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ABSTRACT

Synergistically capturing intricate local structures and global contextual depen-
dencies has become a critical challenge in point cloud representation learning.
To address this, we introduce PointLearner, a point cloud representation learn-
ing network that closely aligns with biological vision which employs an active,
foveation-inspired processing strategy, thus enabling local geometric modeling
and long-range dependency interactions simultaneously. Specifically, we first de-
sign a point-focused attention, which simulates foveal vision at the visual focus
through a competitive normalized attention mechanism between local neighbors
and spatially downsampled features. The spatially downsampled features are ex-
tracted by a pooling method based on learnable inducing points, which can flexi-
bly adapt to the non-uniform distribution of point clouds as the number of induc-
ing points is controlled and they interact directly with point clouds. Second, we
propose a context-scan state space that mimics eye’s saccade inference, which in-
fers the overall semantic structure and spatial content in the scene through a scan
path guided by the Hilbert curve for the bidirectional S6. With this focus-then-
context biomimetic design, PointLearner demonstrates remarkable robustness and
achieves state-of-the-art performance across multiple point cloud tasks. The code
is available at https://github.com/Point-Cloud-Learning/PointLearner.

1 INTRODUCTION

As a fundamental data form in 3D vision, point clouds have been widely applied in numerous tasks
such as autonomous driving, robot navigation, and augmented reality due to their ability to pre-
cisely represent the geometric structure and spatial details of objects (Yan et al.| [2024a; Zhou et al.,
2024a;|Yan et al.| |2024b; |An et al., |[2025; [Resan1 & Nasihatkonl [2025; Zhou et al.l [2025b; He et al.,
2024} Xu et al., 2024} [Zhou et al.| [2025a; |[Zhang et al.| [2023]; |20244}; [Liang et al.l [2025b; [2026)).
Currently, local attention networks (Zhao et al.l [2021; [Wu et al.l [2024a) represent the mainstream
paradigm for point cloud representation learning. By ingeniously computing attention within local
neighbors/windows, they successfully reduce computational complexity to a linear relationship with
the number of input points. However, such networks inevitably narrow the perceptual field, sacri-
ficing the global perception capability of the attention mechanism, thereby hindering the effective
modeling of long-range dependencies between objects in a scene. Recently, inspired by the excep-
tional long-range modeling capability with linear complexity of the selective state space model (S6)
in Mamba (Gu & Dao| [2023), several studies (Zhang et al.,|2024b}; |[Han et al.| 2024} Kopriicii et al.,
2024; |Schone et al., 2024} Wang et al.| [2024) have attempted to introduce it into point cloud rep-
resentation learning to overcome the trade-off between long-range interactions and computational
resources. However, the bidirectional S6 still relies on compressing all contextual information into
the history-hidden state for global connectivity, resulting in insufficient locality learning. Based on
the above analysis, how to synergistically capture local fine-grained structures and global contextual
dependencies has become a critical challenge in point cloud representation learning.

*Corresponding author.
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Figure 1: A comparison of different information perception ways, where the red dot indicates the
visual focus and the orange circle denotes the local awareness range. Our point-focused attention
aligns more closely with natural foveal vision than the perceptual modes in (d) and (e).

In the biological visual system, foveal vision is responsible for perceiving the most significant in-
formation within the visual field, exhibiting pronounced spatial non-uniformity: as shown in Fig.
[[[b), the region near the visual focus possesses extremely high acuity, enabling fine discrimination
of detailed features; while visual acuity decreases with increasing eccentricity, resulting in coarser
processing of peripheral features. This pattern not only optimizes the utilization of finite neural
resources but also aligns with the intrinsic structure of information distribution in natural scenes
(Wandelll |1995). What is more, biological vision is not a static process rather than a dynamic one
that acquires information on a series of serialized visual foci via eye’s continuous saccade move-
ments, thereby inferring the overall semantic structure and spatial content within a scene (Stewart
et al.l 2020). The above operational mechanism endows the biological visual system with powerful
perceptual capability to synergistically model local geometries and long-range dependencies.

Inspired by this, we explore PointLearner, a bionic-designed network that closely aligns with biolog-
ical vision, enabling local geometric modeling and global context awareness simultaneously. In our
network, the proposed point-focused attention emulate foveal vision perception at the visual focus,
and context-scan state space is used to implement inference process during eye saccade:

* The point-focused attention adopts a dual-branch design, where one branch performs fine-grained
attention modeling for each point’s local neighbors, while the other branch establishes coarse-
grained attention relationships between each point and spatially downsampled features. By
computing attention weights from both branches within a single softmax calculation, the point-
focused attention couples coarse- and fine-grained features in a competitive normalized manner
with linear complexity. This makes each point adaptively and efficiently fuse local structures
with global semantics, aligning with the intrinsic information distribution in natural scenes —
like foveal vision perception. Notably, we develop an induced point pooling method, which is
able to flexibly adapt to the non-uniform distribution of point clouds, through trainable vectors
(dubbed inducing points) directly performing attention interactions with data points, as well as a
controllable number of inducing points, thereby effectively downsampling spatial features.

* The context-scan state space utilizes the Hilbert curve for serialization of the point-focused at-
tention feature, and further employs the the bidirectional S6 for geometric inference. As demon-
strated in the eye tracking machine vision experiments (Newport et al.|[2023), the Hilbert curve is
more aligined with eye’s saccade inference, having the property of locality preservation and the
peculiarity of its self-similar rotating replication. By employing a biological inspired focus-then-
context pipeline, the overall semantic structure and fine-grained spatial content can be efficiently
integrated for point cloud representation learning.

To validate the effectiveness of PointLearner, we conduct extensive experiments on multiple stan-
dard point cloud datasets, including ModelNet40 (Wu et al.|[2015)), ScanObjectNN (Uy et al.,|2019),
ShapeNet (Yi et al. 2016), and S3DIS (Armeni et al., 2016). Experimental results demonstrate
that our network, by emulating the operational mechanism of biological vision, effectively captures
detail-rich local structures and coherent global context. It exhibits remarkable robustness and point
cloud representation capability, yielding state-of-the-art results across multiple point cloud tasks.

In summary, the contributions of this paper stem from the following aspects:



Published as a conference paper at ICLR 2026

(1) We propose PointLearner for point cloud learning, a bottom-to-up framework that aligns with
biological vision, which achieves local refinement modeling and long-range dependency interactions
by natural visual perception. This bio-inspired network attains state-of-the-art results on various
point cloud tasks and demonstrates significant robustness.

(2) We design a point-focused attention simulating foveal vision perception at the visual focus.
By computing attention weights for a point’s local neighbors and spatially downsampled features
within a single softmax calculation, it enables each point to adaptively and efficiently select the
most effective receptive field information from both local structures and global semantics via a
competitive normalized attention mechanism with linear complexity.

(3) We introduce a context-scan state space mimicking eye’s saccade inference. By the Hilbert
curve with excellent locality-preserving property, it guides the bidirectional S6 to accurately infer
the entire scene along a scanning path that maintains high-fidelity spatial proximity between points.

2 RELATED WORK

2.1 ATTENTION-BASED NETWORKS

The attention mechanism (Vaswani et al.,|2017; [Shi, [2024; [Su et al.,|2024) has been widespread in
point cloud representation learning, due to its ability to enable dynamic interactions between ele-
ments and global modeling. Several studies have enhanced the performance of the attention mecha-
nism in point cloud tasks by refining attention modules (Guo et al.,|2021;Mazur & Lempitsky, 2021}
Yan et al., 2020) or designing pre-training strategies (Chen et al., 2023; Yu et al.| 2022; Pang et al.,
2022; [Liu et al) 2022} |Q1 et al.| 2023). Although these global attention networks have achieved
impressive results, they perform attention computations directly on the entire point cloud, regarding
each point as a token. This incurs prohibitive computational overheads due to the quadratic com-
plexity of the attention mechanism and the large number of points in point clouds. Thus, some works
ingeniously design local attention networks, which can be categorized into local neighbor-based and
window-based methods. Local neighbor-based methods (Zhao et al., 2021} |Wu et al., 2022} Nie
et al.| 2022} Xiang et al.| [2023; Zhang et al.| [2022; Liu et al.} 2024b) apply the attention mechanism
to point neighborhoods constructed for each point using neighbor search techniques such as the K-
Means, ball query, and K-nearest neighbors (KNN), while window-based methods (Lai et al., 2022;
Park et al., 2022; He et al., 2022} |[Fan et al.l [2022; [Sun et al., 2022} [Liu et al.l [2023b; [Wu et al.,
20244) partition the 3D space into non-overlapping windows through voxelization or space-filling
curves, transforming attention computations on all points to these spatial windows. Although local
attention networks exhibit linear complexity, setting on the number of neighbors or window size
constrains the receptive field of the attention mechanism, hindering the modeling of long-range de-
pendencies. Departing from local neighbors, this paper incorporates a spatial downsampling branch
and context-scan state space to extract global dependencies with the biological visual mechanism,
overcoming the trade-off between global modeling and computational resources.

2.2 SSM-BASED NETWORKS

With excellent long-range modeling capability with linear complexity, the state space model (SSM)
(Gupta et al.,[2022; |Gu et al., [2022; [Smith et al.| [2023}; [Mehta et al., 2023; Gu et al., 2020; 2021} |Gu
& Daol 2023) has gained significant prominence in the field of natural language processing (NLP).
Among these, Mamba (Gu & Dao},[2023)) stands out as the most influential work. Its core component
called S6 introduces an input-driven selective mechanism, enabling flexible selection of relevant in-
formation and achieving breakthrough performance in long sequence modeling. Furthermore, S6
incorporates a hardware-aware algorithm inspired by FlashAttention (Dao et al., 2022)), significantly
improving both training and inference efficiencies. These outstanding properties have motivated
the extension of S6 from NLP to computer vision, including image recognition (Liu et al., 2025;
Shaker et al., 2025} |[Fu et al.| 2025} [He et al.l [2025)), video understanding (Chen et al., 2025} [Wang
et al.,[2023; [Li et al.| [2024a)), and medical image segmentation (Xing et al. [2024; Ma et al.| 2024;
Ruan & Xiang| 2024). Recently, S6 has also been applied to point cloud representation learning.
To adapt to the causal nature and unidirectional modeling of S6, existing methods design serializa-
tions strategies based on space-filling curves (Liang et al.l [2024; [Li et al., 2025} |Liu et al.} [2024a)
or axis ordering (Zhang et al.l [2024b; |[Han et al., 2024; |[Kopriicii et al., 2024} Schone et al.| [2024)
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Figure 2: Left: Pipeline of PointLearner. Right: Architecture of PointLearner block, where the
line between the red dots represent the saccade path guided by the serialization, which is used for
geometric inference by the state space model.

to establish inter-point structural dependencies for the bidirectional S6’s geometric inference. How-
ever, the bidirectional S6 still relies on compressing all context information into the history-hidden
state to achieve global connectivity, leading to insufficient locality learning. Our work captures lo-
cal structure information by a point-focused attention that matches foveal vision at the visual focus,
addressing the above shortcoming.

3 METHODOLOGY

3.1 OVERVIEW

As shown in Fig. [2] PointLearner follows the standard Point Transformer-style architecture (Zhao
et al.l 2021} (Wu et al.| 2024a). A point cloud is first fed into an embedding layer formed by an
MLP to be projected into a high-dimensional space, followed by an encoder-decoder structure that
performs residual-based hierarchical feature aggregation, where the downsampling and upsampling
layers use the Farthest Point Sampling (FPS) and linear interpolation (Qi et al.|, 2017b)), respectively,
and finally an appropriate task head is invoked based on specific requirements. In this study, our
network is validated on point cloud recognition and segmentation tasks, where the recognition head
first applies average pooling to the encoder’s output, then produces global category logits by an
MLP; the segmentation head processes the decoder’s output with an MLP to predict per-point cat-
egory logits. As the core component of the encoder-decoder structure, PointLearner block adopts
the Transformer architecture for flexible integration into the network. By incorporating the point-
focused attention first and then context-scan state space, it endows the network with information
perception capability akin to the biological vision system, achieving local geometric modeling and
long-range dependency interactions simultaneously. We will elaborate on these key modules next.

3.2 POINT-FOCUSED ATTENTION

The point-focused attention adopts a dual-branch design to emulate foveal vision at the visual focus,
where the local neighbor branch provides fine-grained perception near each query point, while the
spatial downsampling branch simultaneously maintains each query point’s coarse-grained awareness
for global semantics, i.e., high acuity at the focus and low acuity in the periphery.

Fine-grained perception. Given a point set P = {p; = (z;, ¥, zz)}iil € RV*3 with a corre-
sponding point feature set F = {f;}~, € RN*P, the Local Neighbor Branch on a point p; is
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Figure 3: Diagram of point-focused attention with the competitive normalized attention mechanism.

computed as follows:
(Q.K'\V') = (W, W, W,) F

Al = softmazx (< LK) /@) )

where W ¢ RP*P represents a transformation matrix, and N/; € R¥ denotes the indices of the
local neighbors of a point p; in P, determined by KNN.

Coarse-grained awareness. Given a point feature set F' = { fi}i]il € RV*XP and its corresponding

RMXD

spatially downsampled feature set S = {si}?il € , the Spatial Downsampling Branch on a

point p; is computed as follows:
(Q°,K*,V°) = (W;F, WS, W;S)
AP = softmaz ( f,K“/\/E) 2)
SDB (p;) = A7 V?®

Notably, the non-uniformity of point clouds prevents them from achieving spatial downsampling
through simple and effective average pooling like 2D images. Moreover, as a commonly used down-
sampling method for point clouds, FPS often requires setting a small sampling rate to attain suffi-
cient coverage for extracting global information, which significantly increase computational cost in
Eq. (). Thus, we develop an induced point pooling inspired by the inducing point method in the
sparse Gaussian (Snelson & Ghahramanil 2005). Specifically, M D-dimensional vectors defined
as I € RM*D gare termed inducing points, and they are trainable parameters. The Induced Point

Pooling on a point feature set F' = {f;}., € RNV*? is computed as follows:
(K?,VP) = (W, W) F

S =1IPP (F) = softmax (I,K’V\/E) VP ®
where § € RM*P represents the spatially downsampled features extracted by the induced point
pooling on F'. By using a controllable number of trainable inducing points to directly learn how
to induct point clouds adaptively through attention interactions, the induced point pooling flexibly
adapts to the non-uniform distribution of point clouds to integrate global semantics, thereby effec-
tively downsampling spatial features, as shown in Appendix [C.2]

Competitive normalized fusion. A straightforward approach for the point-focused attention is to
sum the attention outputs from both branches to achieve the multi-scale fusion PFA (p;) of the local
structures and global semantics at a point p;, thereby matching foveal vision perception, as follows:

PFA (p;) = LNB (p;) + SDB (p;) = AV, + AV* 4)

However, such shallow multi-scale feature fusion struggles to align with deep dynamic interactions
between local fine-grained features and global coarse-grained semantics inherent in foveal vision



Published as a conference paper at ICLR 2026

perception. To address this, as illustrated in Fig. [3] we update the point-focused attention to a
competitive normalized attention variant by computing the attention weights of both branches within
a single softmax calculation, thereby coupling fine- and coarse-grained features, as follows:

A; = softmax (Concat ( b Kjl\/i,Qf, K*) /\/5)
A, A = split (Ay, [, M) ©)

PFA (p;) = LNB (p;) + SDB (p;) = ALV, + A;V*
where C'oncat denotes channel-level concatenation, split serves to partition channels according to
specified sizes, and K and M represent the number of local neighbors determined by KNN and the
number of inducing points used for downsampling spatial features, respectively. Compared to the
simple version in Eq. (@), as demonstrated in Tab. [8] Eq. (5) enhances deep dynamic interactions
through the competitive mechanism between fine- and coarse-grained features, without introducing
additional computational overheads. This effectively simulates the perceptual process of foveal

vision adaptively selecting the most effective receptive field information, thereby better aligning
with the intrinsic structure of information distribution in natural scenes.

Complexity analysis. Based on the above settings and considering the feature transformation, the
computational complexity 2 (PFA) of the point-focused attention is as follows:

Q (PFA) = Q (LNB) + Q (SDB) + Q (IPP)
=6ND?+2MD?+2NKD +4NMD

Since K and M are typically small, it can be observed that 2 (PFA) scales linearly with the number
of points, indicating that PFA aligns with the optimized utilization of finite neural resources in foveal
visual. For the complexity of each module in PFA, please refer to Appendix [D}

(6)

3.3 CONTEXT-SCAN STATE SPACE

The context-scan state space simulates eye’s saccade inference through a dynamic saccade mech-
anism. It serializes a point cloud to provide a scanning path for the state space model, enabling
the inference of the overall semantic structure and spatial content in a scene, i.e., the serialization
performs continuous scanning and the state space model is responsible for information integration,
as illustrated in Fig. 2] (right).

Serialization. Space-filling curves are trajectories that cover high-dimensional regions by continu-
ous parametric mapping. Their core function is to transform high-dimensional geometric structures
into one-dimensional sequences while preserving local neighborhood relationships, meaning that
spatially adjacent elements remain adjacent in the sequence. When applied to point clouds, the
high-dimensional space refers to the 3D Euclidean space containing point coordinates. Common
space-filling curves include the Hilbert curve and Z-Order curve. The former is highly valued for its
superior locality-preserving property, while the latter is renowned for its high efficiency.

Inspired by the spatial proximity of space-filling curves, recent S6-based works (Liang et al., 2024;
Li et al.| [2025} [Liu et al., [2024a)) utilize them to serialize point clouds, establishing more reliable
inter-point structural dependencies for geometric reasoning compared to axis-ordering based serial-
ization (Zhang et al., [2024b; |Han et al.| |2024; |Kopriicii et al., 2024; |Schone et al.| [2024). However,
to provide richer spatial information, these serialization strategies often concatenate the results from
multiple space-filling curves. This concatenation introduces a longer sequence, leading to redun-
dancy and negatively impacting efficiency. More importantly, concatenating sequences with differ-
ent spatial relationships can easily cause confusion. In addition, by serializing randomly located
points using the Hilbert and Z-Order curves, respectively, it can be intuitively observed that the
Hilbert curve outperforms the Z-Order curve in preserving spatial proximity, as shown in Appendix
[C.1] This finding is consistent with the prior research (Nordin & Telles, [2023)) and also better aligns
with the inherent pattern of eye movements during visual search, which typically involve continuous
scanning along spatially adjacent regions. Therefore, the Hilbert curve is employed for serialization
to establish reliable inter-point structural dependencies while guiding a high-fidelity spatially adja-
cent scanning path for accurate scene inference.

State space model. S6 is a forward recurrence process based on hidden states, where each position
in input sequence can only access prior information and cannot obtain content from subsequent po-
sitions, as shown in Appendix [A] This unidirectional modeling is unsuitable for visual data requiring
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Network ) Operator OA~  Network Operator  Ins. mloU
IDPT (Zha et al.[[2023) Attention 93.4 ~APES (Wu et al.][2023a) Attention 85.8
TInter-MAE (Liu et al.][2023a) Attention 93.6 TACT (Dong et al.||[2023) Attention 86.1
Igré);s(lﬂl)et (Wu ei alz.o §(3)23bj| ﬁttem@on gg;‘ TPointGPT (Chen et al.[[2023) Attention ~ 86.2
ong et al.. ) ttention . t . ] :
LFT-Net (Gao et al.|[2023) Attention 93.2 TRe.C on (Qi et ?l“ 2023) . Attent}on 864
OctFormer (Wang![2023) Attention 92.7 Point2Vec (Zeid et al.|[2023) Attention 86.3
tReCon (Qi et al.| 2023) Attention 92.5 TIDPT (Zha et al.[[2023) Attention 85.7
TDAPT (Zhou et al.|[2024b) Attention 93.5  GAD (L1 et al.|[2024b) Attention  86.3
TLCM (Zha et al.|[2024) Attention 93.6  TMaskFeat3D (Yan et al.|[2024b)  Attention 86.3
TPoint-PEFT (Tang et al.|[2024)  Attention 93.4  TMVNet (Yan et al.] 2024a) Attention 86.1
PointStack (Wijaya et al.|[2024)  Attention 93.3 TLCM (Zha et al.| 2024) Attention 86.3
GAD (L1 et al.[[2024b) Attention 93.8 4 N “l 5 24b' A . ’
PointConT (Liu ot al. [2024b)  Attention 93.5 | DAPT (Zhou et al.;2024b) ttention  85.5

tPointGST (Liang et al.| 2025a) _ Attention 934  'Point-PEFT (Tangetal.[2024) ~ Attention  85.1
TPointMamba (Liang ot al. [2024]  SSM__ 93.6 ' PointGST (Liang et al.|2025a)  Attention 85.7

OctMamba (Liu et al.[[2024a) SSM 927 Mamba3D (Han et al.|[2024) SSM 85.6
PCM (Zhang et al. J2U2D) SSM - 934 tpsintMamba (Liang et al.|[2024) ~ SSM 86.2
TMamba3D (Han et al.[[2024) SSM 934

NIMBA (Ronriich Al & PCM (Zhang et al.[[2024b) SSM 84.3

(Kopruct et al.[[2024) SSM 92.1 T .

STREAM (Schone etal.l2024)  ssM_ 927 NIMBA (Koprucii et al.[|2024) SSM 85.5
PoinTramba (Wang et al.[[2024) Hybrid 927  PoinTramba (Wang et al.. 2024) Hybr}d 85.7
PointLearner Hybrid 94.2  PointLearner Hybrid 86.9

Table 1: Experimental results on Model- Table 2: Experimental results on ShapeNet dataset.
Net40 dataset. T: Pre-training strategy. T: Pre-training strategy.

global learning. To address this, most works (L1 et al., | 2025; |Han et al., [2024} |K6priicii et al., 2024;
Wang et al., 2024) propose the bidirectional S6, by introducing the bidirectionality from Vision
Mamba (Zhu et al., 2024)) into S6, to achieve global modeling over point sequences. Specifically,
two S6 modules are deployed in parallel: a forward S6 and a backward S6. The former performs a
forward-scanning recurrent along the input sequence, while the latter processes it in reverse order.
In this way, each point in the input sequence possesses a global receptive field, which aligns with
how the eye perform back-and-forth scanning to infer information when recognizing an indistinct
object. Hence, we adopt the bidirectional S6 for scene inference.

4 EXPERIMENTS

To validate PointLearner, we conduct experimental comparisons on multiple point cloud tasks. Ad-
ditionally, we perform robustness checking, and explore the effectiveness and characteristics of these
biomimetic designs through extensive ablation studies. For detailed descriptions on datasets and
evaluation metrics, please refer to Appendix

4.1 EXPERIMENTAL COMPARISONS

Object recognition. Table[T]lists the quantitative results of our network and recent works on Model-
Net40 dataset. It can be observed that the performance of the previous state-of-the-art attention net-
works has been saturated, confined to a narrow range of 93.2% to 93.8%. Our PointLearner breaks
through this performance bottleneck, achieving a state-of-the-art 94.2% OA. This result demon-
strates that integrating the advantages of both attention and SSM paradigms within a biological
visual system framework is an effective avenue to advancing point cloud representation learning.

Part segmentation. Table [2| lists the quantitative results of our network and recent works on
ShapeNet dataset. Overall, the performance of emerging SSM-based methods confirms their limita-
tions in handling fine-grained local features. The proposed PointLearner achieves 86.9% Ins. mloU,
significantly outperforming existing state-of-the-art methods based on either attention or SSM. This
strongly demonstrates that the hybrid paradigm of the attention and SSM, guided by the biolog-
ical vision system, can effectively synergize the strengths of both operators, exhibiting powerful
capabilities in local geometric modeling and long-range dependency interactions.

Semantic segmentation. Table [3]lists the quantitative results of our network and recent works on
S3DIS dataset. In the more challenging task of point cloud semantic segmentation, the performance
of the networks with different architectures exhibits significant disparities, highlighting the dual
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Network . Operator mloU  Network . Operator  OA
PointVector (Deng et al.][2023) Attention 723~ ADS (Hong etal./2023) Attention 87.5
SPT (Robert et al.[[2023) Attention 68.9  'IDPT (Zhaet al.: 2023) Attention  84.9
SpoTr (Park et al.]|[2023) Attention 70.8  TACT (Dong et al.[[2023) Attention 88.2
tACT (Dong et al.|[2023) Attention 612  'Joint-MAE (Guo etal.[2023)  Attention 86.1
+ s 3 . SpoTr (Park et al.][2023) Attention 88.6
ReCon (Qi et al.| 2023) Attention 60.8 LM 3 .
t ] . (Zha et al.||2024) Attention 87.8
IDPT (Zha et al.|2023) . AttentTon 53.1 TInter-MAE (Liu et al.[[2023a) Attention 85.4
TMM-3Dscene (Xu etal.|2023)  Attention 719 tpoin(GPT (Chen et al|2023)  Attention 86.9
Retro-FPN (Xiang et al.[2023)  Attention  73.0  tpoin(Dif (Zheng et al.|2024)  Attention 87.6
PTv3 (Wu et al.[2024a) _ Attention 734 4pAPT (Zhou etal.[2024b)  Attention 85.1
KPConvX-L (I'homas et al.;2024) Attention 73.5  GAD (Liet all]2024b) Attention 82.6
TDAPT (Zhou et al.|[2024b) Attention 56.2  TPoint-PEFT (Tang et al.|2024)  Attention 85.0
TPoint-PEFT (Tang et al.|[2024) Attention 56.0 TMaskFeat3D (Yan et al.|2024b) Attention 87.7
TMVNet (Yan et al.[[2024a) Attention 73.8  TMVNet (Yan et al.|2024a) Attention 86.7
GAD (Li et al.[[2024b) Attention 629 _TPointGST (Liang et al./2025a) _ Attention 85.6
TSwin3D (Yang et al./[2025) Attention 72.5 PointMamba (Liang et al.[2024) ~ SSM~ 89.3
"PointGST (Liang et al.|2025a)  Attention 58.6 ~ PCM (Zhang etal.20240) SSM 881
f 3 Mamba3D (Han et al.|[2024) SSM 88.2
PCM (Zhang et al.|2024b) __ SSM 634 \1MBA (Koprica et al.| 2024) SSM 842
HydraMamba (Qu et al.[[2025) SSM 73.6  STREAM (Schdne et al.|[2074) SSM 853
Pamba (Li et al.[]2025) SSM 73.5  PoinTramba (Wang et al.|2024]  Hybrid 889
PointLearner Hybrid 74.3  PointLearner Hybrid  89.
Table 3: Experimental results on S3DIS dataset. Table 4: Experimental results on ScanOb-
T: Pre-training strategy. jectNN dataset. T: Pre-training strategy.

challenges of local geometric modeling and global contextual inference in this task. Our network
attains state-of-the-art performance with 74.3% mloU, which benefits from its bio-inspired visual
perception design, maintaining the sensitivity of the attention mechanism to both local geometries
and global semantics while incorporating the scene inference capability of SSM.

4.2 ROBUSTNESS CHECKING

Biological vision exhibits remarkable robustness in to low-quality scenes. To verify that our
biomimetic network inherits this property, we conduct experiments from two perspectives: strong
noise corruption and varying sampling densities.

Robustness to strong noise. ScanObjectNN is a challenging dataset collected from real-world
scenes. We conduct experiments on its most difficult variant, PB_T50_RS, to validate PointLearner’s
robustness to strong noise. Tab. [ lists the quantitative results of our network and recent works on
ScanObjectNN dataset. The performance of the hybrid architecture PoinTramba (88.9% OA) has
demonstrated the potential of hybrid methods in terms of robustness. Our PointLearner further
elevates the performance to 89.8% OA, surpassing all the existing models. This result indicates that
the synergistic mechanism of the attention and SSM adopted by PointLearner effectively inherits the
robust inference capability of the biological vision system under low-quality perception conditions.

Robustness to varying sampling densities. Sensor data captured directly from the real world
often suffers from severe irregular sampling issues. Consequently, during the testing phase, we
randomly discard data points, as shown in Fig. E] (left), to validate our network’s robustness to non-
uniformly sparse data. Fig. [] (right) presents the quantitative results of our network alongside the
top-performing attention method (GAD (L1 et al 2024b)) and SSM method (PCM (Zhang et al.,
2024b)) from Tab. |Ion ModelNet40 dataset with varying numbers of sampling points. Intuitively,
our network exhibits superior robustness to variations in sampling density compared to the other
methods, with only a 2.2% performance drop when the number of test points decreases from 1024
to 256. This result benefits from the competitive normalized attention in the point-focused atten-
tion, which balances descriptiveness and robustness by appropriately weighting local structures and
global perception, as well as the powerful global inference capability of the context-scan state space.
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Figure 4: Left: Point clouds with different point densities. Right: Quantitative results of our net-
work and other works on ModelNet40 dataset with different numbers of sampling points.

Networks Operator Params Latency Memory mloU
HydraMamba (Qu et al.[2025)  SSM  63.14M  54ms 59G 736
PTv3 (Wu et al.[[2024a) Attention 46.17M 49ms 6.3G 73.4
Swin3D (Yang et al.[|2025)  Attention 71.15M 365ms 10.7G  72.5
PointLearner Hybrid 52.78M 63ms 6.5G 743

Table 5: Params, latency, and memory footprint of our network and previ-
ous state-of-the-art methods in a single inference on S3DIS dataset.

4.3 EFFICIENCY ANALYSIS

To further analyze the computational overheads of PointLearner, we compared it with several pre-
vious state-of-the-art methods on S3DIS dataset, and the params, latency, and memory footprint in
a single inference are selected as evaluation metrics. Specifically, to ensure a fair comparison, the
latency and memory footprint in a single inference are taken as the average values obtained over
the entire S3DIS test set with each scene on the same RTX 4090 GPU. Tab. [3] presents the params,
latency, and memory footprint of our network and multiple previous state-of-the-art methods in a
single inference. Swin3D is a heavy attention network that, unlike PTv3, does not incorporate effi-
ciency improvements for attention computations. Furthermore, it can be observed that, with a simi-
lar number of parameters, PointLearner, as a hybrid network, achieves a superior trade-off between
computational overheads and performance compared to the fully optimized PTv3 and the Hydra-
Mamba that benefits from S6’s excellent properties. We attribute this to the following two aspects:
(1) PointLearner is able to achieve powerful local geometric modeling and long-range dependency
interactions from the perspective of biological vision through hybrid operators, which simultane-
ously requires less layer stacking; (2) Although our basic block contains multiple components,
they are essentially lightweight with linear complexity, while also benefiting from the hardware-
optimized algorithms of FlashAttention (Dao et al., 2022).

4.4 ABLATION STUDY

We conduct ablation study on ModelNet40 dataset, to investigate the effectiveness of the designed
bio-inspired visual processing modules. To ensure a fair comparison, all experiments are conducted
on an RTX 4090 GPUs with identical configurations, and results are averaged over three runs.

Local neighbor branch. The point-focused attention employs the local neighbor branch to achieve
the fine-grained perception, akin to foveal vision. To validate its necessity, we compare ablation
results with and without the local neighbor branch in Tab. [6] The trade-off between accuracy and
efficiency further indicates that the local neighbor branch enhances the network’s ability to learn
local geometric structures while maintaining low computational complexity. This closely aligns
with the biological vision mechanism where refined local perception optimizes global inference.

Spatial downsampling branch. Through the spatial downsampling branch, the point-focused atten-
tion simultaneously maintains coarse-grained perception of global semantics for each query point.
To validate its importance, we compare ablation results with and without this branch in Tab.
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LNB Params FLOPs Throughput OA SDB  Params FLOPs Throughput OA

v 736M 0.610G 163FPS 94.17 v 736M 0.610G 163FPS  94.17

X 6.57M 0.504G  221FPS 92.11 x  635M 0.578G  183FPS  93.06
Table 6: Ablation results w/ or w/o the local Table 7: Ablation results w/ or w/o the spatial
neighbor branch. downsampling branch.

Fusion = Params FLOPs Throughput OA SSM  Params FLOPs Throughput OA

Competitive 7.36M 0.610G  163FPS  94.17 Bid. S6 7.36M 0.610G  163FPS  94.17
Additive  7.36M 0.610G  166FPS  93.43 Uni. S6 6.06M 0.553G  181FPS  93.08

Table 8: Ablation results with different multi- Table 9: Ablation results with both state space
scale fusion. models.

PFA CSSS Params FLOPs Throughput OA

v x  45TM 0487G  198FPS  92.93

X v 537M 0.463G 231FPS 91.94

v v 736M 0.610G 163FPS 94.17

Table 10: Ablation results with PFA and CSCC.

Quantitative analysis demonstrates that this branch effectively establishes coarse-grained associa-
tions between query points and global semantics at a low computational cost, simulating the inte-
gration mechanism of peripheral information in biological vision.

Normalized fusion. In the point-focused attention, by coupling attention weights within a single
softmax calculation, the proposed competitive normalized fusion replaces simple additive multi-
scale fusion to enhance deep dynamic interactions. To validate its advantage, Tab. [§] compares the
ablation results of both multi-scale fusion strategies. Quantitative analysis demonstrates that the
competitive fusion mechanism effectively simulates the dynamic interaction and adaptive selection
between fine- and coarse-grained features in foveal vision. This achieves superior semantic fusion
effect while maintaining nearly identical computational overheads.

State space model. The context-scan state space leverages the state space model to infer the en-
tire scene along the scanning path provided by the serialization, based on inter-point structural de-
pendencies. To validate that the adopted bidirectional S6 achieves stronger inference performance
compared to the unidirectional S6, we compared the ablation results of both state space models. As
shown in Tab. [9] although the bidirectional S6 introduces a slight increase in parameters and com-
putational complexity, it constructs a global receptive field for each point through the forward and
backward scanning. This effectively simulates the eye’s back-and-forth saccade, thereby enhancing
inference ability in complex scenes.

PFA & CSSS. The proposed network incorporates two key modules: Point-Focused Attention (PFA)
and Contextual Scan State Space (CSSS). PFA fuses local neighbors and spatially downsampled fea-
tures based on a competitive normalized attention mechanism, simulating foveal vision at the visual
focus. On this basis, CSSS further infers the overall semantic structure and spatial content within a
scene through point cloud serialization and state space model, mimicking eye’s saccade inference.
The combination of PFA and CSSS closely aligns with biological vision, and their complementarity
is fully validated by the ablation results presented in Tab.

5 CONCLUSION

In this paper, we introduce PointLearner, a point cloud representation learning network inspired by
biological vision mechanisms. First, we propose a point-focused attention architecture that mimics
the foveal vision of the human eye, enabling fine-grained perception around each query point while
maintaining coarse-grained awareness of more distant regions. Building on this locally attentive
representation, we further introduce a context-scan state space model to globally scan point clouds,
drawing inspiration from the saccadic movements of the human eye during visual inference. This
allows the model to integrate local details and global context, leading to a comprehensive under-
standing of the underlying geometric structure. Extensive experiments across multiple datasets and
tasks demonstrate that PointLearner outperforms existing methods and exhibits strong robustness to
noise and varying sampling densities.

10
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A STATE SPACE MODELS

SSMs are cyclic processes with latent states, which map a 1-D equation or sequence x (t) € RY to
y (t) € RN by alatent state h (t) € RY. The process is mathematically denoted as a linear ordinary
differential equation as follows

y(t) =Ch(t),h (t) = Ah(t) + Bz (t), @)

where the three parameters A € RV*N B € RV, and C € R represent the state matrix, input
matrix, and output matrix, respectively. Since the above SSMs run on continuous inputs and are not
applicable to discrete inputs such as images and text, they cannot be introduced into deep models.
Thus, it is necessary to discretize them, and the zero-order hold is commonly used as a discretization
method. The discretized formulas are as follows

hy = Ah;_1 + Bz, 1y = Chy, )

where A and B are the results of discretizing the continuous parameters A and B by a time scale
A, denoted as

A=A C=C, B=(AA) (A4 -1)(AB). 9)
Since processing the input and latent state equally, previous approaches focusing on linear time-
invariant SSMs (where A and B are invariant) may fail to capture critical information from con-
text. Hence, Mamba proposes a novel SSM termed S6 by integrating an input-dependent selective
mechanism into SSMs, where A and B are the functions of inputs, indicating Mamba is linear
time-variant.

B DATASETS AND IMPLEMENTATION

B.1 DATASETS

ModelNet40 dataset contains 12,311 CAD models across 40 categories, with 9,843 samples in the
training set and 2,468 samples in the test set. Data preprocessing follows the method of |Q1 et al.
(2017a), where 1,024 points and their normal vectors are uniformly sampled from each sample as
input. As per most relevant studies in the literature, the overall accuracy (OA) is adopted as an
evaluation metric.

ShapeNet dataset comprises 16,878 samples from 50 parts across 16 categories, with 14,005 samples
in the training set and 2,873 in the test set. Data preprocessing is consistent with that applied to
ModelNet40 dataset. As per most relevant studies in the literature, the instance mloU (Ins. mloU)
is adopted as an evaluation metric.

S3DIS dataset comprises 3D point cloud data from 271 indoor scenes across 6 areas, with each
point annotated with one of 13 semantic labels. Data preprocessing follows the method of |Q1 et al.
(2017a), where input features include point coordinates, RGB color, and normalized positions. As
per most relevant studies in the literature, area 5 is used as the test set, while the remaining areas are
used for training, and the mean IoU (mloU) is adopted as an evaluation metric.

ScanObjectNN (PB_T50_RS variant) contains 14,450 valid samples across 15 categories, with
11,636 samples for training and 2,814 for testing. Except for using only coordinates as input, data
preprocessing and evaluation metric are consistent with those used for ModelNet40 dataset.

B.2 IMPLEMENTATION

To better understand the model’s structure and implementation, we list detailed network architec-
tures and training settings across different datasets in Tab. [T1]

C MORE ABLATION STUDIES

C.1 ABLATION COMPARISON ON THE SERIALIZATION

Serialization. Based on point cloud serialization, the context-scan state space generates a continu-
ous scanning path with inter-point structural dependencies. To validate the rationale behind selecting
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Configurations ModelNet40 ScanObjectNN ShapeNet S3DIS
Training epochs 500 500 600 500
Optimizer & Scheduler Adamw & CosLR AdamW & CosLR Adamw & CosLR Adamw & CosLR
Weight decay 0.01 0.01 0.01 0.01
Learning rate 8e-4 4e-4 le-3 le-3
Warmup epochs 10 20 10 10
Batch size 24 24 24 12
Embedding channels 48 48 96 48
KNN 8 8 8 8
IPP ratio 8 8 8 16
Encoder depth [1,1,1,1] [1,1,1,1] [2,2,6,2] [1,2,3,1]
Encoder channels [48, 96, 192, 384] [48, 96, 192, 384] [96, 192, 384, 768]  [96, 192, 384, 768]
Decoder depth - - [1,1,1,1] [1,1,1, 1]
Decoder channels - - [768, 384, 192,96] [768, 384, 192, 96]
Downsampling stride 4,4, 4] 4,4, 4] (4,4, 4] [4, 4, 4]
MLP ratio 4 4 4 4
QKYV bias True True True True
Dropout 0.3 0.3 0.3 0.3
RandomScale
. RandomFlip
RandomScale ShufflePoint RandomScale RandomJitter
Augmentation RandomShift RandomScale RandomShift ChromaticAutoContrast
ShufflePoint RandomRotate ShufflePoint - .
ChromaticTranslation
Chromaticlitter

Table 11: Detailed implementation configurations.

(b) Serialization/reordering of randomly located points by the Z-order curve

Figure 5: Comparison of the serialization of randomly located points by the Hilbert curve (top) and
Z-Order curve (bottom).

the Hilbert curve, Tab. [T2] compares the ablation results of various serialization strategies. When
two serialization methods are employed, they are applied separately to the two directions of the bidi-
rectional S6. Quantitative analysis indicates that while combining multiple serialization strategies
can provide richer spatial information, differences in spatial relationships between these strategies
may introduce confusion and interfere with the learning of spatial consistency. By leveraging its
exceptional spatial locality-preserving property, as shown in Fig. [5] the Hilbert curve establishes
a high-fidelity spatially adjacent scanning path with reliable inter-point structural dependencies for
the state space model. This aligns with the visual search pattern of eye movements scanning con-
tinuously along spatially adjacent regions, thereby achieving an optimal balance between accuracy
and efficiency. To further discuss the specific advantages of the Hilbert curve over learnable serial-
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Serialization Params FLOPs Throughput OA
None 7.36M 0.610G  219FPS 91.34
Hilbert 7.36M 0.610G  163FPS  94.17
Z-Order 7.36M 0.610G  209FPS  93.06

Hilbert & Trans-Hilbert 7.36M 0.610G  133FPS  93.78
Hilbert & Z-Order 7.36M 0.610G  155FPS  93.52
Learnable Serialization 8.04M 0.723G  168FPS  92.78

Table 12: Ablation results with multiple serialization strategies.

ization strategies in terms of spatial locality preservation, continuity, and computational efficiency,
we compare with the learnable serialization strategy from the latest research (Zha et al.,[2025). It is
intuitively observed that, compared to the learnable serialization, the Hilbert curve exhibits higher
computational efficiency and superior spatial locality preservation and continuity. We attribute the
poorer performance of the learnable serialization to the fact that it is an adaptive method for de-
termining geometric correlation between points, but this approach possesses much less geometry-
specific inductive biases compared to space-filling curves. In summary, the Hilbert curve introduces
more precise inductive bias regarding geometric correlation compared to the Z-Order curve and
learnable serialization strategies.

C.2 ABLATION COMPARISON OF IPP AND FPS

In our work, we employ the proposed Induced
Point Pooling (IPP) for spatial downsampling. To
investigate its ability to flexibly adapt to the non-
uniform distribution of point clouds for global g39}
semantic integration, we present ablation results
comparing IPP with the Farthest Point Sampling
(FPS) at different sampling rates in Fig. [6] where
/N denotes the sampling rate relative to the in- '\.
put number of points, and None indicates the ab-

sence of the spatial downsampling branch. In-

tuitively, at low sampling rates, both methods e PP

exhibit comparable performance, indicating that 930} l FTS l l '
FPS can obt'aln better global semantics with its ex- 4 I8 /16 /32 Joa /128 1256 Nome
cellent spatial coverage when sufficient sampling Sampling rates

points are available. However, as the downsam-

pling rate increases, the performance of FPS de- Figure 6: Quantitative results of IPP and FPS.
clines sharply. At a sampling rate of /256, its ac-

curacy approaches the baseline without the downsampling branch, suggesting its inability to capture
critical semantics from non-uniform point clouds at high sparsity. In contrast, IPP exhibits a more
gradual performance decrease, maintaining an excellent accuracy of 93.39% even at the /256 sam-
pling rate. This confirms that IPP, through trainable induced points that adaptively learn the point
cloud distribution, can more flexibly and robustly integrate global semantics, providing effective
coarse-grained information for the point-focused attention.

94.2 -

OA (%)
]
()]

N

93.3

D COMPLEXITY ANALYSIS

Following the same settings as Eq.(6)) and considering the feature transformation, the computational
complexities of each module in the point-focused attention are as follows:

Q(LNB) = 3ND? + 2NKD
Q(SSD) = ND? + 2MD? + 2NMD (10)
Q(IPP) = 2ND?* + 2NMD

Finally, we have a complexity of 2 (PFA) = 6ND? +2MD? +2NKD +4NMD for the point-
focused attention. Since the context-scan state space inherits the linear complexity inherent in the
state space model, the overall network exhibits linear complexity.
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Figure 7: Visualization results of attention heatmaps.

E VISUALIZATIONS

E.1 ATTENTION HEATMAPS

To better understand the attention responses and the advantages of the proposed method, we present
in Fig. [7] the attention heatmaps of PointLearner for different objects, generated from attention
weights in the local neighbor branch of the last point-focused attention layer within the decoder.
These attention heatmaps illustrate that, through a fully understanding of the bio-inspired visual
perception, our method effectively focuses on critical information for semantic inference to achieve
outstanding performance, such as the tires and seat on the motorcycle, as well as the base and cover
of the lamp.

E.2 QUALITATIVE COMPARISON

To intuitively demonstrate the performance of our network, we present in Fig. [§] the visualization
results of our network alongside the top-performing SSM method (PointMamba (Liang et al.,[2024))
and attention method (GAD 2024b)) from Tab. [2Jon ShapeNet dataset, where the red points
denote that these points are misclassified. The comparison of the visualization results reveals that
our network is able to achieve better part segmentation results at the boundaries of objects.

F FUTURE WORK

In our experimental comparisons, it is observed that most existing attention models employ pre-
training methods to improve performance, with the self-supervised pre-training paradigm dominat-
ing. Self-supervised pre-training methods can leverage large amounts of unlabeled data to enhance
feature modeling capabilities, as well as help Transformer models with large receptive fields achieve
effective local or structural modeling by increasing data scale. Although self-supervised pre-training
on large-scale point cloud datasets has been proven effective for improving the accuracy of Trans-
former models, the compatibility of existing Transformer self-supervised pre-training methods on
hybrid architectures, as well as self-supervised pre-training strategies specifically tailored for hybrid
architectures, remain underexplored. Hence, it is a promising direction for future research to collect
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more data and design self-supervised learning methods for hybrid models, as in PPT
2024b)) and Sonata 2025) designed for Transformer models.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

The authors utilized large language models (LLMs) to a limited extent for proofreading and improv-
ing grammatical correctness. All key aspects of the research, encompassing innovation, conceptual
development, and literature discovery, were solely driven by the authors without LLM assistance.
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Figure 8: Visualization results of PointLearner, PointMamba, and GAD.
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