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ABSTRACT

Temporal point processes (TPPs) are a powerful framework for modeling event
sequences with irregular timestamps, such as those commonly found in electronic
health records (EHR), which often involve high-dimensional and diverse event
types. However, building generative models for such complex datasets comes with
several challenges, including addressing sample inefficiency, accurately capturing
intricate event patterns, and producing outputs that are both trustworthy and inter-
pretable. In this paper, we present a neuro-symbolic generative model for TPPs
based on the Variational Autoencoder (VAE) framework. Our model incorporates
a neural-symbolic reasoning layer into the latent space, allowing it to integrate
interpretable, logic-based constraints and perform logical reasoning over learned
representations. This integration enhances the interpretability of the latent space
by embedding logic rules directly into the generative process, enabling structured
reasoning and improved decision-making based on underlying data patterns. We
validate our model on an ICU EHR dataset, as well as other real-world datasets,
demonstrating its effectiveness in capturing complex event dynamics with irreg-
ular timestamps. In addition to improving sample efficiency and accuracy, our
model supports the secure and interpretable generation of synthetic event data,
making it a valuable tool for healthcare applications where reliability and trust-
worthiness are critical.

1 INTRODUCTION

Temporal point processes (Daley & Vere-Jones, 2007) are a powerful model for analyzing and pre-
dicting event sequences occurring at irregular time intervals. These models are particularly well-
suited for capturing the dynamics of events in continuous time, allowing for a flexible representa-
tion of temporal dependencies and event relationships. TPPs are widely applied in various domains,
from finance and social media to healthcare (Reynaud-Bouret & Schbath, 2010; Bacry et al., 2015;
Zhao et al., 2015; Farajtabar et al., 2017), where understanding the generative process of the event
time and types plays a crucial role in understanding underlying patterns and making predictions.

For example, in healthcare, TPPs offer a valuable tool for modeling EHRs (Enguehard et al., 2020),
which contain detailed sequences of medical events such as drug prescriptions, diagnoses, and moni-
toring of vital signs. These sequences are often characterized by irregular time intervals and complex
dependencies, making them challenging to model effectively. In this context, generative models hold
significant value for several reasons. First, they provide a powerful tool for augmenting limited real
datasets, particularly in cases of rare diseases where patient data is scarce (Lee et al., 2022). By gen-
erating synthetic data that adheres to clinical logic and medical guidelines, these generative models
can facilitate more robust analysis and support the development of treatments or interventions. Sec-
ond, generative models can help create secure, de-identified patient data (Libbi et al., 2021; Biswas
& Talukdar, 2024; Biswal et al., 2021), ensuring privacy while enabling researchers and clinicians
to explore new insights without compromising sensitive information. Additionally, synthetic data
can be used to simulate various medical scenarios, aiding in the testing of predictive models and
decision-support systems.

Traditional generative models, such as VAEs (Kingma, 2013), are highly flexible and effective at
learning complex distributions. However, they often fall short in providing interpretable latent rep-
resentations that align with clinical logic. This lack of interpretability can limit their ability to gener-
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ate realistic and clinically relevant data, which is essential for high-stakes applications in healthcare
where trustworthiness and alignment with medical knowledge are critical.

To address these challenges, we propose a neuro-symbolic generative model for TPPs, leveraging the
VAE framework to integrate interpretable logic-based constraints into the latent space. Our model in-
corporates a neuro-symbolic reasoning layer that enhances the VAE’s capabilities by embedding do-
main knowledge directly into the generative process. This layer utilizes predicate embeddings from
the encoder, which represent abstracted event information. Through forward chaining (Campero
et al., 2018; Glanois et al., 2022)—a logical inference process—the model refines these embeddings
to infer consistent states, which are then used by the decoder to generate event sequences.

This approach not only improves the interpretability of the latent representations but also ensures that
the generated synthetic data adheres to clinical standards and reflects real-world medical logic. By
applying our model to EHR datasets, particularly for rare diseases, we can generate semi-synthetic
data that is both realistic and useful for research purposes. This capability is crucial for enhancing
data privacy, testing clinical hypotheses, and developing treatment strategies, especially in scenarios
where real data is limited.

Contributions Our specific contributions include: i) Incorporate neuro-symbolic reasoning layers
into the VAE framework to significantly enhance the interpretability of the latent representation. ii)
Accomplishing the challenging temporal point process generation in practice, which is important
for generating de-identified data and handling missing data. Well-trained models can leverage do-
main knowledge to generate semi-synthetic datasets from actual data, aiding in transfer learning and
secure data generation for privacy protection. iii) Compressive experiments with real-world datasets
demonstrate that mined rules not only align with real-world scenarios, but also prove advantageous
for both prediction and generation tasks.

2 RELATED WORK

Temporal Point Processes (TPP) TPP models have emerged as an elegant framework for mod-
eling event times and types in continuous time, directly treating the inter-event times as random
variables. With the advance of neural network, various neural TPP models have been proposed.
Some of them are built on recurrent neural networks (Du et al., 2016; Mei & Eisner, 2017; Xiao
et al., 2017b; Omi et al., 2019; Shchur et al., 2019; Mei et al., 2020; Boyd et al., 2020). Some
others utilize transformer architecture (Zuo et al., 2020; Zhang et al., 2020; Enguehard et al., 2020;
Sharma et al., 2021; Zhu et al., 2021; Yang et al., 2021). Recently, Li et al. (2020; 2021) proposed
integrating logic rules within the intensity function of TPP model to foster interpretability. We aim
to utilize TPP to model the real-world event sequences.

Variational Auto-Encoder (VAE) VAE models, proposed by Kingma (2013), encodes data to
latent (random) variables, and then decodes the latent variables to reconstruct the input data. Recent
works resort to VAE to learn a disentangled representation for sequential data. Bowman et al. (2015)
succeed in training a sequence-to-sequence VAE and generating sentences from a continuous latent
space. Desai et al. (2021) proposed a VAE framework with a decoder design that enables user-
defined distributions for generating time-series data. To enhance the disentanglement capability,
some works aim to introduce structural patterns in latent representation of VAE to improve efficiency
and the quality of generated data. Hu & Rostami (2023) proposed a binarized regularization for
VAE to encourage symmetric disentanglement, improve reconstruction quality. Van Den Oord et al.
(2017) incorporated ideas from vector quantisation to learn a discrete latent representation which
model important features that usually span many dimensions in data space. Yang et al. (2020)
proposed a new VAE framework which includes a causal layer to transform independent exogenous
factors into causal endogenous ones that correspond to causally related concepts in data. However,
existing VAE frameworks often lack interpretability in the latent representation, overlooking fine-
grained guiding logic rules.

Neuro-Symbolic Integration Neuro-Symbolic systems aims to transfer principles and mecha-
nisms between logic-based computation and neural computation Besold et al. (2021). Serafini &
Garcez (2016) demonstrate that the logic can be implemented using neural networks for the ground-
ings of the symbols. Manhaeve et al. (2018) started from a probabilistic logic programming language
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and extended it to handle neural predicates. Kusters et al. (2022) proposed a neural architecture
that learns literals that represent a linear relationship among numerical input features along with the
rules that use them. Campero et al. (2018) proposed a neuro-symbolic approach, in the sense that the
rule predicates and core facts are given dense vector representation, for logical theory acquisition.
Glanois et al. (2022) proposed a neuro-symbolic model to solve inductive logic programming prob-
lems. Recently, Yang et al. (2024) introduced a neuro-symbolic rule induction framework within
the temporal point process model. We aim to integrate neuro-symbolic module in VAE framework
for pattern mining in the latent representation, thereby improving interpretability and enabling the
generation of sequences in an explainable manner.

3 BACKGROUND

3.1 MULTIVARIATE TEMPORAL POINT PROCESSES (MTPPS)

MTPPs provide a mathematical framework for modeling sequences of events over time, where each
event is characterized by a timestamp ti ∈ R+ and an event type (or marker) mi ∈ M. The event
timings {ti} are irregular, with intervals ∆ti = ti+1 − ti governed by an underlying stochastic
process, typically modeled by a conditional intensity function.

The conditional intensity function λk(t | H(t)) represents the instantaneous rate at which events of
type k ∈M occur at time t, given the historyH(t) of all past events:

λk(t | H(t)) = lim
∆t→0

P( event of type k occurs in [t, t+∆t) | H(t))
∆t

whereH(t) denotes the set of all events (ti,mi) that occurred prior to time t.

Given an observed sequence of events {(ti,mi)}Ni=1, the likelihood of this sequence under an MTPP
model is:

L
(
{(ti,mi)}Ni=1

)
=

(
N∏
i=1

λmi
(ti | H(ti))

)
exp

(
−
∫ T

0

K∑
k=1

λk(t | H(t))dt

)
Maximizing this likelihood (or its log-likelihood) is the standard approach for estimating the param-
eters of an MTPP model, providing a principled way to model event data with irregular intervals and
multiple event types.

3.2 RULE LEARNING AND REASONING

We consider learning logic rules in the form of Horn clauses:

f : Q← P1 ∧ P2 ∧ · · · ∧ Ph (1)

Here, P1, P2, . . . , Ph are predicates that form the body of the rule, representing conditions that must
hold true, and Q is the head, representing the conclusion that can be inferred when all the predicates
in the body are satisfied.

Predicates are Boolean variables that take values of either True or False, based on the data. They
express properties or relationships between entities. For example, a predicate like HasFever(Patient)
indicates whether a patient has a fever, while UseDrug(Patient) specifies whether a particular drug
is being administered. These predicates help capture key characteristics and relationships within the
system’s state.

With learned rules, we can reason to infer new information. Reasoning includes two main methods:
forward chaining, which starts from known facts (body predicates) and infers new knowledge step
by step, and backward chaining, which starts from a goal (the head) and works backward to find
supporting conditions. In this work, we focus on forward chaining, which is especially useful for
predicting future events in temporal point processes (TPP).

For example, given the rule UseDrug ← HasFever ∧ HighTemperature and knowing that
HasFever(Patient) and HighTemperature(Patient) are true, we can infer via forward chaining that
UseDrug(Patient) is true.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.3 VARIATIONAL AUTOENCODER (VAE)

In our setting, we will extend the VAE framework for sequential event generation. Given a dataset
X consisting of event sequences x = {(ti,mi)}Ni=1, where ti represents the timestamp and mi

the event type (marker), our goal is to generate new sequences of events by modeling the unknown
joint probability distribution p(x). Specifically, at each step, we model the conditional distribution
of the next event (ti+1,mi+1) given the latent variable z and the history of prior events H (ti) =

{(tj ,mj)}ij=1.

In our VAE framework, the generative process works as follows: First, the encoder maps an observed
event sequence x to a approximate posterior distribution qϕ(z | x), where a latent variable z is sam-
pled, representing initial understanding of the global structure of the event sequence. Second, the
initial latent variable z is then passed through a learnable Neuro-Symbolic forward reasoning mod-
ule, where forward reasoning updates the state of certain components of z. This module will be ex-
plained in detail later. Last, the decoder auto-regressively models the conditional distribution of the
next event given the latent variable z and the current historyH (ti), i.e., pψ (ti+1,mi+1 | z,H (ti)).
This autoregressive process repeats until a complete sequence is formed.

The loss function for this VAE framework is again based on the Evidence Lower Bound (ELBO)
loss function, but it now accounts for the auto-regressive nature of the process:

Lψ,ϕ = −Eqϕ(z|x)

[
N∑
i=1

log pψ (ti,mi | z,H (ti−1))

]
+DKL [qϕ(z | x)∥pψ(z)] (2)

Here, the first term ensures that the decoder learns to generate realistic event sequences by sequential
conditioning on both the latent variable z and the event history; the second term regularizes the
approximate posterior distribution qϕ(z | x) to match the prior pψ(z), preventing over-fitting.
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Figure 1: Model Framework.

4 MODEL: VARIATIONAL NEURO-SYMBOLIC GENERATIVE TPP

Our model framework, depicted in Fig.1, begins with the introduction of latent states, embedding
representations of predicates, and logic rules, followed by encoder-decoder modules and the learning
process, which will be illustrated in detail in following subsections.

4.1 LATENT STATE, EMBEDDING REPRESENTATION OF PREDICATES, AND LOGIC RULES

We introduce a latent state variable z ∈ {0, 1}d, where each of the d-dimensional components rep-
resents a binary Boolean variable. Each element of z represents the satisfaction of a specific concept
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or grounded predicate, indicating whether a condition is true or false based on the data. The concepts
or predicates are extracted by the original event, which are high-level and concise. We will, there-
fore, have d concepts or predicates. In the context of healthcare, these concepts or predicates could
represent critical medical concepts such as HighBloodGlucose, IrregularHeartbeat, or higher-level
concepts such as MedicationAdherence, HospitalizationRisk, and so on. Each element zi represents
the inferred predicate states.

Note that z can guide the generative process of future events. For example, if z1, such as HasFever
has an inferred value close to 1 would influence the model to predict follow-up medical interventions,
such as prescribing antipyretic medication, while the inferred z1 near 0 would suggest that no fever
is present, thus shifting the model’s predictions accordingly.

We assume that each element zi ∈ z (where z ∈ [0, 1]d ) follows a Bernoulli prior with a probability
pi, which means each zi is sampled from a Bernoulli distribution:

zi ∼ Bernoulli (pi) (3)

The prior over the latent variable z is:

p(z) =

d∏
i=1

Bernoulli (zi | pi) (4)

where each zi represents a binary concept that could be present or absent.

For all the pre-specified d concepts or predicates, we embed each predicate as a vector θi ∈ Rk with
dimension k, for i ∈ {1, 2, . . . , d}. Each corresponds to a distinct medical concept or predicate.
These predicates are embedded as continuous vectors. In this embedding space, each predicate θi is
mapped to a vector that captures not only its individual meaning but also its relationships to other
predicates. The predicate embedding set is denoted as Θ = {θi}i=1,...,d, which can be get from
pre-training like (Mikolov et al., 2013).

These predicates are used to construct logical rules in the form of Horn clauses that describe medical
diagnoses and treatment protocols. To integrate these logic rules into our generative model to aid
reasoning in the latent space, we utilize a neuro-symbolic reasoning approach Campero et al. (2018);
Glanois et al. (2022). Specifically, for each rule, we construct a rule embedding matrix Vf ∈ Rk×L
where f ∈ F , each f has a general form as shown in Eq.(1) and F is the set of all rules. Each
matrix Vf has dimensions k × L, where k is the dimension of the predicate embedding and L is the
maximal length of the rule (i.e., the number of predicates in the rule, including the head). The rule
embedding matrix Vf is defined as:

Vf = [ vQ vP1 vP2 · · · vPL−1 ] ∈ Rk×L (5)

where vQ ∈ Rk represents the head predicate Q embedding, and vP1
, vP2

, . . . , vPL−1
∈ Rk indicate

the body P1, P2, . . . , PL−1 embeddings.

When expert knowledge is available in the form of logic, we just need to initialize and freeze the
rule embedding by concatenating the corresponding predicate embeddings, such as

Vf = [ θQ θP1 θP2 · · · θPL−1 ] ∈ Rk×L (6)

When (some of) the rules are unknown or incomplete, which is common, we can still learn new
rules directly from data. Specifically, we will treat Vf as model parameters. These unknown rule
embeddings will be optimized during training to automatically discover meaningful rules by learning
to align with predicate embeddings.

4.2 ENCODER

The encoder transforms an input sequence of events x into a latent representation by combining
neural sequence modeling with symbolic reasoning. The process involves embedding the input
sequence using a Transformer-based architecture and refining the latent variables using a neural
symbolic reasoning layer.

Given an input sequence of events x = {(ti,mi)}Ni=1, where ti denotes the time and mi the marker
of each event, we first encode this sequence using a Transformer (Zuo et al., 2020). The Transformer
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outputs a sequence embedding matrix E ∈ RN×de , where de is the dimensionality of the event
embeddings. To obtain a single global sequence embedding, we pool the event embeddings into
eseq ∈ Rde using a pooling technique such as mean pooling or attention pooling:

eseq = Pool(E) (7)

This global sequence embedding captures temporal and event-type dependencies in the input.

Next, the sequence embedding eseq is fed into multiple Multi-Layer Perceptrons (MLPs) denoted as
g1(·), g2(·), . . . , gd(·). Each MLP gi takes the global sequence embedding eseq as input and outputs
a vector of the same dimensionality as the predicate embedding θi, i.e., ∈ Rk, which represented as:

oi = gi (eseq) ∈ Rk (8)

Then we compute the similarity between the MLP output oi ∈ Rk and the corresponding predicate
embedding θi ∈ Rk using cosine similarity, which yields initial inference. To ensure the output is
in the range [0, 1], we normalize the cosine similarity:

ẑ
(0)
i =

1 + CosineSimilarity (oi, θi)

2
, ẑ

(0)
i ∈ [0, 1], i = 1, . . . , d (9)

This formulation is conceptually similar to a “concept bottleneck” in VAE models, where high-level
concepts serve as intermediaries for prediction. However, unlike traditional bottleneck methods
that rely on a pre-trained supervised model to map inputs to predefined concepts using explicit
labels (Oikarinen et al., 2023), we directly learn the encoder to align with the latent predicates. The
initial guess of each concept’s satisfaction is determined by the cosine similarity between the MLP
output and the predicate embedding vector, which will be further refined using the neural-symbolic
reasoning layer. This design removes the reliance on pre-training and allows the model to learn the
latent concepts (predicates) dynamically based on data alignment during training.

4.3 NEURAL-SYMBOLIC REASONING LAYER

Given the current rule embedding VF = {Vf}f∈F , which are the model parameters, let’s first
assume that all rules need to be learned. The reasoning process iteratively updates the latent variables
z ∈ [0, 1]d by applying the learned logic rules recursively over H iterations. This mimics how
humans perform forward reasoning, progressively applying rules to infer new knowledge.

ẑ(h+1) = Forward-Reasoning
(
ẑ(h),ΘF

)
∈ [0, 1]d, h = 0, 1, . . . ,H − 1 (10)

where h is the index of the forward chaining iteration. In each iteration, symbolic reasoning propa-
gates values from the body predicates to the head predicates of each rule, mimicking human reason-
ing by repeatedly applying known rules to update the inferred latent variables. This process ensures
alignment with the underlying logic. After H iterations, the neural symbolic layer produces the
updated posterior probabilities of the latent predicate variables, denoted as ẑ(H) = [ẑ

(H)
i ] ∈ [0, 1]d.

We now proceed to detail the architecture of the Forward-Reasoning(·) operator. Given
the rule embedding matrix VF = {Vf}f∈F , where each rule Vf is represented as Vf =[
vQ, vP1 , . . . , vPL−1

]
, we aim to iteratively update the latent variable vector ẑ ∈ [0, 1]d by per-

forming forward reasoning in H iterations.

For each iteration, perform following steps:

Step 1 – Determine Head and Body Predicate Indices For each rule f ∈ F , compute the indices
of the head predicate Q and the body predicates P1, . . . , PL−1 by maximizing the cosine similarity
between the predicate embedding vectors θi ∈ Rk and the corresponding rule embedding vectors
vQ, vP1 , . . . , vPL−1

:
I∗(Q) := argmax

i∈{1,...,d}
cos (θi, vQ) (11)

I∗ (Pj) := argmax
i∈{1,...,d}

cos
(
θi, vPj

)
, ∀j = 1, . . . , L− 1 (12)

Here, I∗(Q) is the index of the head predicate, and I∗ (Pj) are the indices of the body predicates
that maximize the cosine similarity with the corresponding rule embeddings.
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Step 2 – Update Latent Variables First, we consider the intermediate variable. For each rule f ,
compute an intermediate variable ẑf ∈ Rd, which contains only one nonzero element at the index
corresponding to the head predicate I∗(Q):

ẑfI∗(Q) :=

L−1∏
j=1

(
cos
(
θI∗(Pj), vPj

)
· ẑ(h)I∗(Pj)

)
(13)

All other elements of ẑf are set to zero.

Second, we consider matrix formation. We concatenate the intermediate vectors ẑf for all f ∈ F
into a matrix Ẑ(h+1) ∈ Rd×|F|, where each column corresponds to the intermediate update from a
specific rule. Last, we consider the row-wise maximum. To obtain the final update ẑ(h+1) ∈ Rd,
apply the maximum operation row-wise across the matrix Ẑ(h+1) :

ẑ
(h+1)
i = max

f∈F
Ẑ

(h+1)
i,f , i = 1, . . . , d (14)

This ensures that for each predicate i, the most confident rule application is selected for updating
the latent variable.

ẑfI∗(Q) :=

L−1∏
j=1

(
cos
(
θI∗(Pj), vPj

)
· ẑ(h)(I∗(Pj))

)
(15)

All other elements of ẑ(h+1)
f (·) are set to zero, meaning only the entry corresponding to the head

predicate is updated.

Step 3 – Repeat the above iteration H steps We finally get ẑ(H), which is the posterior proba-
bility of the binary latent predicates z.

4.4 DECODER

During the reconstruction phase, we derive the inferred ẑ(H) from the neural-symbolic layer and
sample the latent variable z from Bernoulli distribution. The decoder then auto-regressively models
the conditional distribution of the next event based on z and the current event history H (ti) =
pψ (ti+1,mi+1 | z,H (ti)) until a complete sequence is generated.

In the generation phase, after the model being well-trained, we start from an initial state and sample
z from inferred ẑ(H). These are input into a feed-forward neural network to construct intensity, from
which inter-event times are sampled. This process is iterated, with each generated event becoming
part of the historical events along with the sampled z, until a predefined time horizon is reached.

4.5 LEAERNING

The objective function for our proposed framework is based on the Evidence Lower Bound (ELBO),
which now accounts for the auto-regressive nature of the process:

Lψ,ϕ = −Eqϕ(z|x)

[
N∑
i=1

log pψ (ti,mi | z,H (ti−1))

]
+DKL [qϕ(z | x)∥pψ(z)] (16)

The reconstruction term is given by the summation of intermediate likelihood of multivariate
point processes. To compute the KL divergence between two d-dimensional Bernoulli distri-
butions where pψ(z) = (p1, p2, . . . , pd) is the Bernoulli distribution with parameters pi. And

qϕ(z | x) =
(
ẑ
(H)
1 , ẑ

(H)
2 , . . . , ẑ

(H)
d

)
is the Bernoulli distribution with parameters ẑ(H)

i .

Therefore, the KL divergence DKL [qϕ(z | x)∥pψ(z)] is given by:

DKL [qϕ(z | x)∥pψ(z)] =
d∑
i=1

[
ẑ
(H)
i log

(
ẑ
(H)
i

pi

)
+
(
1− ẑ

(H)
i

)
log

(
1− ẑ

(H)
i

1− pi

)]
(17)
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5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

To evaluate the effectiveness of our proposed framework, we primarily compare the model perfor-
mance on prediction and generation tasks. The results indicate that our model outperforms other
existing methods in prediction accuracy and demonstrates higher data generation quality. Further-
more, we visualize the process of neuro-symbolic forward chaining, which highly enhances the
interpretability.

Datasets We utilized four real-world datasets: i) MIMIC-IV: An electronic health record dataset
of ICU patients, focusing on those diagnosed with sepsis (Saria, 2018). We extracted 2000 samples,
with an average sequence length of 22.93 events, including lab measurements, drug intake, and other
health-related features. ii) Covid-19 UK: Collected data from the Oxford Covid-19 Government
Response Tracker (Hale et al., 2021), focusing on the UK during 2021. This dataset includes 27
samples with an average of 59.22 events per sequence, tracking government policies and their impact
on confirmed case reduction. iii) Car-Follow: Derived from the Lyft Level-5 dataset (Li et al., 2023),
containing 5000 samples with an average of 4.6 events per sequence, focusing on vehicle driving
modes. iv) Epic-Kitchen: A dataset of first-person recordings from kitchen activities, where we
extracted 400 samples with an average sequence length of 36.76 events, focusing on cooking-related
action verbs. For detailed descriptions and processing information of the datasets, please refer to
Appendix.A.

We abstract the features in each dataset into high-level concepts and use these concepts to construct
ground truth governing logic rules either by experts or large language models (Zhao et al., 2023),
with details illustrated in Appendix.B.

Baselines We choose several state-of-the-art baselines considering three different fields: i) Neural
Temporal Point Process Model (Neural TPP): RMTPP (Du et al., 2016), THP (Zuo et al., 2020),
PromptTPP (Xue et al., 2023), and HYPRO (Xue et al., 2022) ii) Logic-Based Model: TELLER (Li
et al., 2021), and CLNN (Yan et al., 2023) iii) Generative Model: We follow the work of (Lin et al.,
2022) and consider history encoder and probabilistic decoder framework for temporal point process
generative model. For the history encoder, we use attention mechanism Vaswani (2017); Zuo et al.
(2020). For the generative probabilistic decoder, we consider TCDDM (Sohl-Dickstein et al., 2015),
TCVAE (Pan et al., 2020), TCGAN (Xiao et al., 2017a), and TCCNF (Mehrasa et al., 2019). These
generative models can also be utilized for prediction tasks (Lin et al., 2022). Detailed introduction
for the baselines can be found in Appendix.C

Comparison Metric The evaluation metrics we utilized primarily encompass the following two
aspects: i) Prediction tasks: Following common next-event prediction task in TPPs (Du et al., 2016;
Zuo et al., 2020), our model as well as other baselines (including all Neural TPP, Logic-based,
and generative baselines) attempt to predict next event from history. We evaluate the event type
prediction with the Error Rate (ER%) and evaluate the event time prediction with the Root Mean
Square Error (RMSE). ii) Generation tasks: To assess the quality of the generated data, we train
a classification model to distinguish between the original and synthetic data as a supervised task.
Therefore, we can use the discriminative score, which is given by (accuracy - 0.5) on the held-out
set, to evaluate the generative performance. A score close to 0 is better, indicating the generated data
is hard to distinguish from original data. We also analyse 2-dimensional t-SNE plots of the original
and generated data. Initially, we employ the same embedding to project the sequences into a high-
dimensional space, considering that the sequences encompass both complex event time and event
type information. Subsequently, t-SNE is applied to reduce the dimensionality to two components.
These comparison metrics were all considered in (Yoon et al., 2019; Desai et al., 2021).

5.2 EXPERIMENTS FOR PREDICTION TASKS

For each dataset we mention in the experimental setup, we conduct the experiments to predict the
next event. The experimental results are shown in Tab.1. Our model outperforms all generative
model baselines and consistently matches or surpasses state-of-the-art neural TPP and logic-based
models. Across the MIMIC-IV, Car-Following, and Epic-Kitchen datasets, our model achieves the
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highest performance. Although our model ranks second on the Covid-19 dataset, it closely rivals
HYPRO, the top performer, with notably stable results indicated by low standard deviation, detailed
in Appendix D.

Category Model MIMIC-IV Covid-19 Car-Follow EPIC-Kitchen
ER% ↓ MAE ↓ ER% ↓ MAE ↓ ER% ↓ MAE ↓ ER% ↓ MAE ↓

Neural
TPP

RMTPP 92.12% 3.75 62.57% 3.52 36.27% 2.64 42.84% 9.21
THP 90.38% 3.52 60.74% 3.20 34.70% 2.30 40.25% 9.05

PromptTPP 86.23% 3.27 54.80% 2.95 34.56% 2.10 37.50% 7.80
HYPRO 86.87% 3.20 49.10% 2.58 34.35% 2.23 38.25% 8.12

Logic
Model

TELLER 88.85% 3.54 58.90% 3.02 40.25% 3.41 41.23% 8.83
CLNN 87.43% 3.48 57.86% 2.87 39.75% 3.35 40.85% 8.30

Gen.
Model

TCDDM 87.58% 3.36 58.23% 3.31 35.38% 2.32 45.34% 8.34
TCVAE 86.67% 3.40 59.34% 3.02 37.76% 2.48 37.10% 7.87
TCGAN 85.97% 3.29 58.02% 3.12 34.20% 2.58 39.83% 8.20
TCCNF 91.20% 3.76 60.10% 3.25 40.29% 2.80 46.83% 9.28
Ours* 85.59% 3.13 53.68% 2.74 33.26% 1.92 36.16% 7.20

Table 1: Comparison between our model and baselines for prediction tasks. Bold text represents the
best result. The performance is averaged over three different seeds. The standard deviation can be
found in Appendix.D

5.3 EXPERIMENTS FOR GENERATION TASKS

Model % Train MIMIC-IV Covid-19 Car-Follow EPIC-Kitchen
TCDDM 100 0.430 +/- 0.015 0.489 +/- 0.003 0.125 +/- 0.080 0.368 +/- 0.028
TCVAE 0.397 +/- 0.008 0.450 +/- 0.005 0.092 +/- 0.031 0.420 +/- 0.020
TCGAN 0.388 +/- 0.007 0.466 +/- 0.010 0.100 +/- 0.023 0.376 +/- 0.033
TCCNF 0.453 +/- 0.010 0.490 +/- 0.005 0.108 +/- 0.042 0.405 +/- 0.083
Ours* 0.302 +/- 0.012 0.420 +/- 0.006 0.083 +/- 0.021 0.312 +/- 0.015

TCDDM 80 0.463 +/- 0.006 0.490 +/- 0.002 0.176 +/- 0.008 0.380 +/- 0.012
TCVAE 0.433 +/- 0.010 0.438 +/- 0.006 0.130 +/- 0.008 0.358 +/- 0.008
TCGAN 0.420 +/- 0.012 0.443 +/- 0.005 0.142 +/- 0.010 0.366 +/- 0.068
TCCNF 0.475 +/- 0.008 0.492 +/- 0.002 0.210 +/- 0.015 0.402 +/- 0.099
Ours* 0.382 +/- 0.006 0.452 +/- 0.008 0.132 +/- 0.016 0.320 +/- 0.013

TCDDM 60 0.465 +/- 0.008 0.493 +/- 0.005 0.232 +/- 0.012 0.437 +/- 0.023
TCVAE 0.430 +/- 0.010 0.472 +/- 0.008 0.160 +/- 0.004 0.343 +/- 0.009
TCGAN 0.445 +/- 0.018 0.475 +/- 0.005 0.153 +/- 0.009 0.352 +/- 0.016
TCCNF 0.473 +/- 0.016 0.480 +/- 0.010 0.249 +/- 0.027 0.452 +/- 0.032
Ours* 0.395 +/- 0.083 0.458 +/- 0.008 0.158 +/- 0.020 0.335 +/- 0.009

TCDDM 40 0.482 +/- 0.010 0.492 +/- 0.008 0.276 +/- 0.013 0.450 +/- 0.083
TCVAE 0.487 +/- 0.020 0.490 +/- 0.008 0.222 +/- 0.045 0.431 +/- 0.037
TCGAN 0.475 +/- 0.012 0.494 +/- 0.003 0.238 +/- 0.033 0.374 +/- 0.115
TCCNF 0.492 +/- 0.006 0.495 +/- 0.001 0.430 +/- 0.020 0.463 +/- 0.089
Ours* 0.430 +/- 0.031 0.479 +/- 0.013 0.204 +/- 0.010 0.362 +/- 0.012

Table 2: Discriminator scores for all data set, models, and training percentages. N/A’s exist when
not enough data was available for the model to generate synthetic data. Bold text represents the best
result. The performance is averaged over three different seeds and the standard deviation is stored
after “+/−”.

Generative Performance Evaluated by Discriminator Scores For each dataset mentioned in
the experimental setup, we use 100%, 80%, 60%, and 40% as training data for each method. The
synthetic data generated by these trained models is then used to train the post-hoc sequence classifi-
cation models (by optimizing a 2-layer LSTM) to distinguish between sequences from the original
and generated datasets. First, each original sequence is labeled “real”, and each generated sequence
is labeled “not real”. Then, an off-the-shelf classifier is trained to distinguish between the two classes
as a standard supervised task. Therefore, we obtain the discrimination scores, with the results shown
in Tab.2.
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When utilizing the complete 100% training data, our model produces the best results on all datasets.
Notably, all generators exhibit poor performance on the MIMIC-IV dataset due to its extensive
27 features but our model generate satisfactory sequences. At lower training proportions of 80%
and 60%, our model continues to generate superior sequences for the MIMIC-IV and Epic-Kitchen
datasets. For the Covid-19 and Car-Following datasets, our model yields the second-best perfor-
mance, but outperforming TCDDM and TCCNF significantly. Remarkably, with relatively small
training samples (with threshold 40%), our model again superior to all generators, demonstrating
that our model achieves consistently good and stable generation results even with limited data.

Real
Syn

Real
Syn

Real
Syn

Real

Syn
Real
Syn

Co
m
p-
2

Comp-2 Comp-2 Comp-2 Comp-2 Comp-2
TCVAE TCGAN TCCNF NSVAE (Ours*)TCDDM

Figure 2: t-SNE plots for our proposed model on MIMIC-IV dataset using 100% training data. Blue
is for original data, and Red for synthetic data.

Generative Performance Evaluated by t-SNE Charts In Fig.2, the t-SNE plots depict data gen-
erated by our model for the MIMIC-IV dataset using a training threshold of 100%. Our model’s
generated data exhibits significant overlap with the original data, contrasting sharply with the noisy
outputs from other generators, thus further highlighting the superior generative performance of our
model.

5.4 NEURO-SYMBOLIC FORWARD REASONING
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Figure 3: Change of inferred z during
the process of neuro-symbolic forward
chaining on MIMIC-IV dataset

In Fig.3, we visualize the process of neuro-symbolic for-
ward reasoning for the experiment on MIMIC-IV dataset.
We start from an initial guess of latent variable z, which
indicate each high-level concept’s satisfaction. From the
heatmap, one can see that the satisfaction of Concept-
1: Abnormal blood pressure and blood oxygen satura-
tion progressively increase, indicating that in the forward
reasoning process, the significance of this concept gradu-
ally amplifies, with our neuro-symbolic layer inferring its
pivotal role in the original data distribution. Similar pat-
terns can be further affirmed from the rules mined from
the neuro-symbolic layer as shown in in Appendix.E. This
concept appears in 4 out of all 5 mined rules. The satisfac-
tion of Concept-4: Electrolyte Imbalance and Concept-9:
Abnormal Urine Output also have been enhanced. These
results demonstrate the stable reasoning capacity of our
proposed model.

6 CONCLUSION

We propose a novel VAE framework that integrates a neural-symbolic reasoning layer into the latent
space, enabling the incorporation of interpretable, logic-based constraints and logical reasoning on
learned representations. Our model addresses the complex task of temporal point process generation,
crucial for generating de-identified data and managing missing data. Proficient models can utilize
domain expertise to produce semi-synthetic datasets from real data, facilitating transfer learning and
ensuring secure data generation for privacy protection.
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APPENDIX OVERVIEW

In the following, we will provide supplementary materials to better illustrate our methods and ex-
periments.

• Section.A provides detailed datasets introduction and preprocessing methods.

• Section.B provides the feature definition and corresponding high-level concepts for all the
real-world datasets.

• Section.C comprehensively introduces the baseline methods we considered in our paper.

• Section.D reports the details of experiments for prediction tasks.

• Section.E reports the learned rules via neuro-symbolic forward reasoning on MIMIC-IV
dataset

• Section.F record the time efficiency of our proposed method.

• Section.G provides the information of computing infrastructure for all experiments.

A DATASETS DETAILS

We extracted four interesting real-world datasets. Followings are brief introduction to these real-
world datasets: i) MIMIC-IV: an electronic health record dataset of patients admitted to the inten-
sive care unit (ICU). (Johnson et al., 2023). We considered patients diagnosed with sepsis (Saria,
2018), one of the major causes of mortality in ICU due to septic shock. We extract 2000 samples of
multiple features with average sequence length of 22.93 events, encompassing lab measurements,
drug intake, intravenous fluids, and urine output. ii) Covid-19 UK: COVID-19 is an unprecedented
pandemic and various control measures have been introduced to curb the spread of the virus. The
Oxford Covid-19 Government Response Tracker (OxCGRT) gathers data on governments’ imple-
mentation of specific measures and their timing. (Hale et al., 2021; 2020). We collected 27 samples,
each with sequence length of 59.22 events, for the United Kingdom during 2021, focusing on the
effect of government’s epidemic prevention policies related to containment/closure, the healthcare
system, vaccination efforts, and economic impacts on daily cumulative number of confirmed cases
reduction. To reduce daily fluctuations, we recorded the cumulative number of confirmed cases over
7-day intervals to illustrate the epidemic spread trend. We identified the time points when case num-
bers began to decrease. iii) Car-Follow: a dataset processed from Lyft level-5 open dataset (Li et al.,
2023; Houston et al., 2021), which includes 1000+ hours of perception and motion data collected
over a 4-month period from urban and suburban environments along a fixed route in Palo Alto, Cal-
ifornia. We extract 5000 samples with an average sequence length of 4.6 events, which recordings
vehicle driving modes. iv) Epic-Kitchen: This dataset originates from a large-scale, first-person
(egocentric) vision dataset, featuring multi-faceted, audio-visual, non-scripted recordings in natural
settings, specifically the wearers’ homes. It captures daily kitchen activities over multiple days. We
have utilized the annotated action sequences. focusing only text, and extracted them to create a
temporal event history of cooking verbs. This was achieved by omitting the entities that the human
subjects interacted with. We specifically focus on ten verbs such as manipulate, move, clean, etc.
We concentrated on a subset of 400 samples, each with an average sequence length of 36.76 events.

B FEATURES AND HIGH-LEVEL CONCEPTS FOR DATASETS

C BASELINES

In this paper, we primarily focus on baselines from three different fields: neural Temporal Point
Process model, Logic-Based model, and generative model. Below, we will provide a detailed intro-
duction to these baselines.

• Neural Temporal Point Process Model
– RMTPP (Du et al., 2016): The approach considers the intensity function of a temporal

point process as a nonlinear function that depends on the history. It utilizes a recurrent
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Concept Number Concept Content Predicates
Concept-1 Abnormal blood pressure and blood oxygen saturation Abnormal-SpO2SaO2
Concept-2 Abnormal blood volume Abnormal-CVP
Concept-3 Abnormal vascular resistance Abnormal-SVR

Concept-4 Electrolyte imbalance
Abnormal-Potassium
Abnormal-Sodium
Abnormal-Chloride

Concept-5 Abnormal kidney function markers Abnormal-BUN
Abnormal-Creatinine

Concept-6 Abnormal inflammatory markers Abnormal-CRP

Concept-7 Abnormal blood cell counts Abnormal-RBCcount
Abnormal-WBCcount

Concept-8 Abnormal blood gas analysis

Abnormal-ArterialpH
Abnormal-ArterialBE

Abnormal-Lactete
Abnormal-HCO3

Abnormal-SvO2ScvO2
Concept-9 Abnormal urine output Low-Urine

Concept-10 Use drug

Colloid
Crystalloid

Water
Norepinephrine

Epinephrine
Dobutamine
Dopamine

Phenylephrine

Table 3: Defined predicates and corresponding high-level concepts for MIMIC-IV dataset.

Concept Number Concept Content Predicates

Concept-1 Containment and closure policies

School Closing
Workplace Closing

Cancel Public Events
Restrictions on Gathering Size

Close Public Transport
Stay at Home Requirements

Restrictions on Internal Movement
Restrictions on International Travel

Concept-2 Vaccination policies

Vaccine Prioritisation
Vaccine Eligibility/Availability

Vaccine Financial Support
Mandatory Vaccination

Concept-3 Health system policies
Public Information Campaign

Testing Policy
Contact Tracing

Concept-4 Economic policies Income Support
Debt/Contract Relief for Households

Concept-5 Effective policy Cumulative Confirmed Cases Decrease

Table 4: Defined predicates and corresponding high-level concepts for Covid-19 UK dataset.

neural network to automatically learn a representation of the influences from the event
history, which includes past events and time intervals, thereby fitting the intensity
function of the temporal point process.

– THP (Zuo et al., 2020): The model employs a concurrent self-attention module to
embed historical events and generate hidden representations for discrete time stamps.
These hidden representations are then used to model the interpolated continuous time
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Concept Number Concept Content Predicates

Concept-1 Aggressive action Acceleration Following a Leading Vehicle
Free Acceleration

Concept-2 Conservative action Deceleration Following a Leading Vehicle

Concept-3 Nnormal action Cruising at a Desired Speed
Constant Speed Following

Table 5: Defined predicates and corresponding high-level concepts for Car-Following dataset.

Concept Number Concept Content Predicates

Concept-1 Manipulation Manipulate
Control

Concept-2 Food-Handling
Mix and Stir

Clean
Food Handling

Concept-3 Movement Move

Concept-4 Organization Organize
Retrieve

Concept-5 Inspection Inspect
Concept-6 Miscellaneous Miscellaneous

Table 6: Defined predicates and corresponding high-level concepts for Epic-Kitchen-100 dataset.

intensity function. THP can also incorporate additional structural knowledge. Im-
portantly, THP surpasses RNN-based approaches in terms of computational efficiency
and the ability to capture long-term dependencies.

– PromptTPP (Xue et al., 2023): The model incorporates a continuous-time retrieval
prompt pool into the base TPP, enabling sequential learning of event streams with-
out the need for buffering past examples or task-specific attributes. Specifically, this
approach consists of a base TPP model, a pool of continuous-time retrieval prompts,
and a prompt-event interaction layer. By addressing the challenges associated with
modeling streaming event sequences, this mode enhances the model’s performance.

– HYPRO (Xue et al., 2022): The hybridly normalized probabilistic (HYPRO) model is
capable of making long-horizon predictions for event sequences. This model consists
of two modules: the first module is an auto-regressive base TPP model that gener-
ates prediction proposals, while the second module is an energy function that assigns
weights to the proposals, prioritizing more realistic predictions with higher probabil-
ities. This design effectively mitigates the cascading errors commonly experienced
by auto-regressive TPP models in prediction tasks, thereby improving the model’s
accuracy in long-term forecasting.

• Logic-Based Model
– TELLER (Li et al., 2021): It is a non-differentiable algorithm that can be described

as a temporal logic rule learning algorithm based on column generation principles.
This method formulates the process of discovering rules from noisy event data as a
maximum likelihood problem. It also designs a tractable branch-and-price algorithm
to systematically search for new rules and expand existing ones. The algorithm alter-
nates between a rule generation stage and a rule evaluation stage, gradually uncovering
the most significant set of logic rules within a predefined time limit.

– CLNN (Yan et al., 2023): The model learns weighted clock logic (wCL) formulas,
which serve as interpretable temporal logic rules indicating how certain events can
promote or inhibit others. Specifically, the CLNN model captures temporal relations
between events through conditional intensity rates guided by a set of wCL formulas
that offer greater expressiveness. In contrast to conventional approaches that rely on
computationally expensive combinatorial optimization to search for generative rules,
CLNN employs smooth activation functions for the components of wCL formulas.
This enables a continuous relaxation of the discrete search space and facilitates effi-
cient learning of wCL formulas using gradient-based methods.
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• Generative Model: All the temporal point process generative models we consider in our
paper are summarized in the work of (Lin et al., 2022). It simplifies the generative model
of temporal point processes into an history-encoder-probabilistic-decoder architecture. For
the history encoder, we use attention mechanism Vaswani (2017); Zuo et al. (2020). For
the generative probabilistic decoder, we consider

– TCDDM (Sohl-Dickstein et al., 2015): Temporal conditional diffusion denoising
model (TCDDM) is based on diffusion model. In sampling, given the historical encod-
ing, we first sample from the standard normal distribution, then take it and historical
encoding as the input to get the approximated noise, and generally remove the noise
with different scales to recover the samples. For inference, the prediction is based on
Monte Carlo estimation.

– TCVAE (Kingma, 2013; Pan et al., 2020): Temporal conditional variational autoen-
coder (TCVAE) consists of a variational encoder as a conditional Gaussian distribution
for approximating the prior standard Gaussian and a variational decoder to generate
arrival time samples.

– TCGAN (Xiao et al., 2017a): Temporal conditional generative adversarial network
(TCGAN) decoder is mostly based on Wasserstein GAN in TPPs (Arjovsky et al.,
2017; Xiao et al., 2017a). The probabilistic generator is trained via adversarial pro-
cess, in which the other network called discriminator is trained to map the samples to a
scalar, for maximizing the Wasserstein distance between the distribution of generated
samples and the distribution of observed samples.

– TCCNF (Mehrasa et al., 2019): Temporal conditional continuous normalizing flows
(TCCNF) is based on Neural ODE (Chen et al., 2018; 2020).

D DETAILS OF EXPERIMENTS FOR PREDICTION TASKS

In Tab. 7, Tab.8, Tab.9, and Tab.10 we present the mean ER% and MAE across four datasets
for various baselines, averaged over three separate seed experiments, along with their respective
standard deviations. Our method consistently outperforms all baseline models across these datasets.

Category Model MIMIC-IV
ER% ↓ MAE ↓

Neural
TPP

RMTPP 92.12% +/- 1.25% 3.75 +/- 0.25
THP 90.38% +/- 1.25% 3.52 +/- 0.33

PromptTPP 86.23% +/- 1.50% 3.27 +/- 0.23
HYPRO 86.87% +/- 2.46% 3.20 +/- 0.15

Logic
Model

TELLER 88.85% +/- 1.86% 3.54 +/- 0.59
CLNN 87.43% +/- 1.43% 3.48 +/- 0.42

Gen.
Model

TCDDM 87.58% +/- 8.66% 3.36 +/- 0.35
TCVAE 86.67% +/- 7.01% 3.40 +/- 0.29
TCGAN 85.97% +/- 5.30% 3.29 +/- 0.46
TCCNF 91.20% +/- 3.63% 3.76 +/- 0.70
Ours* 85.59% +/- 2.75% 3.13 +/- 0.20

Table 7: Comparison between our model and baselines for prediction tasks on MIMIC-IV dataset.
Bold text represents the best result. The performance is averaged over three different seeds and the
standard deviation is stored after “+/-”.

E LEARNED RULES

The learned rule can be found in Tab.11.

F TIME EFFICIENCY

We record the training time for all the generative model using 100% training data. Results shown in
Tab.12 indicate that our proposed model requires significantly less computing time.
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Category Model Covid-19 UK
ER% ↓ MAE ↓

Neural
TPP

RMTPP 62.57% +/- 1.45% 3.52 +/- 0.43
THP 60.74% +/- 1.50% 3.20 +/- 0.33

PromptTPP 54.80% +/- 2.68% 2.95 +/- 0.10
HYPRO 49.10% +/- 1.75% 2.58 +/- 0.21

Logic
Model

TELLER 58.90% +/- 7.28% 3.02 +/- 0.23
CLNN 57.86% +/- 6.26% 2.87 +/- 0.02

Gen.
Model

TCDDM 58.23% +/- 5.28% 3.31 +/- 1.23
TCVAE 59.34% +/- 6.23% 3.02 +/- 0.63
TCGAN 58.02% +/- 4.23% 3.12 +/- 0.35
TCCNF 60.10% +/- 9.48% 3.25 +/- 0.87
Ours* 53.68% +/- 0.83% 2.74 +/- 0.08

Table 8: Comparison between our model and baselines for prediction tasks on Covid-19 UK dataset.
Bold text represents the best result. The performance is averaged over three different seeds and the
standard deviation is stored after “+/-”.

Category Model Car Following
ER% ↓ MAE ↓

Neural
TPP

RMTPP 36.27% +/- 2.57% 2.64 +/- 0.23
THP 34.70% +/- 4.39% 2.30 +/- 0.20

PromptTPP 34.56% +/- 1.23% 2.10 +/- 0.10
HYPRO 34.35% +/- 1.03% 2.23 +/- 0.32

Logic
Model

TELLER 40.25% +/- 5.23% 3.41 +/- 0.50
CLNN 39.75% +/- 4.25% 3.35 +/- 0.33

Gen.
Model

TCDDM 35.38% +/- 6.23% 2.32 +/- 0.32
TCVAE 37.76% +/- 3.00% 2.48 +/- 0.82
TCGAN 34.20% +/- 2.54% 2.58 +/- 0.66
TCCNF 40.29% +/- 7.66% 2.80 +/- 1.02
Ours* 33.26% +/- 2.00% 1.92 +/- 0.15

Table 9: Comparison between our model and baselines for prediction tasks on Car Following dataset.
Bold text represents the best result. The performance is averaged over three different seeds and the
standard deviation is stored after “+/-”.

G COMPUTING INFRASTRUCTURE

All synthetic data experiments, as well as the real-world data experiments, including the comparison
experiments with baselines, are performed on Ubuntu 20.04.3 LTS system with Intel(R) Xeon(R)
Gold 6248R CPU @ 3.00GHz, 227 Gigabyte memory.
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Category Model Epic-Kitchen
ER% ↓ MAE ↓

Neural
TPP

RMTPP 42.84% +/- 4.28% 9.21 +/- 2.37
THP 40.25% +/- 4.62% 9.05 +/- 2.56

PromptTPP 37.50% +/- 3.62% 7.80 +/- 1.80
HYPRO 38.25% +/- 3.64% 8.12 +/- 2.00

Logic
Model

TELLER 41.23% +/- 4.21% 8.83 +/- 3.25
CLNN 40.85% +/- 3.64% 8.30 +/- 3.19

Gen.
Model

TCDDM 45.34% +/- 6.32% 8.34 +/- 3.54
TCVAE 37.10% +/- 5.27% 7.87 +/- 4.25
TCGAN 39.83% +/- 3.66% 8.20 +/- 2.25
TCCNF 46.83% +/- 7.94% 9.28 +/- 4.63
Ours* 36.16% +/- 2.25% 7.20 +/- 0.85

Table 10: Comparison between our model and baselines for prediction tasks on Epic-Kitchen 100
dataset. Bold text represents the best result. The performance is averaged over three different seeds
and the standard deviation is stored after “+/-”.

Learned Rules
Rule-1: Abnormal urine output← Abnormal blood pressure and blood oxygen saturation

∧ Abnormal inflammation markers
Rule-2: Use Drug← Abnormal blood pressure and blood oxygen saturation ∧

Abnormal urine urine output
Rule-3: Abnormal blood volume← Abnormal blood pressure and blood oxygen saturation ∧

Abnormal blood cell counts ∧ Abnormal urine output
Rule-4: Electrolyte imbalance← Abnormal real-time urine output ∧ Use drug
Rule-5: Abnormal kidney function markers← Abnormal blood pressure and blood oxygen

saturation ∧ Abnormal blood volume ∧ Abnormal vascular resistance

Table 11: Learned rules via neuro-symbolic forward reasoning on MIMIC-IV dataset

Model MIMIC-IC Covid-19 Car-Following EPIC-Kitchen
TCDDM 16448.49 12540.34 9547.85 10032.49
TCVAE 2471.40 2018.78 1479.45 1885.20
TCGAN 29234.03 19656.21 23004.83 25690.34
TCCNF 26604.10 11448.90 18432.47 23580.23
Ours* 1624.65 1075.22 921.60 1367.16

Table 12: Training times (in seconds) for all generative models using 100% of the training data.
Times were all obtained using the same computation infrastructure, which can be found in Ap-
pendix.G.
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