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Abstract. Numerous unlabeled data is useful for supervised medical
image segmentation, if the labeled data is limited. To leverage all the un-
labeled images for efficient abdominal organ segmentation, we developed
semi-supervised framework with cross supervision using siamese network,
i.e., SemiSeg-CSSN. Cross supervision enables the two networks to op-
timize the network using pseudo-labels generated by the other. More-
over, we applied the cascade strategy for the task because of the large
and uncertain locations of the abdomen regions. To validate the effects
of unlabeled data, we employed an unlabeled image filtering strategy to
select the unlabeled image and their pseudo label images with low uncer-
tainty. On the FLARE2022 validation cases, with the help of unlabeled
data, our method obtained the average dice similarity coefficient (DSC)
of 77.7% and average normalized surface distance (NSD) of 82.0%, which
is better than the supervised method. The average running time is 12.9s
per case in inference phase and maximum used GPU memory is 2052
MB.
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1 Introduction

For supervised learning, few labeled data tend to leading the over-fitting
problem. In the task of medical image analysis, however, manual voxel-level
labeling is expensive and time-consuming because of the professional domain
knowledge.

Semi-supervised learning (SSL) aims to solve the learning problem in scenario
of sparsely labeled images and a large number of auxiliary unlabeled images.
These learning methods have been studied in classification problems [8, 15].

Currently, semi-supervised segmentation has raised attention. Self-training
strategy tries to learn from unlabeled data by imputing the labels for samples
predicted with high confidence [1, 2, 14].

There are many datasets of natural images datasets available for semi-supervised
segmentation, such as Pascal VOC 2012 [7] and Cityscapes [6]. For medical image
segmentation, FLARE2022 challenge has a large-scale abdominal datasets that
contains 50 labeled images and 2000 unlabeled images. Besides, the challenge
has at most 13 organs are annotated, which belongs to the standard closed-set
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SSL [4]. The difficulty of this challenge is to segment both large and small organs
given a scenario with less labeled data.

The multi-organ segmentation have three main difficulties.

– Class imbalance problem.As shown in Figure 1, RAG and LAG have small
class ratios, which leads to the class imbalance problem.

– Large shape variations and pathology influence. Some organs, e.g., Gallblad-
der (brown), Pancreas (yellow) and Duodenum (blue) shown in Figure 2,
have large variation on shapes, and some organs are diseased, such as liver
and kidney tumors (see Figure 3).

– Non-uniform images. Some images have incomplete abdominal regions, and
the image information are not normalized.

multi-organ and class imbalance
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Fig. 1. Class ratio in the 50 labeled images in FLARE2022.Challenge 3: absence of organs

Fig. 2. Four selected examples in FLARE2022. Large shape variations of Gallbladder
(brown), Pancreas (yellow) and Duodenum (blue).

In this paper, we proposed a siamese network with cross supervision to train
the semi-supervised segmentation network. Two networks, which have the same
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Tumor

Fig. 3. A selected examples in FLARE2022. The left kidney has a tumor.

architecture and the same number of parameters, are introduced, and they are
initialized differently at the beginning of training. These two segmentation net-
works can generate pseudo label images, and supervise each other’s training in
the manner of cross supervision. Moreover, we employed a filtering strategy for
unlabeled images. These selected unlabeled images have pseudo label images
with low uncertainty, which can ensure the stability of training.

The main contributions of our work are summarized as follows:

– To leverage the unlabeled data, we use cross supervision strategy, which is
achieved via a siamese network.

– To improve the efficiency, we use anisotropic convolution block and strip
pooling module.

– We also employ a filtering strategy to improve the performance.
– The effectiveness and efficiency of the proposed semi-supervised framework

are demonstrated on FLARE2022 challenge dataset, where we achieve the
top 10 with low time cost and less memory usage.

2 Method

Figures 4 and 5 show our approach using cross supervision with labelled and
unlabelled data, respectively.

2.1 Preprocessing

The labeled images are cropped using their corresponding labels, which avoid
selecting the patch without any labels. For the unlabeled images, we use the
trained coarse segmentation model to crop the abdominal regions. All the images
are re-sampled for a fixed spacing, i.e., 1mm× 1mm× 3mm.
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Fig. 4. Cross supervision framework when using unlabeled data. The siamese network
contains two sub-networks, denoted as Pθ1 and Pθ2 , whose architectures are the same,
and the two sub-networks are initialized differently at the beginning of training. When
using unlabeled images, two segmentation probability maps P1 and P2 for the given
intensity image Iu. The two probability maps can be transformed to two different
pseudo label images S1 and S1 for the input image. Thus, these two segmentation sub-
networks can generate pseudo label images, and supervise each other’s training in the
manner of cross supervision.
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Fig. 5. Cross supervision framework when using labeled data. When using labeled im-
ages, two loss functions are constructed, i.e., the cross supervision loss and supervision
loss. The two subnetworks can also generate the pseudo label images for intensity image
Il. The two subnetworks can be supervised based on these pseudo label images in the
cross-supervision manner. Besides, the label images can be considered as ground truth
of segmentations, therefore, the output probability maps can be also supervised with
the ground truth of the segmentation.
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2.2 Proposed Method

We propose a semi-supervised segmentation framework for multi-organ seg-
mentation task, which can leverage large number of unlabeled data. The frame-
work consists of two sub-networks, which have the same structures. We sepa-
rately optimize the sub-networks, and simultaneously use them to predict the
pseudo labels of unlabeled data. We train the two networks in a cross-supervised
manner [3].

Besides, we employed a cascade strategy, which aims to segmenting the ab-
domen organs via coarse-to-fine procedure [18]. Because the region of interest,
i.e., ROI, of abdominal organs is large, we can not efficiently segment all the
organs in a single-stage network. Therefore, we first segmented the organs from
downsampling images, which can be seen as a coarse segmentation. With the help
of the coarse segmentation, we segmented the organs from the original images
in the second stage.

We can also train a semi-supervised network via selected unlabeled images,
which is based on the uncertainty metric of their pseudo label images.

2.3 Cross supervision using siamese network (CSSN)

Let L = {(I1,S∗
1), (I2,S

∗
2), ..., (IN ,S∗

N )} and U = {IN+1, IN+2, , ..., IM}
denote the labeled data and unlabeled data. I and S∗ denote the intensity
image and label image. The aim of the semi-supervised segmentation is to obtain
a segmentation plan that can leverage L and U . We can use the segmentation
plan to predict a probability map P for I as:

P = Pθ(I). (1)

In particular, we introduce two sub-networks, i.e., Pθ1 and Pθ2 , to obtain two
probability maps for a fixed image I:

P1 = Pθ1(I),
P2 = Pθ2(I).

(2)

The siamese networks (Pθ1 and Pθ1) have the same structures and the same
number of parameters but are initialized differently at the beginning of training.
As in Equation 2, we can obtain two different predictions for one input image
because of the two sub-networks with different parameters. Since we use label
information for supervision, we can use any supervised loss functions, e.g., cross-
entropy loss, dice loss and combination of them, which we denote as ℓs in this
work.

As shown in Figure 4, for unlabeled data L, we employ a bidirectional con-
sistent strategy for supervision. For example, sub-network Pθ1 can be supervised
by the pseudo label images generated by the frozen subnetwork Pθ2 . For voxel i
of an unlabeled image, we can calculate the loss as:

ℓs
!
pi|θ1 , si|θ2

"
, (3)
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where pi|θ1 denotes the predicted probability for voxel i using sub-network Pθ1 ,
and si|θ2 is the label for voxel i generated by Pθ2 . The sub-network Pθ2 can be
supervised in the similar manner.

Thus, the cross-supervised (CS) loss function for Iu ∈ U can be formulated
as follows:

Cu
u =

1

Vu

#

i∈Iu

!
ℓs

!
pi|θ1 , si|θ2

"
+ ℓs

!
pi|θ2 , si|θ1

""
, (4)

where Vu is the number of voxels in Iu.
As shown in Figure 5, for labeled data Il ∈ L, we first employ supervised

loss functions for the two sub-networks:

Cs =
1

Vl

#

i∈Il

!
ℓs

!
pi|θ1 , s

∗
i

"
+ ℓs

!
pi|θ2 , s

∗
i

""
, (5)

where s∗i is the voxel i in the label image S∗. The number of voxels in Il is
denoted as Vl.

As shown in Figure 5, using the pseudo label images, we can also formulate
the CS loss for labeled data in the same manner as Equation (4), i.e., Cl

u.
The training loss function can be formulated as:

C = Cs + Cu
u + Cl

u. (6)

2.4 Unlabeled image filtering (UIF) based on uncertainty

Unlabeled images may contain cases with different distributions than labeled
images. Although we used pseudo-label images inject strong data augmentations,
some pseudo-label images with high uncertainty were still prone to accumulate
and degrade the performance. To solve this problem, we prioritized reliable un-
labeled images based on holistic prediction-level stability.

To obtain reliable unlabeled images, we employed UIF on the pseudo-labeled
images, as the selection approach of Yang et al. [17]. We selected 200 (top 10%)
unlabeled images and their pseudo-labeled images with the lowest uncertainty
from the 2000 unlabeled images. For an unlabeled image Il, we can compute the
uncertainty as:

Ul = 1− 1

9

9#

j=1

DSC(Sl|Mj∗100 ,Sl|M1000
), (7)

where Sl|Mj∗100 denotes the pseudo label image of Il generated by trained
model Mj∗100. The trained model Mj∗100 is saved to the disk in epoch j ∗ 100
during training the supervised segmentation network.

After we have selected 200 unlabeled images, we can train a new SemiSeg-
CSSN with a new mixed dataset containing both labeled and unlabeled images.
We embedded CSSN during training the network.
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2.5 Strategies to improve inference speed and reduce resource
consumption

We take the whole image as input and output a segmentation result of the
whole image size, which is more efficient than using a patchwork segmentation
result based on patches. Besides, we employed the strategies from efficientSegNet
[18] to reduce the resource consumption. An anisotropic convolution with a k ×
k × 1 intra-slice convolution and a 1 × 1 × k inter-slice convolution are used in
the decoder module. In addition, the low-level and high-level feature maps are
aggregated by addition rather than concatenation due to the low GPU memory
footprint.

2.6 Post-processing

For the results of segmentations, we used the maximal union region selection
as post-processing steps. We selected the unique region which has the maximal
areas from the candidate regions for each class.

3 Experiments

3.1 Dataset and evaluation measures

The FLARE2022 dataset is curated from more than 20 medical groups under
the license permission, including MSD [16], KiTS [9, 10], AbdomenCT-1K [13],
and TCIA [5]. It is an extension of the FLARE 2021 [12] with more segmen-
tation targets and more diverse abdomen CT scans. The training set includes
50 labelled CT scans with pancreas disease and 2000 unlabelled CT scans with
liver, kidney, spleen, or pancreas diseases. The validation set includes 50 CT
scans with liver, kidney, spleen, or pancreas diseases. The testing set includes
200 CT scans where 100 cases has liver, kidney, spleen, or pancreas diseases and
the other 100 cases has uterine corpus endometrial, urothelial bladder, stomach,
sarcomas, or ovarian diseases. All the CT scans only have image information and
the center information is not available.

The evaluation measures consist of two accuracy measures: Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD), and three running effi-
ciency measures: running time, area under GPU memory-time curve, and area
under CPU utilization-time curve. All measures will be used to compute the
ranking. Moreover, the GPU memory consumption has a 2 GB tolerance.

3.2 Implementation details

Environment settings The environments and requirements for training are
presented in Table 1.
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Table 1. Environments and requirements for training.

Windows/Ubuntu version Ubuntu 20.04.4 LTS
CPU Platinum 82 series (72vCPU) v5@2.5GHz
RAM 16×4GB; 2.67MT/s
GPU (number and type) NVIDIA V100 16×32G
CUDA version 11.1
Programming language Python 3.6
Deep learning framework Pytorch (Torch 1.8.0, torchvision 0.9.0)
Code is publicly available at SemiSeg-CSSN

Training protocols We implemented the proposed framework using EfficientSeg-
Net network used in FLARE21 challenge. The patch-based Unet such as nnUnet
[11] also can be used as the basic segmentation, however, we found it consumes
large RAM when prediction. Brightness, crop, random rotation, random tran-
sition and random elastic deformation were used for data augmentation. We
random resampled the data with size described in Table 2. Besides, we trained
the coarse model with the 50 labeled images.

Table 2. Training protocols for SemiSeg-CSSN.

Network initialization Kaiming normal initialization
Batch size 8(coarse), 1(fine)
Input size (coarse) 160×160×160
Input size (fine) 192×192×192
Total epochs 500(coarse), 200(fine)
Optimizer Adam with betas (0.9, 0.99), L2 penalty: 0.00001
Loss Dice loss and focal loss (alpha = 0.5, gamma = 2)
Initial learning rate (lr) 0.01
Training time (coarse) 6 (coarse), 300(fine) hours

4 Results and discussion

4.1 Quantitative results on validation set

We used 50 labeled and 2000 unlabeled images to train the network in cross-
supervised manner. The results show that the method using unlabeled data
improve the dice score of the method with only 50 labeled images.

Table 3 shows the results of the proposed methods. The results of our submit-
ted solution (docker container), which is evaluated by the organizers of FLARE2022,

https://github.com/jdq818/SemiSeg-CSSN
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Table 3. Quantitative results of supervised and semi-supervised methods in terms of
DSC and NSD on the validation dataset. The symbol 50(L)+ 2000(U) denotes the
method, which used 50 labeled and 2000 unlabeled images. We reported the mean and
standard deviation in parentheses.

Organ
Supervised SemiSeg-CSSN SemiSeg-CSSN+UIF SemiSeg − CSSN∗

50(L) 50(L)+2000(U) 50(L)+200(U) 50(L)+2000(U)
DSC(%), NSD(%) DSC(%), NSD(%) DSC(%), NSD(%) DSC(%), NSD(%)

Liver 90.8(7.3),85.4(13.0) 93.7(5.4), 91.3(10.7) 96.3(2.0),96.7(4.7) 92.5(14.1),90.6(15.4)
RK 79.3(33.6) ,77.93(32.8) 80.5(32.8),79.0(32.5) 79.8(31.9), 79.5(31.9) 87.3(26.2),86.7(26.3)
Spleen 92.5(7.4),90.0(12.3) 89.8(21.9),89.0(23.4) 87.6(18.7), 88.6(18.5) 91.6(19.8),91.7(20.9)
Pancreas 68.8(12.3),76.2(14.5) 73.3(13.8),81.1(14.6) 78.4(15.3), 88.8(13.8) 75.4(15.8),82.8(16.9)
Aorta 90.6(4.0),91.8(6.6) 94.5(2.6),96.3(3.9) 93.8(2.6), 96.5(3.2) 91.8(14.5),93.6(15.2)
IVC 83.5(11.7),80.4(12.3) 87.7(8.6),87.0(8.9) 87.0(11.6),87.1(10.6) 82.4(16.2),80.5(17.0)
RAG 54.1(31.6),63.0(35.0) 64.1(33.2),72.6(37.1) 77.3(14.6),89.9(10.0) 64.8(31.7),74.5(36.0)
LAG 24.4(29.6),48.1(34.8) 51.7(32.0),71.6(27.8) 72.1(20.7),82.4(21.7) 47.5(32.9),70.0(30.8)
Gallbladder 42.3(40.0),39.3(39.3) 60.3(38.0),57.6(38.1) 63.9(41.4),61.9(42.2) 68.0(34.8),66.1(35.7)
Esophagus 75.1(17.1),84.8(18.2) 82.4(9.8),91.7(9.5) 76.7(12.9),86.5(14.2) 76.0(21.3),84.1(23.2)
Stomach 71.0(29.0),71.0(29.3) 83.0(18.8),84.8(17.9) 74.2(28.7),78.5(28.1) 80.8(24.2),82.4(24.4)
Duodenum 61.7(26.0),76.9(26.0) 64.0(23.8),78.2(22.0) 59.1(26.8),74.8(24.9) 63.3(23.1),77.0(22.7)
LK 88.2(22.2),87.2(22.5) 88.6(21.1),85.4(22.2) 81.7(25.1), 82.3(25.0) 88.6(19.9),85.4(21.5)
Avg. 70.9(31.0) ,74.8(29.4) 78.0(26.6),82.0(25.3) 79.1(24.5),84.1(23.7) 77.7(13.1),82.0(7.9)

Table 4. Quantitative .

Mean runtime (s) Maximum used GPU memory (MB) AUC GPU time AUC CPU time
12.9 2052 13776.9 250.6

are reported in the last two columns in Table 3, i.e., SemiSeg − CSSN∗. The other
results are evaluated on the 20 selected validation cases, whose ground truth are
send by the organizers.

Compared to the supervised method, the average DSC of the semi-supervised
method (SemiSeg-CSSN) improves from 70.9% to 78.0%, while the average NSC
improves from 74.8% to 82.0%. The results show that LAG, Gallbladder and
RAG segmentation is the three difficult organs and Liver, Spleen and Aorta is
the three easy organs for abdominal organ segmentation. The difficulties may be
due to unclear boundaries and class imbalance issues. Besides, the standard de-
viations of Gallbladder segmentation are relative large, which demonstrates the
method achieves disappointed robustness for Gallbladder. As shown in Figure 6,
Case #0047 has a complete Gallbladder, while Case #0048 does not have one.
Moreover, as shown in Figure 6, the pathologies, such as the tumor in Liver in
Case #0047, have negative effects on the segmentation.

Besides, for 2000 unlabeled images, we generated their pseudo label images
using trained supervised segmentation network. Then, we used UIF to select 200
unlabeled images and their pseudo label images with low uncertainty, and trained
a new segmentation network via SemiSeg-CSSN. As shown in Table 3, the DSC
of semi-supervised segmentation network improves from 78.0% to 79.1%.
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Table 5. Quantitative results SemiSeg-CSSN in terms of DSC and NSD on the test
dataset. We used 50 labeled and 2000 unlabeled images for training. We reported the
mean and standard deviation in parentheses.

Organ DSC(%) NSD(%)
Liver 94.3(5.2) 92.7(8.8)
RK 89.1 (21.6) 87.6 (22.3)
Spllen 90.6(20.3) 90.7(21.3)
Pancreas 71.2(17.9) 79.8(19.3)
Aorta 93.3(8.2) 95.1(9.0)
IVC 83.6(15.1) 83.1(16.3)
RAG 75.2(20.4) 86.2(22.1)
LAG 48.7(31.9) 74.8(28.7)
Gallbladder 66.5(36.3) 65.0(36.2)
Esophagus 69.0(22.4) 77.5(25.3)
Stomach 83.4(17.8) 84.8(17.7)
Duodenum 65.1(17.3) 79.0(18.0)
LK. 86.4(21.7) 82.3(23.0)
Avg. 78.2(13.0) 83.0(7.7)

Table 6. Quantitative results of the good (Case #0006 and Case #0035) and bad
(Case #0047 and Case #0048) examples.

Organ Case #0006 Case #0035 Case #0047 Case #0048
DSC(%), NSD(%) DSC(%), NSD(%) DSC(%), NSD(%) DSC(%), NSD(%)

Liver 96.8, 93.2 96.7, 96.8 82.2, 67.0 87.1 , 82.2
RK 96.5, 96.7 97.3, 97.1 95.7, 93.4 84.8, 77.6
Spleen 97.9, 97.9 98.0 , 99.6 85.8, 76.4 63.6, 50.0
Pancreas 83.6, 90.5 87.9, 99.0 60.9 , 68.0 66.6, 75.7
Aorta 95.8, 97.6 96.4, 99.8 92.3, 96.8 86.9, 85.2
IVC 94.5, 97.5 93.5 , 94.4 86.0, 84.7 53.5, 57.7
RAG 90.9, 97.6 70.2, 85.8 0.0,0.0 63.7, 66.0
LAG 87.1, 95.2 75.3, 80.6 11.5, 61.5 15.0, 63.9
Gallbladder 100.0, 100.0 53.9, 52.9 52.7, 55.0 0.0, 0.0
Esophagus 85.4, 92.9 88.52, 96.6 87.2 , 99.0 57.6, 70.8
Stomach 89.9, 88.6 92.8, 97.7 76.4, 76.8 40.3, 41.0
Duodenum 72.9, 82.67 85.0, 96.8 4.8, 15.3 59.5, 76.4
LK 95.1, 88.2 97.6, 98.3 98.1 , 98.2 93.8, 89.4
Avg. 91.3, 93.6 87.2, 91.6 64.1, 68.3 59.4, 63.9

4.2 Segmentation efficiency results on validation set

Table 4 presents the segmentation efficiency results. The mean runtime is
12.9 s per case in prediction step, maximum used GPU memory is 2052 MB,
AUC GPU time is 13776.9, and AUC CPU time 250.6.

4.3 Quantitative results on test set

Table 5 shows the quantitative result of SemiSeg-CSSN on test dataset. The
average DSC of 13-organ segmentation is 78.2± 13.0%, and the average NSD is
83.0± 7.8%. The organs with the highest and lowest DSC were Liver and LAG,
respectively. The gallbladder has the largest standard deviation.

4.4 Ablation study: influence of different number of unlabeled data

To further validate the effect unlabeled images, different numbers of unla-
beled images from the training set were selected. For each case, we trained the
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91.3
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Fig. 6. Qualitative results on good (Case #0006 and Case #0035) and bad (Case
#0047 and Case #0048) examples. First column is the image, second column is the
results achieved by our propose method, and third column is the ground truth of the
segmentation. The DSC of each case is presented at the top-left corner.

SemiSeg-CSSN model using 50 labeled images and different number, i.e., rang-
ing from 0 to 2000, of unlabeled images. Note that supervised model used 0
unlabeled images. Figure 7 shows the segmentation results. With the number
of unlabeled images increases, the performance of SemiSeg-CSSN models are
increased, and all the models with unlabeled images perform better than the
supervised method. Moreover, it is clear that the SemiSeg-CSSN model tends to
converge when trained with more than 1000 unlabeled images.

5 Discussion and conclusion

Using unlabeled data, the proposed semi-supervised method achieved better
results than the results of the supervised method. Whether using supervised
or semi supervised methods, the segmentation of some organs is still challeng-
ing. LAG segmentation obtained disappointing performance because of unclear
boundaries and class imbalance issues. The existence of seriously pathology-
affected organs, such as Livers and Kidneys, are critical factor for the poor seg-
mentation performance. Besides, further research is needed to identify accurate
boundaries and suppress pathological effects.
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Fig. 7. Performance plot of our semi-supervised approach with 50 labeled images and
different number (from 0 to 2000) of unlabeled images. Note the case with 0 unlabeled
images denotes the fully supervised method.

SemiSeg-CSSN+UIF model only used 200 unlabeled images, which achieved
higher DSC and NSD than the model with un-filtering 2000 unlabeled images.
It means the quality counts more than quantity when using unlabeled images.
However, because UIF can be used in any trained segmentation network to select
unlabeled images, there is a progressive training strategy, which is needed to
explore in the future.

5.1 Limitation and future work

We summarize the limitations and potential improvement as follows:

– Address the difficulties of multi-organ segmentation with class imbalance
problem.

– Robust algorithms for shape variation of organs and presence of pathologies.
– Normalization of ROI and image information.
– The quality of pseudo labels needs more attention than quantity.

Acknowledgements The authors of this paper declare that the segmentation
method they implemented for participation in the FLARE 2022 challenge has not
used any pre-trained models nor additional datasets other than those provided
by the organizers.

References

1. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In:
Proceedings of the eleventh annual conference on Computational learning theory.
pp. 92–100 (1998) 1



Title Suppressed Due to Excessive Length 13

2. Chen, L.C., Lopes, R.G., Cheng, B., Collins, M.D., Cubuk, E.D., Zoph, B., Adam,
H., Shlens, J.: Naive-student: Leveraging semi-supervised learning in video se-
quences for urban scene segmentation. In: European Conference on Computer Vi-
sion. pp. 695–714. Springer (2020) 1

3. Chen, X., Yuan, Y., Zeng, G., Wang, J.: Semi-supervised semantic segmentation
with cross pseudo supervision. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 2613–2622 (2021) 5

4. Chen, Y., Mancini, M., Zhu, X., Akata, Z.: Semi-supervised and unsupervised deep
visual learning: A survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence pp. 1–23 (2022). https://doi.org/10.1109/TPAMI.2022.3201576 2

5. Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S.,
Phillips, S., Maffitt, D., Pringle, M., et al.: The cancer imaging archive (tcia): main-
taining and operating a public information repository. Journal of Digital Imaging
26(6), 1045–1057 (2013) 7

6. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene
understanding. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 3213–3223 (2016) 1

7. Everingham, M., Eslami, S., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.:
The pascal visual object classes challenge: A retrospective. International journal
of computer vision 111(1), 98–136 (2015) 1

8. Fralick, S.: Learning to recognize patterns without a teacher. IEEE Transactions
on Information Theory 13(1), 57–64 (1967) 1

9. Heller, N., Isensee, F., Maier-Hein, K.H., Hou, X., Xie, C., Li, F., Nan, Y., Mu,
G., Lin, Z., Han, M., et al.: The state of the art in kidney and kidney tumor
segmentation in contrast-enhanced ct imaging: Results of the kits19 challenge.
Medical Image Analysis 67, 101821 (2021) 7

10. Heller, N., McSweeney, S., Peterson, M.T., Peterson, S., Rickman, J., Stai, B.,
Tejpaul, R., Oestreich, M., Blake, P., Rosenberg, J., et al.: An international chal-
lenge to use artificial intelligence to define the state-of-the-art in kidney and kidney
tumor segmentation in ct imaging. American Society of Clinical Oncology 38(6),
626–626 (2020) 7

11. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a
self-configuring method for deep learning-based biomedical image segmentation.
Nature Methods 18(2), 203–211 (2021) 8

12. Ma, J., Zhang, Y., Gu, S., An, X., Wang, Z., Ge, C., Wang, C., Zhang, F., Wang, Y.,
Xu, Y., Gou, S., Thaler, F., Payer, C., Åătern, D., Henderson, E.G., McSweeney,
D.M., Green, A., Jackson, P., McIntosh, L., Nguyen, Q.C., Qayyum, A., Conze,
P.H., Huang, Z., Zhou, Z., Fan, D.P., Xiong, H., Dong, G., Zhu, Q., He, J., Yang,
X.: Fast and low-gpu-memory abdomen ct organ segmentation: The flare challenge.
Medical Image Analysis 82, 102616 (2022). https://doi.org/https://doi.org/
10.1016/j.media.2022.102616 7

13. Ma, J., Zhang, Y., Gu, S., Zhu, C., Ge, C., Zhang, Y., An, X., Wang, C., Wang, Q.,
Liu, X., Cao, S., Zhang, Q., Liu, S., Wang, Y., Li, Y., He, J., Yang, X.: Abdomenct-
1k: Is abdominal organ segmentation a solved problem? IEEE Transactions on
Pattern Analysis and Machine Intelligence 44(10), 6695–6714 (2022) 7

14. Mittal, S., Tatarchenko, M., Brox, T.: Semi-supervised semantic segmentation with
high-and low-level consistency. IEEE transactions on pattern analysis and machine
intelligence 43(4), 1369–1379 (2019) 1

15. Scudder, H.: Probability of error of some adaptive pattern-recognition machines.
IEEE Transactions on Information Theory 11(3), 363–371 (1965) 1

https://doi.org/10.1109/TPAMI.2022.3201576
https://doi.org/10.1109/TPAMI.2022.3201576
https://doi.org/https://doi.org/10.1016/j.media.2022.102616
https://doi.org/https://doi.org/10.1016/j.media.2022.102616


14 Jia Dengqiang

16. Simpson, A.L., Antonelli, M., Bakas, S., Bilello, M., Farahani, K., Van Ginneken,
B., Kopp-Schneider, A., Landman, B.A., Litjens, G., Menze, B., et al.: A large an-
notated medical image dataset for the development and evaluation of segmentation
algorithms. arXiv preprint arXiv:1902.09063 (2019) 7

17. Yang, L., Zhuo, W., Qi, L., Shi, Y., Gao, Y.: St++: Make self-training work bet-
ter for semi-supervised semantic segmentation. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 4268–4277 (2022) 6

18. Zhang, F., Wang, Y., Yang, H.: Efficient context-aware network for abdominal
multi-organ segmentation. arXiv preprint arXiv:2109.10601 (2021) 5, 7


