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ABSTRACT

Machine Unlearning aims to remove undesired information from trained models
without requiring full retraining from scratch. Despite recent advancements, their
underlying loss landscapes and optimization dynamics received less attention. In
this paper, we investigate and analyze machine unlearning through the lens of
mode connectivity–the phenomenon where independently trained models can be
connected by smooth low-loss paths in the parameter space. We define and study
mode connectivity in unlearning (MCU) across a range of overlooked conditions,
including models trained curriculum learning, second-order optimization, and
cross-method connectivity. Our findings show distinct patterns of loss landscapes
across various datasets, training paradigms, and unlearning methods. With MCU,
we analyze the mechanistic (dis)similarity between unlearning methods. We also
demonstrate MCU can be used to improve generalization of unlearning and defend-
ing against relearning attacks. To the best of our knowledge, this is the first study
of loss landscape analysis of machine unlearning with mode connectivity.

1 INTRODUCTION

The widespread deployment of machine learning models raises the need for machine unlearning–
the process of removing specific knowledge from a trained model without affecting other knowl-
edge (Bourtoule et al., 2021a; Liu et al., 2024b). This need is driven by both legal and ethical
imperatives, such as removing copyrighted data from LLMs (Eldan & Russinovich, 2023), as well as
practical necessity of purging outdated or incorrect information (Dhingra et al., 2022). As models
scale in size and training cost, understanding unlearning methods is becoming an important research
frontier in trustworthy and adaptive NLP systems.

Concurrently, the phenomenon of mode connectivity in deep learning has shown that independently
trained models can often be connected by low-loss paths in parameter space (Garipov et al., 2018;
Qin et al., 2022), as illustrated in §2, Figure 1a. These findings have important implications for
understanding loss landscape, model ensembling, and generalization (Garipov et al., 2018; Zhao
et al., 2020).

However, existing studies on most mode connectivity has focused largely on image classification
tasks (Draxler et al., 2018; Vrabel et al., 2025), with straight-forward optimization objectives and
static data distributions. Its relevance to unlearning remains unexplored. In addition, understanding
of underlying loss landscape of unlearning remains largely unexplored, despite recent advances (Liu
et al., 2024b;c; Hong et al., 2024b). In particular, it is unclear whether mode connectivity holds
during unlearning, and what this reveals about unlearning.

This paper introduces and formalizes the concept of Mode Connectivity in Unlearning (MCU)–a
framework to analyze the loss landscape during unlearning and to assess whether different unlearning
strategies converge to mechanistically similar solutions. Specifically, we investigate the following
research questions: RQ1: what does the loss landscape of unlearning look like under various
training conditions (e.g., curriculum learning, second-order optimization)? RQ2: can MCU reveal
understandings of unlearning methods, such as mechanistic similarity or differences between different
methods?

Answering these questions provides insight into the generalization, stability, and interpretability
of unlearning methods. For instance, the existence of a smooth and low-loss path between two
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unlearning solutions may indicate shared inductive biases or similar optimization dynamics, which
suggest that the unlearning methods reside in connected regions of the loss landscape. Conversely, a
lack of connectivity may indicate divergent training behaviors and different solution structures.

Through extensive experiments on diverse tasks and different training paradigms, we find that the
emergence of MCU is highly influenced by factors such as the choice of unlearning method, the
complexity of unlearning task, and data marked for unlearning. We find that unlearned models trained
with fundamentally different optimization techniques can converge to the same low-loss manifold.
In addition, although the same manifold can yield models with similar losses, their performances
on different evaluation metrics can vary significantly (§ 5). We further investigate how different
unlearning methods are mechanistically (dis)similar using linear mode connectivity. Finally, we
discuss how mode connectivity can improve the effectiveness of unlearning, as well as defending
against adversarial attacks (§ 6). Our contributions are:

• Mode Connectivity in Unlearning (MCU): We introduce and formalize MCU as a novel
framework for studying machine unlearning through the lens of loss landscape (§3). To the
best of our knowledge, this is the first study of mode connectivity in the unlearning setting.

• Novel Experimental Conditions for Mode Connectivity: We examine MCU under a
range of new experimental conditions in mode connectivity, including curriculum learning,
second-order optimization, and unlearning methods. These conditions have not previously
been investigated in mode connectivity literature.
These experiments provide new empirical insights into how optimization techniques influ-
ence unlearning (§3.1).

• Insights into Unlearning: We reveal mechanistic similarities, generalization, unlearning
difficulty with MCU. These insights provide new directions for the development of robust
unlearning methods (§6).

2 PRELIMINARIES

Notation Let fθo be a model trained on dataset D with task loss L. In addition, assume that D can
be divided into two disjoint sets: the forget set Df and the retain set Dr = D \Df .

Machine Unlearning Machine unlearning aims to remove the influence of the forget set Df from
the trained model fθo and preserve the knowledge of retain set Dr. A good unlearning model f ′

should achieve high loss on Df and low loss on Dr. A commonly used solution is to fine-tune the
original model fθo to minimize the task loss on Dr while maximizing the task loss on Df (Jia et al.,
2024b; Cheng & Amiri, 2024). For example, GradDiff (Maini et al., 2024) directly implements the
above approach:

f ′ = argmin
θ′

L(Dr)− L(Df ). (1)

Details of related work and additional unlearning methods are discussed in Appendix A and B.

Mode Connectivity Let θ1 and θ2 denote the weights of two independently trained models on some
dataset D using loss L. The objective of mode connectivity is to find a curve ϕ(t) → R|θ|, t ∈ [0, 1]
in the parameter space that connects the two minimizers θ1 and θ2, where ϕ(0) = θ1 and ϕ(1) = θ2.
Curve ϕ(t) connecting θ1 and θ2 satisfies mode connectivity if the path ϕ(t) does not yield “barriers,”
defined as sudden increase in loss (Garipov et al., 2018; Lubana et al., 2023). Formally, ∀t ∈ [0, 1]:

L
(
D;ϕ(t)

)
≤ t · L(D; θ1) + (1− t) · L(D; θ2). (2)

In the loss landscape, mode connectivity tries to find a low loss path ϕ connecting θ1 and θ2
without hitting any barrier. In other words, every set of parameter induced by ϕ(t) yield comparable
performance to the minimizers θ1 and θ2. The parametrization of ϕ determines the shape of the curve
connecting the two minimizers θ1, θ2. Below, we present two commonly used curve types:

• Linear: a linear interpolation of minimizers with no optimization involved, i.e. ϕ(t) =
tθ1 + (1− t)θ2. Stronger linear connectivity indicates stronger mechanistic similarity of
minimizers, such as their inductive biases (Lubana et al., 2023).
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(a) Standard 
Mode Connectivity (MC)

Linear MC

Quadratic MC

Linear MCU

Quadratic MCURandomly Initialized
Training Unlearning

Fully Trained

(b) Mode Connectivity in 
Unlearning (MCU)

Figure 1: (a): Illustration of standard mode connectivity (MC): MC finds a smooth curve connect-
ing two unlearners that yields consistent low loss on D. (b): Illustration of mode connectivity in
unlearning (MCU): unlearning removes knowledge of forget set Df from the trained model fθo while
maintaining knowledge of retain set Dr = D\Df . MCU finds a smooth curve connecting the two un-
learned models θ′1 and θ′2 that yields consistent low loss on Dr and high loss on Df . See details in § 3.

• Quadratic: a smooth quadratic curve connecting two minimizers, i.e ϕ(t) = (1− t)2θ1 +
2t(1− t)θ12 + t2θ2, where θ12 needs to be trained explicitly.

To find non-linear curve, we can minimize the total accumulated loss along the curve to find the
midpoint θ12 which will later be used for interpolation. More details of the curve finding optimization
are discussed in Appendix D.

3 MODE CONNECTIVITY IN UNLEARNING (MCU)

Definition 1 (Mode Connectivity in Unlearning (MCU)). As illustrated in Figure 1, let θ′1 and θ′2
denote the weights of two unlearned models of applying some unlearning procedure U on the original
model fθo with different configurations. MCU holds if there exists a path ϕθ′

1→θ′
2
(t) in parameter

space that connects θ′1 and θ′2 without yielding barriers. Formally, ∀t ∈ [0, 1]

L
(
Dr;ϕ(t)

)
≤ t · L(Dr; θ

′
1) + (1− t) · L(Dr; θ

′
2), (3)

L
(
Df ;ϕ(t)

)
≥ t · L(Df ; θ

′
1) + (1− t) · L(Df ; θ

′
2). (4)

In MCU, “barriers” on the retain set Dr refer to the sudden increase of task loss L (as in standard
mode connectivity), while “barriers” on the unlearn set Df refer to the sudden decrease of task loss.
Eq. 3 ensures that the task loss on the retain set Dr remains both low and smooth along the mode
connectivity curve, indicating consistent model behavior during the unlearning process. Similarly,
Eq. 4 enforces a high and smooth loss on the forget set Df along the mode connectivity path. In
other words, MCU is realized when there exists a continues path of model weights connecting the
unlearners θ′1 and θ′2, such that performance remains high on Dr and low on Df along the curve.

Connection to Standard Mode Connectivity In contrast to standard mode connectivity, MCU must
satisfy objectives on both Df and Dr. Essentially, MCU examines whether it is possible to find a con-
tinues curve between two unlearners such that there are no significant loss barriers in two distinct loss
landscapes–a key difference compared to standard mode connectivity, which typically considers only
a single task or dataset. Another key difference is that in standard mode connectivity (Garipov et al.,
2018), the unlearners θ1 and θ2 are obtained by training the model from two random initializations.
In contrast, the unlearners θ′1 and θ′2 in MCU are both derived from the exact same trained model fθo .

3.1 INFLUENCE OF TRAINING DYNAMICS ON MODE CONNECTIVITY IN UNLEARNING

Unlearned models can be trained by various paradigms, such as curriculum learning (CL) (Barbulescu
& Triantafillou, 2024; Zhao et al., 2024; Cheng & Amiri, 2024) and second-order (SO) optimiza-
tion (Jia et al., 2024b; Zhang et al., 2024a). To systematically analyze the impact of these factors, we
define several novel experimental conditions and evaluate MCU under these conditions.

Robustness Against Randomness We begin with a classical mode connectivity setup: training two
unlearners (unlearned models in our case) independently from different random seeds. This examines
whether MCU is robust to stochasticity in optimization.
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Table 1: Experimental settings to study MCU. Rand: unlearners trained with different random seeds,
CL and SO: curriculum learning and second-order optimization respectively, Met: unlearners trained
with different unlearning methods. All settings except for “Rand” are novel in mode connectivity.

unlearners unlearned with Standard Both CL Both SO Mixed CL/Non-CL Mixed FO/SO

Different randomness Rand Rand-CL Rand-SO CL-Non-CL FO-SO

Different unlearning methods Met Met-CL Met-SO Met-CL-Non-CL Met-FO-SO

Sensitivity to Training Curricula Curriculum learning (CL) (Bengio et al., 2009), where training
data is introduced to a learner in a specific order, contributes to the efficacy of unlearning (Zhao
et al., 2024; Cheng & Amiri, 2024). We investigate two CL-based settings: (a): both unlearners
are trained with CL (-CL); and (b): one unlearner is obtained through CL and the other does not
(CL-Non-CL). These configurations allow us to assess whether changes in sample learning order
affect the emergence of MCU.

Connectivity across Optimization Orders While most unlearning methods use first-order (FO)
gradients, recent studies demonstrate that unlearning can benefit from second-order information (SO)
(curvature via Hessian) in case of LLMs (Jia et al., 2024b) and discriminative tasks (Cheng & Amiri,
2024). We analyze MCU under two different SO settings: (a): both unlearners are trained with SO
(-SO); and (b): one unlearner is trained with FO and the other trained with SO (FO-SO). This analysis
helps us understand how different optimization dynamics shape the unlearning loss landscape.

Similarity across Unlearning Methods All unlearning methods share the common objective of
removing knowledge of Df while retaining knowledge of Dr. We examine whether unlearners derived
from different unlearning methods can be smoothly connected. We hypothesize that methods with
similar formulation and inner mechanisms are more likely to establish connectivity. This experiment
provides a lens into mechanistic similarity of different unlearning algorithms (Lubana et al., 2023).

Experimental Novelty To the best of our knowledge, with the exception of the randomness factor
(see “Robustness Against Randomness” above), all other factors discussed above are novel within the
mode connectivity literature. Multiple configurations can be combined, as summarized in Table 1.
Together, they provide diverse and realistic perspectives on the training dynamics of unlearning,
broaden the scope of mode connectivity research, and deepen our understanding of the factors that
enable or prevent successful unlearning.

4 EXPERIMENTAL SETUP

Datasets and Forget Sets We analyze MCU on widely adopted LLM unlearning and classification
unlearning benchmarks. For LLM unlearning, we use TOFU (Maini et al., 2024), MUSE (Shi et al.,
2025), and WMDP (Li et al., 2024) dataset. For classification, we use three datasets from MU-
Bench (Cheng & Amiri, 2024): image classification on CIFAR-10 (Krizhevsky, 2009), biomedical
text relation classification on DDI2013 (Segura-Bedmar et al., 2013), and image-text visual entailment
on NLVR2 (Maas et al., 2011). The original models and standard data splits are provided by the
above benchmarks. Specifically, TOFU has 1%, 5%, 10% of forget set. MUSE has Books and News
as forget sets, while WMDP has Cyber-security (Cyber) and Bio-weapons (Bio) as forget
sets. MU-Bench provides 2%, 4%, 6%, 8%, 10% forget set.

Unlearning Methods We use MCU to analyze the following LLM unlearning methods: 1) Gradient
Ascent (GA) (Golatkar et al., 2020), 2) GradDiff (GD) (Maini et al., 2024), 3) Negative Preference
Optimization (NPO) (Zhang et al., 2024b), 4) SimNPO (Fan et al., 2024b), 5) RMU (Li et al., 2024),
and 6) WAGLE (WGA) (Jia et al., 2024a). For classification tasks we use: 1) Gradient Ascent
(GA) (Golatkar et al., 2020), 2) Random Labeling (RL) (Graves et al., 2021), 3) Bad Teaching
(BT) (Chundawat et al., 2023), and 4) Saliency Unlearning (SU) (Fan et al., 2024c). These methods
cover a diverse set of unlearning paradigms and are commonly used in existing works. Appendix B
provides additional details.

Evaluation To evaluate MCU, we sample multiple points by varying the interpolation weight
t ∈ [0, 1] with small step size. Each value of t induces a set of model weights according to the
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Figure 2: MCU under Rand setting on WMDP Cybersecurity dataset. Additional results are shown
in Appendix E Figure 7–21.

parametrization of the curve ϕθ(t) (§ 2). Following previous mode connectivity work on language
models (Qin et al., 2022), we sample 16 points with equal step size in [0, 1].

For each induced unlearned model, we use standard metrics from each benchmark. On classification
unlearning tasks, we use accuracy on test set Dt(↑), accuracy on forget set Df (↓), accuracy on retain
set Dr(↑), and Zero-Retrain Forgetting score ZFR (↑) which measures the prediction similarity of Df

between unlearned and original models. On TOFU, we use Forget Quality (↑) and Model Utility (↑)
which is a p-value of Kolmogorov-Smirnov test (KS-Test). On MUSE, we use forget verbmem (↓),
forget knowmem (↓), retain knowmem (↓), extraction strength (↓), and privacy leakage (privleak, ↓).
On WMDP, we use accuracy on forget set (↓) and accuracy on MMLU evaluation set (↑). Appendix C
provides additional details and metrics.

5 RQ1: LOSS LANCSCAPE ANALYSIS OF MACHINE UNLEARNING

We investigate the conditions under which mode connectivity in unlearning (MCU) emerges across
different models, datasets, and optimization strategies. Our results show that MCU is not only
possible but often prevalent–though, its emergence is influenced by unlearning method, training
dynamics and the size of forget set Df .

5.1 MCU ACROSS DIFFERENT CONDITIONS

On WMDP Cybersecurity, we observe almost perfectly smooth curve with no degradation of un-
learning quality with GD and WGA. These curves show consistently high forget quality (low forget
accuracy) and retained model utility (high MMLU accuracy), which suggests that unlearning solu-
tions reside on a connected low-loss manifold. This observation aligns with findings in standard
mode connectivity (Draxler et al., 2018), where minima are not isolated but from a single connected
manifold of low loss in parameter space. For RMU, we observe significant fluctuations in both forget
quality and retained model utility, particularly in the middle part. Similarly, there are ridges on
the loss landscapes of NPO and SimNPO but less significant. The existence of mode connectivity
paths suggests that modern neural networks have enough parameters such that they can achieve good
predictions while a big part of the network undergoes structural changes.

On classification dataset, results vary. GA results in the smoothest MCU curves, both linear and
quadratic, particularly for small |Df | = 1%. Due to the similarity in design, RL and SU have very
similar MCU patterns. Both types of curve yield models with degraded forget set performance (↓) in
the middle part of the curve (green line in Figure 17), with more prominent degradation on linear
than quadratic curves. On BT, there is a strong linear MCU but the curve finding process fails to
converge to meaningful quadratic MCU. This suggests that simpler connectivity may appear but hard
to detect. We hypothesize that BT has a more rugged loss landscape than other methods, possibly
because of its indirect loss formulation based on representations rather than explicit tasks loss. These
results highlight the difference in loss landscape of unlearning methods. More details are discussed
in Appendix E.1.

Smooth local optima In most cases, we observe that smooth manifold appear when both minimizers
achieve low loss, which is consistent with early works on mode connectivity (Draxler et al., 2018;
Garipov et al., 2018). However, in unlearning, worse performing minimizers do not necessarily mean
smoother manifold in loss landscape. One example is the comparison between Rand (Figure 7) and
Rand-CL (Figure 8) when unlearning with RL on TOFU dataset. While on RL, CL yield minimizers
with slightly lower forget quality when |Df = 1%|, |Df = 5%|, and equally low forget quality when
|Df = 10%|. However, worse performing minimizers do not necessarily mean smoother manifold in
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Figure 3: MCU under CL-Non-CL setting on MUSE Books dataset.

loss landscape. Specifically, we find that RL yields a mode connectivity curve with less fluctuations,
i.e. less variation in forget quality, on both linear and quadratic curve.

Finding MCU Can Be Difficult Quadratic MCU involves finding the midpoint of the curve, an
unlearned model using the same unlearning method as θ′1 and θ′2. In some cases, this can be hard
to optimize. For example, linear MCU exists while quadratic MCU yields much worse curves, see
Figure 17 BT method. This is because quadratic MCU requires the underlying unlearning method to
find the curve, where some methods fall short during optimization. We observe this phenomenon
on BT most frequently, which indicates that BT suffer from significant computation cost and low
convergence speed.

Experiments also show that unlearning effectiveness does not guarantee smooth mode connectivity.
SalUn is generally an effective unlearning method on classification tasks. However, it often fails to
yield smooth mode connectivity curves, see Figure 17–19. This is potentially due to the sparse nature
of SalUn. This suggests that strong unlearning efficacy does not necessarily imply the existence of
smooth paths in the loss landscape.

5.2 EFFECT OF TRAINING PARADIGMS

Both Curriculum Learning (CL) When both endpoints (minimizers) are unlearned with CL
(Rand-CL), we observe different contributions from CL across different datasets. On TOFU, GA,
GD, or NPO result in connectivity patterns that are equally as performant as Non-CL minimizers,
see Figures 8 and 7). This is while RL yields minimizers with slightly lower forget quality but
smoother mode connectivity curves, for both linear and quadratic. This suggests that CL-based
unlearning may converge to different regions than non-CL-based unlearning, resulting in comparable
and sometimes-better performance. On classification tasks, finding MCU in CL space (Figure 18) is
much easier than non-CL space (Figure 17) for BT. However, CL has trivial contribution on RL and
SU. These results imply that CL can guide optimization toward flatter regions of the loss landscape,
depending on the model and method.

Both Second-Order Optimization (SO) Similar to CL, when both minimizers are unlearned
with second-order optimization (SO), we observe different effects incurred by SO on generative
and discriminative tasks, and on different size of forget set |Df |. On TOFU, So-based unlearning
results in more pronounced barriers (Rand-SO in Figure 9) compared to standard unlearning (Rand
in Figure 7) and CL-based unlearning (Rand-CL in Figure 7). These results can be attributed to SO
optimization, which takes larger steps in parameter space than FO optimization (Liu et al., 2024a).
This may sometimes lead to different low-loss manifolds. On classification datasets, SO generally
leads to a smoother manifold for all methods, where linear and quadratic connectivity are easier
to emerge for all methods, even when |Df | is large. Still, SO is insufficient for RL and SU when
unlearning large forget sets, e.g. |Df | ≥ 8%.

CL and Non-CL MCU may emerge between models trained with and without CL. On MUSE,
RMU and WGA show relatively smooth connectivity, while other methods show large ridges, see
Figure 3. This suggests that CL-based unlearning can sometimes converge to a different manifold
than standard unlearning, yielding a more effective or less effective unlearner.
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(b) MCU on DDI with BT Unlearning

Figure 4: Same MCU curve can have both smooth and fragmented loss landscapes measured by
different losses.
FO and SO MCU across FO and SO minimizers show more diverse patterns. On TOFU, Figure 11,
GD but not other unlearning methods show smooth MCU. Similarly, on classification datasets
(Figure 21), smooth MCU hardly emerges. These results suggest that FO and SO optimization can
drive the same unlearning method converge to different low-loss manifold. These minima are not
connected by smooth pathways, demonstrated by failure of quadratic MCU. There is no consistent
results that FO or SO is better.

5.3 FRAGMENTATION OF LOSS LANDSCAPE AND DIVERGENT PERFORMANCE

Connectivity differs on Dr and Df On retain set Dr, smooth connectivity are more likely to occur
and easier to find. On the other hand, the loss landscape over the forget set can be highly irregular
and prone to fluctuations. This could be because Dr is typically much larger than Df , which leads to
a more stable optimization signal and a smoother curve in the retain region of the loss landscape.

Similar loss divergent performance While smooth MCU confirms that two unlearners lie in the
connected low-loss regions, this does not always translate to similar performance acorss all evaluation
metrics. In other words, loss landscape may be fragmented despite smooth loss on Df .

For example, with WGA on MUSE-News, we observe a relevatively smooth MCU curve, with trivial
performance variation on forget verbmem, forget knowmem, and retain knowmem. However, perfor-
mance on privleak can fluctuate significantly along the same MCU curve, ranging from +100 to -100,
see Figure 4(a). This indicates that although close to each other in parameter space, some unlearners
are extremely prone to attackers and may leak information, while others may be much more robust.

Another example is with BT on DDI. We observe stable accuracy on Df along the MCU curve, but
significant fluctuations on Dr, Dt and moderate fluctuation on ZRF, see Figure 4(b). This indicates
that that although close to each other in parameter space, some unlearners maintain good amount of
knowledge from the original model (Dr and Dt), while others may have completely forgotten.

This behavior demonstrates that although many unlearners may reside in the same minima with similar
loss, their unlearning behavior can differ significantly. Same curve can have divergent behavior under
different loss landscapes. This also shows a limitation of current evaluation protocols for unlearning
and motivates the need for richer and intrinsic evaluation on model parameters (Hong et al., 2024a).

6 RQ2: UNDERSTANDING MACHINE UNLEARNING WITH MCU

MCU can indicate several characteristics of unlearning, including 1) mechanistic similarity between
unlearning methods, 2) generalization, 3) robustness to attacks, and 4) unlearning difficulty.

6.1 MCU INDICATES MECHANISTIC (DIS)SIMILARITY BETWEEN UNLEARNING METHODS

Prior works have found that linear mode connectivity indicates if minimizers share internal mecha-
nisms for making predictions (Lubana et al., 2023). We use this to analyze the similarity between
two unlearning methods.

Figure 5 shows the pair-wise linear MCU between all methods. We can see that GA shows smooth
MCU on forget set (knowmem and verbmem) with all other unlearning methods, indicating that all
methods share similar internal mechanisms of handling forget set samples. They do differ in retain
set significantly (Row 1 t → 1), since GA does not have retain mechanism.
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Figure 5: MCU under Met setting on MUSE Books dataset. Methods on rows and columns
correspond to θ′1 and θ′2 respectively. MCU is symmetric. Additional results are shown in Appendix E,
Figures 12–16, Figures 22–26.

We observe high similarity on retain knowledge between NPO and SimNPO, an improved version of
NPO. However, they differ from each other on forget knowledge and extraction strengths. Both of
them are significantly different from GD, since GD simply minimizes loss on Dr and maximizes loss
on Df , while NPO and SimNPO involves implicit reward modeling.

RMU and WGA both differ from all other methods. This is because WGA only trains sparse param-
eters. RMU also updates a subset of parameters but a few dense layers. Moreover, it incorporates
matching activation patterns as an extra loss.

6.2 MCU INDICATES GENERALIZATION

Table 2: MCU improves generalization.

Acc (↓) NPO + MCU Ensemble

63.7 24.1 21.5

Prior work has found that mode connectivity indi-
cates generalization, where minimizers converge to
a minima with smooth loss landscape and constant
low error, potentially leading to improved perfor-
mance (Garipov et al., 2018; Wang et al., 2023).

Previous experiments demonstrate that intermediate unlearners along the MCU curve may outperform
both endpoints. We then propose a generalization method, sampling N = 3 unlearners along the curve
with equal distance. We average the parameters of the sampled models and two endpoints, resulting
in a new merged unlearner. Results on WMDP show that our ensemble strategy can outperform
the endpoints in both unlearning effectiveness (forget accuracy), see Table 2. This suggests that
interpolated models may achieve a better trade-off between forgetting and retaining, and presents a
promising directions for ensembling or model selection using mode connectivity. Other examples
include RL on NLVR2.

6.3 MCU MAKES UNLEARNING ROBUSTNESS TO ATTACKS

It is well established that a smoother loss landscape is associated with greater robustness in deep learn-
ing models (Zhang et al., 2017; Foret et al., 2021; Zhang et al., 2024c; Li et al., 2025). Specifically,
minimizers along smooth mode connectivity curves are typically more robust than those obtained by
standard training. Building on this insight, our findings suggest that MCU can identify unlearned
models that are more resilient to adversarial threats, such as backdoor attacks (Lin et al., 2023) and
relearning attacks (Hu et al., 2024).
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Following prior work on unlearning robustness (Fan et al., 2025), we first apply the unlearning
method to models trained on the WMDP Cybersecurity benchmark. We then apply a relearning
attack by fine-tuning the unlearned model on generic Wikipedia text and subsequently evaluate its
unlearning effectiveness post-attack.

As shown in Figure 6, models unlearned via standard NPO methods are susceptible to relearning,
with their forgetting effects quickly deteriorating. In contrast, models obtained through MCU—by
averaging across multiple unlearners—demonstrate markedly greater robustness to such attacks. We
attribute this improvement to the smoother loss landscape induced by the averaging process.

This observation is consistent with recent work showing that minimizing loss landscape sharpness
(encouraging smoothness) during optimization enhances the robustness to adversarial attacks for
LLM unlearning (Fan et al., 2025).

6.4 MCU INDICATES UNLEARNING COMPLEXITY

Original Unlearn Relearn20 Relearn40 Relearn60
0

20

40

60

A
cc

u
ra

cy
 (

)

NPO

NPO + MCU

Figure 6: MCU finds unlearners with smooth
loss landscape and robust to relearning attack.

Prior unlearning works identify challenging forget
sets using bi-level optimization (Fan et al., 2024a),
proximity to test set (Cheng et al., 2023), and LLM-
generated stress-test set (Cheng & Amiri, 2025). We
propose that the smoothness of MCU can be an ad-
ditional indicator of the difficulty of unlearning task,
grounded in the geometric properties of the loss land-
scape. The smoothness of MCU can reflect the sharp-
ness of the loss landscape. A highly irregular loss
landscape may indicate high difficulty of optimiza-
tion, and balance the forget-retain tradeoff.

We observe that MCU appears more often on simpler tasks such as WMDP, TOFU and DDI, where
even methods like GA–which typically over-forget–show smooth connectivity. This aligns with
parallel findings that LLM unlearning benchmarks does not show progress of unlearning (Thaker
et al., 2025). Another potential reason is that the p-value-based evaluation is not sufficient to reflect
the true quality of unlearning methods, which aligns with prior findings (Liu et al., 2024b).

In contrast, MUSE has a more disconnected loss landscape with steep transitions, which suggest
higher difficulty than WMDP. These patterns align with prior findings that link unlearning difficulty
to factors like sample memorization (Barbulescu & Triantafillou, 2024) and interdependence of
forget-retain sets (Zhao et al., 2024), which suggest tasks complexity and data structure considerably
shape the loss landscape.

7 CONCLUSION

We introduce and formalize mode connectivity in unlearning (MCU) as a framework for understanding
the loss landscape and optimization dynamics of machine unlearning. To the best of our knowledge,
this is the first work that studies the loss landscape of unlearning with mode connectivity in various
conditions. We find that the emergence of mode connectivity can be influenced by task complexity,
forget set size, and optimization strategies like curriculum learning and second-order methods.

Our experiments across diverse tasks, unlearning methods, and training configurations show that MCU
provides insights into smoothness of similarity, training stability, and unlearning difficulty. We show
that MCU can be used as a diagnostic tool and open new directions for improving unlearning methods.
In future, we plan to use mode connectivity to identify intermediate models along unlearning paths that
optimize the trade-off between forgetting and retaining, and improve robustness of unlearning (Jung
et al., 2024; Huang et al., 2025).

Limitations In this study, we focus on parameters-space mode connectivity, whereas recent work
discovers input-space mode connectivity (Vrabel et al., 2025). In addition, we did not investigate
multi-dimensional manifolds(Benton et al., 2021) in mode connectivity and examine alternative curve
types such as star-shaped and geodesic mode connectivity(Lin et al., 2024).
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ETHICS STATEMENT

This work focuses on improving the transparency and reliability of machine unlearning, which is
motivated by ethical considerations such as user data privacy, regulatory compliance, and the right
to be forgotten. All experiments are conducted on publicly available datasets, and no personally
identifiable or sensitive data is used.

REPRODUCIBILITY STATEMENT

Our experiments are based on public implementations from the benchmarks we used. We will release
our code upon acceptance.
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A RELATED WORK

Machine Unlearning Early unlearning methods span across efficiently retraining (Bourtoule et al.,
2021b; Wu et al., 2020), model pruning (Jia et al., 2023), manipulating gradients (Ullah et al.,
2021; Hoang et al., 2024), adversarial unlearning (Setlur et al., 2022; Wei et al., 2023), and data
augmentation (Choi et al., 2024). Unlearning on LLMs recently draws more attention (Eldan &
Russinovich, 2023; Ji et al., 2024; Kassem et al., 2023; Cheng & Amiri, 2025). However, there is less
attention on mechanistically understanding the loss landscape of machine unlearning methods.

Mode Connectivity Furthermore, several studies have shown that independently trained minimizers
can be connected by low loss paths, a phenomenon known as mode connectivity (Draxler et al., 2018;
Garipov et al., 2018; Frankle et al., 2020), across both vision and language models (Qin et al., 2022).
During pruning, linear mode connectivity emerges only at early stage of training. This connectivity
has been extended to multi-dimensional manifolds(Benton et al., 2021), and alternative topologies
such as star-shaped and geodesic connectivity(Lin et al., 2024). Mode connectivity can also lead to
more effective (Garipov et al., 2018) or adversarially robust (Zhao et al., 2020; Wang et al., 2023)
models if ensembling along the curve. Vrabel et al. (2025) discover that mode connectivity can
happen in input space. Existing works on mode connectivity focus on the learning process. There is
no prior work that investigates mode connectivity in machine unlearning.

B DETAILS OF UNLEARNING METHODS

Below, we present the details of the unlearning methods used in our study.

Gradient Ascent Gradient Ascent (GA) (Golatkar et al., 2020) performs gradient ascent on Df

without any mechanism to maintain utility on the retain set Dr.

Random Labeling Random Labeling (RL) (Golatkar et al., 2020) fine-tunes fθo on Df with
corrupted labels and the original Dr (or a fraction of it if the entire Dr is too large). This method
aims to inject errors to the forget set.

Saliency Unlearning SalUn (SU) (Fan et al., 2024c) first finds parameter that are salient to
unlearning Df . Next, it performs Random Labeling but only updates the salient parameters.

Bad Teaching Bad Teaching (BT) (Chundawat et al., 2023) forces the unlearned model to
predict Dr similarly to the original model and to predict Df similarly to an incompetent
model (e.g. a randomly initialized model). It minimizes the KL-Divergence between predic-
tion logits KL(f ′(Dr)||f(Dr)) on Dr and maximizes KL-Divergence between prediction logits
KL(f ′(Df )||fd(Df )) on Df , where fd is the incompetent model, e.g. a randomly initialized model.

Gradient Difference GradDiff (GD) (Maini et al., 2024) minimizes task loss on Dr and maximizes
task loss on Df .

Negative Preference Optimization NPO (Zhang et al., 2024b) is built upon the DPO (Rafailov
et al., 2023) algorithm to post-train LLMs. In the original DPO, each query q corresponds to a
winning response yw to prioritize and a losing response yl to suppress. NPO functions only the losing
response with no winning response.

C DETAILS OF EVALUATION METRICS

We provide detailed descriptions of the evaluation metrics used in our analysis. On MU-Bench (Cheng
& Amiri, 2024) tasks, we follow the original paper to adopt accuracy as the evaluation metric. In
addition, we employ Zero-Retrain Forgetting score (↑) (Chundawat et al., 2023), which measures the
similarity of prediction logits on Df between the unlearned model and a random model.

TOFU (Maini et al., 2024) evaluates the unlearned model using p-value of Kolmogorov-Smirnov test
for Model Utility (↑) and Forget Utility (↑), which measure the similarity of probability distributions
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between the unlearned and retrained model. Additionally, we also include verbatim evaluation using
ROUGE-L recall score on Retain Authors (↑), Forget Authors (↓), Real Authors (↑), and World
Knowledge (↑).

MUSE (Shi et al., 2025) evaluates the unlearned model using verbatim memorization on forget
set (forget verbmem ↓) and knowledge memorization on forget and retain set (forget knowmem ↓,
retain knowmem ↑), by probing the unlearned model with a series of question related to forget set.
All of these scores are measured by ROUGE-L.

On WMDP (Li et al., 2024) evaluates the unlearned model using accuracy on WMDP forget set. It
also evaluates the general utility of the unlearned model using the MMLU benchmark (Hendrycks
et al., 2021).

D DETAILS OF CURVE FINDING PROCESS

To find the curve that connects θ1 and θ2, we can first compute the average loss along the curve:

ℓ̂(θ) =

∫
L(ϕθ) dϕθ∫

dϕθ
. (5)

The numerator
∫
L(ϕθ) dϕθ is the line integral of the loss L along the curve ϕθ. It sums up the

loss values at all points along the curve, weighted by the length of the curve in the parameter space.
Intuitively, it measures the total accumulated loss along the curve, accounting for how long the curve
is in regions with high or low loss.

The denominator
∫
dϕθ is the total length of the curve in the parameter space. It normalizes the

numerator by the total length, ensuring that the result does not depend on the specific parameterization
of the curve (e.g., stretching or shrinking segments artificially).

Minimizing the above loss ensures that the path between the two sets of weights corresponds to
models with consistently high accuracy.

The integrals can be rewritten in terms of the parameter t ∈ [0, 1] as

ℓ̂(θ) =

∫ 1

0

L(ϕθ(t))qθ(t) dt, (6)

qθ(t) =
∥ϕ′

θ(t)∥∫ 1

0
∥ϕ′

θ(t)∥ dt
. (7)

Et∼[0,1]ℓ̂(θ) =

∫ 1

0

L(ϕθ(t))qθ(t) dt. (8)

E ADDITIONAL RESULTS

We present detailed results on TOFU in Figure 7–16 and on classification datasets in Figure 17–26.

E.1 MCU UNDER INDEPENDENTLY UNLEARNED MINIMIZERS

On TOFU, we find almost perfectly smooth curve with no degradation of unlearning quality on 3 out
of 4 unlearning methods (GA, GD, and NPO). Along the curves, all model weights yield consistent
unlearning quality, measured by a series of evaluation metrics, including forget quality, model utility,
and ROUGE score. On the other hand when using method RL, the model weights along the curve is
of consistently high quality in model utility but have slightly different forget quality. Specifically, in
the middle part of the curve, we observe a drop of 0.1 point in forget quality and an increase of 0.05
point in forget ROUGE (↓). However, since forget quality is the p-value of KS test, any value greater
than 0.05 is considered as good unleared model, see Figure 7 for details. As the size of forget set
increases, indicated by different rows in Figure 7, there is trivial variation of forget quality and model
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Figure 7: MCU under Rand setting on TOFU dataset.

utility along the linear and quadratic curve on GA, GD, and NPO. On RL, we notice interesting
behaviors. When |Df | = 1%, forget quality degrades in the middle of the curve. When |Df | = 5%,
forget quality does not change significantly. When |Df | = 10%, forget quality significantly increases
in the middle of the curve. These behaviors are consistent on both linear and quadratic curves. We
attribute these to the fact that RL is not an appropriate unlearning method for TOFU, which stuck in
local optima and cannot ultimately converge to the low loss valley.

Therefore, we can find that the loss landscape of most unlearning methods on TOFU has essentially a
flat low-loss valley where barriers, i.e. sudden performance degradation, rarely appear. This implies
that, similar to learning (Draxler et al., 2018), minima of unlearning are perhaps best seen as points
on a single connected manifold of low loss, rather than as the bottoms of distinct valleys for each
individual unlearning method. The existence of mode connectivity paths suggests that modern neural
networks have enough parameters such that they can achieve good predictions while a big part of the
network undergoes structural changes. However, some unlearning methods may not converge to the
low loss manifold, such as RL on TOFU dataset.

On classification dataset, we observe different patterns across different unlearning methods. On GA,
it is generally easier to observe smooth MCU curve, both linear and quadratic, with small variation
in forget set performance when |Df | = 1%. Due to the similarity in design, RL and SU have very
similar MCU patterns. Both types of curve yield models with degraded forget set performance (↓) in
the middle part of the curve (green line in Figure 17), with more prominent degradation on linear
than quadratic curves. On BT, there is a strong linear MCU but the curve finding process fails to
converge to meaningful quadratic MCU. This demonstrates that simpler connectivity may appear but
hard to detect. We hypothesize that BT has a more rugged loss landscape than other methods, likely
because it computes loss based on representations not directly on tasks loss. These results highlight
the difference in loss landscape of unlearning methods.

CL and Non-CL On classification datasets, GA shows strong linear and quadratic MCU. RL and
SU show quadratic (but not linear) connectivity, with slight degradation of forget set performance.
This indicates that CL-based and Non-CL-based methods can converge to the same low loss manifold.
On BT when |Df | = 4%, although there is almost no variation in forget set performance on linear
curve, there is a major drop on retain set performance at the middle of the curve. Since MCU
considers both forget set and retain set performance, this is not an emergence of MCU.
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Figure 8: MCU under Rand-CL setting on TOFU dataset.
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Figure 9: MCU under Rand-SO setting on TOFU dataset.
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Figure 10: MCU under CL-Non-CL setting on TOFU dataset.
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Figure 11: MCU under FO-SO setting on TOFU dataset.
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(a) Linear MCU when |Df | = 1%
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(b) Quadratic MCU when |Df | = 1%
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(c) Linear MCU when |Df | = 5%
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(d) Quadratic MCU when |Df | = 5%
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(e) Linear MCU when |Df | = 10%
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(f) Quadratic MCU when |Df | = 10%

Figure 12: MCU under Met setting on TOFU dataset.
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(a) Linear MCU when |Df | = 1%
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(b) Bezier MCU when |Df | = 1%
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(c) Linear MCU when |Df | = 5%
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(d) Bezier MCU when |Df | = 5%
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(e) Linear MCU when |Df | = 10%
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(f) Bezier MCU when |Df | = 10%

Figure 13: MCU under Met-CL setting on TOFU dataset.
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(a) Linear MCU when |Df | = 1%
G

A

GA RL GD NPO

0.4

0.6

0.8

1.0

R
L

0.4

0.6

0.8

1.0

G
D

0 0.2 0.4 0.6 0.8 1

t

0.4

0.6

0.8

1.0

N
P
O

0 0.2 0.4 0.6 0.8 1

t
0 0.2 0.4 0.6 0.8 1

t

Model Utility Forget Quality 

(b) Bezier MCU when |Df | = 1%
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(c) Linear MCU when |Df | = 5%
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(d) Bezier MCU when |Df | = 5%
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(e) Linear MCU when |Df | = 10%
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(f) Bezier MCU when |Df | = 10%

Figure 14: MCU under Met-SO setting on TOFU dataset.
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(a) Linear MCU when |Df | = 1%
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(b) Bezier MCU when |Df | = 1%
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(c) Linear MCU when |Df | = 5%
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(d) Bezier MCU when |Df | = 5%
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(e) Linear MCU when |Df | = 10%
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(f) Bezier MCU when |Df | = 10%

Figure 15: MCU under Met-CL-Non-CL setting on TOFU dataset.
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(a) Linear MCU when |Df | = 1%
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(b) Bezier MCU when |Df | = 1%
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(c) Linear MCU when |Df | = 5%
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(d) Bezier MCU when |Df | = 5%
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(e) Linear MCU when |Df | = 10%
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(f) Bezier MCU when |Df | = 10%

Figure 16: MCU under Met-FO-SO setting on TOFU dataset.
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Figure 17: MCU under Rand setting on classification dataset.
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Figure 18: MCU under Rand-CL setting on classification dataset.
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Figure 19: MCU under Rand-SO setting on classification dataset.
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Figure 20: MCU under CL-Non-CL setting on classification dataset.
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Figure 21: MCU under FO-SO setting on classification dataset.
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(a) Linear MCU when |Df | = 2.0%
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(b) Quadratic MCU when |Df | = 2.0%
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(c) Linear MCU when |Df | = 4.0%
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(d) Quadratic MCU when |Df | = 4.0%
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(e) Linear MCU when |Df | = 6.0%
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(f) Quadratic MCU when |Df | = 6.0%
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(g) Linear MCU when |Df | = 8.0%
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(h) Quadratic MCU when |Df | = 8.0%
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(i) Linear MCU when |Df | = 10.0%
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(j) Quadratic MCU when |Df | = 10.0%

Figure 22: MCU under Met setting on classification datasets.
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(a) Linear MCU when |Df | = 2.0%
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(b) Quadratic MCU when |Df | = 2.0%
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(c) Linear MCU when |Df | = 4.0%
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(d) Quadratic MCU when |Df | = 4.0%
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(e) Linear MCU when |Df | = 6.0%
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(f) Quadratic MCU when |Df | = 6.0%
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(g) Linear MCU when |Df | = 8.0%
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(h) Quadratic MCU when |Df | = 8.0%
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(i) Linear MCU when |Df | = 10.0%
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(j) Quadratic MCU when |Df | = 10.0%

Figure 23: MCU under Met-CL setting on classification datasets.
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(a) Linear MCU when |Df | = 2.0%
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(b) Quadratic MCU when |Df | = 2.0%
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(c) Linear MCU when |Df | = 4.0%
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(d) Quadratic MCU when |Df | = 4.0%
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(e) Linear MCU when |Df | = 6.0%
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(f) Quadratic MCU when |Df | = 6.0%
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(g) Linear MCU when |Df | = 8.0%
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(h) Quadratic MCU when |Df | = 8.0%
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(i) Linear MCU when |Df | = 10.0%
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(j) Quadratic MCU when |Df | = 10.0%

Figure 24: MCU under Met-SO setting on classification datasets.
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(a) Linear MCU when |Df | = 2.0%
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(b) Quadratic MCU when |Df | = 2.0%
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(c) Linear MCU when |Df | = 4.0%
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(d) Quadratic MCU when |Df | = 4.0%
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(e) Linear MCU when |Df | = 6.0%
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(f) Quadratic MCU when |Df | = 6.0%
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(g) Linear MCU when |Df | = 8.0%
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(h) Quadratic MCU when |Df | = 8.0%
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(i) Linear MCU when |Df | = 10.0%
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(j) Quadratic MCU when |Df | = 10.0%

Figure 25: MCU under Met-CL-Non-CL setting on classification datasets.
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(a) Linear MCU when |Df | = 2.0%
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(b) Quadratic MCU when |Df | = 2.0%
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(c) Linear MCU when |Df | = 4.0%
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(d) Quadratic MCU when |Df | = 4.0%
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(e) Linear MCU when |Df | = 6.0%
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(f) Quadratic MCU when |Df | = 6.0%
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(g) Linear MCU when |Df | = 8.0%
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(h) Quadratic MCU when |Df | = 8.0%
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(i) Linear MCU when |Df | = 10.0%
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(j) Quadratic MCU when |Df | = 10.0%

Figure 26: MCU under Met-FO-SO setting on classification datasets.
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