
Under review as a conference paper at ICLR 2024

NAVIGATING SCALING LAWS: ACCELERATING VISION
TRANSFORMER’S TRAINING VIA ADAPTIVE STRATE-
GIES

Anonymous authors
Paper under double-blind review

ABSTRACT

In recent years, the state-of-the-art in deep learning has been dominated by very
large models that have been pre-trained on vast amounts of data. The paradigm
is very simple: Investing more computational resources (optimally) leads to bet-
ter performance, and even predictably so; neural scaling laws have been derived
that accurately forecast the performance of a network for a desired level of com-
pute. This leads to the notion of a ”compute-optimal” model, i.e. a model that
allocates a given level of compute during training optimally to maximise perfor-
mance. In this work, we extend the concept of optimality by allowing for an
”adaptive” model, i.e. a model that can change its shape during the course of
training. By allowing the shape to adapt, we can optimally traverse between the
underlying scaling laws, leading to a significant reduction in required compute
to reach a given target performance. We focus on vision tasks and the family of
Vision Transformers, where the patch size as well as the width naturally serve as
adaptive shape parameters. We demonstrate that, guided by scaling laws, we can
design compute-optimal adaptive models that beat their ”static” counterparts.

1 INTRODUCTION

Deep learning has gradually undergone a shift in paradigm, where instead of training specialized
models for a given task, a so-called frontier model is fine-tuned. Frontier models are typically
defined by their large-scale architectures, often rooted in the Transformer architecture (Vaswani
et al., 2017). Their training process involves exposure to extensive and diverse datasets, yielding
remarkable advancements in both natural language understanding (OpenAI, 2023; Köpf et al., 2023)
and computer vision tasks (Dehghani et al., 2023a; Chen et al., 2023). An inherent and pivotal
feature of such models lies in their scalability, whereby their performance can be reliably predicted
as a power law across the number of parameters, the volume of data or computational resources
utilized (Cortes et al., 1993; Hestness et al., 2017; Rosenfeld et al., 2019; Kaplan et al., 2020).
These principles are succinctly encapsulated by the neural scaling laws that motivate the choice of a
particular model and dataset size given a fixed budget of training compute (Hoffmann et al., 2022).

The ability to accurately predict performance offers an undeniable reassurance in the often uncertain
world of deep learning. It nevertheless, introduces an intimidating realization;

Given a training scheme, a fixed further improvement in performance requires exponentially more
compute or parameters.

While Moore’s Law has been a guiding principle in the semiconductor industry for decades, con-
temporary advancements in machine learning require computational resources surpassing its pro-
jections. This disparity highlights the pressing issue of resource allocation, as staying competitive
in the realm of deep learning increasingly depends on the availability of substantial computational
power. Finding solutions to address this issue becomes increasingly paramount. Delving deeper into
the preceding statement, we highlight a pivotal assumption: the shape of the model, and therefore
the number of FLOPs for a forward-pass remain fixed throughout the training process. By ”shape”
we refer to any characteristic of a model that can be smoothly varied throughout training without
leading to strong deterioration in performance (e.g. width, depth or patch size). Such a static ap-

1



Under review as a conference paper at ICLR 2024

proach (i.e. where model shape remains fixed) may however not always be optimal. For example, it
has already been observed that the optimal model size grows smoothly with the loss target and the
compute budget (Kaplan et al., 2020).

This paper challenges the assumption of a static model outlined above and explores adaptable train-
ing methodologies designed to surpass conventional scaling laws. In other words, our aim is to
achieve equivalent performance for a specified model with fewer computational resources (FLOPs)
than initially projected. To that end, we adapt the shape of the model throughout training, allowing
it to optimally traverse between different scaling laws. This enables us to leverage the optimality
of all shape configurations in different regions of compute, leading to a more efficient scaling of
the model. We train Vision Transformers (Dosovitskiy et al., 2020) and use both model width and
patch size as adaptive shape parameters throughout training. We practically showcase how such an
adaptive training scheme can lead to substantial training FLOPs reduction, in cases more than 50%.
In more detail, our contributions are the following:

• We introduce a simple and effective strategy to traverse scaling laws, opting for the one
that leads to the faster descent, i.e. maximum performance gain for the same amount of
compute.

• We showcase the efficiency of our approach by optimally scheduling the patch size, as
well as the width, of a Vision Transformer, leading to significant reductions in the required
amount of compute to reach optimal performance.

2 RELATED WORK

Neural scaling laws (Cortes et al., 1993), describe how a neural network’s performance varies as
a power law E = a(P + d)b + c where P can be either the number of parameters in the model,
the number of training samples or simply the number of FLOPs used for training (Rosenfeld et al.,
2019). Subsequently, scaling laws have been successfully demonstrated in a range of different ap-
plications, including language (Kaplan et al., 2020; Hoffmann et al., 2022) and vision (Zhai et al.,
2022; Bachmann et al., 2023), as well as numerous learning settings, including supervised training,
generative modelling (Henighan et al., 2020) and transfer learning (Hernandez et al., 2021). The pre-
dictive power of scaling laws has also been leveraged to determine compute-optimal models before
training; the size of the Chinchilla model and the number of training tokens were chosen based on
the underlying scaling law and indeed, Chinchilla outperformed its larger but sub-optimally trained
counterpart Gopher (Hoffmann et al., 2022). The training of GPT-4 has also been guided by scaling
laws built from training runs of smaller models (OpenAI, 2023).

In this paper, we focus on vision applications and use Vision Transformers (ViTs) as the family
of models. Built upon the Transformer architecture used in natural language processing (Vaswani
et al., 2017), ViTs have established themselves as the predominant vision architecture for large-scale
pretraining tasks (Dehghani et al., 2023a). Different from convolutions, a ViT initially partitions
the input image into patches, and processes these through self-attention and MLP blocks. ViTs
have been observed to outperform convolutional networks at scale, despite arguably possessing less
inductive bias (Dosovitskiy et al., 2020). This lack of inductive bias can be partially overcome
through the introduction of ”soft” inductive bias, which proves to be beneficial especially during
the early phase of their training (d’Ascoli et al., 2021). Similarly to their counterparts in natural
language processing, ViTs also exhibit predictable scaling behavior (Zhai et al., 2022; Dehghani
et al., 2023a; Alabdulmohsin et al., 2023).

In our work, we are interested in having models equipped with adaptive ”shape” parameters. We
focus on the patch size used to process images, as well as the underlying model width as the adaptive
variables. Training with varying patch sizes has been previously considered by Beyer et al. (2023),
resulting in a model that is robust to the choice of patch size. It is also common practice to pre-
train a ViT at a medium resolution and then subsequently finetuning it at a higher resolution while
keeping the patch sized fixed (thus changing the number of patches) (Dosovitskiy et al., 2020; Zhai
et al., 2022; Alabdulmohsin et al., 2023). Model (width) expansion under composable function-
preserving operations has been a case of study for a long time in machine learning (Ash, 1989;
Mitchell et al., 2023). The principal objective in this case is to accelerate training (Kaddour et al.,
2023; Geiping & Goldstein, 2023). Such expansion operations have also been proposed for the

2



Under review as a conference paper at ICLR 2024

(a) Illustration of the effect of patch size on a given image.

100 101 102

GFLOPs

60
40
30
24
20
15
12
10
8
6
4

Pa
tc

h 
siz

e

(b) ViT-B FLOPs.

Figure 1: (Left) Patch sizes affect how ViTs process input images, while (right) having a prominent
impact on the necessary compute of a forward pass.

Transformer architecture (Gesmundo & Maile, 2023; Chen et al., 2022) and have exhibited notable
training speed-ups Gong et al. (2019); Yao et al. (2023); Wang et al. (2023); Lee et al. (2022);
Shen et al. (2022); Li et al. (2022). Apart from determining how and where in the model this
expansion should occur, a primary challenge is to resolve when to add new neurons. We advocate
that an effective strategy for adjustments to the model shape should be informed by considerations
of scaling laws and the performance gains achieved per additional unit of computational resources.

Orthogonal to our approach, various techniques have been proposed to accelerate both inference and
training, particularly in the context of Transformer models. These methods encompass a spectrum
of strategies, including weight quantization (Dettmers et al., 2022; Frantar et al., 2022) and pruning
weights and context (Frantar & Alistarh, 2023; Anagnostidis et al., 2023) among others. Specif-
ically for ViTs, Bolya et al. (2022) propose to merge tokens at different layers in the architecture
and Dehghani et al. (2023b) propose to pack sequences of tokens together to optimize hardware
utilization. Also d’Ascoli et al. (2021) propose to initialize ViTs differently, making them look
more like convolutions. Other methods have also been proposed to beat scaling laws, including data
pruning (Sorscher et al., 2022) or shaping models (depth vs width) more optimally (Alabdulmohsin
et al., 2023). It is noteworthy that these approaches are supplementary to our methodology and
can be effectively employed in conjunction to further enhance the efficiency of the training process.
Discovery of optimal architectures have also been explored in the line of work of neural architec-
ture search (Elsken et al., 2019). We want to highlight, however, that we are interested in more
efficient training for a fixed architecture, the Transformer, that has established itself across different
modalities.

3 VISION TRANSFORMER AND OPTIMAL PATCH SIZES

In this work, we focus on the family of Vision Transformers as they have become the de-facto
dominant architecture for vision. ViTs process images x ∈ Rh×w×c, where h,w are the height
and width of the image in pixels and c is the number of channels. Images are ”patchified” into a
sequence of n tokens based on a specified patch size p ∈ N, where n = ⌊w/p⌋ × ⌊h/p⌋, leading
to a representation x ∈ Rn×p2c. We illustrate the effect of different patch sizes in Fig. 1a. For
simplicity, we only consider the case of equal height and width (h = w), although this constraint
can be readily relaxed, as shown in Dehghani et al. (2023b). Each token is then linearly embedded
with learnable parameters Wemb ∈ Rp2c×d where we refer to d ∈ N as the embedding dimension
or width of the ViT. These embeddings are further enhanced with learnable positional encodings
Wpos ∈ Rn×d, enabling a ViT to learn the spatial structure of the tokens. The resulting embeddings
are then processed by L transformer blocks, consisting of a self-attention layer followed by an MLP
that is shared across tokens. This specific structure of the architecture allows a ViT to generate
predictions for token sequences of variable lengths, as is the case when dealing with images of
different patch sizes.

Fixed patch size training. Different patch sizes come at different computational costs; the number
of tokens n scales with O(1/p2) and thus processing inputs scales with O(1/p4), due to quadratic

3



Under review as a conference paper at ICLR 2024

0.0 0.2 0.4 0.6 0.8 1.0
FLOPs 1e17

0.00

0.05

0.10

0.15

0.20

0.25

Im
ag

eN
et

 1
0-

sh
ot

optimal
smaller bs
larger lr
smaller lr
larger bs

(a) We optimize batch size, learning rate, and
weight decay for each model configuration by
running a greed search, for a small compute
budget. More details are presented in the Ap-
pendix.

N
am

e

W
id

th

D
ep

th

H
ea

ds

Pa
ra

m
(M

) GFLOPs

X = 8 X = 24

V256-6/X 256 6 8 5.1 1.22 0.120
V192-12/X 192 12 3 5.6 1.43 0.136
V256-12/X 256 12 4 9.9 2.44 0.240
V384-12/X 384 12 6 21.8 5.25 0.538
V512-12/X 512 12 8 38.6 9.13 0.953
V640-12/X 640 12 10 60.0 14.1 1.49
V768-12/X 768 12 12 86.2 20.1 2.14

(b) Details on the ViT models we are training. We use the
standard s, S, Ti, B model sizes, as well as other intermedi-
ate model sizes. To simplify and unify notation, we adopt
the naming convention Vd-L/X for a Vision Transformer
of depth L and embedding dimension d. Here X refers to
the patch size.

Figure 2: (Left) Hyperparameters are optimized across model classes. (Right) The ViT models used
for this study.

dependence on the input sequence length of the self-attention operation1. Consequently, a reduc-
tion in the patch size results in a substantial increase in the computational requirements for a
forward pass. We illustrate this increase numerically in Fig. 1b. Using smaller patch sizes on
the other hand often yields enhanced model performance when paired with enough compute. To
explore this trade-off, we pre-train variously-sized Vision Transformers (see Fig. 2(b) for a sum-
mary) on the public ImageNet-21k dataset (Ridnik et al., 2021) using different patch sizes that are
fixed throughout training. For computational efficiency and to avoid being bottlenecked by data
transferring, we resize images to h = w = 1202. This allows us to use a range of patch sizes
p ∈ {120, 60, 30, 24, 20, 15, 12, 10, 8, 6, 4, 3, 2, 1} that exactly divide the input resolution. We use
FFCV (Leclerc et al., 2023) to load images efficiently. During training, we employ data augmen-
tation techniques – random cropping and horizontal flips – and report 10-shot error (denoted as E)
on ImageNet-1k (Deng et al., 2009), as upstream and downstream performance may not always be
perfectly aligned (Tay et al., 2022; Zhai et al., 2022). Although doing multiple epochs over the
same data has been shown to be suboptimal in cases for language modelling tasks (Xue et al., 2023;
Muennighoff et al., 2023), augmentations, as employed in our study, allow conducting multiple
epoch training without a noticeable decline in performance, at least for the data and compute scales
(up to 10 EFLOPs) that we are analysing here (Zhai et al., 2022).

When calculating compute C, we exclude the computations associated with the ”head” of the net-
work that map the embedding dimension to the number of classes (Kaplan et al., 2020). Addition-
ally, we adopt the approximation that the FLOPs required for the backward pass are approximately
equivalent to twice the FLOPs incurred during the forward pass. Here, we are optimizing for FLOPs,
which can be extended across different types of hardware accelerators. FLOPs in general exhibit a
high degree of correlation with accelerator time (see e.g. Fig. 4 (right) in Alabdulmohsin et al.
(2023)), given a fixed computational efficiency of the evaluated models (Stanić et al., 2023). In our
study, we focus exclusively on Transformer models, which are very hardware-efficient (Dosovitskiy
et al., 2020). More details regarding the experimental setup are provided in Appendix A.

For a fixed model size, we fit power laws in terms of compute (which is proportional to the number
of examples seen in this case) for every patch size individually. The power law takes the form3:

1In reality, complexity is O(1/p4 × d + 1/p2 × d2). For most choices of patch size, we have that d > n,
and O(1/p2 × d2) is the dominant term.

2We expect a small decrease in performance compared to reported numbers in the literature due to this
decreased resolution. For our most compute-intensive models (ViT Base variant) we get – top-1 accuracy on
ImageNet-1k – 79.2 % when fine-tuning and 77.2 %, when training a linear model on top of the extracted
embeddings. Steiner et al. (2021) report 80.42% fine-tuning performance for a ViT-B/16 model on 224× 224
images trained for 30 epochs on ImageNet-21k, which already surpasses our maximum compute budget.

3As aforementioned our models are bound by data rather than the number of parameters.

4



Under review as a conference paper at ICLR 2024

C

E = f(C)

Scaling law: 0
Scaling law: 1
Scaling law: 2
Adaptive scaling law

E

C = g 1(E)

E

g(E)
E

Figure 3: (Left) Different scaling law curves (function f in Equation 1) corresponding to different
training configurations. Arrows indicate points of transition between scaling laws. (Middle) We
illustrate the inverse of the above function g = f−1 for the same scaling law curves. (Right)
We visualize the gradient of the inverse ∂g(E)

∂E for the same scaling laws. Taking the curve that
maximizes the aforementioned gradient, leads to a partition of the space. Based on this partition, we
can deduce a strategy on which scaling law to ”follow” for each level of performance.

EP = fP (C) = aP (C + dP )
−bP + cP . (1)

where the exponent bP dictates the speed of decay of the law and cP corresponds to the maxi-
mal reachable performance, i.e. when using infinite compute. We consider such a scaling law
since we focus on varying solely a single shape parameter throughout training (here the patch
size) while keeping the other dimensions fixed (e.g. the model size). After fitting the parame-
ters aP , dP , bP , cP > 0, we can predict downstream performance EP (ImageNet-1k 10-shot top-1
unless otherwise stated) as a function of compute C in FLOPs. We display the results for the V640-
12 model in Fig. 4 and Fig. 5 (we report the same plots for more model sizes in Appendix B). From
the scaling laws, it is evident that different patch sizes are optimal at different levels of compute. Or
in other words, for a given performance level, different patch sizes yield different improvements for
the same additional compute. Given that insight, a very natural question emerges:

Can we traverse between the scaling laws more efficiently by allowing for adaptive patch sizes?

4 ADAPTIVE PATCH SIZES AND TRAVERSING SCALING LAWS

In this section, we will detail our strategy to efficiently traverse scaling laws. While we specialise
the discussion here to the case of adapting the patch size (and leveraging the corresponding scaling
law), the outlined strategy can in principle be extended to any change in ”shape”. Indeed, we will
discuss the mechanism of growing a ViT in terms of width in Sec. 5.

Adaptive Patch Size. In order to allow for a smooth traversal of different laws, we first need
a mechanism that enables mapping a ViT fP with patch size P to a ViT fQ with patch size Q,
while ideally not degrading performance, i.e. fP ≈ fQ. FlexiViTintroduced in Beyer et al. (2023)
achieves precisely that. First, it is important to realise that solely the patch embedding Wemb and
the positional encodings Wpos require adaptation. FlexiViTfirst defines both Wemb and Wpos for
a fixed base patch size. In every forward pass, depending on the patch size, the base embedding
parameters Wemb are resized based on the pseudo inverse of the resizing matrix. Similarly, the base
positional encodings Wpos are bi-linearly interpolated, enabling the model to change the patch size
without a strong performance degradation. We refer to Beyer et al. (2023) for more details.

Traversing Scaling Laws. Denote the family of scaling laws by {fP } with P denoting the patch
size. Each law maps a given level of compute C to the predicted downstream performance EP =
fP (C). Consider the inverted laws gP (E) := f−1

P (E), predicting for a given level of desired

5



Under review as a conference paper at ICLR 2024

1016 1017 1018 1019

FLOPs

30

40

50

60

70

80

90

Im
ag

eN
et

 1
0-

sh
ot

 e
rro

r r
at

e 
[%

]

Patch size: 60 40 30 24 20 15 12 10 8

Empirical point Fitted curveEmpirical point Fitted curve

Figure 4: Downstream performance as a func-
tion of compute for the V640-12 model and dif-
ferent patch sizes. We use a log-log scale.

0 2 4 6 8
FLOPs 1e18

20

30

40

50

60

70

80

90

Im
ag

eN
et

 1
0-

sh
ot

 e
rro

r r
at

e 
[%

]

Patch size: 60 40 30 24 20 15 12 10 8

Patch size scheduler Patch size decreasedPatch size scheduler Patch size decreased

2.5x FLOPs reduction

Figure 5: Downstream performance of the
V640-12 trained with our patch size scheduler,
and its potential benefits.

performance E, how much compute C needs to be invested to achieve it. We aim to maximize the
descent in performance E at the current error level E∗. We thus compute the partial derivatives

qP (E
∗) :=

∂gP (E)

∂E

∣∣∣
E=E∗

∀P. (2)

Maximising qP over the patch size P partitions the error space disjointly (we assume E is the
classification error taking values in [0, 1]),

[0, 1] :=
⋃
P

EP ,

where EP ⊂ [0, 1] denotes the set where the patch size P achieves the highest gradient. This
partition naturally gives rise to a scheduler for the patch size, which empirically turns out to be
monotonic (i.e. starting from the largest patch size for large classification error values and ending
with the smallest for small classification errors), which is expected based on the observations in
Fig. 4. We visualize the strategy in Fig. 3.

Scheduled training. We now test the devised strategy in a practical setting by pre-training
variously-sized ViTs on ImageNet-21k using our patch size scheduler. We use the same train-
ing setup as for the fixed patch size experiments and let the scheduler consider patch sizes
P ∈ {60, 40, 30, 24, 20, 15, 12, 10, 8}. We display ImageNet-1k 10-shot error rate as a function of
compute C for the model V640-12 in Fig. 5 (we provide results for all models in the Appendix B).
The crosses denote the points where the scheduler switches patch size. We observe a significant
improvement in terms of compute-efficiency, allowing for upto a 2.5 FLOPs reduction to achieve
the same performance through training. While switching patch sizes might initially lead to a small
degradation in performance due to changes of the entropy in the self-attention layers, in practice this
deficit is very quickly overcome as the image is parsed in a more fine-grained manner. Such a degra-
dation is thus not even visible in Fig. 54. To facilitate a comparison across all model sizes at once,
we further visualise the compute-optimal barrier for both fixed and scheduled training in Fig. 8. By
compute-optimal, we refer to a model that optimally trades off model size, patch size and number of
samples seen for a given level of compute C, i.e. achieving the lowest error E. We observe that the
optimally scheduled models significantly outperform the optimal static models, halfing the required
compute to optimally train a ViT-Base model (up to our budget of compute).

Is the schedule optimal? While our scheduler improves over the individual models, it is not clear
yet that it does so in an optimal sense, i.e. can other schedules achieve similar benefits? Beyer et al.
(2023) also employ a patch size scheduler but use a uniformly random sampling of the patch size

4Differences in the effective receptive field of each patch are typically mitigated by cropping as a component
of the training procedure.

6



Under review as a conference paper at ICLR 2024

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
FLOPs 1e18

40

50

60

70

80

Im
ag

eN
et

 1
0-

sh
ot

 e
rro

r r
at

e 
[%

]

Patch size scheduler FlexiViT Other SchedulersPatch size scheduler FlexiViT Other Schedulers

Figure 6: We compare performance as a function of training compute against the scheduler of Flex-
iViTand other suboptimal schedulers. Irrespective of the current patch size in the scheduler, we use
our smallest patch size (i.e. 8), when evaluating FlexiViT.

at every step. We compare against their model FlexiViTin Fig. 6. We observe that our scheduler
indeed remains optimal, which is expected; FlexiViTtargets a lower inference cost by making the
model robust to many patch sizes (hence the random scheduler). Compute-optimality is not their
objective. We further compare against a simple monotonic but linear as well as logarithmic patch
size scheduler, i.e. for a given amount of total compute, we evenly (or logarithmically) space the
transition points throughout training. This way we assess whether simply any monotonic scheduler
leads to the same improvements, or whether the position of the transition points matter. We display
the results in Fig. 6. We again observe that our scheduler remains optimal, carefully determining the
transition points based on the scaling laws thus indeed leads to a significant improvement.

Smaller Patch Sizes Undeniably, the choice of patch size affects the inductive bias of ViTs (in
general the level of tokenization in the input affects the inductive bias of any Transformer model).

1015 1016 1017 1018 1019

FLOPs

50

60

70

80

90

Im
ag

eN
et

 1
0-

sh
ot

 e
rro

r r
at

e 
[%

]

Patch size: 60
40

30
24

20
15

12
10

8
6

4

Empirical point Fitted curveEmpirical point Fitted curve

60 40 30 24 20 15 12 10 8 6 4
Patch size

0.5

0.6

0.7

0.8

cP

Figure 7: We train the V256-6 with smaller
patch sizes. This does not lead to a monoton-
ically better performance.

It controls the level of computing on the input and
therefore the level of details we are interested in ex-
tracting from an image. The patch size also con-
trols the overall sequence length n processed by
the Transformer model, and therefore the degree of
weight sharing between the parameters. Our previ-
ous laws clearly show that smaller patch sizes lead to
better performance in high-compute areas. But does
this trend also extend to even smaller patch sizes?
We explore this question empirically by using the
same experimental setup and pre-training on even
smaller patch sizes P ∈ {6, 4} in addition to the
previous results. We display the results in Fig. 7.
We observe that while some absolute gains in per-
formance can still be achieved with patch size 6, the
additional required amount of compute is extremely
high. For the even smaller patch size 4 one actu-
ally starts to lose in performance as can be seen from
plotting the intercepts CP of the corresponding scal-
ing laws. The behaviour of performance with respect
to patch size is thus only monotonic up to a certain
point, and performance may actually worsen beyond
that. This is in contrast to other scaling parameters
such as the number of samples or the model size that
usually offer a monotonic behaviour in performance
when scaled appropriately.

7



Under review as a conference paper at ICLR 2024

1015 1016 1017 1018 1019

FLOPs

30

40

50

60

70

80

90

Im
ag

eN
et

 1
0-

sh
ot

 e
rro

r r
at

e 
[%

]

ViT BaseOur ViT
-62% FLOPs

Patch size: Scheduler 60 40 30 24 20 15 12 10 8Patch size: Scheduler 60 40 30 24 20 15 12 10 8

Figure 8: Compute-optimal static and scheduled models for various patch and model sizes. We plot
using a log-log scale.

5 ADAPTING MODEL WIDTH

To further verify the efficiency of our approach, we study a different ”shape” parameter of the Vision
Transformer, the underlying width d (or embedding size).

Adapting width. Similarly to the patch size, we need a mechanism that maps a transformer of
smaller width d1 to a transformer of larger width d2. This is a very well-studied problem, especially
in the case of natural language processing and many schemes have been proposed (Gesmundo &
Maile, 2023; Chen et al., 2022; Gong et al., 2019; Yao et al., 2023; Wang et al., 2023; Lee et al.,
2022; Shen et al., 2022; Li et al., 2022). Here, we focus on the simplest approach where we expand
the initial model d1 by adding randomly initialized weights (see Appendix B for details). This
certainly does not preserve the function exactly and indeed we observe some drop in performance
after adapting the model (see Fig. 10). On the other hand, we also notice that the expanded model
quickly recovers, and hence conclude that while not ideal, this simple expansion mechanism suffices
for our setting5.

Scaling width. The role of the model width and its associated scaling properties are very well
understood in the literature (Zhai et al., 2022; Alabdulmohsin et al., 2023). Nevertheless, we repeat
the scaling study for our own experimental setup and pre-train Vision Transformers of various widths
and training durations on ImageNet-21k. We use the same experimental setup as detailed in Sec. 3.
In Fig. 9 we report 10-shot ImageNet-1k error as a function of compute for a fixed patch size P =
20. More details and results for different patch sizes are provided in the Appendix B. We again
observe that different model widths are optimal for different levels of compute, similarly offering
the potential for computational speed-ups by adapting the shape throughout training.

Scheduling width. It is worth noting that strategies for expanding models during training have
been previously explored. However, the critical question of when this expansion should occur has
largely remained an issue of controversy. Our approach then offers a straightforward and principled
solution. We consider three width settings d ∈ {192, 384, 768} and devise our scheduler based
on the scaling law as outlined in Sec. 4. We display the obtained optimal schedule and the actual

5In practice we found that proposed function preserving schemes that mostly depend on zero-initializing
weights in the network, e.g. (Gesmundo & Maile, 2023) perform suboptimally and do not allow the network to
properly train.

8



Under review as a conference paper at ICLR 2024

1016 1017 1018 1019

FLOPs

40

50

60

70

80

90

Im
ag

eN
et

 1
0-

sh
ot

 e
rro

r r
at

e 
[%

]

Model class: V256-6 V192-12 V256-12 V384-12 V512-12 V640-12 V768-12

Empirical point Fitted curveEmpirical point Fitted curve

Figure 9: Downstream performance as a
function of compute for ViT of different
size, trained with a patch size of 20. We
use a log-log scale.

1016 1017 1018

FLOPs

30

40

50

60

70

80

90

Im
ag

eN
et

 1
0-

sh
ot

 e
rro

r r
at

e 
[%

]

Model class: V768-12 V384-12 V192-12

Model scheduler Transition pointsModel scheduler Transition points

1016 1017 1018
30

40

50

60

70

80

90

V192-12 -> V384-12

V384-12 -> V768-12

Predicted Model scheduler Actual Model schedulerPredicted Model scheduler Actual Model scheduler

Figure 10: The theoretically predicted scheduled per-
formance (left) and the actually obtained (right) perfor-
mance. While transitions are less smooth, the model
based on the scheduler quickly recovers back to the pre-
dicted law.

resulting performance in Fig. 10. As remarked previously, changing the model width does lead
to a momentary deterioration of the performance, but smoothly recovers back to the predicted per-
formance. We again observe that the scheduled model remains optimal throughout training when
compared against the static models, but results are slightly less pronounced compared to the patch
size scheduling.

6 CONCLUSION

In this work, we have explored strategies that leverage models with varying shape parameters as
training progresses. By efficiently traversing neural scaling laws, we demonstrated how shape pa-
rameters such as patch size and model width can be optimally scheduled, leading to significant im-
provements in terms of the required level of compute. We further observe that such scheduled mod-
els perform compute-optimally compared to their static parts throughout training, further demon-
strating that scheduling can get the best out of all the shape parameters. The proposed strategy is
very flexible and applies to any shape parameter that admits a smooth mechanism to transform be-
tween two differently ”shaped” models. We thus envision a wealth of potential future work applying
our scheduling strategy to different shape parameters such as depth, sparsity or a combination of
several parameters. We believe that such scheduling strategies are a timely contribution in light of
the ever-growing demand of deep learning for more computational resources.

7 LIMITATIONS

We detail the limitations of our work to the best of our knowledge.

• We used greedy search with a small compute budget to get optimal hyper-parameters per
model class. In practice, optimal parameters can change throughout training, e.g. in the
literature it has been observed that larger batch sizes can be beneficial during late stages of
training (Hoffmann et al., 2022; Zhai et al., 2023).

• In order to determine the optimal scheduler for a given shape parameter, knowledge of
its scaling behaviour is needed, which comes at a high computational cost. On the other
hand, the scaling behaviour of many shape parameters has already been established (e.g.
width, depth, MLP-dimension (Alabdulmohsin et al., 2023)) and can readily be used in our
scheduler.

• Accurately predicting compute-optimal models, requires one to accurately schedule the
learning rate throughout training. As we are interested in low-budgets of computes we
do not schedule the learning rate nor embark on a cooldown phase (Zhai et al., 2022), as
this would constitute a large fraction of the overall training time. We expect learning rate
schedulers may shift our conclusion but not the outcome and takeaway message.

• While we observe that the scheduled models are compute-optimal throughout all of training
(especially for the patch size), we observe the largest gains earlier on throughout training.
Indeed, we do not expect our scheduled models to reach better performance for an infinite
amount of compute.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Ibrahim Alabdulmohsin, Xiaohua Zhai, Alexander Kolesnikov, and Lucas Beyer. Getting vit in
shape: Scaling laws for compute-optimal model design. arXiv preprint arXiv:2305.13035, 2023.

Sotiris Anagnostidis, Dario Pavllo, Luca Biggio, Lorenzo Noci, Aurelien Lucchi, and Thomas Hof-
mann. Dynamic context pruning for efficient and interpretable autoregressive transformers, 2023.

Timur Ash. Dynamic node creation in backpropagation networks. Connection science, 1(4):365–
375, 1989.

Thomas Bachlechner, Bodhisattwa Prasad Majumder, Henry Mao, Gary Cottrell, and Julian
McAuley. Rezero is all you need: Fast convergence at large depth. In Uncertainty in Artificial
Intelligence, pp. 1352–1361. PMLR, 2021.

Gregor Bachmann, Sotiris Anagnostidis, and Thomas Hofmann. Scaling mlps: A tale of inductive
bias. arXiv preprint arXiv:2306.13575, 2023.

Lucas Beyer, Pavel Izmailov, Alexander Kolesnikov, Mathilde Caron, Simon Kornblith, Xiaohua
Zhai, Matthias Minderer, Michael Tschannen, Ibrahim Alabdulmohsin, and Filip Pavetic. Flex-
ivit: One model for all patch sizes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 14496–14506, 2023.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
Hoffman. Token merging: Your vit but faster. arXiv preprint arXiv:2210.09461, 2022.

Wuyang Chen, Wei Huang, Xianzhi Du, Xiaodan Song, Zhangyang Wang, and Denny Zhou. Auto-
scaling vision transformers without training. arXiv preprint arXiv:2202.11921, 2022.

Xi Chen, Josip Djolonga, Piotr Padlewski, Basil Mustafa, Soravit Changpinyo, Jialin Wu, Car-
los Riquelme Ruiz, Sebastian Goodman, Xiao Wang, Yi Tay, et al. Pali-x: On scaling up a
multilingual vision and language model. arXiv preprint arXiv:2305.18565, 2023.

Corinna Cortes, Lawrence D Jackel, Sara Solla, Vladimir Vapnik, and John Denker. Learning
curves: Asymptotic values and rate of convergence. Advances in neural information process-
ing systems, 6, 1993.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
vision transformers to 22 billion parameters. In International Conference on Machine Learning,
pp. 7480–7512. PMLR, 2023a.

Mostafa Dehghani, Basil Mustafa, Josip Djolonga, Jonathan Heek, Matthias Minderer, Mathilde
Caron, Andreas Steiner, Joan Puigcerver, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Patch
n’pack: Navit, a vision transformer for any aspect ratio and resolution. arXiv preprint
arXiv:2307.06304, 2023b.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
multiplication for transformers at scale. arXiv preprint arXiv:2208.07339, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Stéphane d’Ascoli, Hugo Touvron, Matthew L Leavitt, Ari S Morcos, Giulio Biroli, and Levent
Sagun. Convit: Improving vision transformers with soft convolutional inductive biases. In Inter-
national Conference on Machine Learning, pp. 2286–2296. PMLR, 2021.

10



Under review as a conference paper at ICLR 2024

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. The
Journal of Machine Learning Research, 20(1):1997–2017, 2019.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Jonas Geiping and Tom Goldstein. Cramming: Training a language model on a single gpu in one
day. In International Conference on Machine Learning, pp. 11117–11143. PMLR, 2023.

Andrea Gesmundo and Kaitlin Maile. Composable function-preserving expansions for transformer
architectures. arXiv preprint arXiv:2308.06103, 2023.

Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei Wang, and Tieyan Liu. Efficient training of
bert by progressively stacking. In International conference on machine learning, pp. 2337–2346.
PMLR, 2019.

Bobby He and Thomas Hofmann. Simplifying transformer blocks. arXiv preprint
arXiv:2311.01906, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive generative
modeling. arXiv preprint arXiv:2010.14701, 2020.

Danny Hernandez, Jared Kaplan, Tom Henighan, and Sam McCandlish. Scaling laws for transfer.
arXiv preprint arXiv:2102.01293, 2021.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
empirically. arXiv preprint arXiv:1712.00409, 2017.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Jean Kaddour, Oscar Key, Piotr Nawrot, Pasquale Minervini, and Matt J Kusner. No train no gain:
Revisiting efficient training algorithms for transformer-based language models. arXiv preprint
arXiv:2307.06440, 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi-Rui Tam, Keith Stevens,
Abdullah Barhoum, Nguyen Minh Duc, Oliver Stanley, Richárd Nagyfi, et al. Openassistant
conversations–democratizing large language model alignment. arXiv preprint arXiv:2304.07327,
2023.

Guillaume Leclerc, Andrew Ilyas, Logan Engstrom, Sung Min Park, Hadi Salman, and Aleksander
Madry. Ffcv: Accelerating training by removing data bottlenecks, 2023.

Yunsung Lee, Gyuseong Lee, Kwangrok Ryoo, Hyojun Go, Jihye Park, and Seungryong Kim. To-
wards flexible inductive bias via progressive reparameterization scheduling. In European Confer-
ence on Computer Vision, pp. 706–720. Springer, 2022.

Changlin Li, Bohan Zhuang, Guangrun Wang, Xiaodan Liang, Xiaojun Chang, and Yi Yang. Au-
tomated progressive learning for efficient training of vision transformers. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12486–12496, 2022.

11



Under review as a conference paper at ICLR 2024

Rupert Mitchell, Martin Mundt, and Kristian Kersting. Self expanding neural networks. arXiv
preprint arXiv:2307.04526, 2023.

Niklas Muennighoff, Alexander M. Rush, Boaz Barak, Teven Le Scao, Aleksandra Piktus, Noua-
mane Tazi, Sampo Pyysalo, Thomas Wolf, and Colin Raffel. Scaling data-constrained language
models, 2023.

Lorenzo Noci, Sotiris Anagnostidis, Luca Biggio, Antonio Orvieto, Sidak Pal Singh, and Aurelien
Lucchi. Signal propagation in transformers: Theoretical perspectives and the role of rank collapse.
Advances in Neural Information Processing Systems, 35:27198–27211, 2022.

R OpenAI. Gpt-4 technical report. arXiv, pp. 2303–08774, 2023.

Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. Imagenet-21k pretraining for
the masses, 2021.

Jonathan S Rosenfeld, Amir Rosenfeld, Yonatan Belinkov, and Nir Shavit. A constructive prediction
of the generalization error across scales. arXiv preprint arXiv:1909.12673, 2019.

Sheng Shen, Pete Walsh, Kurt Keutzer, Jesse Dodge, Matthew Peters, and Iz Beltagy. Staged training
for transformer language models. In International Conference on Machine Learning, pp. 19893–
19908. PMLR, 2022.

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos. Beyond neu-
ral scaling laws: beating power law scaling via data pruning. Advances in Neural Information
Processing Systems, 35:19523–19536, 2022.

Aleksandar Stanić, Dylan Ashley, Oleg Serikov, Louis Kirsch, Francesco Faccio, Jürgen Schmidhu-
ber, Thomas Hofmann, and Imanol Schlag. The languini kitchen: Enabling language modelling
research at different scales of compute. arXiv preprint arXiv:2309.11197, 2023.

Andreas Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit, and Lucas
Beyer. How to train your vit? data, augmentation, and regularization in vision transformers. arXiv
preprint arXiv:2106.10270, 2021.

Yi Tay, Mostafa Dehghani, Samira Abnar, Hyung Won Chung, William Fedus, Jinfeng Rao, Sharan
Narang, Vinh Q Tran, Dani Yogatama, and Donald Metzler. Scaling laws vs model architectures:
How does inductive bias influence scaling? arXiv preprint arXiv:2207.10551, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0: funda-
mental algorithms for scientific computing in python. Nature methods, 17(3):261–272, 2020.

Peihao Wang, Rameswar Panda, Lucas Torroba Hennigen, Philip Greengard, Leonid Karlinsky,
Rogerio Feris, David Daniel Cox, Zhangyang Wang, and Yoon Kim. Learning to grow pretrained
models for efficient transformer training. arXiv preprint arXiv:2303.00980, 2023.

Fuzhao Xue, Yao Fu, Wangchunshu Zhou, Zangwei Zheng, and Yang You. To repeat or not to
repeat: Insights from scaling llm under token-crisis, 2023.

Yiqun Yao, Zheng Zhang, Jing Li, and Yequan Wang. 2x faster language model pre-training via
masked structural growth. arXiv preprint arXiv:2305.02869, 2023.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12104–12113, 2022.

12



Under review as a conference paper at ICLR 2024

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. arXiv preprint arXiv:2303.15343, 2023.

13



Under review as a conference paper at ICLR 2024

A EXPERIMENTAL SETUP

We provide more details on the basis on which the experiments were conducted.

A.1 TRAINING DETAILS

PARAMETER VALUE

OPTIMIZER ADAM
BETAS (0.9, 0.999)
LABEL SMOOTHING 0.2
WEIGHT-DECAY HEAD 0.01
WEIGHT-DECAY BODY 0.01
WARM-UP 1000 STEPS
CLIP GRADIENTS’ NORM 1.0
UNDERLYING PATCH-SIZE SHAPE 12
UNDERLYING POSEMB SHAPE 8
BATCH SIZE 256

Table 1: Hyper-parameters during training. ”Underlying patch-size” and ”Underlying posemb
shape” refer to the flexible modules when training under a flexible patch size scheduler.

In Table 1 we showcase hyper-parameters used when training on ImageNet-21k. We optimized each
of the parameters for the different model classes by training for different configurations for a fixed,
small amount of compute 4 × 1017 FLOPs. Some examples of such hyper-parameter search are
illustrated in Fig 11. All experiments were conducted using bfloat16.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
FLOPs 1e17

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Im
ag

eN
et

 1
0-

sh
ot

optimal
smaller lr
+ mixup
+ mixup - wd
larger lr
larger wd

Figure 11: Hyper-parameter search for a fixed (and small) budget of compute.

A.2 FINE-TUNING DETAILS

In Table 2 we showcase hyper-parameters used when finetuning on ImageNet-1k. For the few-shot
results, we use the linear model.Ridge function from scikit-learn with a regularization parameter of
1e−2.

A.3 DATASET DESCRIPTION

We follow the protocol of Ridnik et al. (2021) to preprocess ImageNet-21k. It consists of roughly 12
million images and 11 thousand different classes. This is still considerably lower than the ≥ 29, 593
classes in the JFT-3B dataset. We experimented using different weight decay values for the body
and the head, as proposed in Zhai et al. (2022) but found no significant difference. We attribute this

14



Under review as a conference paper at ICLR 2024

PARAMETER VALUE

OPTIMIZER SGD
LEARNING RATE 0.03
MOMENTUM 0.9
WEIGHT DECAY 0.0
NUMBER OF STEPS 20000
CLIP GRADIENTS’ NORM 1.0
SCHEDULER COSINE
BATCH SIZE 512

Table 2: Hyper-parameters during fine-tuning on ImageNet-1k.

to the lower number of classes in the dataset we are training in and the choice of label-smoothing
(although JFT-3B is also weakly labelled).

A.4 TRAINING VS TEST ACCURACY

To demonstrate that overfitting is not an issue during training, we present training vs accuracy results
during training in Figure 12. We note that die to the aforementioned pre-processing, classes are more
balanced than in the original (raw) ImageNet-21k dataset.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Steps 1e6

0.0

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

Training
Test

Figure 12: Training and test accuracy during training for the V384-12 model using our patch size
scheduler.

A.5 SCALING LAWS

We fit functions of the form
E = a(C + d)−b + c. (3)

Similar to previous work, we resample points to be almost equidistant in the log-domain, in terms
of FLOPs. We minimize different initialization using the minimize function in scipy (Virtanen et al.,
2020), and choose the one that leads to the smallest error. The function to minimize is based on the
Huber loss with δ = 1e−3.

B ADDITIONAL EXPERIMENTS

Patch size scheduler: We present additional experiments on patch size schedulers in Fig. 13.
For FlexiViT– similar to the original paper – we sample at every step a patch size from the set
{8, 10, 12, 15, 20, 24}. We did not use smaller patch sizes due to computational constraints. Note
that our patch size scheduler leads to significantly faster convergence across the model classes we

15



Under review as a conference paper at ICLR 2024

0.0 0.5 1.0 1.5 2.0
FLOPs 1e18

40

50

60

70

80

90

Im
ag

eN
et

 1
0-

sh
ot

 e
rro

r r
at

e 
[%

]

Patch size: 60 40 30 24 20 15 12 10 8

Patch size scheduler Patch size decreased FlexiViTPatch size scheduler Patch size decreased FlexiViT

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
FLOPs 1e18

30

40

50

59

69

79

89

Im
ag

eN
et

 1
0-

sh
ot

 e
rro

r r
at

e 
[%

]

Patch size: 60 40 30 24 20 15 12 10 8

Patch size scheduler Patch size decreased FlexiViTPatch size scheduler Patch size decreased FlexiViT

(a) Model V256-6. (b) Model V192-12.

0.0 0.5 1.0 1.5 2.0 2.5
FLOPs 1e18

30

40

50

59

69

79

89

Im
ag

eN
et

 1
0-

sh
ot

 e
rro

r r
at

e 
[%

]

Patch size: 60 40 30 24 20 15 12 10 8

Patch size scheduler Patch size decreased FlexiViTPatch size scheduler Patch size decreased FlexiViT

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
FLOPs 1e18

20

30

40

50

60

70

80

90

Im
ag

eN
et

 1
0-

sh
ot

 e
rro

r r
at

e 
[%

]

Patch size: 60 40 30 24 20 15 12 10 8

Patch size scheduler Patch size decreased FlexiViTPatch size scheduler Patch size decreased FlexiViT

(c) Model V256-12. (d) Model V384-12.

0 1 2 3 4 5
FLOPs 1e18

20

30

40

50

60

70

80

90

Im
ag

eN
et

 1
0-

sh
ot

 e
rro

r r
at

e 
[%

]

Patch size: 60 40 30 24 20 15 12 10 8

Patch size scheduler Patch size decreased FlexiViTPatch size scheduler Patch size decreased FlexiViT

0.0 0.2 0.4 0.6 0.8 1.0
FLOPs 1e19

20

30

40

50

60

70

80

90

Im
ag

eN
et

 1
0-

sh
ot

 e
rro

r r
at

e 
[%

]

Patch size: 60 40 30 24 20 15 12 10 8

Patch size scheduler Patch size decreased FlexiViTPatch size scheduler Patch size decreased FlexiViT

(e) Model V512-12. (f) Model V768-12.

Figure 13: Patch size schedulers for all the remaining model classes analysed.

16



Under review as a conference paper at ICLR 2024

1014 1015 1016 1017 1018 1019

FLOPs

40

50

60

70

80

90
Im

ag
eN

et
 1

0-
sh

ot
 e

rro
r r

at
e 

[%
]

Patch-size scheduler for V256-6

Patch-size: 8
Patch-size: 10
Patch-size: 12
Patch-size: 15
Patch-size: 20
Patch-size: 24
Patch-size: 30
Patch-size: 60
Patch-size scheduler

1014 1015 1016 1017 1018 1019

FLOPs

40

50

60

70

80

90

Im
ag

eN
et

 1
0-

sh
ot

 e
rro

r r
at

e 
[%

]

Patch-size scheduler for V192-12

Patch-size: 8
Patch-size: 10
Patch-size: 12
Patch-size: 15
Patch-size: 20
Patch-size: 24
Patch-size: 30
Patch-size: 60
Patch-size scheduler

(a) Model V256-6. (b) Model V192-12.

1014 1015 1016 1017 1018 1019

FLOPs

40

50

60

70

80

90

Im
ag

eN
et

 1
0-

sh
ot

 e
rro

r r
at

e 
[%

]

Patch-size scheduler for V256-12

Patch-size: 8
Patch-size: 10
Patch-size: 12
Patch-size: 15
Patch-size: 20
Patch-size: 24
Patch-size: 30
Patch-size: 60
Patch-size scheduler

1014 1015 1016 1017 1018 1019

FLOPs

40

50

60

70

80

90

Im
ag

eN
et

 1
0-

sh
ot

 e
rro

r r
at

e 
[%

]

Patch-size scheduler for V384-12

Patch-size: 8
Patch-size: 10
Patch-size: 12
Patch-size: 15
Patch-size: 20
Patch-size: 24
Patch-size: 30
Patch-size: 60
Patch-size scheduler

(c) Model V256-12. (d) Model V384-12.

1014 1015 1016 1017 1018 1019

FLOPs

40

50

60

70

80

90

Im
ag

eN
et

 1
0-

sh
ot

 e
rro

r r
at

e 
[%

]

Patch-size scheduler for V512-12

Patch-size: 8
Patch-size: 10
Patch-size: 12
Patch-size: 15
Patch-size: 20
Patch-size: 24
Patch-size: 30
Patch-size: 60
Patch-size scheduler

1014 1015 1016 1017 1018 1019

FLOPs

40

50

60

70

80

90

Im
ag

eN
et

 1
0-

sh
ot

 e
rro

r r
at

e 
[%

]

Patch-size scheduler for V640-12

Patch-size: 8
Patch-size: 10
Patch-size: 12
Patch-size: 15
Patch-size: 20
Patch-size: 24
Patch-size: 30
Patch-size: 60
Patch-size scheduler

(e) Model V512-12. (f) Model V640-12.

Figure 14: Fitted scaling laws and the predicted transition points that lead to the steepest descent.

1016 1017 1018

FLOPs

30

40

50

60

70

80

90

Im
ag

eN
et

 1
0-

sh
ot

 e
rro

r r
at

e 
[%

]

Model class: V768-12 V384-12 V192-12

Model scheduler Transition pointsModel scheduler Transition points

1016 1017 1018
30

40

50

60

70

80

90

V192-12 -> V384-12

V384-12 -> V768-12

Predicted Model scheduler Actual Model schedulerPredicted Model scheduler Actual Model scheduler

Figure 15: Different initialization schemes when expanding the width of the model. In practice, we
set the variance of the new weights to be γσ2, where σ2 is calculated from the pre-expanded weights
W , for different values of γ ∈ {0.25, 0.5, 0.75, 1, 1.25, 1.5}.

17



Under review as a conference paper at ICLR 2024

are analysing. We also present in Fig. 14, the fitted scaling curves and the points where changing
the patch size leads to the steepest descent for different scaling laws.

Model width scheduler: Supplementary to the results in Section 5, we provide additional ex-
amples of width examples in Figure 16. Note that we do not touch on the (1) where to add the
new weights and (2) how to initialize these new weights. Our approach simly defines a strategy on
the when to expand the model and can be used in conjunction with any related works that provide
answers to the previous (1) and (2) questions.

Regarding (1), we focus on models with constant depth (remember we are using the established Ti,
S, and B sizes). Therefore, we do not add new layers but merely expand the weight matrices to
the new embedding dimension. Our method is agnostic to where these weights are added, just on
the final form of the scaling law. Note that there exist more optimal ways to expand the different
components of a ViT model (Alabdulmohsin et al., 2023).

Regarding (2), there are numerous works on how to initialize the weights under a function preser-
vation criterion. In our case, we found that zero-initializing weights, as commonly proposed, is
significantly suboptimal. In practice, we expand the weights matrices by initializing the new entries
in the weight matrices randomly based on the norm of the weights of the already learned weights.
In more detail, linear layers are expanded as:

W ′ =

(
W W1

W2 W3,

)
where W1,W2,W3 ∼ N (µ, σ2I), and σ2 is calculated from W . This ensures better signal prop-
agation in the network (He et al., 2015; Noci et al., 2022). The effect of this initialization can be
important, but not detrimental, as illustrated in Fig. 15. When expanding the self-attention layers,
we simply concatenate new heads, i.e. leave the heads that correspond to the previous embedding
dimension unchanged. Again we stress that our method does not attempt to answer the question on
how to initialize, and any method established in the literature can be used for this purpose.

C ADAPTING MULTIPLE MODEL SHAPE PARAMETERS CONCURRENTLY

We first present more results on which model configuration (number of parameters or patch size)
leads to the most efficient training for different levels of performance in Figures 17 and 18.

Motivated by these insights, we ask the question: Can we change both the model size and patch size
during training, leading to even greater training compute savings?

We present preliminary experiments here, and more specifically in Figure 19. We compare results
when changing only the model width, only the patch size, or both the model width and patch size
simultaneously. In every case we find the transition points, when the model shape should be adapted,
using our proposed methodology. Changing both patch size and model width leads to the most
significant improvements. For simplicity and clarity, we here consider model sizes in the set {V192-
12, V256-12, V384-12} and patch sizes in the set {10, 20, 30, 40}.

We note that our method does not take into account momentary performance boost, when reducing
the patch size and momentary performance deterioration when changing the model size, due to
reasons highlighted in the main text. This justifies why changing only patch size can be better in
some cases for the short term. As more compute is invested into the new model shape, these changes
are counteracted.

D MORE SHAPE PARAMETERS

In this paper, when changing the model itself in Section 5, we adjusted just the width of the models.
This was done to interpolate between existing in the literature model sizes (Dosovitskiy et al., 2020).
We note however that our proposed technique is general and can be applied to any ”shape” parameter
of the model or any optimization choice. In Figure 20, we present preliminary experiments on
depth as another such ”shape” parameter. More specifically, we add new layers in the Transformer
at specified points in training, as defined by our method. In this case, we can easily do this in

18



Under review as a conference paper at ICLR 2024

1016 1017 1018

FLOPs

30

40

50

60

70

80

90

Im
ag

eN
et

 1
0-

sh
ot

 e
rro

r r
at

e 
[%

]

Model class: V768-12 V384-12 V192-12

Model scheduler Transition pointsModel scheduler Transition points

1016 1017 1018
30

40

50

60

70

80

90
V192-12 -> V384-12

V384-12 -> V768-12

Predicted Model scheduler Actual Model schedulerPredicted Model scheduler Actual Model scheduler

(a) Patch size 15.

1016 1017 1018

FLOPs

30

40

50

60

70

80

90

Im
ag

eN
et

 1
0-

sh
ot

 e
rro

r r
at

e 
[%

]

Model class: V768-12 V384-12 V192-12

Model scheduler Transition pointsModel scheduler Transition points

1016 1017 1018
30

40

50

60

70

80

90

V192-12 -> V384-12 V384-12 -> V768-12

Predicted Model scheduler Actual Model schedulerPredicted Model scheduler Actual Model scheduler

(a) Patch size 24.

1016 1017 1018

FLOPs

30

40

50

60

70

80

90

Im
ag

eN
et

 1
0-

sh
ot

 e
rro

r r
at

e 
[%

]

Model class: V768-12 V384-12 V192-12

Model scheduler Transition pointsModel scheduler Transition points

1016 1017 1018
30

40

50

60

70

80

90

V192-12 -> V384-12

V384-12 -> V768-12

Predicted Model scheduler Actual Model schedulerPredicted Model scheduler Actual Model scheduler

(c) Patch size 30.

Figure 16: Width scheduler for models trained with different patch sizes. We expand the model
width twice, as done in Section 5. The transition points of the expansion are based on our maximum
descent rule.

19



Under review as a conference paper at ICLR 2024

8 10 12 15 20 24 30 40 60

40

50

60

70

80
90

Im
ag

eN
et

 1
0-

sh
ot

 e
rro

r r
at

e 
[%

]
V192-12

8 10 12 15 20 24 30 40 60

V384-12

8 10 12 15 20 24 30 40 60

V512-12

8 10 12 15 20 24 30 40 60

V768-12

Patch Size

1e+00
3e+00
8e+00
2e+01
6e+01
2e+02
4e+02
1e+03
3e+03
8e+03

PF
LO

Ps

Figure 17: IsoFLOPs curves for different size ViTs trained with different constant patch sizes. Note
how larger patch sizes are favoured for smaller total FLOPs, while smaller patch sizes become more
efficient as total FLOPs increase. Larger model sizes also become more favourable as total FLOPs
increase.

8 10 12 15 20 24 30 40 60

V256-6

V192-12

V256-12

V384-12

V512-12

V640-12

V768-12

1.55 0.96 0.71 0.62 0.40 0.32 0.26 0.25 0.34

1.28 1.04 0.87 0.58 0.43 0.33 0.30 0.26 0.37

2.49 1.66 1.26 0.97 0.56 0.43 0.38 0.39 0.43

4.33 2.86 2.41 1.62 1.16 0.92 0.80 0.67 0.68

7.80 5.19 4.28 3.08 2.03 1.66 1.48 1.12 1.05

13.86 9.73 7.99 5.09 3.58 2.66 2.21 1.59 1.55

23.07 15.86 11.08 8.44 5.29 4.23 3.23 2.47 2.28

ImageNet 10-shot error rate: 90.0 %

8 10 12 15 20 24 30 40 60

0
1

2
3

4
5

6

4.14 2.85 2.28 1.86 1.67 1.62 2.53 11.97

3.26 2.39 2.07 1.61 1.45 1.38 1.83 5.02

5.14 3.49 2.79 2.13 1.56 1.38 1.70 2.93 174.99

8.39 5.70 4.59 3.34 2.59 2.20 2.34 3.11 14.13

13.48 9.23 7.48 5.65 3.99 3.57 3.50 4.09 11.96

22.34 15.94 12.81 8.78 6.66 5.39 5.06 5.56 12.07

34.10 24.06 17.34 13.44 9.28 7.86 7.03 7.18 13.94

ImageNet 10-shot error rate: 78.0 %

8 10 12 15 20 24 30 40 60

0
1

2
3

4
5

6

17.80 15.47 14.51 14.07 34.74 121.62

11.44 7.89 7.46 7.67 11.56 20.50 355.16

13.29 9.57 8.34 6.73 7.61 9.30 28.24

19.16 13.81 10.86 8.82 8.14 8.17 13.53 74.14

27.10 19.31 15.72 12.75 10.30 10.75 13.78 45.61

41.26 30.28 23.92 18.25 15.77 14.74 17.98 45.47

57.01 41.97 31.30 25.28 20.33 19.11 22.67 47.50

ImageNet 10-shot error rate: 66.0 %

8 10 12 15 20 24 30 40 60

0
1

2
3

4
5

6

217.89502.22902.79

63.64 52.02 64.75 148.4215124.44

45.86 38.91 40.00 44.50 168.341412.41

51.58 42.02 34.77 33.22 49.57 88.771419.53

64.46 48.80 42.26 38.71 42.89 62.75 287.10

89.34 69.07 54.75 49.17 55.36 69.95 194.29

111.88 89.05 68.07 60.97 64.27 77.69 184.58

ImageNet 10-shot error rate: 55.0 %

8 10 12 15 20 24 30 40 60

0
1

2
3

4
5

6

1110.4219092.43

289.57455.06819.49

180.53194.46227.99297.0014549.80

207.06174.91197.92244.521172.1841161.25

260.06226.36196.77247.52720.004996.30

309.20300.46221.40286.31722.166626.05

ImageNet 10-shot error rate: 45.0 %

1e-01

5e-01

3e+00

1e+01

7e+01

4e+02

2e+03

1e+04

PF
LO

Ps

Unattainable

Figure 18: Values for −∂gP (E)
∂E in Equation 2. Values indicate how many FLOPs are required for a

proportionate increase in performance (i.e. drop in error rate).

1015 1016 1017 1018

FLOPs

40

50

60

70

80

90

Im
ag

eN
et

 1
0-

sh
ot

 e
rro

r r
at

e 
[%

]

Patch sizes: 10 20 30 40

Model class: V192-12 V256-12 V384-12Model class: V192-12 V256-12 V384-12

1015 1016 1017 1018

FLOPs

40

50

60

70

80

90

Patch size changed Model size changed

Model Scheduler Patch Size Scheduler Model and Patch Size SchedulerModel Scheduler Patch Size Scheduler Model and Patch Size Scheduler

Figure 19: Changing both model width and patch size during training further accelerates training.

20



Under review as a conference paper at ICLR 2024

1016 1017 1018

FLOPs

40

50

60

70

80

90

Im
ag

eN
et

 1
0-

sh
ot

 e
rro

r r
at

e 
[%

]

Model class: V256-6 V256-12 V256-18Model class: V256-6 V256-12 V256-18

1016 1017 1018

FLOPs

40

50

60

70

80

90

Predicted Model scheduler Actual Model schedulerPredicted Model scheduler Actual Model scheduler

Figure 20: Traversing scaling laws for model of varying depth. X’s here denote adding more layers
to a model.

1015 1016 1017

FLOPs

2 × 100

3 × 100

4 × 100

Ev
al

 L
os

s

Model class: L384-3 L384-6 L384-12

Model scheduler Transition pointsModel scheduler Transition points

1015 1016 1017

FLOPs

2 × 100

3 × 100

4 × 100
Ev

al
 L

os
s

Predicted Model scheduler Actual Model schedulerPredicted Model scheduler Actual Model scheduler

Figure 21: Traversing scaling laws for a language modelling task. Here we use the LW -D naming
convention to denote a language model with width W and depth D. X’s denote at what point the
model’s depth was increased.

a functional-preserving way, initializing the new layers randomly and adding scalar values in the
Attention and MLP blocks initialized as ReZero (Bachlechner et al., 2021). We note that expanding
the width versus the depth of a Vision Transformer is not part of the scope of this paper. Existing
literature (Alabdulmohsin et al., 2023) addresses such issues.

E BEYOND VISION TRANSFORMERS

In this paper, we focused on Vision Transformers, as the patch size offers another ”shape” parameter
that can be easily adapted. We note, however, that our proposed technique is general and applicable
across modalities and different shape parameters. Here, we present preliminary results on how the
model width can be modified during training, as done in Section 5, for a language modelling task.

We adopt the experimental setup of He & Hofmann (2023) and train decoder-only Transformer
models of width 384 and different depths 3, 6, 12. Then, we extract our optimal scheduling rule and
train a model that dynamically adjusts its width during training. Results are presented in Figure 21
and again demonstrate how such a technique can be applied outside the field of vision.

21



Under review as a conference paper at ICLR 2024

104 105

Time (seconds)

30

40

50

60

70

80

90

Im
ag

eN
et

 1
0-

sh
ot

 e
rro

r r
at

e 
[%

]

-60% Time

Patch size: Scheduler 60 40 30 24 20 15 12 10 8Patch size: Scheduler 60 40 30 24 20 15 12 10 8

Figure 22: Same plot as 8 but with time instead of FLOPs in the x-axis.

F ENVIRONMENTAL IMPACT

In order to estimate the carbon footprint of our training, we follow the recipe detailed in Touvron
et al. (2023). Specifically, we approximate the Watt-hours (Wh) used as

Wh = GPU-hours × GPU-power-consumption × PUE

where PUE refers to Power Usage Effectiveness. Following Touvron et al. (2023) we set this quantity
to 1.1. In order to enable comparisons across different works, we use the national US average carbon
intensity factor of 0.385 kg CO2eq/KWh and we thus estimate the amounts of carbon emissions
as

tCO2eq = MWh× 0.385.

We compare our adaptively trained model against standard training of the compute-optimal model,
in this case, the ViT Base model with patch size 8. The model requires ≈ 120 GPU-hours with an
average consumption of ≈ 280W with the default training. Our adaptive training requires roughly
40% of GPU-hours, i.e. ≈ 48 GPU-hours while enjoying the same average consumption ≈ 280W .
This leads to ≈ 0.036MWh for ViT-Base and ≈ 0.014MWh for our adaptive training. Thus, the
default training of the ViT Base model causes carbon emissions of 0.014tCO2eq and our training
0.006tCO2eq.

We also added a figure for Time in Fig. 22. We note that time and FLOPs are usually highly
correlated (Alabdulmohsin et al., 2023). This relationship also depends on the type fo hardware
and the mode it is operating in, i.e. whether we are memory-bound, whether data loading is the
bottleneck etc.

22


	Introduction
	Related Work
	Vision Transformer and Optimal Patch Sizes
	Adaptive Patch Sizes and Traversing Scaling Laws
	Adapting Model Width
	Conclusion
	Limitations
	Experimental Setup
	Training Details
	Fine-tuning details
	Dataset Description
	Training vs Test Accuracy
	Scaling Laws

	Additional Experiments
	Adapting Multiple Model Shape Parameters Concurrently
	More Shape Parameters
	Beyond Vision Transformers
	Environmental Impact

