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ABSTRACT

Precipitation nowcasting, predicting future radar echo sequences from current ob-
servations, is a critical yet challenging task due to the inherently chaotic and
tightly coupled spatio-temporal dynamics of the atmosphere. While recent ad-
vances in diffusion-based models attempt to capture both large-scale motion and
fine-grained stochastic variability, they often suffer from scalability issues: latent-
space approaches require a separately trained autoencoder, adding complexity and
limiting generalization, while pixel-space approaches are computationally inten-
sive and often omit attention mechanisms, reducing their ability to model long-
range spatio-temporal dependencies. To address these limitations, we propose a
Token-wise Attention integrated into not only the U-Net diffusion model but also
the spatio-temporal encoder that dynamically captures multi-scale spatial inter-
actions and temporal evolution. Unlike prior approaches, our method natively
integrates attention into the architecture without incurring the high resource cost
typical of pixel-space diffusion, thereby eliminating the need for separate latent
modules. Our extensive experiments and visual evaluations across diverse datasets
demonstrate that the proposed method significantly outperforms state-of-the-art
approaches, yielding superior local fidelity, generalization, and robustness in com-
plex precipitation forecasting scenarios. Our code will be publicly released.

1 INTRODUCTION

Predicting when and where rain will fall over the next few minutes to hours, known as precipitation
nowcasting, remains one of the most pressing challenges in weather forecasting (Ravuri et al., 2021;
Veillette et al., 2020). The goal is to predict a sequence of future radar echoes conditioned on recent
observations. Traditional approaches rely on numerical weather prediction (NWP), which explicitly
models atmospheric dynamics through partial differential equations (PDEs) (Bauer et al., 2015).
While physically grounded, NWP methods are computationally expensive and slow to update, lim-
iting their use for the rapid, iterative forecasts required in nowcasting (Bi et al., 2023).

Recent advances in deep learning have enabled data-driven alternatives that bypass explicit PDE
solvers. Deterministic nowcasting models have demonstrated a strong ability to capture the large-
scale advection of precipitation fields, but they typically suffer from oversmoothing effects, espe-
cially at longer lead times (extending to several hours), resulting in underestimation of atmospheric
intensity and loss of fine-scale spatial detail (Shi et al., 2015; Ravuri et al., 2021). To mitigate this,
probabilistic generative approaches leveraging generative adversarial networks (GANs) or diffusion
models have been introduced to generate more realistic and accurate radar fields (Zhang et al., 2023;
Gao et al., 2023). However, these models often inflate the effective degrees of freedom by treating
the entire spatio-temporal field as stochastic, which introduces excessive randomness and reduces
the positional accuracy of rainfall structures (Yu et al., 2024).

To reconcile these trade-offs, hybrid architectures have emerged that benefit from both determin-
istic and probabilistic paradigms. These methods decompose weather evolution into (i) a globally
coherent deterministic component to capture large-scale dynamics, and (ii) a localized stochastic
refinement to model fine-grained variability (Yu et al., 2024; Gong et al., 2024). This factorization
has shown promise in simultaneously improving positional fidelity and generative sharpness.

Despite these advances, key limitations persist for hybrid architectures that restrict their scalability
and generalization. For example, CasCast (Gong et al., 2024) relies on a latent-space formulation,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Input

RainDiff
(Ours)

-15 Min -10 Min 0 Min

Ground
Truth

DiffCast

-20 Min

+25 Min +40 Min +70 Min+10 Min +55 Min +85 Min +100 Min

R
ainD

iff
D

iffC
ast

+100 Min-5 Min

G
round Truth

Figure 1: A visualization from the SEVIR dataset shows that, at the longest forecast horizon, Rain-
Diff avoids oversmoothed outputs and better preserves weather fronts compared to the state-of-the-
art DiffCast (Yu et al., 2024), resulting in closer alignment with the ground truth.

requiring an auxiliary autoencoder pre-trained on large datasets. This dependency hampers general-
ization to new domains where suitable autoencoders may be unavailable. In contrast, DiffCast (Yu
et al., 2024) operates directly in pixel space, thereby avoiding latent bottlenecks. However, to remain
computationally tractable, it omits self-attention mechanisms (Dosovitskiy et al., 2021) in the high-
resolution layers. This design choice limits the model’s capacity to capture complex long-range and
fine-scale spatio-temporal dependencies, as illustrated in Figure 1.

To overcome these limitations, we propose Token-wise Attention, integrated across all spatial reso-
lutions in our network. This design enables accurate modeling of fine-scale structures while main-
taining computational efficiency. Unlike conventional self-attention (Yu et al., 2024; Gong et al.,
2024), our token-wise formulation avoids the quadratic complexity induced by the high dimension-
ality of radar data. Moreover, all operations are performed directly in pixel space, removing the
need for an external latent autoencoder (Gong et al., 2024). Finally, drawing on empirical insights,
we introduce Post-attention, which emphasizes the informative conditional context crucial for the
denoising process. To summarize, our key contributions are:

• We introduce Token-wise Attention, a novel mechanism that enables full-resolution self-
attention directly in pixel space while retaining tractable computational cost.

• We provide a theoretical analysis exposing the limitations of integrating existing attention
mechanisms into recurrent conditioners, and introduce Post-attention, a lightweight drop-in
module that extracts critical contextual information to guide denoising while maintaining
computational efficiency.

• We perform extensive experiments on four benchmark datasets, demonstrating that our
approach consistently outperforms state-of-the-art methods in both deterministic and gen-
erative settings, achieving superior performance across multiple evaluation metrics.

2 RELATED WORK

Recently, deep learning has emerged as a powerful alternative to traditional Numerical Weather
Prediction (NWP) (Skamarock et al., 2008), with approaches typically classified as determinis-
tic or probabilistic. Early efforts were predominantly deterministic, emphasizing spatio-temporal
modeling to produce point forecasts of future atmospheric conditions. For example, ConvLSTM
(Shi et al., 2015) combined convolutional and recurrent layers to capture spatio-temporal dynam-
ics. Later methods sought to enhance accuracy by integrating physical constraints, as in PhyDNet
(Guen & Thome, 2020), or by incorporating a broader set of meteorological variables for more
comprehensive forecasting, as in Pangu (Bi et al., 2023) and Fengwu (Chen et al., 2023). Although
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Figure 2: Overall architecture of our precipitation nowcasting framework RainDiff. Given an input
sequence X0, a deterministic predictor Fθ1 outputs a coarse prediction µ. The concatenation of X0

and µ is encoded by a cascaded spatio-temporal encoder Fθ3 to yield conditioning features h, refined
by Post-attention. A diffusion-based stochastic module Fθ2 equipped with Token-wise Attention at
all resolutions in pixel space predicts residual segments r̂ autoregressively, where the denoising
process is conditioned on h and the predicted segments. This design captures rich contextual rela-
tionships and inter-frame dependencies in the radar field while keeping computation efficient.

these models effectively capture large-scale motion patterns, their predictions tend to become overly
smooth and blurry at longer lead times. This degradation arises from compounding errors, reliance
on Mean Squared Error (MSE) loss, and the absence of local stochastic modeling—all of which
suppress fine-scale detail.

Generative models have been proposed to mitigate the blurriness of deterministic forecasts by intro-
ducing latent variables that capture the inherent stochasticity of weather patterns. Examples include
GAN-based approaches such as DGMR (Ravuri et al., 2021) and more recently, diffusion-based
models like PreDiff (Gao et al., 2023). While some generative methods treat the entire system
stochastically, a growing line of research explores hybrid strategies. Notably, DiffCast (Yu et al.,
2024) and CasCast (Gong et al., 2024) combine deterministic modeling of large-scale motion with
probabilistic modeling of fine-scale variability, thereby leveraging the complementary strengths of
both paradigms.

Although diffusion-based methods have achieved promising results, they often face limitations such
as the training overhead of external latent autoencoders or the omission of attention layers due to
the high computational cost of operating in pixel space. These trade-offs between representational
capacity and computational feasibility are not unique to weather forecasting, but are symptomatic
of diffusion models more broadly, including in domains such as medical imaging, where pretrained
autoencoders are frequently unavailable (Chen et al., 2024; Konz et al., 2024). To overcome these
limitations, we propose a method that simplifies the training pipeline and improves generality, en-
abling wide applicability without reliance on domain-specific latent autoencoders.

3 METHODOLOGY

We formulate precipitation nowcasting as a spatio-temporal forecasting problem on a hybrid frame-
work, which consists of three components: a deterministic module Fθ1(·), a diffusion-based stochas-
tic module Fθ2(·), and a spatio-temporal module Fθ3(·). The output from Fθ1(·) is passed to Fθ3(·)
to extract conditioning features, which guide the denoising process of Fθ2(·).
We also introduce Token-wise Attention, a mechanism that enables self-attention at all spatial res-
olutions while avoiding the prohibitive pixel-space cost of Vision Transformer (ViT) self-attention
(Dosovitskiy et al., 2021) under equivalent resource constraints. In contrast, prior approaches either
use external latent autoencoders that compress inputs before training a U-Net from Fθ2(·) and de-
code outputs during inference, or they restrict ViT self-attention to bottleneck resolutions because
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of its high computational cost, especially the softmax operation on the attention map. In addition,
we propose Post-attention in the spatio-temporal encoder Fθ3(·), which emphasizes informative
contextual signals to guide the denoising process.

3.1 OVERALL FRAMEWORK

Let X0 ∈ RH×W×C×Tin be a 4-dimensional tensor of shape (H,W,C, Tin), representing a sequence
of Tin input frames, where H and W denote the spatial resolution and C the number of channels.
Similarly, let y ∈ RH×W×C×Tout denote the sequence of Tout future frames. Our objective is to learn
a generative model for the conditional distribution p(y | X0).

Our approach proceeds in two steps. First, we train a deterministic predictor Fθ1 : RH×W×C×Tin →
RH×W×C×Tout , to estimate the conditional expectation µ(X0) = E[y | X0]. This estimate provides
only a coarse estimate of the conditional distribution, capturing the global motion trend and overall
structure but failing to represent uncertainty and often leading to blurry predictions with a loss of
fine-scale details. Second, we introduce a spatio-temporal encoder Fθ3(·) that processes both X0

and µ to extract a representation h, which encodes global motion priors, sequence consistency, and
inter-frame dependencies. We then model the residual r = y − µ, using a stochastic prediction
module Fθ2(·) based on a diffusion model (Section 3.2). Token-wise Attention (Section 3.3) refines
the temporal evolution of the residual distribution conditioned on h, while Post-attention mechanism
(Section 3.4) sharpens h during denoising, amplifying salient context and suppressing irrelevant
detail.

At inference, to generate a sample from p(y | X0), we first sample a residual r̂ from the diffusion-
based prediction module and then add it to the predicted mean µ̂, yielding one realization ŷ = µ̂+ r̂.
Repeating this procedure produces diverse realizations of plausible future sequences. An overview
of the proposed framework is shown in Figure 2.

3.2 STOCHASTIC MODELING NETWORK

Given a tensor of input frames X0, the deterministic predictor Fθ1(·) estimates the conditional mean
µ(X0) by minimizing the MSE loss:

L(θ1) = E
[
∥Fθ1(X0)− y∥2

]
. (1)

While Fθ1 provides a deterministic estimate of the mean, such forecasts often blur intense echoes
and lose fine-scale structure at long lead times. To address this, we incorporate a diffusion-based
stochastic module Fθ2(·), which learns a generative model for the conditional distribution p(y | X0)
by iteratively denoising toward the data manifold (Ho et al., 2020; Song et al., 2020). We denote the
resulting distribution as pθ2(y | X0).

In the radar-echo domain, CorrDiff (Mardani et al., 2025) highlights a strong input–target distribu-
tion mismatch caused by large forward noise. This mismatch becomes more pronounced at longer
horizons when diffusing directly on y, ultimately reducing sample fidelity. To mitigate this, we in-
stead model the residual r, which lowers variance and enables learning pθ2(r | X0) more effectively
than pθ2(y | X0) (Mardani et al., 2025).

Furthermore, we introduce a spatio-temporal encoder Fθ3(·), which takes (X0, µ) as input and pro-
duces a global feature representation:

h = Fθ3 (cat(X0, µ)) , (2)
which provides a compact summary of the temporal dynamics and captures the overarching motion
trends and overall structure.

In particular, we model the residual sequence in an autoregressive factorization conditioned on the
global representation h. The joint distribution over the residuals is expressed as:

pθ2 (r1:Tout | h) =
Tout∏
j=1

pθ2 (rj | rj−1, h) . (3)

Recent work (Ning et al., 2023) has shown that sequence-to-sequence multi-horizon forecasting
provides a more effective paradigm than one-step autoregressive prediction for recurrent spatio-
temporal modeling. This strategy mitigates error accumulation, improves temporal coherence,
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and enhances computational efficiency. Motivated by these benefits, we partition the residual
sequence r into contiguous segments, defining sm = r[(m−1)Tin:mTin], m = 1, . . . ,M where

M =
⌈
Tout
Tin

⌉
and each sm ∈ RH×W×C×M . The full sequence is then obtained by concatenation:

s = cat(s1, s2, . . . , sM ) ∈ RH×W×C×M×Tout .

We model the evolution of the segment sequence s in an autoregressive manner using a backward
diffusion process: each segment sm is predicted conditioned on its predecessor sm−1 and the global
context h. The joint distribution is expressed as:

pθ2 (s1:M | h) =
M∏

m=1

pθ2 (sm | sm−1, h) . (4)

During inference, since the ground-truth sm−1 is not available, it is replaced by the estimated ŝm−1

generated at step (m− 1).

Diffusion models (Song et al., 2020; Ho et al., 2020) consist of a fixed forward noising process and
a learned reverse denoising process. In the forward chain, starting from a clean segment s0m ∼ p(s)
(with s0m ≡ sm), Gaussian noise is added according to a variance schedule {(αt, βt)}Tt=1, where
βt = 1 − αt: q(stm | st−1

m ) = N (stm;
√
αt s

t−1
m , βtI). This admits a closed-form expression for

sampling at any step t ∈ {1, 2, . . . , T }: q(stm | s0m) = N (stm;
√
ᾱt s

0
m, (1 − ᾱt)I), with ᾱt =∏t

k=1 αk. After T steps, sTm approaches standard Gaussian noise. The reverse process is learned
as pθ2(s

t−1
m | stm, ŝm−1, h), which iteratively denoises stm toward the data manifold conditioned on

the previously predicted segment ŝm−1 and global context h. For a T -step denoising diffusion, the
target distribution is modeled as:

pθ2(s
0:T
m | ŝm−1, h) = p(sTm)

T∏
t=1

pθ2(s
t−1
m | stm, ŝm−1, h). (5)

where sTm ∼ N (0, I), t indexes the denoising step, and stm denotes the t-th denoising state of the
m-th residual segment.

In the denoising process, learning to recover the residual state st−1
m from stm is equivalent to esti-

mating the noise ϵ injected at the t-th corruption step. Accordingly, the diffusion module Fθ2(·) is
trained with the segment-level loss:

L(θ2, θ3; sm) = E
[∥∥Fθ2(s

t
m; ŝm−1, h, t,m)− ϵ

∥∥2] . (6)

where θ3 are the parameters for the global representation h. The overall diffusion loss is then
obtained by aggregating over all residual segments:

L(θ2, θ3) =
M∑

m=1

L(θ2, θ3; sm). (7)

Finally, to capture the interaction between the deterministic predictive backbone and the stochastic
residual diffusion, we train the entire framework end-to-end with the combined objective:

L(θ1, θ2, θ3) = γL(θ2, θ3) + (1− γ)L(θ1). (8)

where γ ∈ [0, 1] balances the contributions of the stochastic and deterministic components.

Once trained, the diffusion module generates each residual segment sm by iteratively denoising from
Gaussian noise, conditioned on the previously predicted segment ŝm−1. Repeating this procedure
for M steps yields a residual sequence ŝ ∈ RH×W×C×M×Tout , with the initial segment ŝ0 initialized
to zeros. A single realization of the future sequence is then obtained by adding the sampled residual
ŝ to the deterministic mean µ̂: ŷ = µ̂ + ŝ. Repeating the sampling procedure produces multiple
realizations drawn from the learned approximate conditional distribution p(y | h).

3.3 TOKEN-WISE ATTENTION

Recent studies (Shaker et al., 2023) have simplified attention mechanisms by discarding key–value
interactions and retaining only query–key interactions to model token dependencies. However, our
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empirical analysis shows that relying solely on query–key interactions fails to capture the detailed
characteristics of radar echoes, as it ignores the contribution of value (V) information. To overcome
this limitation, we introduce Token-wise Attention (TWA).

Given an input embedding matrix z ∈ Rn×d, where n denotes the number of tokens and d the
embedding dimension, the self-attention mechanism in ViT (Dosovitskiy et al., 2021) has a compu-
tational complexity of O(n2d). In contrast, our Token-wise Attention achieves a reduced complexity
of O(nd). For a feature map of spatial size h × w (i.e., n = h × w), this reduction translates from
O(h2w2d) to O(hwd).

First, the input z is projected into query, key, and value representations via linear transformations:
Q = zWQ, K = zWK , V = zWV , where WQ,WK ,WV ∈ Rd×d. Each matrix can then be
expressed as

Q = [q1, q2, . . . , qn], K = [k1, k2, . . . , kn], V = [v1, v2, . . . , vn],

with qi, ki, vi ∈ R1×d.

To highlight the token-wise importance within the sequence Q, we introduce a learnable weight
vector wα ∈ R1×d. This vector interacts with the query matrix Q ∈ Rn×d through a scaled dot
product, yielding a query score map α ∈ R1×n. The entries of α represent attention weights that
quantify the relative significance of each query token qi ∈ R1×d with respect to the global context
defined by wα. These weights are then used to construct a global query representation q ∈ R1×d by
aggregating information across all tokens. Specifically, we compute a normalized weighted sum of
the query tokens via a Softmax function:

q = Softmax

(
n∑

i=1

αiqi

)
, α = Q · wα√

d
. (9)

Unlike ViT self-attention, which applies a Softmax over an n × n similarity matrix, our approach
normalizes only along a 1×n dimension. The resulting global query q aggregates information from
all token-level queries, emphasizing components with greater attention relevance as determined by
the learned distribution α. Subsequently, the global query q is compared against each key token
ki ∈ R1×d from the key matrix K ∈ Rn×d. This comparison is computed via dot products, yielding
the query–key alignment matrix p ∈ Rn×d:

p = [p1, p2, . . . , pn] = [q · k1, q · k2, . . . , q · kn]. (10)

Similar to equation 9, we summarize the global key k ∈ R1×d as:

k = Softmax

(
n∑

i=1

βipi

)
, β = K · wβ√

d
. (11)

Finally, the interaction between the global key vector k ∈ R1×d and the value matrix V ∈ Rn×d is
modeled through element-wise multiplication, producing a global context representation. To refine
the token representations, we apply two multilayer perceptrons (MLPs): one operating on the nor-
malized queries with a residual connection, and the other on the key–value interaction. The resulting
output ẑ is expressed as:

ẑ = MLPQ(Norm(Q)) + MLPV (V ∗ k) (12)

where ∗ denotes element-wise multiplication.

3.4 SPATIO-TEMPORAL ENCODER

Spatio-temporal encoder: In our RainDiff framework, the spatio-temporal encoder Fθ3(·) is built
as a cascaded architecture to extract conditioning features at multiple resolutions. Specifically, Fθ3
comprises several resolution-aligned blocks; each block contains a ResNet module Rl for spatial
feature extraction and a ConvGRU module Gl for temporal modeling across Tin + Tout frames:

hl
j = Gl

(
Rl(xl

j), h
l
j−1

)
, j = 1, 2, . . . , Tin+Tout. (13)

Here, xl
j and hl

j−1 denote the j-th input and (j−1)-th hidden state at level l, respectively. When
l=0, x0

j is the raw input frame, and we hence can write xj ≡ x0
j .
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Post-attention (PA): Due to the absence of a latent autoencoder, the conditioning produced by the
spatio-temporal encoder can have redundant context. A self-attention mechanism is thus needed to
suppress irrelevant content and emphasize salient context for conditioning the diffusion model. To
do this, prior work often inserts attention inside recurrent modules (Lange et al., 2021; Lin et al.,
2020). In our setting, however, the training objective does not directly supervise temporal recur-
rence; it is defined by denoising (diffusion) and deterministic reconstruction. In addition, as condi-
tioning sequences are encoded one-by-one and gradients propagate to the spatio-temporal encoder
through two pathways (via h and via µ), the resulting gradient with respect to each input frame xj

decomposes as:

∂L123

∂xj
= γ

∂L23

∂hT

∂hT

∂xj
+

[
γ

(
∂L23

∂hT

∂hT

∂µ
−
∑
m,t

√
ᾱt

∂L23

∂s t
m

)
+ (1− γ)

∂L1

∂µ

]
∂µ

∂xj
(14)

∂hT

∂xj
=

T−1∏
i=j

∂hi+1

∂hi

 ∂hj

∂xj
,
∂hT

∂µ
=

(
T−1∏
i=1

∂hi+1

∂hi

)
∂h1

∂µ
, T = Tin + Tout, j ∈ {1, . . . , Tin}.

(15)

where L123,L23,L1 denote L(θ1, θ2, θ3),L(θ2, θ3),L(θ1) respectively. In spatio-temporal en-
coders, gradients can suffer from severe attenuation due to repeated multiplication of Jacobians,
i.e., through the product

∏T−1
i=j ∂hi+1/∂hi. Inserting attention within each recurrent step adds an

extra per-step contraction and ties the attention update to intermediate gradients that are not directly
anchored to the dedicated loss, which worsens attenuation. We therefore apply our Token-wise
Attention after the encoder outputs (PA), at multiple resolutions. Post-attention brings two practi-
cal advantages: (i) fewer attention calls—attention is applied once per encoded representation (per
scale), rather than at every recurrent step, substantially reducing compute versus in-block attention
(Lange et al., 2021; Lin et al., 2020); and (ii) stability and efficiency—by avoiding attention inside
recurrence, PA reduces gradient attenuation and amplification through long products and improves
training stability and throughput. Further experiments in the ablation studies (Section 4.4) support
these viewpoints.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Dataset: We evaluate our framework on four widely used precipitation nowcasting datasets Shang-
hai Radar (Chen et al., 2020), SEVIR (Veillette et al., 2020), MeteoNet (Larvor et al., 2020) and
CIKM1. We adopt a challenging forecasting setup of predicting 20 future frames from 5 initial
frames (5 → 20), except for the CIKM dataset, where only the next 10 frames are predicted (5 → 10)
due to its shorter sequence length constraints. Further dataset details are provided in Appendix B.

Training protocol: Our RainDiff model is trained for 300K iterations on a batch size of 4 via an
Adam optimizer with a learning rate of 1 × 10−4. Following (Ho et al., 2020), we set the diffusion
process to 1000 steps and employ 250 denoising steps during inference using DDIM (Song et al.,
2020). We implement SimVP (Gao et al., 2022a) as our deterministic module. In line with (Yu
et al., 2024), the combined loss in Equation 8 is balanced with γ = 0.5 between deterministic and
denoising components. All experiments are executed on a single NVIDIA A6000 GPU.

4.2 EVALUATION METRICS

Forecast accuracy is evaluated using average Critical Success Index (CSI) and Heidke Skill Score
(HSS) across multiple reflectivity thresholds (Luo et al., 2022; Gao et al., 2023; Veillette et al., 2020).
To assess spatial robustness, we also report multi-scale CSI scores (CSI-4, CSI-16) using pooling
kernels of size 4 and 16 (Gao et al., 2022b; 2023). Perceptual quality is quantified by Learned
Perceptual Image Patch Similarity (LPIPS) and Structural Similarity Index Measure (SSIM).

1https://tianchi.aliyun.com/dataset/1085
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Table 1: Quantitative comparison across four radar nowcasting datasets (Shanghai Radar, MeteoNet,
SEVIR, CIKM). We evaluate deterministic baselines (PhyDNet, SimVP, EarthFarseer, AlphaPre)
and probabilistic methods (DiffCast) against our RainDiff using CSI, pooled CSI at 4×4 and 16×16
(CSI-4 / CSI-16), HSS, LPIPS, and SSIM. Bold marks our results. Overall, RainDiff attains the
best or tied-best performance on most metrics and datasets, indicating both stronger localization and
perceptual/structural quality. This design allows capturing rich context and dependency between
frames in the radar field while maintaining efficient computation.

Method Shanghai Radar MeteoNet
↑CSI ↑CSI-4 ↑CSI-16 ↑HSS ↓LPIPS ↑SSIM ↑CSI ↑CSI-4 ↑CSI-16 ↑HSS ↓LPIPS ↑SSIM

PhyDNet 0.3692 0.4066 0.5041 0.5009 0.2505 0.7784 0.1259 0.1450 0.1741 0.1950 0.2837 0.8188
SimVP 0.3965 0.4360 0.5261 0.5290 0.2365 0.7727 0.1300 0.1662 0.2190 0.1927 0.2448 0.8098

EarthFarseer 0.3998 0.4455 0.5405 0.5330 0.2126 0.7214 0.1651 0.2230 0.3567 0.2527 0.2128 0.7548
DiffCast 0.4000 0.4887 0.6063 0.5358 0.1561 0.7898 0.1454 0.2209 0.3382 0.2196 0.1298 0.7923
AlphaPre 0.3934 0.3939 0.4237 0.5203 0.2925 0.7863 0.1532 0.1729 0.1965 0.2284 0.2697 0.7891
RainDiff 0.4448 0.5152 0.6260 0.5822 0.1454 0.7997 0.1618 0.2484 0.3907 0.2430 0.1231 0.8210

Method SEVIR CIKM
↑CSI ↑CSI-4 ↑CSI-16 ↑HSS ↓LPIPS ↑SSIM ↑CSI ↑CSI-4 ↑CSI-16 ↑HSS ↓LPIPS ↑SSIM

PhyDNet 0.3648 0.3878 0.4618 0.4400 0.4057 0.5606 0.4487 0.4790 0.5488 0.4906 0.5079 0.4906
SimVP 0.3572 0.3766 0.4229 0.4268 0.4604 0.4898 0.4879 0.5079 0.5817 0.5328 0.5574 0.5272

EarthFarseer 0.3677 0.4120 0.5310 0.4459 0.3124 0.5264 0.4647 0.4819 0.5651 0.5094 0.4960 0.5572
DiffCast 0.3711 0.4417 0.6168 0.4539 0.2137 0.5362 0.4834 0.5175 0.6481 0.5182 0.2900 0.4993
AlphaPre 0.3436 0.3578 0.4010 0.4038 0.4005 0.5452 0.4858 0.5101 0.6064 0.5231 0.4660 0.4852
RainDiff 0.3835 0.4534 0.6193 0.4701 0.2070 0.5500 0.4916 0.5235 0.6536 0.5236 0.2926 0.5110

4.3 EXPERIMENTAL RESULTS

For a comprehensive evaluation, we compare our method against both deterministic and probabilis-
tic baselines. The deterministic models include the recurrent-free SimVP (Gao et al., 2022a) and
AlphaPre (Lin et al., 2025), as well as the autoregressive PhyDNet (Guen & Thome, 2020) and
EarthFarseer (Wu et al., 2024). As the state-of-the-art probabilistic approach, we include the Diff-
Cast (Yu et al., 2024) model.

Quantitative results: Table 1 presents the results of our RainDiff compared to other baselines across
four radar datasets. On the Shanghai Radar dataset, RainDiff achieves the highest CSI (0.4448), HSS
(0.5822), and SSIM (0.7997), along with the lowest LPIPS (0.1454), significantly outperforming the
next-best method, DiffCast, across all metrics. Similarly, on SEVIR dataset, RainDiff achieves the
best CSI (0.3835), LPIPS (0.2070), and competitive SSIM (0.5500), offering a better perceptual
trade-off than PhyDNet, which has higher SSIM (0.5606) but much worse LPIPS (0.4057). For
CIKM dataset, RainDiff leads with the best CSI (0.4916), CSI-4 (0.5235), and CSI-16 (0.6536),
demonstrating strong robustness under high-variability conditions. On MeteoNet, RainDiff delivers
the best perceptual scores (SSIM: 0.8201, LPIPS: 0.1231) and ranks second in CSI (0.1618), con-
firming its strong generalization. In addition, Figure 4 reports frame-wise CSI and HSS. As lead
time increases, scores drop across all methods due to accumulating forecast uncertainty, yet our ap-
proach consistently outperforms the baselines at most timesteps—often by a larger margin at longer
leads—demonstrating superior robustness to temporal expanding.

Qualitative results: A comparison in Figure 3 reveals the limitations of existing methods. Deter-
ministic models yield blurry outputs, while the stochastic model DiffCast, though sharper, introduces
excessive and uncontrolled randomness at air masses’ boundaries—an issue we attribute to its lack
of attention mechanisms. This results in an unstable representation of temporal-spatial dependen-
cies. Our framework solves this by integrating Token-wise Attention. This component not only
enables the generation of realistic, high-fidelity details but also regulates the model’s stochastic be-
havior, leading to forecasts with improved structural accuracy and consistency, thereby mitigating
the chaotic predictions seen in DiffCast. Further visualizations are given in Appendix E.

4.4 ABLATION STUDY

Effect of Individual Components: To evaluate the contribution of each component, we perform
ablation experiments with three settings: (i) RainDiff without both Token-wise Attention in the U-
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Table 2: Ablation studies of RainDiff on the Shanghai Radar dataset: (a) individual components and
(b) attention mechanisms in the spatio-temporal encoder.

(a) Ablation: individual components (i–iv).

Method ↑CSI ↑CSI-4 ↑CSI-16 ↑HSS ↓LPIPS ↑SSIM

(i) 0.4000 0.4887 0.6063 0.5358 0.1561 0.7898
(ii) 0.4370 0.5026 0.6030 0.5737 0.1461 0.7890
(iii) 0.4396 0.5066 0.6142 0.5767 0.1466 0.8125
(iv) 0.4448 0.5152 0.6260 0.5822 0.1454 0.7997

(b) Ablation: attention mechanisms (i–iii) on the
spatio-temporal encoder.

Method ↑CSI ↑CSI-4 ↑CSI-16 ↑HSS ↓LPIPS ↑SSIM

(i) 0.4284 0.4808 0.5600 0.5623 0.1562 0.8217
(ii) 0.4310 0.5060 0.6049 0.5680 0.1502 0.7751
(iii) 0.4448 0.5152 0.6260 0.5822 0.1454 0.7997

-24 Min -18 Min -12 Min -6 Min 0 Min

+12 Min +24 Min +36 Min +48 Min  +60 Min +72 Min +84 Min +96 Min +108 Min +120 Min

RainDiff
(Ours)

Diffcast

EarthFarseer

AlphaPre

Ground
Truth

+120 Min

Figure 3: Qualitative comparison with existing works on the Shanghai
Radar dataset, where the reflectivity range is on the top right.

Figure 4: Frame-wise
CSI and HSS for various
methods on the Shanghai
Radar dataset.

Net and Post-attention in the Spatio-temporal Encoder, which corresponds to DiffCast (Yu et al.,
2024), (ii) Integrate DiffCast with Adaptive Attention from (Shaker et al., 2023), (iii) RainDiff with
Token-wise Attention and without Post-attention, and (iv) our full RainDiff model. As shown in
Table 2a, the absence of any component results in a clear degradation of performance, underscoring
the critical role of each design choice in strengthening predictive capability.

Effect of attention mechanism on Spatio-temporal encoder: As shown in Table 2b, we evaluate
the effectiveness of our attention design on spatio-temporal encoder by comparing it with several
alternatives proposed in (Lange et al., 2021; Lin et al., 2020), where attention layers are integrated
within the recurrent block. We perform ablation experiments with three settings on ConvGRU block
l-th: (i) The attention layers are integrated to the input xl

j at each frame j-th, (ii) The attention
layers are integrated to the output hl

j at each frame j-th, and (iii) our RainDiff, where Post-attention
is only applied on the final condition hl

T of frame T -th, Section 3.4. The results in Table 2b support
our contribution discussed in Section 3.4: RainDiff with Post-attention consistently achieves higher
efficiency while maintaining performance comparable to other integration methods.

5 CONCLUSION

RainDiff is an end-to-end diffusion framework for precipitation nowcasting that applies Token-wise
Attention at all spatial scales within a diffusion U-Net, eliminating the need for a latent autoencoder
and improving scalability and performance. In addition, we propose Post-attention module miti-
gating gradient attenuation when attention meets recurrent conditioning. Across four benchmarks,
RainDiff surpasses deterministic and probabilistic baselines in localization, perceptual quality, and
long-horizon robustness. Future work will involve physical constraints by using multi-modal inputs
and reduce latency by replacing autoregression.
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