
Published in Transactions on Machine Learning Research (09/2023)

Optimistic Optimization of Gaussian Process Samples

Julia Grosse julia.grosse@uni-tuebingen.de
Tübingen AI Center, University of Tübingen, Germany

Cheng Zhang cheng.zhang@microsoft.com
Microsoft Research, Cambridge, United Kingdom

Philipp Hennig philipp.hennig@uni-tuebingen.de
Tübingen AI Center, University of Tübingen, Germany

Reviewed on OpenReview: https: // openreview. net/ forum? id= KQ5jI19kF3

Abstract

Bayesian optimization is a popular formalism for global optimization, but its computational
costs limit it to expensive-to-evaluate functions. A competing, computationally more effi-
cient, global optimization framework is optimistic optimization, which exploits prior knowl-
edge about the geometry of the search space in form of a dissimilarity function. We investi-
gate to which degree the conceptual advantages of Bayesian Optimization can be combined
with the computational efficiency of optimistic optimization. By mapping the kernel to a
dissimilarity, we obtain an optimistic optimization algorithm for the Bayesian Optimization
setting with a run-time of up to O(N log N) in terms of number of function evaluations. As
a high-level take-away we find that, when using stationary kernels on objectives of low eval-
uation cost, optimistic optimization can be preferable over Bayesian optimization, while for
strongly coupled and parametric models, Bayesian optimization can perform much better,
even at low evaluation cost. As a conceptual takeaway, our results demonstrate that bal-
ancing exploration and exploitation under Gaussian process assumptions does not require
computing a posterior.

1 Introduction

Bayesian optimization (BO) (Shahriari et al., 2015) is a popular and successful framework for global opti-
mization. The foundation of most BO frameworks is a Gaussian Process (GP) regression method, whose
kernel encodes prior knowledge about the objective function. This GP regressor provides a posterior over
the objective, a probabilistic surrogate on which one can then reason about the extremum, and its location.
This can be done in a variety of ways, e.g. by using the posterior to construct upper bounds (in GP-UCB
Srinivas et al. (2009)), to estimate expected improvement (Močkus, 1975) or information gain (Hennig &
Schuler, 2012; Wang & Jegelka, 2017).

The computational cost of BO itself is significant, and arises from at least two sources: First, exact GP
inference has cost O(N3), where N is the number of observed function values (“samples”). Second, finding
the next evaluation location requires a continuous, numerical optimization of the acquisition function. Since
this utility function is generally multimodal, optimization should, at least in principle, be carried out on an
increasingly fine grid, which contributes up to O(N2d) costs (Salgia et al., 2021). A third source of cost can
be the construction of the acquisition function itself, but there are some popular choices, like GP-UCB, for
which this step is essentially a trivial sum of the mean and marginal standard-deviation constructed during
inference, of negligible overhead. If the cost of individual function evaluations is very high, then the overhead
of BO is irrelevant. But there are scenarios in which the cost of BO is a concern, namely when individual
function evaluations are of intermediate cost, and (perhaps as a direct consequence), the total number N of
evaluations is sufficiently large to make the cubic cost of GP inference noticeable. An example are settings

1

https://openreview.net/forum?id=KQ5jI19kF3

Published in Transactions on Machine Learning Research (09/2023)

involving computer simulations runs, e.g. in robotics, biology, chemistry and human-computer interaction
design.

Considering this “middle ground” between sample and computational efficiency, we study a competing frame-
work for global optimization, optimistic optimization (OO), which has drastically lower computational over-
head. OO does not require computing an explicit global posterior on the objective. However, OO can
nevertheless leverage at least certain kinds of prior knowledge, captured in the form of a Lipschitz condition
with respect to a pseudo-metric, or more generally a dissimilarity function. Functions from a GP prior fulfill
a similar condition with respect to the canonical pseudo-metric of the GP. This in effect produces a map
from a GP prior one might otherwise use in BO to a (much more time-efficient) OO model, so that prior
knowledge encoded in the GP can be leveraged without the intermediate step of (cubically expensive) GP
regression. For noiseless observations, the resulting OO algorithm achieves O(N log N) computational cost.

In summary, we provide a practical map between BO to OO for global optimization (Section 3), resulting
in a hybrid method we call GP-OO. We then contribute a formal analysis of this method in terms of regret
(Section 5), also pointing out limitations in the process. Experiments (Section 6) corroborate that the
proposed GP-OO can be significantly more time-efficient than classical BO methods like GP-UCB and EI
in settings with low function evaluation costs.

2 Background

2.1 Bayesian Optimization (BO)

We consider maximizing a function f : X → R. Throughout, f∗ denotes the maximum of the function, and
x∗, the point where it is attained. k : X × X → R is a kernel function. The function f is assumed to be a
sample from a GP GP(µ, k). We assume that the GP is centered, i.e. µ = 0. One has access to observations
yi, where yi ∼ f(xi) + N (0, λ). The noiseless setting amounts to the assumption λ → 0. After each new
observation the posterior over the function is updated:

µn(x) = kn(x)T (Kn + λI)−1yn (1)
kn(x, x) = k(x, x)− kn(x)T (Kn + λI)−1kn(x), (2)

where yn = [y1, ..., yn]T , kn(x) = [k(x1,), ..., k(xn,)]T , and Kn is the Gram matrix with Knij = kn(xi, xj).
The posterior is used to define an acquisition function an(x) at whose maximum the function is evaluated
next. For an overview of different options of acquisition functions see Frazier (2018). We will focus our
analysis on the choice of GP-UCB Srinivas et al. (2009), where

an(x) = µn(x) + β1/2
n kn(x, x)

and β
1/2
n an appropriate constant. An advantage of GP-UCB over other choices is its comparatively simple

structure, which facilitates not just implementation but also analysis. While other acquisition functions may
well be more sample-efficient in concrete settings, this will not be important for what is to follow, because
we are primarily concerned with run-time complexity, where GP-UCB is one of the fastest possible choices
of the classical BO methods. Furthermore, it is most similar to OO from a conceptual point of view as OO
also relies on upper bounds as outlined in the next paragraph.

2.2 Optimistic Optimization (OO)

The optimistic optimization principle is used to optimize functions that are known to fulfill a local Lipschitz
assumption with respect to a dissimilarity d : X × X → R:

∀x ∈ X : |f(x∗)− f(x)| ≤ d(x∗, x). (3)

The method revolves around a hierarchical partitioning of the search space X that can be described by an
infinite binary tree. Search can thus be implemented as a fast descent through the tree, thus only involves
evaluations on a countable set of mesh points, in contrast to the local numerical optimization done within

2

Published in Transactions on Machine Learning Research (09/2023)

Figure 1: Optimistic optimization applied to a sample from a GP. The upper bounds are shown as horizontal
bars. The vertical lines point to the evaluated locations.

Bayesian optimization. This is one of the two reasons for the drastically shorter run-time costs of OO over
BO (the other being that it does not require computing a GP posterior).

The root node corresponds to the entire search space X(0,1) = X and is named (0, 1). Consider a node (t, i)
at depth t. The left child (t + 1, 2i − 1) and right child (t + 1, 2i) represent two subregions X(t+1,2i−1) and
X(t+1,2i) such that X(t,i) = X(t+1,2i−1) ∪ X(t+1,2i), i.e. the tree covers the entire space. To indicate that a
cell was explored at iteration n, we refer to it as Xn. Intuitively, it makes sense to select the cells in such a
way that all points in a cell are similar to each other and all similar points are in the same cell. Formally,
this can be expressed as

(a) ∀x, y ∈ X(t,i) : {d(x, y) < δ(t)}

(b) ∃x(t,i)∈X(t,i):{y ∈ X : d(x(t,i), y) < c δ(t)}⊂X(t,i),

where δ(t) is a decreasing sequence of diameters and c is a global constant. During search, the tree is build
incrementally by adding the two children of a selected node. When a new node (t, i) is added, an observation
is made at the center x(t,i) of the region X(t,i). In each round, the leaf with the highest upper bound
U(t,i) = f(x(t,i)) + δ(t) is selected for expansion. Since f is assumed to be locally Lipschitz with respect to
d, selecting nodes by U(t,i) is a valid upper bound strategy (assuming noiseless observations). The sequence
of δ(t) controls exploration. Therefore, the partitioning should be chosen in such a way, that the δ(t) can
be as small as possible. The optimistic optimization principle is summarized in Algorithm 1 and Figure 1.
Using a binary heap, the priority queue for the leaf nodes can be realized in O(N log N) if the budget N is
known in advance.

Algorithm 1 The optimistic optimization principle.
1: procedure Optimistic optimization(f, δ)
2: priority-queue ← [(0,1)] //root node
3: for j = 1 to n do
4: Select node (t, i) with maximum U(t,i) = f(x(t,i)) + δ(t) from the priority-queue
5: Observe f(x(t+1,2i−1)) and f(x(t+1,2i)) for the two children of (t, i).
6: Calculate child utilities U(t+1,2i−1) = f(x(t+1,2i−1))+δ(t+1) and U(t+1,2i) = f(x(t+1,2i))+δ(t+1).
7: Add children (t + 1, 2i− 1) and (t + 1, 2i) to the priority-queue based on their utilities.
8: end for
9: end procedure

This algorithm is a batch method in the sense that all children of a newly explored node are evaluated in
each step. We assume batch size two, but other choices are possible too and might be preferable in some

3

Published in Transactions on Machine Learning Research (09/2023)

applications, e.g. when parallel evaluation is possible. A conceptual difference to the upper bound in GP-
UCB is that one here works with upper bounds for entire regions of the search space, not for individual
points in it. Also, the exploration term δ(t) in the upper bound is not updated based on new observations,
but derived a priori. Nevertheless, the exploration term, aka. the uncertainty decreases during the search as
the tree grows.

The hierarchical optimistic optimization principle has its origins in the Bandit setting. Bubeck et al. (2011)
apply it in the noisy setting, Munos (2011) apply it in the noiseless setting and Kleinberg et al. (2008)
uses it with a slightly different Lipschitz assumption. The assumptions on the dissimilarity d vary, e.g.
some theoretical analyses require that it additionally is a semi-metric, or metric. Munos (2011) introduces a
variant of the principle, simultaneous optimistic optimization (SOO), for situations in which the dissimilarity
function is unknown. Valko et al. (2013) extend this idea to the noisy setting. The popular DiRect algorithm
(Jones & Martins, 2021) also belongs to the family partitioning based global optimization algorithms, but
does not allow for encoding of prior knowledge on the smoothness of the function.

An interim summary: OO descends along a search tree, i.e. in a discrete sequence of steps, without
numerical optimization, and only using local summary statistics, rather than updating a global posterior.
This makes OO very fast, at least compared to Bayesian optimization. But the approach also has a downside:
At least at first sight, it is not clear how to encode salient prior information about the global optimization
problem into the algorithm. By contrast, many Bayesian optimization experts see the rich language of
GP prior models as a key strength of the BO framework. The following section thus investigates formal
connections between OO and BO. The goal is to understand to which degree the structural language of a
GP prior can be translated into the algorithmic efficiency of OO.

3 Gaussian Process Optimistic Optimization

The policy of OO is based on measuring (dis)similarity in the input domain in terms of a pseudo-metric. It
turns out that Gaussian process models – or, more precisely, kernels – can be used immediately to define
such a pseudo-metric (Section 3.1). We further show how the pseudo-metric can be used to obtain upper
bounds on the supremum of the cell (Section 3.2), that allow for the application of the OO principle in the
BO setting. Section 3.3 is concerned with how to choose the cells and in Section 3.4 we illustrate the derived
concept (GP-OO) on concrete examples.

3.1 Canonical pseudo-metric

The canonical pseudo-metric d : X × X → R for a centered GP is defined as

d(x, y) = Ef∼GP(0,k)[(f(x)− f(y))2]
=

√
k(x, x) + k(y, y)− 2k(x, y).

The relevance of the canonical pseudo-metric for optimization arises from the following deviation inequality
(Pisier (1999), Theorem 4.7):

∀u > 0,P(|f(x)− f(y)| ≥ u) ≤ 2 exp
(
− u2

2d(x, y)2

)
The intriguing aspect of this inequality is that it relates distances |f(x) − f(y)| “along the ordinate” with
distances d(x, y) “along the abscissa”. This suggests that the inequality is informative for balancing exploita-
tion (“progress along the ordinate”) with exploration (“progress along the abscissa”). From a conceptual
point of view, the main motivation of this work consists in deriving an adaptive optimization algorithm,
i.e. an optimization algorithm that is able to trade-off exploration with exploitation based on observed func-
tions values, relying on the above inequality instead of GP regression. The OO principle is well suited for
this attempt due to its upper-bound based acquisition strategy with a simple additive structure of function
observations and exploration terms.

4

Published in Transactions on Machine Learning Research (09/2023)

3.2 Upper bound on the supremum of a cell

The first challenge in applying the optimistic optimization principle on samples of a GP consists in the
probabilistic nature of the deviation inequality. To obtain a valid upper bound for the maximal deviation in
a cell supx∈Xn

|f(x)−f(xn)|, the deviation for all points in the cell has to be bounded. We approximate such
an upper bound by introducing two simplifications: We discretize the search space X into a finite number of
points X̂ and we introduce an independence assumption between the |f(x)− f(xn)|. Then we take a union
bound approach:

P(sup
x∈X̂n

|f(x)− f(xn)| ≥ u) (4)

≤
∑

x∈X̂n

P(|f(x)− f(xn)| ≥ u) (5)

≤ 2
∑

x∈X̂n

exp
(
− u2

2d(x, y)2

)
(6)

≤ 2|X̂n| exp(− u2

2∆(Xn)2) (7)

where ∆(Xn) = max
x∈Xn

d(xn, x). (8)

The bounds have to hold at each step n, so we additionally take a union bound over the number of steps.
This implies the following statement, that holds with high probability :

∀n : sup
x∈X̂n

|f(x)− f(xn)| ≤ β1/2
n ∆(Xn) (9)

where βn are appropriate constants specified in the Supplements. The union bound approximation will be
good if the |f(x)− f(xn)| are (nearly) uncorrelated, or the size of the discretization |X̂ | is chosen sufficiently
small. Otherwise the bounds are loose, which leads to over-exploration. Though approximate, this idea of
neglecting correlations to simplify the calculation of the expected supremum of dependent Gaussian variables
is, for example, also done in Maximum Value Entropy Search (Wang & Jegelka, 2017) for BO and in related
settings (Grosse et al., 2021). The other extreme, a greedy approach with βn = 1 has also been taken in
recent work (Rando et al., 2022). For stationary kernels, we experimented with heuristical choices based
on the lengthscale, see Appendix A.2.2. With generic chaining (Talagrand, 1996) it is possible to improve
over the union bound approach. However, to the best of our knowledge state-of-the-art algorithms (Borst
et al., 2020) to optimize for tighter bounds require polynomial run-time in the number of points per cell
for arbitrary kernel functions. For special cases, like a Wiener kernel (Talagrand, 2021) or Matérn kernel
functions (Shekhar & Javidi, 2018) analytical attempts to derive chaining based upper bounds exist.

3.3 Choosing how to partition

The second main step in applying the OO principle is to choose the cells and location of the centers in
such a way that the diameters of the cells are as small as possible. For k children nodes, this is a metric
k-center problem – one of the classical NP-hard problems (Gonzalez, 1985). A greedy approximation consists
in iteratively picking the k centers with the largest distance to the previously picked centers, and requires
O(|X̂ |k) time. The greedy procedure is guaranteed to result in a 2-approximation, and there is no polynomial
time algorithm doing better (unless P=NP). Working with a greedy instead of the optimal partition scheme
thereby leads to an additional factor of 2 in the below regret bound, but is not harmful in the sense that the
search gets stuck in a local optimum. NP-hardness also appears in the context of BO, e.g. the exploration
term used in GP-UCB. And the acquisition functions of information-theoretic BO methods (Hennig &
Schuler, 2012), (Wang & Jegelka, 2017) are related to the maximization of information gain, which is also a
NP-hard problem.
From an implementation perspective, it is desirable to constrain the partition to axis-parallel boxes. For
some kernel functions, e.g. the polynomial kernel, requirement (b) of the OO principle cannot be fulfilled

5

Published in Transactions on Machine Learning Research (09/2023)

with axis parallel boxes. One can nevertheless run the algorithm, but it will clearly be less information-
efficient. One may even consider a randomized choice of centers, e.g. as done in Monte Carlo Tree Search
(Chaslot et al., 2008). However, it still remains to calculate the maximal distance from a point in the cell X
to the center xn. The computational complexity of this part is comparable to the numerical optimization of
the acquisition function in BO. An advantage is that the domain over which one optimizes shrinks in each
step. A disadvantage, though, is that if the numerical optimization is suboptimal and the maximal distance
within a cell is underestimated, cells containing the optimum might get irreversibly pruned.
An important observation is that the partition scheme itself does not depend on the objective f , but only
the kernel/distance function (how the search tree grows, however, does depend on f). This opens up the
possibility of finding a good partition and the corresponding maximal distances analytically. An important
class of kernel-induced metrics is formed by monotonic transformations of the Euclidean metric, i.e. d(x, y) =
g(∥x−y∥2) where g : R 7→ R is monotonically increasing. Many kernels used in practice are in this class, e.g.
the square-exponential kernel, the Matérn class of kernels, the rational-quadratic kernels and the Wiener
kernel as well as sums and products thereof. We refer to this class of kernels as K. For distances derived
from kernels in K, one can apply the following regular partition scheme: At each step, cut along the longest
dimension in order to obtain the two children cells with respect to the euclidean metric. Use the euclidean
centers as centers. A point that maximizes the distance to the center will always be one of the 2m corner
points in m dimensions. However, one only has to calculate the distance from the center to one of them.
Thus, for this type of kernels, the costs reduce to O(m) for the partition, or O(N log N +N ·m) = O(N log N)
in total. Kernels not in K are e.g. polynomial or periodic kernels.

square exponential Matérn 3/2 quadratic (regular) quadratic (canonical)

GP-OO

GP-UCB

Figure 2: Lower row: Cells and diameters ∆. Brighter colors indicate smaller diameters. Upper row: Sample
from a GP and evaluation locations of GP-OO and GP-UCB. Bright colors indicate higher function values.

3.4 GP-OO

Motivated by the analysis above, we propose a variant of OO, which we call GP-OO. It consists in running
Algorithm 1 with the utility U(n) = f(x(n)) + β

1/2
n ∆(Xn) in line 4, where ∆ is as defined in Eq. equation 8.

Figure 2 shows the algorithm running on GP samples from a square-exponential and a Matérn kernel with
ν = 2/3 on the domain [0, 5]2, as well as from a quadratic kernel on the domain [−1, 1]2. In regions with
higher function values the partitions are finer. The Matérn kernel yields higher distances than the square
exponential, leading to more exploration, reflecting that the samples are less smooth. By optimizing the
partitions and centers of the cells with respect to the canonical pseudo-metric, larger parts of the search
space can be covered while keeping the cell diameters constant as shown by the two examples with the

6

Published in Transactions on Machine Learning Research (09/2023)

quadratic kernel. However, as GP-OO is restricted to evaluations on a grid, it usually requires more steps
than GP-UCB to reach the optimum even if the grid is refined in the right regions.

4 Related Work

4.1 Work at the intersection of BO and OO

With the exception of Grill et al. (2018), the fundamental difference to all of this work is that we do not
keep track of a GP-posterior, thus saving significant computational cost.
Work without the canonical pseudo-metric. BO methods have been combined with SOO (Munos
(2011)), the version of OO with unknown dissimilarity. In BamSOO, Wang et al. (2014) use GP-UCB to
reduce the number of evaluations required when running SOO alone. By using SOO, they can in return
reduce the optimization costs of the acquisition function. Gupta et al. (2021) improve upon the basic
version of BamSOO by a more elaborate partitioning scheme: Instead of dividing a cell into k children along
the longest side of the cell, they divide along the b longest dimensions into a cells, where ba = k. Salgia
et al. (2021) use a random walk based strategy on a tree to improve over the grid-based optimization of the
GP-UCB acquisition function. For the Matérn and Squared Exponential kernel, they achieve order optimal
regret, but the computational complexity is O(N4).
Work with the canonical pseudo-metric. Shekhar & Javidi (2018) use the GP’s canonical pseudo-
metric to improve the numerical optimization by pruning the search regions. They additionally keep track
of the posterior to only evaluate at locations where posterior uncertainty exceeds the cell’s upper bound.
Rando et al. (2022) follow this approach and additionally introduce a Nyström approximation, which allows
for approximate inference in O(N2d2

eff), where deff is the effective dimension of the search space. Contal
et al. (2015) replace the GP-UCB bounds with bounds derived from the pseudo-metric, but do not use a
hierarchical approach, i.e. they construct bounds for individual points. They update the posterior and the
exploration terms after every new observation.
Grill et al. (2018) apply the optimistic optimization principle to a one-dimensional Brownian walk. A minor
difference is, that they evaluate a cell at the corners of an interval and not in the center. There are cases,
where this is advantageous, e.g. think of samples from a GP with a polynomial or linear kernel. However,
the number of corners scales exponentially with the dimension.

4.2 Work on scalable BO

TurBO (Eriksson et al., 2019) uses independent local GP models for a number of trust regions. Trust
regions are shrinked or expanded based on heuristics capturing how much progress was made in the previous
steps. A global Bandit strategy is used to decide in which of the trust regions to continue the search. Due
to the heuristics involved it is less amendable for theoretical analysis. Other approaches to speed up BO
rely on Bayesian neural networks (Snoek et al., 2015), lower dimensional embeddings (Wang et al., 2016),
approximations to the GP (e.g. Jimenez & Katzfuss, 2022) or additive model assumptions (Han et al., 2021;
Mutny & Krause, 2018).

5 Regret

While computational and not sample efficiency is our main motivation to apply the OO principle in the
BO setting, we show that the resulting method nevertheless leads to non-trivial regret. In particular, it is
asymptotically regret-free in the limit limN→∞ RN /N . Here, RN denotes the cumulative regret defined as
RN =

∑N
n=0 f(x∗)− f(xn).

Building upon arguments from Munos (2011) and Shekhar & Javidi (2018), we obtain the following guarantee
for the cumulative regret:
Proposition 1 Let X be finite, ϵ ∈ (0, 1) and βn = 2 log(2N |Xn|/ϵ). Running GP-OO with βn for a sample
f from a GP with mean function zero and covariance function k(x, x), the following regret bound holds with

7

Published in Transactions on Machine Learning Research (09/2023)

probability 1− ϵ:

RN ≤ β1/2
N∑

n=1
∆(log n)

where β = max{β1, ..., βN} and ∆(n) denotes the diameter of a cell evaluated at depth n.

A full proof is provided in the Supplements. The high-level idea is that either the explored cell Xn contains
the optimum x∗, then the simple regret |f(x∗)− f(x)| is trivially upper bounded by the maximal deviation
β1/2∆(Xn). Or the cell does not contain the optimum, but then then its utility was higher than the one of a
node containing the optimum in its region, and thereby higher than the optimum itself. For the cumulative
regret we assume the worst-case of a uniformly growing tree. For a broad class of kernels, the bound in
Proposition 1 can be further specified:
Proposition 2 Assume the GP’s canonical pseudo-metric d satisfies d(x, y) = C∥x−y∥α

2 , where C > 0, α >
0, m/α > 1. Running GP-OO on a finite domain X ⊂ [0, 1]m with regular partitions, one has a worst-case
cumulative regret RN of

Õ(N1−α/m(log N)α/m)

with high probability The Õ(·) notation supresses poly-logarithmic factors.
In particular, for the squared exponential kernel and Matérn kernels with half-integer values ν ≥ 3/2, one has
α = 1 and RN ∈ Õ(N1−1/m(log N)1/m). For comparison, the regret in GP-UCB grows as Õ(

√
N log(N) m+1

2)
for the squared exponential kernels and thereby scales better to higher dimensions. For the Matérn class,
GP-UCB is guaranteed to have regret at most Õ(N

ν+m(m+1)
2ν+m(m+1)) for ν ≥ 1. Our bound is tighter, e.g., for the

values ν = 3/2 or ν = 5/2 often used in practice.

Shekhar & Javidi (2018) establish regret bounds in terms of the near-optimality dimension m̃. This measure
is commonly used in optimistic optimization to characterize the size of the set of ϵ-optimal points in terms
of packing numbers. The near-optimality dimension does not only depend on the underlying metric, but
also on the function f itself and is thereby a random variable. Smaller values are associated with deeper
growing trees, whereas larger values lead to more balanced, uniformly growing trees. Assuming the worst
case of m̃ = m, the bounds in Shekhar & Javidi (2018) become Õ(N1−α/m) for the Matérn class and match
our worst-case bound. However, we restricted the analysis to finite domains X , and |X | enters our bound
logarithmically.

Grill et al. (2018) showed that in the specific case of Brownian motion, the tree built during optimistic
optimization does not grow with the worst-case uniform rate.

6 Experiments

We empirically compare GP-OO to GP-UCB, EI, TurBO and DiRect in terms of regret and time, on
synthetic, 3d samples from GPs, and Benchmark functions from Surjanovic & Bingham (2022). All ex-
periments were performed on a desktop machine. Since computational efficiency is central to our anal-
ysis, we also report wall-clock runtimes. For GP-UCB and EI, we use implementations from Emukit
(Paleyes et al., 2019; Gardner et al., 2018). For TurBO, we build upon the published code accesible at
https://github.com/uber-research/TuRBO. However, we turn off the optimization of the lengthscale an
noise scale and instead provide it with ground-truth values, for a fair comparison with the other methods that
also have this information. Also, we changed TurBO’s default batch size from 10 to 2 to make it the same
as GP-OOs. Other than that, we use its default settings. For DiRect, we use the python implementation
available at https://github.com/swyoon/DiRect/blob/master/LICENSE.

6.1 Experiments on synthetic functions

Regular partitions. We begin with on-model experiments for a common setting in Bayesian optimization,
where GP-OO can showcase its speed advantages: 20 samples from a GP with squared exponential kernel

8

https://github.com/uber-research/TuRBO
https://github.com/swyoon/DiRect/blob/master/LICENSE

Published in Transactions on Machine Learning Research (09/2023)

(lengthscale l = 0.2) on the unit cube X = [0, 1]3. For all experiments, the noise level for GP-UCB
is set to a very small constant λ = 0.0005 since we assume noiseless observations. For GP-OO, we use
βn = 2 log(2|X̂n|/ϵ) with a discretization of 1/l points along each dimension. For additional heuristical
choices of β as well as constant choices of βn ∈ {0.1, 1, 10, 100}, see Appendix. For GP-UCB, we use
βn = 2 log(2|X̂ |n2π2/6ϵ) according to theory with a grid search over the size of the discretization |X̂ | with
values in {1, 10, 100, 1000}, as well as constant values β in {1, 10, 100, 1000}. For EI, we did a grid search over
the jitter parameter with values in {0.0001, 0.001, 0.01, 0.1, 1}. GP-OO and GP-UCB require the specification
of a confidence level ϵ that is set to 0.05 for both methods. Figure 3 shows the simple regret minnrn and the
average cumulative regret Rn/n in terms of number of function evaluations n. Figure 4 displays the runtime
of GP-UCB, GP-OO and TurBO. In terms of number of function evaluations there is no improvement over
the state-of-the art, however in terms of runtime GP-OO is orders of magnitude faster than classical BO
approaches and also improves over TurBO’s runtime. In terms of sample-efficiency, GP-OO improved over
DiRect. This indicates that GP-OO can exploit the smoothness encoded in the prior. For a more detailed
comparison of DiRect and GP-OO, see also Appendix A.3.

0 100 200 300 400 500

−6

−4

−2

0

2

lo
g
m
in
n
r n

0 100 200 300 400 500

−1

0

1

lo
g
R
n
/
n

square exponential 0.2

number of function evaluations n

GP-OO

TurBO

EI

GP-UCB

Direct

random

Figure 3: Best simple regret (left) and average cumulative regret (right) on synthetic functions sampled from
a GP.

0 200 400 600 800 1000

iteration

0.0

0.5

1.0

1.5

2.0

ti
m

e
in

se
co

n
d
s

overhead

evaluation

acquisition

GP updating

0 200 400 600 800 1000

iteration

0.000

0.002

0.004

0.006

0.008

0.010 GP-OO

TurBO

Figure 4: Runtime per iteration [seconds] for on-model optimization of GP-samples. Left: Time for different
components of GP-UCB iterations. Right: Total time per iteration (averaged over batch size) for GP-OO
and TurBO.

Non-regular partitions. For demonstration, we also explore a setting with non-regular optimal partitions,
where GP-OO can not perform as well. We sample 100 functions from a GP with quadratic kernel k(x, y) =
(xT y)2 with bias 0 on the domain [−1, 1]3. We consider GP-UCB and GP-OO, once with euclidean partitions
and once with partitions optimized with respect to the canonical metric. The exploration constant was set
to β = 1. The results shown (Figure 5) show that it is advantageous to optimize the partitioning scheme
with respect to the canonical metric. However, we restrict ourselves to partitions with axis-aligned cells,
i.e. the perfectly correlated corner points with k(x, y) = 1 and d(x, y) = 0 end up in different cells. At this

9

Published in Transactions on Machine Learning Research (09/2023)

point, GP-UCB has a clear advantage, as information can be shared across the search space between the
corner points. Also, the run-time advantage decreases due to the numerical optimization of the partitions.

0 10 20 30 40 50

iteration

0

1

2

3

4

m
in

re
g
re

t

GP-UCB

GP-OO (canonical)

GP-OO (euclidean)

0 10 20 30 40 50

iteration

0.00

0.01

0.02

0.03

0.04

0.05

ti
m

e
in

s

overhead

evaluation

acquisition

GP updating

Figure 5: Experiment with a quadratic kernel. Right: Wall-clock time with GP-UCB. Green line: Wall-clock
time with GP-OO.

6.2 Experiments on benchmarks

We consider the minimization of common optimization benchmark functions, on domains with dimensions
ranging from 2 to 10. Since the functions are deterministic, and GP-OO is deterministic up to random
tie breaks, we randomly sample 10 domains X to obtain variation (see Supplements). Since evaluations of
the benchmark functions are very cheap, we artifically simulated higher function evaluation costs by adding
post-hoc costs from 0.001 to 1 Second to the evaluation times. We use a Matérn kernel with ν = 3/2
and length-scales as recommended by Rando et al. (2022), who obtained them with a grid search. For the
exploration constant β we did a grid search over {0.1, 1, 10, 100} for GP-UCB and GP-OO. For EI, we did a
grid search for the jitter parameter with values as above. We use confidence level ϵ = 0.05. Figure 9 shows
the minimal simple regret over the number of iterations and Figure 7 shows the minimal simple regret over
time. The Supplements contain additional figures for function evaluation costs of 0.01 and 0.1 Seconds, as
well as a figure showing cumulative run-times.
GP-OO is competitve with the BO based approaches on 7 of the 12 benchmarks (Dixon-Price, Bohachevsky
A, B and C, Ackely, Hartmann and Shekel. This even holds in number of function evaluations and not only
wall-clock time. However, we do not find a consistent advantage over DiRect and in some cases GP-OO is
outperformed by Direct. Since the benchmark functions are typically not within the RKHS, it cannnot be
guranteed that GP-OO converges to the global optima. In particular on Rosenbrock and Beale, it happened
that GP-OO got stuck in very bad local optimal. For DiRect this happend less, indicating that it was
harmful to rely on the smoothness assumptions, when they are not fully met. TurBO is also less prone to get
stuck in local optima as it has an in built criterion for random restarts of trust regions once they converged
to a (local) optimum.

7 Conclusion

BO and OO are closely connected through a mapping from the kernel-function to the canonical pseudo-
metric. We showed that, for some kernels, this connection can be exploited to derive a computationally
efficient method for the BO setting that captures prior information. For common choices of kernels, like
the Matérn class, we outperform classical BO approaches, like GP-UCB and EI, if the objective function
has low evaluation cost. In many cases, this simple approach achieves performance similar to scalable BO
approaches highly optimized for runtime. On the other hand, the strong reliance on the prior assumptions
without being able to adapt the hyperparameters of the prior on the fly, is currently still a limitation in
practical settings. A setting, where one quickly wants to find the maximum of synthetic GP sample, might
already be interesting application cases of GP-OO: Grill et al. (2018) suggest to use Optimistic Optimization
as a subroutine for Thompson sampling. Instead of sampling the function values from the posterior over an

10

Published in Transactions on Machine Learning Research (09/2023)

entire grid and then taking its maximum, one runs optimistic optimization and only samples the function
values at the evaluation locations found with optimistic optimization. In this setting, the hyperparameters
of the posterior are known. The same goes for BO algorithms like Maximum Entropy Search or Maximum
Value Entropy Search, where, one has to generate distributions of the (location of the) maximum from "on-
model "samples from the posterior. Nonetheless, our work shows that the ability to use prior information
in Bayesian optimization does not have to be expensive per se. Of particular conceptual importance is the
insight that optimization can be performed without explicitly tracking a posterior.

Acknowledgments

This work was supported by Microsoft Research through its PhD Scholarship Programme. The authors
thank the International Max Planck Research School for Intelligent Systems (IMPRS-IS) for supporting
Julia Grosse by non-financial means. Philipp Hennig and Julia Grosse gratefully acknowledge financial
support by the European Research Council through ERC StG Action 757275 / PANAMA; the DFG Cluster
of Excellence “Machine Learning - New Perspectives for Science”, EXC 2064/1, project number 390727645;
the German Federal Ministry of Education and Research (BMBF) through the Tübingen AI Center (FKZ:
01IS18039A); and funds from the Ministry of Science, Research and Arts of the State of Baden-Württemberg.

11

Published in Transactions on Machine Learning Research (09/2023)

101 103

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

Six-Hump Camel (dimension: 2)

101 103

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

Dixon-Price (dimension: 10)

101 103

−10

−5

0

5

Branin (dimension: 2)

101 103

−15

−10

−5

0

5

10

Beale (dimension: 2)

101 103

−15

−10

−5

0

5

10

Bohachevsky A (dimension: 2)

101 103

−15

−10

−5

0

5

10

Bohachevsky B (dimension: 2)

101 103

−15

−10

−5

0

5

10

Bohachevsky C (dimension: 2)

101 103

−10

−5

0

5

Rosenbrock (dimension: 2)

101 103

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

Ackley (dimension: 2)

101 103

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

Hartmann (dimension: 3)

101 103

−10

−5

0

5

Trid (dimension: 4)

101 103

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

Shekel (dimension: 4)

number of function evaluations

lo
g

of
m

in
im

al
si

m
p

le
re

gr
et

EI

GP-UCB

TurBO

Direct

random

GP-OO

Figure 6: Optimization performance (minimal function values found) in terms of number of iterations on
common benchmarks with GP-OO, GO-UCB, EI, TurBO, DiRect, and random selection of evaluations

12

Published in Transactions on Machine Learning Research (09/2023)

0.0 2.5 5.0 7.5

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

Six-Hump Camel (dimension: 2)

0.0 2.5 5.0 7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

Dixon-Price (dimension: 10)

0.0 2.5 5.0 7.5

−10

−5

0

5

Branin (dimension: 2)

0.0 2.5 5.0 7.5

−10

−5

0

5

Beale (dimension: 2)

0.0 2.5 5.0 7.5

−15

−10

−5

0

5

10

Bohachevsky A (dimension: 2)

0.0 2.5 5.0 7.5

−15

−10

−5

0

5

10

Bohachevsky B (dimension: 2)

0.0 2.5 5.0 7.5

−15

−10

−5

0

5

10

Bohachevsky C (dimension: 2)

0.0 2.5 5.0 7.5

−10

−5

0

5

Rosenbrock (dimension: 2)

0.0 2.5 5.0 7.5

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

Ackley (dimension: 2)

0.0 2.5 5.0 7.5

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

Hartmann (dimension: 3)

0.0 2.5 5.0 7.5

−10

−5

0

5

Trid (dimension: 4)

0.0 2.5 5.0 7.5

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

Shekel (dimension: 4)

log time in seconds

lo
g

of
m

in
im

al
si

m
p

le
re

gr
et

ei

ucb

turbo

direct

random

gpoo

Figure 7: Optimization performance (minimal function values found) in terms of wall clock time for simulated
function evalution times of 1 Second on common benchmarks with GP-OO, GO-UCB, EI, TurBO, DiRect
and random selection of evaluations. 13

Published in Transactions on Machine Learning Research (09/2023)

References
Sander Borst, Daniel Dadush, Neil Olver, and Makrand Sinha. Majorizing measures for the optimizer. arXiv

preprint arXiv:2012.13306, 2020.

Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvári. X-armed Bandits. Journal of Machine
Learning Research, 12(5), 2011.

Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck. Monte-Carlo tree search: A new
framework for game ai. In Proceedings of the AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, volume 4, pp. 216–217, 2008.

Emile Contal, Cédric Malherbe, and Nicolas Vayatis. Optimization for Gaussian processes via chaining.
arXiv preprint arXiv:1510.05576, 2015.

David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek. Scalable global
optimization via local Bayesian optimization. Advances in neural information processing systems, 32, 2019.

Peter I Frazier. A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

Jacob R Gardner, Geoff Pleiss, David Bindel, Kilian Q Weinberger, and Andrew Gordon Wilson. GPy-
Torch: Blackbox matrix-matrix Gaussian process inference with GPU acceleration. Advances in Neural
Information Processing Systems (NeurIPS), 2018:7576–7586, 2018.

Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical computer science,
38:293–306, 1985.

Jean-Bastien Grill, Michal Valko, and Rémi Munos. Optimistic optimization of a Brownian. Advances in
Neural Information Processing Systems, 31, 2018.

Julia Grosse, Cheng Zhang, and Philipp Hennig. Probabilistic DAG search. In Uncertainty in Artificial
Intelligence, pp. 1424–1433. PMLR, 2021.

Sunil Gupta, Santu Rana, Svetha Venkatesh, et al. Bayesian Optimistic Optimisation with Exponentially
Decaying Regret. In International Conference on Machine Learning, pp. 10390–10400. PMLR, 2021.

Eric Han, Ishank Arora, and Jonathan Scarlett. High-dimensional Bayesian optimization via tree-structured
additive models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 7630–
7638, 2021.

Philipp Hennig and Christian J Schuler. Entropy Search for Information-Efficient Global Optimization.
Journal of Machine Learning Research, 13(6), 2012.

Felix Jimenez and Matthias Katzfuss. Scalable Bayesian optimization using Vecchia approximations of
Gaussian processes. arXiv preprint arXiv:2203.01459, 2022.

Donald R Jones and Joaquim RRA Martins. The direct algorithm: 25 years later. Journal of Global
Optimization, 79(3):521–566, 2021.

Donald R Jones, Cary D Perttunen, and Bruce E Stuckman. Lipschitzian optimization without the lipschitz
constant. Journal of optimization Theory and Applications, 79:157–181, 1993.

Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal. Multi-armed bandits in metric spaces. In Proceedings
of the fortieth annual ACM symposium on Theory of computing, pp. 681–690, 2008.

Jonas Močkus. On Bayesian methods for seeking the extremum. In Optimization techniques IFIP technical
conference, pp. 400–404. Springer, 1975.

Rémi Munos. Optimistic optimization of a deterministic function without the knowledge of its smoothness.
Advances in neural information processing systems, 24:783–791, 2011.

14

Published in Transactions on Machine Learning Research (09/2023)

Mojmir Mutny and Andreas Krause. Efficient high dimensional Bayesian optimization with additivity and
quadrature fourier features. Advances in Neural Information Processing Systems, 31, 2018.

Andrei Paleyes, Mark Pullin, Maren Mahsereci, Neil Lawrence, and Javier González. Emulation of physical
processes with emukit. In Second Workshop on Machine Learning and the Physical Sciences, NeurIPS,
2019.

Gilles Pisier. The volume of convex bodies and Banach space geometry, volume 94. Cambridge University
Press, 1999.

Marco Rando, Luigi Carratino, Silvia Villa, and Lorenzo Rosasco. Ada-BKB: Scalable Gaussian Process
Optimization on Continuous Domains by Adaptive Discretization. In International Conference on Artificial
Intelligence and Statistics, pp. 7320–7348. PMLR, 2022.

Sudeep Salgia, Sattar Vakili, and Qing Zhao. A Domain-Shrinking based Bayesian Optimization Algorithm
with Order-Optimal Regret Performance. In Thirty-Fifth Conference on Neural Information Processing
Systems, 2021.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the human out
of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104(1):148–175, 2015.

Shubhanshu Shekhar and Tara Javidi. Gaussian process bandits with adaptive discretization. Electronic
Journal of Statistics, 12(2):3829–3874, 2018.

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram, Mostofa
Patwary, Mr Prabhat, and Ryan Adams. Scalable Bayesian optimization using deep neural networks. In
International conference on machine learning, pp. 2171–2180. PMLR, 2015.

Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian process optimization
in the bandit setting: No regret and experimental design. arXiv preprint arXiv:0912.3995, 2009.

S. Surjanovic and D. Bingham. Virtual library of simulation experiments: Test functions and datasets.
Retrieved May 16, 2022, from http://www.sfu.ca/~ssurjano, 2022.

Michel Talagrand. Majorizing measures: the generic chaining. The Annals of Probability, 24(3):1049–1103,
1996.

Michel Talagrand. Empirical processes, ii. In Upper and Lower Bounds for Stochastic Processes, pp. 433–456.
Springer, 2021.

Michal Valko, Alexandra Carpentier, and Rémi Munos. Stochastic simultaneous optimistic optimization. In
International Conference on Machine Learning, pp. 19–27. PMLR, 2013.

Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient Bayesian optimization. In International
Conference on Machine Learning, pp. 3627–3635. PMLR, 2017.

Ziyu Wang, Babak Shakibi, Lin Jin, and Nando Freitas. Bayesian multi-scale optimistic optimization. In
Artificial Intelligence and Statistics, pp. 1005–1014. PMLR, 2014.

Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando De Feitas. Bayesian optimization
in a billion dimensions via random embeddings. Journal of Artificial Intelligence Research, 55:361–387,
2016.

15

http://www.sfu.ca/~ssurjano

Published in Transactions on Machine Learning Research (09/2023)

A Appendix

A.1 Theoretical Analysis

A.1.1 Background

The following three facts will be used during the analysis:

1. Deviation inequality For a sample f ∼ G(0, k) from a centered GP with kernel function k, it holds

∀u,P(|f(x)− f(y)| ≥ u) ≤ 2 exp
(
− u2

2d(x, y)2

)
, (10)

where d(x, y) =
√

k(x, x) + k(y, y)− 2k(x, y).

2. Hölder’s inequality Let a1, ..., aN , b1, ..., bN be real numbers.
N∑

n=1
|anbn| ≤

(N∑
n=1
|an|p

)1/p(N∑
n=1
|bk|q

)1/q

(11)

with p, q ≥ 1 and 1
p + 1

q = 1

3. Growth of Harmonic numbers The N -th Harmonic number HN =
∑N

n=1
1
n grows logarithmically

in N :

HN ∈ Θ(log N) (12)

A.1.2 Upper bounds on the supremum of a cell

Lemma 1. Assume X is finite and f ∼ GP(0, k). Pick ϵ ∈ (0, 1) and set βn = 2 log(2|Xn|N/ϵ). Then

∀n sup
x∈Xn

|f(x)− f(xn)| ≤ β1/2
n ∆(Xn)

holds with probability ≥ 1− ϵ. Xn is the cell visited at step n with center xn and ∆(Xn) = supx∈Xn
d(x, xn).

Proof of Lemma 1. Fix n. Applying a union bound and 10, one obtains for all un

P(supx∈Xn |f(x)− f(xn)| ≥ un) (13)

≤
∑

x∈Xn

P(|f(x)− f(xn)| ≥ un) (14)

≤ 2
∑

x∈Xn

exp
(
− u2

n

2d(x, xn)2

)
(15)

≤ 2|Xn| exp
(
− u2

n

2∆(Xn)2

)
(16)

For un = β
1/2
n ∆(Xn), it holds with probability 1− ϵ/N , that supx∈Xn |f(x)− f(xn))| ≤ β

1/2
n ∆(Xn). Taking

another union bound over N the statement holds.

A.1.3 Upper bound on the regret

Lemma 2. Running GP-OO with βn as specified in Lemma 1 and the canonical pseudo-metric d, the simple
regret rn = f∗ − fn is bounded by β

1/2
n ∆(Xn) for all n with probability 1− ϵ.

Proof of Lemma 2. This statement can be shown with typical arguments from the literature on optimistic
optimization. We consider the cases x∗ ∈ Xn and x∗ /∈ Xn separately.

16

Published in Transactions on Machine Learning Research (09/2023)

Case 1: x∗ ∈ Xn

rn = f∗ − fn = supx∈Xn
|f(x)− f(xn)| ≤ β1/n

n ∆(Xn) (17)

by Lemma 1.

Case 2: x∗ /∈ Xn.
Because xn was explored nevertheless, there is a node xn′ on the optimal path with x∗ ∈ Xn′ , that was
explored at step n′ < n, such that

f(xn) + β1/2
n ∆(Xn) ≥ f(xn′) + β

1/2
n′ ∆(Xn′) (18)

Then, f(xn′)− f(xn) ≤ β
1/2
n ∆(Xn)−β

1/2
n′ ∆(Xn′). For the regret one obtains in combination with Lemma 1:

rn = f∗ − fn (19)
≤

[
f(x∗)− f(xn′)

]
+

[
f(xn′)− f(xn)

]
(20)

≤
[
β

1/2
n′ ∆(X ′

n)
]

+
[
β1/2

n ∆(Xn)− β
1/2
n′ ∆(Xn′)

]
(21)

= β1/2
n ∆(Xn) (22)

Proposition 1. Assume X is finite and f ∼ GP(0, k). Pick ϵ ∈ (0, 1) and set βn = 2 log(2|Xn|N/ϵ). For
GP-OO with k = 2 children nodes, we obtain the following bound on the cumulative regret

P(RN ≤ β1/2
N∑

n=1
∆(⌊log n⌋)) ≥ 1− ϵ (23)

where ∆(h) is the radius of a cell at depth h and β = max{β1, ..., βN}.

Proof Proposition 1. Simple consequence from Lemma 2, where we assume the worst case of a uniformly
growing tree. The depth of a node after n steps is at least ⌊log(n)⌋ in a uniformly growing tree.

A.1.4 Bounds for common kernels

The following analysis is restricted to GP’s, where the canonical pseudo-metric d satisfies:

Assumption 1. There exist C > 0, α > 0 such that d(x, y) ≤ C∥x − y∥α
2 , where ∥ · ∥2 is the Euclidean

norm. We additionally require m/α > 1, where m is the dimension of the domain.

According to Shekhar & Javidi (2018) the first part of Assumption 1 holds for the squared exponential kernel
with C =

√
2/l, α = 1 and the Matern kernels with half integer values. For ν = 1/2, one has α = 1/2 and

for all other half-integer values α = 1.

Lemma 3. [Bubeck et al. (2011)] Assume that X is a m-dimensional hypercube [0, 1]m and consider the
dissimilarity d(x, y) = C∥x − y∥α

2 , where C > 0, α > 0. Define the partitioning by recursively splitting the
hypercube in the middle along its longest side (ties broken arbitrarily). One has

∆(Xn) ≤ diam(Xh) ≤ C(2
√

m)α

(
1

2α/m

)h

for the cell Xh of a node at depth h.

Proof of Lemma 3. See Example 1 in Bubeck et al. (2011).

Proposition 2 Assume the GP’s canonical pseudo-metric d satisfies d(x, y) = C∥x−y∥α
2 , where C > 0, α >

0, m/α > 1. Running GP-OO on a finite domain X ⊂ [0, 1]m with regular partitions, one has a worst-case
cumulative regret RN of

Õ(N1−α/m(log N)α/m)

17

Published in Transactions on Machine Learning Research (09/2023)

with high probability. The Õ(·) notation supresses poly-logarithmic factors.

Proof of Proposition 2 It follows from Proposition 1 that RN ∈ Õ(
∑N

n=1 ∆(⌊log n⌋)) with probability
1− ϵ. It remains to bound

∑N
n=1 ∆(⌊log n⌋). For Equation (24), we use Lemma 3 and for Equation (29), we

apply Hölder’s inequality (11) with q = m/α and p = 1
1−α/m .

N∑
n=1

∆(⌊log n⌋) ≤ C
(
2
√

m
)α

N∑
n=1

(
1

2α/m

)⌊log n⌋

(24)

≤ C(2
√

m)α
N∑

n=1

(
1

2α/m

)log n−1
(25)

= C(2
√

m)α2α/m
N∑

n=1

(
1

2α/m

)log n

(26)

= C1

N∑
n=1

(
1

2α/m

)log n

(27)

= C1

N∑
n=1

(
1

nα/m

)
(28)

≤ C1

(N∑
n=1

1
)1−α/m(N∑

n=1

(
1

nα/m

)m/α)α/m

(29)

= C1N1−α/mH
α/m
N (30)

where C1 = C(2
√

m)α2α/m and HN being the N -th harmonic number. Together with (12), this implies:

N∑
n=1

∆(⌊log n⌋) ∈ O(N1−α/m(log N)α/m) (31)

A.2 Additional experimental details

The experiments were implemented in Python 3.9.1. and run on a machine with macOS 12.3.1, a 4 GHz
Quad-Core Intel Core i7 CPU and 32 GB RAM or on a machine with macOS 12.2.1, a 2,7 GHz Dual-Core
Intel Core i5 CPU and 16 GB RAM in the case of the Experiment in Section 6.1.

A.2.1 Experiment with benchmark functions

Table 1 lists the domains and hyperparameters used in the experiment with the benchmark functions. We
ran TurBO in its default configuration with 5 trust regions and a batch size of 10. For each run, we sampled
a sub-domain by choosing uniformly at random new lower and upper boundaries for the intervals along each
dimension, such that the new boundaries are inbetween the previous ones and the location of the minimum.
In this way, the location of the minimum stays the same as in the original domain.
Figure 9 shows the minimal function value found for the benchmark functions and Figure 10 the cumulative
runtime. While in terms of number of function evaluations GP-OO does not improve over existing methods,
it is the fastest.

18

Published in Transactions on Machine Learning Research (09/2023)

−2.5 0.0 2.5 5.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

Six-Hump Camel (dimension: 2)

−2.5 0.0 2.5 5.0 7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

Dixon-Price (dimension: 10)

−2.5 0.0 2.5 5.0

−10

−5

0

5

Branin (dimension: 2)

−2.5 0.0 2.5 5.0

−10

−5

0

5

Beale (dimension: 2)

−2.5 0.0 2.5 5.0

−15

−10

−5

0

5

10

Bohachevsky A (dimension: 2)

−2.5 0.0 2.5 5.0

−15

−10

−5

0

5

10

Bohachevsky B (dimension: 2)

−2.5 0.0 2.5 5.0

−15

−10

−5

0

5

10

Bohachevsky C (dimension: 2)

−2.5 0.0 2.5 5.0

−10

−5

0

5

Rosenbrock (dimension: 2)

−2.5 0.0 2.5 5.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

Ackley (dimension: 2)

−2.5 0.0 2.5 5.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

Hartmann (dimension: 3)

−2.5 0.0 2.5 5.0

−10

−5

0

5

Trid (dimension: 4)

−2.5 0.0 2.5 5.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

Shekel (dimension: 4)

log time in seconds

lo
g

of
m

in
im

al
si

m
p

le
re

gr
et

ei

ucb

turbo

direct

random

gpoo

Figure 8: Minimal function values found on common benchmark datasetsfor simulated function evaluation
costs of 0.1 Second.

19

Published in Transactions on Machine Learning Research (09/2023)

−5.0 −2.5 0.0 2.5 5.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

Six-Hump Camel (dimension: 2)

−5 0 5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

Dixon-Price (dimension: 10)

−5.0 −2.5 0.0 2.5 5.0

−10

−5

0

5

Branin (dimension: 2)

−5.0 −2.5 0.0 2.5 5.0

−10

−5

0

5

Beale (dimension: 2)

−5.0 −2.5 0.0 2.5 5.0

−15

−10

−5

0

5

10

Bohachevsky A (dimension: 2)

−5.0 −2.5 0.0 2.5 5.0

−15

−10

−5

0

5

10

Bohachevsky B (dimension: 2)

−5.0 −2.5 0.0 2.5 5.0

−15

−10

−5

0

5

10

Bohachevsky C (dimension: 2)

−5.0 −2.5 0.0 2.5 5.0

−10

−5

0

5

Rosenbrock (dimension: 2)

−5.0 −2.5 0.0 2.5 5.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

Ackley (dimension: 2)

−5.0 −2.5 0.0 2.5 5.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

Hartmann (dimension: 3)

−5.0 −2.5 0.0 2.5 5.0

−10

−5

0

5

Trid (dimension: 4)

−5.0 −2.5 0.0 2.5 5.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

Shekel (dimension: 4)

log time in seconds

lo
g

of
m

in
im

al
si

m
p

le
re

gr
et

ei

ucb

turbo

direct

random

gpoo

Figure 9: Minimal function values found on common benchmark datasets for simulated function evaluation
costs of 0.01 Second.

20

Published in Transactions on Machine Learning Research (09/2023)

0 2500 5000 7500 10000

10−4

10−3

10−2

10−1

100

101

102

Six-Hump Camel (dimension: 2)

0 2500 5000 7500 10000

10−3

10−1

101

103

Dixon-Price (dimension: 10)

0 2500 5000 7500 10000

10−4

10−3

10−2

10−1

100

101

102

Branin (dimension: 2)

0 2500 5000 7500 10000

10−4

10−3

10−2

10−1

100

101

102

Beale (dimension: 2)

0 2500 5000 7500 10000

10−4

10−3

10−2

10−1

100

101

102

Bohachevsky A (dimension: 2)

0 2500 5000 7500 10000

10−4

10−3

10−2

10−1

100

101

102

Bohachevsky B (dimension: 2)

0 2500 5000 7500 10000

10−4

10−3

10−2

10−1

100

101

102

Bohachevsky C (dimension: 2)

0 2500 5000 7500 10000

10−4

10−3

10−2

10−1

100

101

102

Rosenbrock (dimension: 2)

0 2500 5000 7500 10000

10−4

10−3

10−2

10−1

100

101

102

Ackley (dimension: 2)

0 2500 5000 7500 10000

10−4

10−3

10−2

10−1

100

101

102

Hartmann (dimension: 3)

0 2500 5000 7500 10000

10−4

10−3

10−2

10−1

100

101

102

Trid (dimension: 4)

0 2500 5000 7500 10000

10−4

10−3

10−2

10−1

100

101

102

Shekel (dimension: 4)

number of function evaluations

ti
m

e
in

se
co

n
d

s

TurBO

EI

GP-UCB

DiRect

GP-OO

Figure 10: Cumulative runtimes for common benchmark datasets.

21

Published in Transactions on Machine Learning Research (09/2023)

Table 1: Hyperparameters for experiment with benchmark functions
Benchmark Domain Lengthscale l β (GP-UCB) β (GP-OO) jitter (EI)
Branin [−15, 15]2 0.5 1 100 0.001
Six-Hump-Camel [−2, 2]2 0.5 1 10 0.0001
Beale [−4.5, 4.5]2 1 0.1 100 0.0001
Bohachevsky a [−100, 100]2 1.7 0.1 10 1
Bohachevsky b [−100, 100]2 1.7 1 10 0.1
Bohachevsky c [−100, 100]2 1.7 0.1 10 0.0001
Rosenbrock [−3, 3]2 0.7 1 100 0.0001
Ackley [−35, 35]2 3.5 1 10 0.001
Hartmann [0, 1]3 0.3 1 0.1 0.0001
Trid [−16, 16]4 10.75 1 100 0.0001
Shekel [0, 10]4 1.75 1 10 0.001
Dixonprice [−10, 10]10 2 10 0.1 0.1

22

Published in Transactions on Machine Learning Research (09/2023)

0 200 400 600 800 1000

−6

−4

−2

0

lo
g
m
in
n
r n

square exponential

0 200 400 600 800 1000

−6

−4

−2

0

Matern

heuristic 1

heuristic 2

heuristic 3

0.1

1

10

100

number of function evaluations n

Figure 11: Performance of GP-OO for different choices of βn on 20 samples from a GP.

Table 2: Estimated probability that all upper bounds in a tree with 10 levels hold for samples from a GP.
square exponential Matérn

heuristic 1 15% 0%
heuristic 2 83% 94%
heuristic 3 14% 7%

A.2.2 Heuristical choice of β

Figure 11 shows GP-OO’s performance in the experiment on synthetic samples from a GP as described in
Section 6.1 for three heuristical choices of βn and constant values of βn ∈ {0.1, 1, 100, 1000}. We performed
the same analysis for a Matérn kernel with ν = 3/2. According to theory, the upper bounds hold for
βn = 2 log(2|Xn|N/ϵ) with probability 1 − ϵ, but typically a full union bound over both the size of the
domain and the total number of observations is too loose. The heuristics are inspired by the observation
that the number of "effectively independent" points in the domain is 1/l along each dimension. In the
following, l denotes the lenghtscale and d the dimension of the search domain. C is a constant that we set
to 1 for the square exponential kernel and 3/2 for the Matérn kernel.

• Heuristic 1: N = 1 and X̂n = (1/l)d

• Heuristic 2: N = (C/l)d and X̂n = (C/l)d

• Heuristic 3: N = 1000 (as we run the search for a total of 1000 iterations) and X̂n = (1/l)d

In addition, we empirically estimated the probability with which our heuristical choices for β result in valid
upper bounds. To do so, we sampled 100 functions from a GP and for each sample build a fully balanced
search tree up to depth 10. For each sampled function and each node, we checked if the upper-bound holds
for the corresponding cell. The following table shows the percentage of samples for which all upper-bounds
from depth 0 to depth 10 did hold. All functions were sampled on a 25×25×25 grid with a square exponential
and Matérn kernel with lengthscale 0.2. ϵ is set 0.05, so one would expect 95% of the bounds to hold under
a union bound approach. For the results, see Table 2. Higher percentages indicate the β is too conservative
and lower percentages indicate that the optimization might be too greedy. We find that, even though the
latter is the case for our heuristics, this does not immediatly lead to decreased search performance as shown
by Figure 11.

A.3 Ablation: Does encoding the smoothness help?

We compare GP-OO to DiRect (Jones et al., 1993), a global optimization algorithm that is also based on
iterative refinement of axis-aligned rectangles. DiRect assumes that the function fulfills a Lipschitz condi-

23

Published in Transactions on Machine Learning Research (09/2023)

Table 3: Discretization
dimension/lengthscale 3/1 3/0.1 3/0.05 2/0.5 2/0.05 2/0.005 1/0.5 1/0.05 1/0.005
discretization per dimension 40 40 40 100 200 500 1000 1000 2000

tion as well, however it does not allow to specify it. With the following experiment we investigate whether
the Lipschitz assumption encoded in the prior allows GP-OO to improve over the performance of DiRect.
To do so, we compare both methods on 20 samples from a GP prior with a Matérn kernel (Figure 12) or
square exponential kernel (Figure 13) in different dimensions for different lengthscales. For GP-OO we set
the exploration constant β to according to heuristic 1 described in the previous section. The confidence
parameter ϵ is set to 0.01. The domain is [0, 1]d for dimension d. The functions sampled from the GPs are
sampled over grids of different discretizations as specified in Table 3.
We find that GP-OO can exploit the smoothness in the prior, in particular on domains with smaller length-
scales, i.e. more local optimas. DiRect is known to converge slowly in the presence of many local optima
as it sometimes spends a large number of function evaluations refining the grid around a local optimum
before reaching the basin of a global optimum (Jones & Martins, 2021). Knowing the smoothness of the
function might help GP-OO to reach a better trade-off here. For large lengthscales the advantage seems to
disappear or even turns around on some samples. A potential reason could be a slight misspecification of
the exploration constant beta. However, for this work the settings with small lengthscales are more relevant
anyway, since in settings with large lengthscale BO is preferable as one does not need many evaluations there
and BO than scales sufficiently well.

24

Published in Transactions on Machine Learning Research (09/2023)

0 250 500 750 1000

0

10−1

100

dim: 3, l: 1

0 2000 4000

0

10−1

100

dim: 3, l: 0.1

0 2000 4000

0

10−1

dim: 3, l: 0.05

0 50 100 150 200

0

10−1

100

dim: 2, l: 0.5

0 250 500 750 1000

0

10−1

100

dim: 2, l: 0.05

0 25000 50000 75000 100000

0

10−1

100

dim: 2, l: 0.005

0 20 40

0

10−1

100

dim: 1, l: 0.5

0 50 100 150 200

0

10−1

100

dim: 1, l: 0.05

0 250 500 750 1000

0

10−1

dim: 1, l: 0.005

number of function evaluations n

(l
og

)
m
in
n
r n

Matern Direct

GP-OO

Figure 12: Performance of GP-OO and DiRect on 20 samples from a GP with a with Matérn kernel with
different lengthscales and dimensions. The regret is normalized to [0, 1] and the y-axis is semi-logarithmic
with a linear threshold at 0.1.

25

Published in Transactions on Machine Learning Research (09/2023)

0 250 500 750 1000

0

10−1

dim: 3, l: 1

0 2000 4000

0

10−1

dim: 3, l: 0.1

0 2000 4000

0

10−1

100

dim: 3, l: 0.05

0 50 100 150 200

0

10−1

100

dim: 2, l: 0.5

0 250 500 750 1000

0

10−1

dim: 2, l: 0.05

0 25000 50000 75000 100000

0

10−1

dim: 2, l: 0.005

0 20 40

0

10−1

100

dim: 1, l: 0.5

0 50 100 150 200

0

10−1

100

dim: 1, l: 0.05

0 250 500 750 1000

0

10−1

100

dim: 1, l: 0.005

number of function evaluations n

(l
og

)
m
in
n
r n

squared exponential Direct

GP-OO

Figure 13: Performance of GP-OO and DiRect on 20 samples from a GP with a with square exponential
kernel with different lengthscales and dimensions. The regret is normalized to [0, 1] and the y-axis is semi-
logarithmic with a linear threshold at 0.1.

26

	Introduction
	Background
	Bayesian Optimization (BO)
	Optimistic Optimization (OO)

	Gaussian Process Optimistic Optimization
	Canonical pseudo-metric
	Upper bound on the supremum of a cell
	Choosing how to partition
	GP-OO

	Related Work
	Work at the intersection of BO and OO
	Work on scalable BO

	Regret
	Experiments
	Experiments on synthetic functions
	Experiments on benchmarks

	Conclusion
	Appendix
	Theoretical Analysis
	Background
	Upper bounds on the supremum of a cell
	Upper bound on the regret
	Bounds for common kernels

	Additional experimental details
	Experiment with benchmark functions
	Heuristical choice of

	Ablation: Does encoding the smoothness help?

