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Abstract

The field of explainable artificial intelligence (XAI) aims to explain how
black-box machine learning models work. Much of the work centers around
the holy grail of providing post-hoc feature attributions to any model
architecture. While the pace of innovation around novel methods has slowed
down, the question remains of how to choose a method, and how to make
it fit for purpose. Recently, efforts around benchmarking XAI methods
have suggested metrics for that purpose—but there are many choices. That
bounty of choice still leaves an end user unclear on how to proceed. This
paper focuses on comparing metrics with the aim of measuring faithfulness
of local explanations on tabular classification problems—and shows that the
current metrics don’t agree; leaving users unsure how to choose the most
faithful explanations.

1 Introduction

XAI is a field that aims to create techniques that explain black-box machine learning models.
While there is a growing body of work on mechanistic interpretability [13], which aims
to describe the actual mechanisms of model predictions by looking at model components,
much of the XAI literature has focused on post-hoc explanations, which aim to create
explanations without depending on the specifics of internal model mechanisms. Within the
post-hoc explainability literature, feature attribution methods [18, 21] have been particularly
prominent: methods where the explanation for a particular model prediction is a vector of
numbers representing the importance of each feature in the sample. Other XAI approaches,
like counterfactuals and example-based approaches, provide fundamentally different types of
outputs [20, 15].
Feature attribution methods face the challenge of proving that their outputs are faithful
to the model’s behavior. Various faithfulness metrics have been proposed, some of them
as part of XAI benchmarks [12, 1]. However, it is unclear how well these different metrics
correlate with one another, or what use cases each metric is suitable for. In this paper we
ask the meta-question of deciding which measures of faithfulness work well: we benchmark
faithfulness metrics.
Feature attribution methods also face the challenge of different methods disagreeing with
one another [17]. Inspired by this finding, we extend it to look at disagreements between
evaluation metrics for XAI. We appropriate two recently introduced methods of evaluating
explanations—ablation [10] and topological data analysis [27]—to tackle the problem of
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evaluating XAI metrics. We then compare them to other XAI metrics on a variety of different
explanation methods, baselines for those explanation methods, and tabular datasets.
Our paper points to a gap between theory and practice: We have many faithfulness metrics,
but they do not correlate well with one another. Practitioners evaluating explanations on
faithfulness lack guidance on which faithfulness metric they should use. It may be that
similarly to how one selects different accuracy metrics based on the application context,
faithfulness metric selection is also highly contextual. If so, more work needs to be done to
figure out which faithfulness metrics are suitable for which contexts.

2 Previous work

2.1 Post-hoc explainability challenges

Post-hoc explainability methods face the challenge of determining whether their outputs are
good. This challenge is complicated because, to begin with, there are different ways in which
we can define “goodness”. Stability, faithfulness to the original model, and fairness are just
some of the desiderata identified for XAI outputs so far [1]. In addition, user studies have
found that XAI methods may not necessarily be useful to humans in specific application
contexts—another dimension of explanation quality that is distinct from their mathematical
properties [4, 26]. Finally, many feature attribution methods are sensitive to one’s choice of
baseline [11, 19, 23]
In this paper, we focus on measuring faithfulness [3]. The basic concept behind faithfulness
is that feature attributions output by the XAI method should reproduce the actual influences
of the features in the model. Faithfulness can be measured through various quantitative
metrics, such as Prediction Gap on Important feature perturbation (PGI) and Prediction
Gap on Unimportant feature perturbation (PGU) (first defined in [8], but given these names
in [1]).

2.2 Post-hoc explainability benchmarking

In an attempt to facilitate easier comparison of explanation methods, recent papers have
introduced XAI benchmarks for feature attribution-based post-hoc explanations [8, 5, 1].
We add to this literature by introducing two additional metrics: ablation and topological
data analysis. We also compare them to other faithfulness metrics.

3 Methodology

Figure 1: Cartoon of the data flow / process. If the faithfulness metric was valid, this would
allow a practitioner to choose the best explanations for their model.

The framework for the study is to use models built on commonly used empirical data with a
variety of local explanations generated for each model-data pair. Using those explanations
along with a scalar metric intended to measure faithfulness, we generate a rank ordered list
that in theory should give guidance on choosing the most faithful set of explanations. We
compare these rankings in 4.
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3.1 Data and models

We use one synthetic and four open source datasets [9] whose characteristics are shown in
Table 1. For each dataset, we built a fixed size dense neural network with three layers and a
single layer neural network as our linear model. See Table 1 in the appendix for details on
the open-source datasets.

3.2 Explanations

For both the linear and non-linear models, we used three methods from the Captum pack-
age [16]: Deep SHAP, KernelSHAP, and integrated gradients [20, 24]. However, specifying
methods alone is not sufficient [11]. Each of these methods produces different outputs
depending on the choice of baseline: for example, the popular open source shap package uses
the average of all predictions as its default baseline [20]. We also include a set of random
explanations, uniformly sampled from [0,1] to provide a lower limit of faithfulness. For linear
models, we include ground truth explanations of the form xici where xi is the ith input
feature and ci is the learned coefficient.
For each explanation method, we supplied four baselines: constant median, a variant of the
constant baseline that uses the median of each feature; training, also known as the expectation
baseline, a sub-sample of the training data [18]; opposite class [2], which selects k samples
that belong to the opposite class from the the chosen sample; and nearest neighbor [2], which
selects k samples that are closest to the chosen sample. For this study the value of k is fixed
at five.
Evaluation of each method-baseline pair is repeated three times to account for the possibility
of stochastic behavior. For the dense networks, we have a total of 39 tables of local
explanations (3 methods with 4 baselines each and the random explanations, all with 3
repeats). For the linear models, we have a set of 42 tables of explanations (13 in common
with the nonlinear models with the addition of the ground truth explanations, all with 3
repeats).

3.3 Metrics of faithfulness

We sample existing metrics of faithfulness from the literature and open source repositories,
and add two novel methods: ablation [10] and topological data analysis [27].
PGI is calculated by measuring the change in a model’s prediction when the top k most
important features, as determined by an explanation method, are perturbed. The intuition
behind the metric is that a model’s output should change most dramatically when the most
important features are perturbed. A higher PGI indicates a more faithful explanation [8].
PGI is defined as follows:

M̂PGI(x, f) = 1
m

m∑
j=1

[|f(x) − f (x̃j)|] (1)

Where x is the original sample, x̃ is the same sample with the top k features perturbed, and
f is a model which outputs a value from 0 to 1. The average PGI is computed over m runs
of a stochastic perturbation process. We use a Gaussian perturbation drawing samples from
N (0, 0.1) for continuous variables, and a “flip percentage” of 0.3 for discrete variables unless
otherwise mentioned.
Ablation is another perturbation-based method. This procedure is frequently used to
assess the importance of input variables on a model’s performance. By perturbing the input
variables in rank order of importance as determined from local attributions, one can assess
the quality of their rank ordering. Essentially, the goal is to assess the sensitivity of the
model’s performance as gauged by the local explanations. Perturbing important variables
should correlate with larger decreases in measures of model capability than perturbing less
important features. Details on ablation studies can be found in [10]. For ablation, we use
area under the ablation curve (ABC) as the scalar faithfulness metric.
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Bottleneck distance (BND) is a similarity metric that compares two manifolds, with
origins in topological data analysis (TDA) and persistent homology. It does not rely on
perturbations—a characteristic which makes its possible use appealing. Instead, this method-
ology treats the point cloud of explanations as a manifold. Through the use of the mapper
algorithm [22] with a specified filter function (here we use the model predictions), the
high-dimensional manifold is projected down to a two dimensional network representation
called the Reeb graph. The similarity of two mapper networks can be compared by the
bottleneck distance. Even though the technical underpinning and units of the local expla-
nations may differ, the smaller the distance between their respective manifolds, the more
they are similar [27]. For each explanation method, we use its average bottleneck distance to
all other methods as the metric of explanation quality. Details of the TDA process can be
found in A.2.

3.4 Ranking explanations

For each dataset, with its corresponding set of explanations and controls, we calculate each
of the metrics and rank order their values. From those rankings, we use rank correlations
to measure their agreement. In an ideal world, where the metrics can consistently assess
faithfulness, the resulting correlation would be one. Detailed plots of the rankings can be
seen in Section A.5. Summary heatmaps of the correlations are shown in Figure 3.

4 Experiments

4.1 Ground truth ranking on synthetic dataset

The first experiment is to create a set of explanations with a controlled change in faithfulness.
Using the synthetic dataset, its logistic regression model, and ground truth explanations
from the logits, we permute a portion of the rows of the explanation - with fractions varying
from 0 to 1. The explanations with more permuted rows are fundamentally less faithful
since the explanations are increasingly misaligned with the inputs and their predictions. The
expected outcome is to have metrics that reflect this change in a strictly monotonic manner.
The results of the experiment are shown in Figure 2.

Figure 2: Comparison of metrics (ABC, BND, and PGI respectively) on a set of explanations
with a designed ranking.

Of the three metrics, only the ABC metric matches our expectation. The BND metric is the
next closest to expectations—but it is not strictly monotonic for fractions up to 0.5; while
the PGI metric is not monotonic. For details for the behavior of TDA for this experiment,
detailing its lack of differentiation from 0 to 0.5, see Section A.3. See Section 4.3 for an
analysis of the main effects of parameter choices for PGI.

4.2 Experiments on non-synthetic datasets

Figure 3 shows the correlation of faithfulness metrics for each of the datasets in this study for
logistic regression models (top) and dense networks (bottom) using Spearman’s ρ (top row),
weighted Kendall-τ (middle row), and Kendall’s τ (bottom row). Using a logistic regression
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(a) Logistic regression models.

(b) Three layered dense network models.

Figure 3: Rank correlation heatmaps of the faithfulness metrics for each dataset in the study.
The numbers are averaged across all combinations of baselines and explanation methods.

model, with the addition of the “ground truth” explanations, provides the opportunity to
rank the XAI-generated explanations alongside ground truth and random explanations, with
the expectation that the top ranked explanations will be the ground truth, and the worst
ranked will be the random explanations. For the dense networks the only known quantity is
that the random explanations should be ranked the worst. The correlations are insensitive
to the choice of correlation metric.

(a) Gaussian perturbation (b) Marginal perturbation

Figure 4: Sensitivity study on choice of k and perturbation for PGI on spambase with a
dense network, with integrated gradients as the explanation method.

4.3 Considerations for perturbation based metrics

PGI and Ablation are both perturbation-based methods and share similar drawbacks [14].
Nonetheless, we see discrepancies between them in the correlation heatmaps in Figure 3.
While perturbation methods for explainability have been widely studied [7], that is not the
case for faithfulness metrics. Perturbation-based metrics of explanation faithfulness can vary
widely depending on their numerous configuration parameters. Here we mention three:

1. Choice of perturbation method: This is known to have a large, and biasing impact,
on these types of “permute and predict” metrics [14]. In Figure 4, we contrast PGI
calculated with a Gaussian perturbation (left) and with a marginal perturbation
(right). For a fixed value of k (shown with a vertical dashed line), higher values of
PGI indicate higher faithfulness. Comparing the two graphs, the rankings of the
baselines are dissimilar. For this instance, the Gaussian perturbation appears to
perform more poorly, as it ranks the random explanation ahead of the constant
median baseline.

2. Choice of top k: how to select k is not theoretically motivated. We see in Figure 4
that choice of k can impact the faithfulness rankings of a set of explanations based on
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PGI. Wherever the lines cross, PGI rankings change. In the Gaussian perturbation
plot, three of the five baselines achieve the highest PGI rank at different values of k.
At k <= 11, the opposite class baseline has the highest PGI. Then, training baseline
is the top ranked for 12 <= k <= 41, until finally constant median takes over.

3. Treatment of discrete features: this encompasses two issues: i) it is difficult to
fairly balance the strength of Gaussian noise on continuous variables and the flip
percentage on discrete variables; and ii) the choice of treating discrete features as one-
hot-encoded, instead of performing an aggregation and reverting the input features
back to a nominal label-encoded state. Figure 5 shows the difference in calculated
ablation curves on one-hot-encoded (left) and aggregated (right) categorical features.
If the rank ordering of features is consistent, it is expected that the ablation
curve would be monotonically decreasing—which is clearly not the case for the
no-aggregations case. For the aggregated plot, the ablation curves are closer to the
ideal, with significant increases in AUROC occurring only after the random feature
sanity check.

Figure 5: Sensitivity of ablation curves for the training and opposite class baselines. The
vertical line depicts the best average rank of a random feature.

4.4 Observations on the use of TDA

At the heart of TDA is the use of the bottleneck distance (BND), and choosing the set of
explanations that have the lowest distance to the other candidates. However, the distance is
a similarity metric—it does not have a notion of “good” or “faithful” baked into it. This can
be limiting, as one cannot directly compare two items—the sum of the distances for each
candidate would be identical. In a larger collection of methods, if the candidates consisted
of a majority of explanations of low quality and a minority of high quality, the selected
candidate will most likely be chosen from the low quality pool. This should influence the
construction of candidates for assessment. The current process of selecting one resolution
as a result of its performance on all candidates for a dataset seems to have diminished its
sensitivity, which can be seen in its robustness to permuting rows in Figure 2, and for the
selection of candidates for the synthetic dataset in Figure 8

5 Conclusions

We have focused on using XAI methods on a range of public empirical datasets, using the
tabular data to create classification models—a typical use case in academia and industry.
The goal was to find a set of explanations that was deemed to be most faithful.
Across the experiments, the ranked correlations reveal little consensus on the notion of
faithfulness in the explanations. This in turn would leave an end user without the required
tools to know if they had successfully chosen the right set of explanation method and baseline.
This gap in utility should be a wake-up call to the XAI community. Future work can compare
the plethora of additional measures of faithfulness [12, 1] to see if they also disagree.
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A Supplementary Material

A.1 Data set information

Table 1 shows details of the synthetic and empirical data sets used in the experiments.
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Dataset Samples Num Cat OHE
synthetic 1,000 24 0 0
adult 48,842 6 8 100
German credit 1,000 7 13 54
har 10,299 561 0 0
spambase 4,601 57 0 0

Table 1: Summary of datasets, detailing number of samples, numerical (Num), categorical
(Cat), and one hot encoded (OHE) features.

Figure 6: The network representation of a mapper object for each method and baseline for
the synthetic dataset.

A.2 TDA process - hyperparameters, networks, and persistence diagrams

In practice, a topological manifold is represented by a point cloud. A mapper object is
constructed from five things:

• A manifold as represented by a point cloud - the explanations.
• A “lens function“ that provides scalar valued labels to every point in the cloud. Here

we use the model predictions.
• A value for resolution. The resolution sets the number of slices that divide contiguous

ranges of the lens function. To choose the value of resolution, we conduct a grid
search over a range of values from six to thirty by twos. Each value of resolution is
calculated over 30 bootstrap samples and we collect the 95th percentile confidence
value from the bootstrap bottle neck distances as our figure of merit, called the
stability. For a dataset, we collect a table of stability values from all methods,
baselines and repeats, for each candidate resolution. The resolution with the lowest
total sum of stability is selected.

• A clustering algorithm that operates on the points in a slice. This clustering creates
the nodes of the network. The majority of the theoretical work in TDA has used
agglomerative clustering - which we also adopt. The GUDHI [25] library offers utility
functions to estimate its distance parameter, which eliminates a potential search for
that hyperparameter.
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• A value for the gain. The gain specifies the overlap of neighboring slices. Theoretical
analysis shows a valid range for gain is from 0.3 to 0.5 [6]. We choose a gain value of
0.4 for all results shown in this study. Points that exist in the overlap region create
edges between nodes.

The mapper networks for one repeat are shown in Figure 6. For each network, a persistence
diagram is created, shown in Figure 7. Each point on the diagram represents a single simple
connected component, or fork, or hole that exists over a range of values for the filter function
(in this case the model predictions). The x-axis specifies when a topological feature is “born”
(when it first appears as measured by the filter function) while the y-axis specifies when a
topological feature “dies” (the final value of the filter function for the last node).

Figure 7: Persistence diagrams corresponding to the networks shown in Figure 6.

The bottleneck distance (BND) is calculated by matching the entities on two persistence
diagrams and measuring the euclidean distance between the points on the persistence diagram.
A heatmap showing these distances is shown in the left of Figure 8. The candidate is chosen
to be the one with the lowest row-wise sum of the bottleneck distances, as seen in the right
of Figure 8.

A.3 Ground truth ranking details for BND

Here we show how low values of permutation (0, 0.25 and 0.5) “look the same” to the BND
metric - with little change in the mappers, resulting in no change to the bottleneck distance.
With permutations of 0.25 and 0.5, the mappers show a disconnected cluster, which does not
persist, and does not amount to a significant differentiation. It’s not until the permutation
reaches 0.75 that a new persistent feature (the upper branch) is detected, and more features
continue to be added at 1.0 leading to a significant difference being found by BND.

A.4 Top three most faithful explanations

While it is possible the rank correlation could over weight mismatches in lower ranked
components, Table 2 shows the three most faithful explanations as chosen by each metric. It
is clear to see that there is no consistent agreement among the metrics. However if taken in
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Figure 8: Heatmap of bottleneck distance, baseline and repeat (left) and its sum (right) for
all candidates. The candidate with the lowest sum is considered the best.

Figure 9: For the ground truth ranking experiment, plots of all mapper networks (top) and
corresponding persistence diagrams (bottom).

aggregate, the method that appears most often is integrated gradients (18), followed by deep
SHAP (17), and lastly by KernelSHAP (10). For baselines, the picture is clearer - the one
that appears most frequently is opposite class (24), followed by training (14) and tied in last
place are constant median (4) and nearest neighbors(4).

Synthetic

(a) Ranking of BND and PGI (b) Ranking of PGI and ABC (c) Ranking of ABC and BND

Figure 10: Slope charts for synthetic dataset

A.5 Slope charts for dense networks

The fundamental information being compared are the rankings of the explanations based
on the faithfulness metrics. To provide a more tangible sense of the mismatches, we have
utilized slope charts (Figures 10, 11, 12, 13) as a means of interrogating the results. Best
ranked explanations are at the top, worst ranked at the bottom. When metrics place the
explanations at a different rank, it can be identified as a sloped line, with a steeper slope
signifying a larger disagreement in rank.
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German credit

(a) Ranking of BND and PGI (b) Ranking of PGI and ABC (c) Ranking of ABC and BND

Figure 11: Slope charts for German Credit dataset

Spambase

(a) Ranking of BND and PGI (b) Ranking of PGI and ABC (c) Ranking of ABC and BND

Figure 12: Slope charts for spambase dataset

Human Activity Recognition (HAR)

(a) Ranking of BND and PGI (b) Ranking of PGI and ABC (c) Ranking of ABC and BND

Figure 13: Slope charts for human activity recognition dataset
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dataset metric method baseline ranking

synthetic

ABC deep-shap opposite-class 0
ABC integrated-gradients opposite-class 1
ABC integrated-gradients training 2
BND deep-shap nearest-neighbors 0
BND deep-shap constant-median 1
BND integrated-gradients nearest-neighbors 2
PGI deep-shap opposite-class 0
PGI integrated-gradients opposite-class 1
PGI integrated-gradients training 2

german

ABC kernel-shap training 0
ABC kernel-shap opposite-class 1
ABC deep-shap opposite-class 2
BND deep-shap opposite-class 0
BND integrated-gradients nearest-neighbors 1
BND kernel-shap training 2
PGI kernel-shap training 0
PGI kernel-shap opposite-class 1
PGI deep-shap opposite-class 2

adult

ABC deep-shap opposite-class 0
ABC integrated-gradients opposite-class 1
ABC integrated-gradients training 2
BND deep-shap constant-median 0
BND deep-shap nearest-neighbors 1
BND deep-shap opposite-class 2
PGI deep-shap opposite-class 0
PGI integrated-gradients opposite-class 1
PGI integrated-gradients training 2

spambase

ABC integrated-gradients opposite-class 0
ABC deep-shap opposite-class 1
ABC kernel-shap opposite-class 2
BND deep-shap constant-median 0
BND deep-shap training 1
BND integrated-gradients opposite-class 2
PGI integrated-gradients opposite-class 0
PGI deep-shap opposite-class 1
PGI kernel-shap opposite-class 2

har

ABC integrated-gradients opposite-class 0
ABC integrated-gradients training 1
ABC deep-shap opposite-class 2
BND kernel-shap opposite-class 0
BND kernel-shap training 1
BND kernel-shap constant-median 2
PGI integrated-gradients opposite-class 0
PGI integrated-gradients training 1
PGI deep-shap opposite-class 2

Table 2: Top three choices for each dataset broken down by metric.
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