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ABSTRACT

Most large-scale audio classification models process two-
dimensional spectral data with convolutional neural net-
work (CNN) or Vision Transformer (ViT) architectures,
inheriting a vision inductive bias misaligned with the tem-
poral nature of audio. While neural audio codecs offer
a promising alternative by providing discrete, time-native
representations, they produce sequences thousands of to-
kens long, rendering the usage of standard Transformer ar-
chitectures computationally expensive. In this study, we
present Mega-AudioFormer, a multi-scale Transformer-
based model pre-trained from scratch on AudioSet with
masked codec-token modeling and fine-tuned on music
classification tasks. Our architecture features a global en-
coder over channel-packed sequences for efficient long-
range context, augmented by a local encoder for fine-
grained detail. This design confers a key advantage:
decode-free inference directly in the compressed do-
main. Promising performance on music genre recogni-
tion (GTZAN), instrument classification (NSYNTH), and
speech/music discrimination validates our approach. This
work establishes a scalable and effective new direction
for audio foundation models and is explicitly designed to
leverage advancements from pre-trained language models.

1. INTRODUCTION

The success of Large Language Models (LLMs) has
sparked a paradigm shift across domains, inspiring a move
towards unified, sequence-based foundation models in au-
dio processing. This transition is enabled by neural au-
dio codecs like Encodec [1] and SoundStream [2], which
use Residual Vector Quantization (RVQ) to convert con-
tinuous waveforms into discrete token sequences. This ap-
proach unlocks the power of Transformer architectures [3]
to model audio as a temporally ordered language, mov-
ing beyond the vision-centric inductive biases of earlier
models that relied on two-dimensional representations.
However, this method confronts a critical bottleneck: the
quadratic complexity of self-attention. Since even a few
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seconds of audio can yield thousands of tokens, the com-
putational and memory demands become prohibitive for
standard Transformers, severely hindering their ability to
capture the long-range temporal dependencies essential for
complex audio understanding.

We address this scalability challenge with Mega-
AudioFormer, a multi-scale Transformer designed for
efficient audio modeling and inspired by two other
works—MegaByte [4], which introduced a multi-scale ar-
chitecture for modeling million-byte sequences, and Uni-
Audio [S]—our architecture employs a global encoder over
channel-packed tokens to tractably model long-range con-
text. We pre-train the model on AudioSet [6] with a
masked token objective and demonstrate its effectiveness
by fine-tuning on downstream classification tasks. This
work establishes a scalable and effective path for creating
time-native audio foundation models that directly leverage
advancements from the natural language processing do-
main.

2. RELATED WORK

Our work builds on recent architectural advancements de-
signed to mitigate the computational cost of modeling long
sequences. The key solution we adopt is a multi-scale, hi-
erarchical model pioneered by MegaByte [4] large-scale
generative modeling of million-byte sequences and suc-
cessfully adapted to a universal audio generation by Uni-
Audio [5]. While these foundational works firmly establish
the architecture’s effectiveness for causal, generative tasks,
our work reorients its use. Mega-AudioFormer adapts this
proven, efficient structure into a bidirectional model for
discriminative classification tasks, investigating its effec-
tiveness for audio understanding and analysis.

Masked Modeling has emerged as a dominant pre-
training strategy for learning robust audio representa-
tions [7]. Models like MERT [8] have demonstrated the
value of masked language model pretraining on a wide
range of Music Information Retrieval (MIR) tasks. How-
ever, they typically rely on standard Transformer architec-
tures. In a parallel line of research focused on audio rep-
resentation learning, EnCodecMAE [9] demonstrated the
value of codec tokens as a learning target. It employs a
Masked Autoencoder (MAE) to reconstruct masked audio
segments by predicting their corresponding EnCodec to-
kens. This self-supervised task forces the model to learn
perceptually rich features.
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Figure 1. High-level diagram of the Mega-AudioFormer architecture.

Further validating the richness of EnCodec’s represen- 129
tations, an alternative line of work explores using the con- 130
tinuous latent representation from the EnCodec encoder, 131
prior to the quantization step, as direct input for classifi- 132
cation networks [10]. In contrast, our work investigates 133
the viability of using the discrete codebook indices, an ap- 134
proach that aligns with other state-of-the-art models like 135
MERT and EnCodecMAE, thereby making the audio rep- 136
resentation directly compatible with language modeling 137

techniques. 138
139

3. EXPERIMENTAL EVALUATION AND 140
PERSPECTIVES 141

142
Our proposed model is a two-phase training process as pre- ,,,

sented in Figure 1. The workflow begins by converting ,,,
an audio waveform into a sequence of discrete tokens us- ,,.
ing the Encodec neural audio codec, which yields a multi- ¢
channel discrete representation of shape (Ng,T), where ,,,
N, is the number of residual vector quantizers and T is ,,q
the number of temporal steps. This representation is sub- ,,q
sequently flattened in a time-first manner to create a single .,
interleaved sequence, which is then partitioned into non-
overlapping patches where each patch groups all IV, tokens
from a single temporal step.

As shown in Figure 1(a), the pre-training phase uses
a dual-encoder structure. A Global Encoder, a 12-layer
Transformer with a hidden dimension of 768, processes
the sequence of patches. To handle temporal order, this
encoder utilizes Rotary Position Embeddings (RoPE) [11];
unlike standard methods that add sinusoidal signals to the
input, RoPE injects relative positional information by ro-
tating the key and query vectors within the attention mech-
anism itself, which is particularly effective for modeling
long sequences. This is augmented by a lightweight Local
Encoder (a 2-layer Transformer) that also utilizes RoPE to
operate on the token-level representations and learn fine-
grained patterns within each patch. This complete model
is pre-trained from scratch on the AudioSet dataset using 152
a Masked Language Modeling (MLM) objective, where 153
25% of the input tokens are randomly masked and the 154
model learns to predict them. 155

For downstream tasks the Local Encoder is discarded, 156
and a single linear classification layer is placed on top of 157
the pre-trained Global Encoder. The final hidden states 1s8
from the Global Encoder are mean-pooled across the patch 1s9
dimension to produce a fixed-size vector for classification. 160

151

We also applied a data augmentation method that dropped
a contiguous chunk of the tokens in the sequence.

Our preliminary experimental evaluation covers three
tasks:  music genre classification on the GTZAN
dataset [12], instrument classification on the NSYNTH
dataset [13], and a binary speech/music discrimination
task [14]. We use Encodec at bitrates of 1.5 and 12 kbps,
corresponding to patch sizes of 2 and 16.

Our preliminary results, summarized in Table 1, demon-
strate the effectiveness of our pre-training strategy. Fine-
tuning the pre-trained Global Encoder consistently and
significantly outperforms training from scratch across all
tasks, with particularly strong gains in speech/music dis-
crimination and genre classification. The addition of data
augmentation also provided a performance boost in some
cases, notably on the more complex NSYNTH instrument
classification task. Notably, the model pre-trained with a
lower bitrate Encodec (1.5 kbps) generally achieved su-
perior or comparable performance to the 12 kbps version.
This suggests that a more compressed, lower-token-count
representation is not only viable but potentially more effec-
tive for these classification tasks, offering significant com-
putational advantages.

Table 1. Mega-AudioFormer Performance on Down-
stream Tasks. We compare fine-tuning against training
from scratch, with and without data augmentation.

Ace. (%) F1 (%)
Dataset Type 5 [ 12 [ 15 | 12
Scraich | 69.00 | 63.00 | 68.10 | 60.07
GTZAN FT 83.00 [ 79.00 | 82.50 [ 78.01
FT w/ Aug. | 78.00 | 79.00 | 78.00 | 7891
Scraich | 2827 | 26.03 | 17.69 | 14.87
NSYNTH  [FT 2659 [ 2756 | 1747 | 1651
FTw/ Aug. | 28.91 [ 27.88 | 1845 [ 17.61
Scratch | 84.62 | 84.62 | 8452 | 84.52
Speech/Music [T 100,00 [ 100,00 | 100.00 | 100.00
FTw/ Aug. | 100.00 | 00.00 | 100.00 | 100.00

For future work, we plan to expand on these promis-
ing results. Our primary goal is to scale the pre-training
phase by utilizing larger and more diverse audio datasets.
Subsequently, we will extend our fine-tuning evaluation
to a broader range of MIR benchmarks and downstream
tasks to further validate the versatility and scalability of
the Mega-AudioFormer architecture. Finally, we plan to
also validate the knowledge transfer from a pre-trained lan-
guage model into the audio domain using our framework.
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