GraspNet [19] 6D 3D ✔ 88 ∼400K 1.2B 97K ✗ ✗

OCID-Grasp [53] Rect. RGB-D ✔ 89 ∼ 7 75K 1,763 ✗ ✗

MetaGraspNet [54] 6D 3D ✔ 82 1-5K N/A 217K ✗ ✗

ACRONYM [55] 6D 3D ✔ 8,872 2,000 10.5M N/A ✗ ✗

Grasp-Anything [56] Rect. RGB ✔ 3M 200 600M 1M ✗ ✗

ReasoingGrasp (ours) 6D RGB-D ✔ 64 ∼40K ∼99.3M 97K ✔ ✔
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H Object and Part Statistics

Object Name Part Name
6D Grasps

per Sample

Rect Grasps

per Sample

Num.

Scenes

0 Cracker Box - 10,971 4,672 35

1 Tomato Soup Can - 16,625 8,284 34

5 Banana Stem, Flesh 1,298 2,941 25

7 Red Mug Handle, Rim, Body 3,363 2,045 25

8 Power Drill
Handle, Chuck,

2,445 4,476 26
Battery Pack, Body

9 Scissor Handle, Blade 548 574 22

11 Strawberry - 130 903 24

14 Peach - 960 1,922 25

15 Pear - 948 2,069 26

17 Orange - 581 1,466 32

18 Knife Handle, Blade 1,975 1,526 29

20 Red Screwdriver Handle, Shaft 1,191 1,910 29

21 Racquetball - 443 573 6

22 Blue Cup Rim, Body 3,960 2,770 29

36 Daobao Wash Soap Cap, Body 2,594 1,744 25

37 Nzskincare Mouth Rinse Cap, Body 1,806 1,786 24

38 Daobao Sod Cap, Body 3,256 2,227 25

40 Kispa Cleanser Cap, Body 931 1,654 25

41 Darlie Toothpaste Cap, Body 442 1,181 25

43 Baoke Marker Cap, Body 953 697 21

44 Hosjam Toothpaste Pump Pump, Body 725 1,958 22

46 Dish Rim, Body 8 22 25

48 Camel Legs, Head, Body 96 663 25

51 Elephant
Legs, Head,

218 1,692 24
Body, Truck

52 Rhinocero
Legs, Head,

152 1419 22
Body, Horn

57 Weiquan Chicken Bouillon Cap, Body 2,297 2,617 25

58 Darlie Toothpaste Box - 5,526 1,646 25

60 Black Mouse - 170 618 25

61 Dabao Facewash Cap, Body 4,683 2,297 22

62 Pantene Shampoo Cap, Body 502 1,175 26

63 Head Shoulders Supreme Cap, Body 777 1,700 24

66 Head Shoulders Care Cap, Body 1,338 1,269 24

70 Tape - 4,465 1,859 25

Table 5: Selected Objects and Parts for the Training Split of the Dataset
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I Hyperparameters

For the multi-modal LLM in the proposed model, we utilize the pre-trained LLaVA-7B-v0, which
is derived from the large language model LLaMA-7B. As for the LoRA fine-tuning, we choose a
rank r = 64. During the training, we use the batch size of 8, and the learning rate is set to 5e − 4,
utilizing a cosine annealing schedule for adaptive learning rate adjustment. For the relative weight
parameters in the loss function 1, we set λt = 1 and λg = 1 for the initial configuration, and starting
from the third epoch, the parameter λt is adjusted to 0. For the train-test-split, we use 90% of the
first 100 scenes in GraspNet-1 billion [19] for training and 10% of the first 100 scenes for testing.
We sampled 50k from the original LLaVA Instruct 150K dataset [12] to mix with 100k grasping
data to maintain the visual reasoning capabilities.

J Experiments on Visual Reasoning Ability.

To evaluate the visual reasoning capabilities of our model, we employ a GPT-4 judge to assess the
quality of responses generated by our model. For each given image and question pair, both the
original LLaVa model and our fine-tuned version provide answers related to the input image. We
subsequently submit the questions, and answers from both LLaVA and our model, along with the
ground-truth text descriptions, to a text-only GPT-4-based judge. This judge assesses the responses
based on their helpfulness, relevance, accuracy, and level of detail in comparison to the ground-truth
descriptions. GPT-4 then allocates an overall performance score ranging from 0 to 10, where higher
scores denote superior performance. The image-question-answer sets used in this evaluation are
randomly chosen from the LLaVa-Instruct-150k dataset [12] with multi-round conversations.
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