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ABSTRACT1

Most large-scale audio classification models process two-2

dimensional spectral data with convolutional neural net-3

work (CNN) or Vision Transformer (ViT) architectures,4

inheriting a vision inductive bias misaligned with the tem-5

poral nature of audio. While neural audio codecs offer6

a promising alternative by providing discrete, time-native7

representations, they produce sequences thousands of to-8

kens long, rendering the usage of standard Transformer ar-9

chitectures computationally expensive. In this study, we10

present Mega-AudioFormer, a multi-scale Transformer-11

based model pre-trained from scratch on AudioSet with12

masked codec-token modeling and fine-tuned on music13

classification tasks. Our architecture features a global en-14

coder over channel-packed sequences for efficient long-15

range context, augmented by a local encoder for fine-16

grained detail. This design confers a key advantage:17

decode-free inference directly in the compressed do-18

main. Promising performance on music genre recogni-19

tion (GTZAN), instrument classification (NSYNTH), and20

speech/music discrimination validates our approach. This21

work establishes a scalable and effective new direction22

for audio foundation models and is explicitly designed to23

leverage advancements from pre-trained language models.24

1. INTRODUCTION25

The success of Large Language Models (LLMs) has26

sparked a paradigm shift across domains, inspiring a move27

towards unified, sequence-based foundation models in au-28

dio processing. This transition is enabled by neural au-29

dio codecs like Encodec [1] and SoundStream [2], which30

use Residual Vector Quantization (RVQ) to convert con-31

tinuous waveforms into discrete token sequences. This ap-32

proach unlocks the power of Transformer architectures [3]33

to model audio as a temporally ordered language, mov-34

ing beyond the vision-centric inductive biases of earlier35

models that relied on two-dimensional representations.36

However, this method confronts a critical bottleneck: the37

quadratic complexity of self-attention. Since even a few38
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seconds of audio can yield thousands of tokens, the com-39

putational and memory demands become prohibitive for40

standard Transformers, severely hindering their ability to41

capture the long-range temporal dependencies essential for42

complex audio understanding.43

We address this scalability challenge with Mega-44

AudioFormer, a multi-scale Transformer designed for45

efficient audio modeling and inspired by two other46

works—MegaByte [4], which introduced a multi-scale ar-47

chitecture for modeling million-byte sequences, and Uni-48

Audio [5]—our architecture employs a global encoder over49

channel-packed tokens to tractably model long-range con-50

text. We pre-train the model on AudioSet [6] with a51

masked token objective and demonstrate its effectiveness52

by fine-tuning on downstream classification tasks. This53

work establishes a scalable and effective path for creating54

time-native audio foundation models that directly leverage55

advancements from the natural language processing do-56

main.57

2. RELATED WORK58

Our work builds on recent architectural advancements de-59

signed to mitigate the computational cost of modeling long60

sequences. The key solution we adopt is a multi-scale, hi-61

erarchical model pioneered by MegaByte [4] large-scale62

generative modeling of million-byte sequences and suc-63

cessfully adapted to a universal audio generation by Uni-64

Audio [5]. While these foundational works firmly establish65

the architecture’s effectiveness for causal, generative tasks,66

our work reorients its use. Mega-AudioFormer adapts this67

proven, efficient structure into a bidirectional model for68

discriminative classification tasks, investigating its effec-69

tiveness for audio understanding and analysis.70

Masked Modeling has emerged as a dominant pre-71

training strategy for learning robust audio representa-72

tions [7]. Models like MERT [8] have demonstrated the73

value of masked language model pretraining on a wide74

range of Music Information Retrieval (MIR) tasks. How-75

ever, they typically rely on standard Transformer architec-76

tures. In a parallel line of research focused on audio rep-77

resentation learning, EnCodecMAE [9] demonstrated the78

value of codec tokens as a learning target. It employs a79

Masked Autoencoder (MAE) to reconstruct masked audio80

segments by predicting their corresponding EnCodec to-81

kens. This self-supervised task forces the model to learn82

perceptually rich features.83
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Figure 1. High-level diagram of the Mega-AudioFormer architecture.

Further validating the richness of EnCodec’s represen-84

tations, an alternative line of work explores using the con-85

tinuous latent representation from the EnCodec encoder,86

prior to the quantization step, as direct input for classifi-87

cation networks [10]. In contrast, our work investigates88

the viability of using the discrete codebook indices, an ap-89

proach that aligns with other state-of-the-art models like90

MERT and EnCodecMAE, thereby making the audio rep-91

resentation directly compatible with language modeling92

techniques.93

3. EXPERIMENTAL EVALUATION AND94

PERSPECTIVES95

Our proposed model is a two-phase training process as pre-96

sented in Figure 1. The workflow begins by converting97

an audio waveform into a sequence of discrete tokens us-98

ing the Encodec neural audio codec, which yields a multi-99

channel discrete representation of shape (Nq, T ), where100

Nq is the number of residual vector quantizers and T is101

the number of temporal steps. This representation is sub-102

sequently flattened in a time-first manner to create a single103

interleaved sequence, which is then partitioned into non-104

overlapping patches where each patch groups all Nq tokens105

from a single temporal step.106

As shown in Figure 1(a), the pre-training phase uses107

a dual-encoder structure. A Global Encoder, a 12-layer108

Transformer with a hidden dimension of 768, processes109

the sequence of patches. To handle temporal order, this110

encoder utilizes Rotary Position Embeddings (RoPE) [11];111

unlike standard methods that add sinusoidal signals to the112

input, RoPE injects relative positional information by ro-113

tating the key and query vectors within the attention mech-114

anism itself, which is particularly effective for modeling115

long sequences. This is augmented by a lightweight Local116

Encoder (a 2-layer Transformer) that also utilizes RoPE to117

operate on the token-level representations and learn fine-118

grained patterns within each patch. This complete model119

is pre-trained from scratch on the AudioSet dataset using120

a Masked Language Modeling (MLM) objective, where121

25% of the input tokens are randomly masked and the122

model learns to predict them.123

For downstream tasks the Local Encoder is discarded,124

and a single linear classification layer is placed on top of125

the pre-trained Global Encoder. The final hidden states126

from the Global Encoder are mean-pooled across the patch127

dimension to produce a fixed-size vector for classification.128

We also applied a data augmentation method that dropped129

a contiguous chunk of the tokens in the sequence.130

Our preliminary experimental evaluation covers three131

tasks: music genre classification on the GTZAN132

dataset [12], instrument classification on the NSYNTH133

dataset [13], and a binary speech/music discrimination134

task [14]. We use Encodec at bitrates of 1.5 and 12 kbps,135

corresponding to patch sizes of 2 and 16.136

Our preliminary results, summarized in Table 1, demon-137

strate the effectiveness of our pre-training strategy. Fine-138

tuning the pre-trained Global Encoder consistently and139

significantly outperforms training from scratch across all140

tasks, with particularly strong gains in speech/music dis-141

crimination and genre classification. The addition of data142

augmentation also provided a performance boost in some143

cases, notably on the more complex NSYNTH instrument144

classification task. Notably, the model pre-trained with a145

lower bitrate Encodec (1.5 kbps) generally achieved su-146

perior or comparable performance to the 12 kbps version.147

This suggests that a more compressed, lower-token-count148

representation is not only viable but potentially more effec-149

tive for these classification tasks, offering significant com-150

putational advantages.151

Table 1. Mega-AudioFormer Performance on Down-
stream Tasks. We compare fine-tuning against training
from scratch, with and without data augmentation.

Dataset Type Acc. (%) F1 (%)
1.5 12 1.5 12

GTZAN
Scratch 69.00 63.00 68.10 60.07
FT 83.00 79.00 82.50 78.01
FT w/ Aug. 78.00 79.00 78.00 78.91

NSYNTH
Scratch 28.27 26.03 17.69 14.87
FT 26.59 27.56 17.47 16.51
FT w/ Aug. 28.91 27.88 18.45 17.61

Speech/Music
Scratch 84.62 84.62 84.52 84.52
FT 100.00 100.00 100.00 100.00
FT w/ Aug. 100.00 100.00 100.00 100.00

For future work, we plan to expand on these promis-152

ing results. Our primary goal is to scale the pre-training153

phase by utilizing larger and more diverse audio datasets.154

Subsequently, we will extend our fine-tuning evaluation155

to a broader range of MIR benchmarks and downstream156

tasks to further validate the versatility and scalability of157

the Mega-AudioFormer architecture. Finally, we plan to158

also validate the knowledge transfer from a pre-trained lan-159

guage model into the audio domain using our framework.160



4. REFERENCES161

[1] A. Défossez, J. Copet, G. Synnaeve, and Y. Adi, “High162

fidelity neural audio compression,” arXiv preprint163

arXiv:2210.13438, 2022.164

[2] N. Zeghidour, A. Luebs, A. Omran, J. Skoglund, and165

M. Tagliasacchi, “Soundstream: An end-to-end neu-166

ral audio codec,” IEEE/ACM Transactions on Audio,167

Speech, and Language Processing, vol. 30, pp. 495–168

507, 2021.169

[3] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,170

L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,171

“Attention is all you need,” Advances in neural infor-172

mation processing systems, vol. 30, 2017.173

[4] L. Yu, D. Simig, C. Flaherty, A. Aghajanyan, L. Zettle-174

moyer, and M. Lewis, “Megabyte: Predicting million-175

byte sequences with multiscale transformers,” Ad-176

vances in Neural Information Processing Systems,177

vol. 36, pp. 78 808–78 823, 2023.178

[5] D. Yang, J. Tian, X. Tan, R. Huang, S. Liu, X. Chang,179

J. Shi, S. Zhao, J. Bian, X. Wu et al., “Uniaudio: An180

audio foundation model toward universal audio gener-181

ation,” arXiv preprint arXiv:2310.00704, 2023.182

[6] J. F. Gemmeke, D. P. Ellis, D. Freedman, A. Jansen,183

W. Lawrence, R. C. Moore, M. Plakal, and M. Ritter,184

“Audio Set: An Ontology and Human-Labeled Dataset185

for Audio Events,” in IEEE International Conference186

on Acoustics, Speech and Signal Processing. IEEE,187

2017, pp. 776–780.188

[7] Y. Ma, A. Øland, A. Ragni, B. M. Del Sette, C. Saitis,189

C. Donahue, C. Lin, C. Plachouras, E. Benetos, E. Sha-190

tri et al., “Foundation models for music: A survey,”191

arXiv preprint arXiv:2408.14340, 2024.192

[8] Y. Li, R. Yuan, G. Zhang, Y. Ma, X. Chen, H. Yin,193

C. Lin, A. Ragni, E. Benetos, N. Gyenge et al., “Mert:194

Acoustic music understanding model with large-scale195

self-supervised training,” in International Conference196

on Learning Representations, 2024.197

[9] L. Pepino, P. Riera, and L. Ferrer, “Encodecmae:198

Leveraging neural codecs for universal audio repre-199

sentation learning,” arXiv preprint arXiv:2309.07391,200

2023.201

[10] J. Perianez-Pascual, J. D. Gutiérrez, L. Escobar-202

Encinas, Á. Rubio-Largo, and R. Rodriguez-203

Echeverria, “Beyond spectrograms: Rethinking204

audio classification from encodec’s latent space,”205

Algorithms, vol. 18, no. 2, p. 108, 2025.206

[11] J. Su, M. Ahmed, Y. Lu, S. Pan, W. Bo, and Y. Liu,207

“Roformer: Enhanced transformer with rotary position208

embedding,” Neurocomputing, vol. 568, p. 127063,209

2024.210

[12] G. Tzanetakis and P. Cook, “Musical genre classifica-211

tion of audio signals,” IEEE Transactions on speech212

and audio processing, vol. 10, no. 5, pp. 293–302,213

2002.214

[13] J. Engel, C. Resnick, A. Roberts, S. Dieleman,215

M. Norouzi, D. Eck, and K. Simonyan, “Neural au-216

dio synthesis of musical notes with wavenet autoen-217

coders,” in International conference on machine learn-218

ing. PMLR, 2017, pp. 1068–1077.219

[14] G. Tzanetakis. (1999) Gtzan music/speech collection.220

[Online]. Available: http://marsyas.info/index.html221


