
Published in Transactions on Machine Learning Research (01/2023)

Finite-Time Analysis of Decentralized Single-Timescale
Actor-Critic

Qijun Luo qijunluo@link.cuhk.edu.cn
School of Science and Engineering
Shenzhen Research Institute of Big Data (SRIBD)
The Chinese University of Hong Kong, Shenzhen
Shenzhen, China

Xiao Li lixiao@cuhk.edu.cn
School of Data Science
Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS)
The Chinese University of Hong Kong, Shenzhen
Shenzhen, China

Reviewed on OpenReview: https: // openreview. net/ forum? id= KQRv0O8iW4

Abstract

Decentralized Actor-Critic (AC) algorithms have been widely utilized for multi-agent rein-
forcement learning (MARL) and have achieved remarkable success. Apart from its empirical
success, the theoretical convergence property of decentralized AC algorithms is largely un-
explored. Most of the existing finite-time convergence results are derived based on either
double-loop update or two-timescale step sizes rule, and this is the case even for centralized
AC algorithm under a single-agent setting. In practice, the single-timescale update is widely
utilized, where actor and critic are updated in an alternating manner with step sizes being
of the same order. In this work, we study a decentralized single-timescale AC algorithm.
Theoretically, using linear approximation for value and reward estimation, we show that
the algorithm has sample complexity of Õ(ε−2) under Markovian sampling, which matches
the optimal complexity with a double-loop implementation (here, Õ hides a logarithmic
term). When we reduce to the single-agent setting, our result yields new sample complexity
for centralized AC using a single-timescale update scheme. The central to establishing
our complexity results is the hidden smoothness of the optimal critic variable we revealed.
We also provide a local action privacy-preserving version of our algorithm and its analysis.
Finally, we conduct experiments to show the superiority of our algorithm over the existing
decentralized AC algorithms.

1 Introduction

Multi-agent reinforcement learning (MARL) (Littman, 1994; Vinyals et al., 2019) has been successful in
various models of multi-agent systems, such as robotics (Lillicrap et al., 2015), autonomous driving (Yu
et al., 2019), Go (Silver et al., 2017), etc. MARL has been extensively explored in the past decades; see, e.g.,
(Lowe et al., 2017; Omidshafiei et al., 2017; Zhang et al., 2021; Son et al., 2019; Espeholt et al., 2018; Rashid
et al., 2018). These works either focus on the setting where a central controller is available, or assuming
a common reward function for all agents. Among the many cooperative MARL settings, the work (Zhang
et al., 2018) proposed the fully decentralized MARL with networked agents. In this setting, each agent
maintains a private heterogeneous reward function, and agents can only access local/neighboring information
through communicating with its neighboring agents on the network. Then, the objective of all agents is to
jointly maximize the average long-term reward through interacting with environment modeled by multi-agent
Markov decision process (MDP). They proposed the decentralized Actor-Critic (AC) algorithm to solve this

1

https://openreview.net/forum?id=KQRv0O8iW4

Published in Transactions on Machine Learning Research (01/2023)

MARL problem, and showed its impressive performance. However, the theoretical convergence properties of
such class of decentralized AC algorithms are largely unexplored; see (Zhang et al., 2021) for a comprehensive
survey. In this work, our goal is to establish the finite-time convergence results under this fully decentralized
MARL setting. We first review some recent progresses on this line of research below.

Related works and motivations. The first fully decentralized AC algorithm with provable convergence
guarantee was proposed by (Zhang et al., 2018), and they achieved asymptotic convergence results under
two-timescale step sizes, which requires actor’s step sizes to diminish in a faster scale than the critic’s step
sizes. The sample complexities of decentralized AC were established recently. In particular, (Chen et al., 2022)
and (Hairi et al., 2022) independently proposed two communication efficient decentralized AC algorithms
with optimal sample complexity of O(ε−2 log(ε−1)) under Markovian sampling scheme. Nevertheless, their
analysis are based on double-loop implementation, where each policy optimization step follows a nearly
accurate critic optimization step (a.k.a. policy evaluation), i.e., solving the critic optimization subproblem to
ε-accuracy. Such a double-loop scheme requires careful tuning of two additional hyper-parameters, which are
the batch size and inner loop size. In particular, the batch size and inner loop size need to be of order O(ε−1)
and O(log(ε−1)) in order to achieve their sample complexity results, respectively. In practice, single-loop
algorithmic framework is often utilized, where one updates the actor and critic in an alternating manner by
performing any constant algorithmic iterations for both subproblems; see, e.g., (Schulman et al., 2017; Lowe
et al., 2017; Lin et al., 2019; Zhang et al., 2020). The work (Zeng et al., 2022) proposed a new decentralized
AC algorithm based on such a single-loop alternative update. However, they have to adopt two-timescale step
sizes rule to ensure convergence, which requires actor’s step sizes to diminish in a faster scale than the critic’s
step sizes. Due to the separation of the step sizes, the critic optimization subproblem is solved exactly when
the number of iterations tends to ∞. Such a restriction on the step size will slow down the convergence speed
of the algorithm. As a consequence, they only obtain sub-optimal sample complexity of O(ε− 5

2). In practice,
most algorithms are implemented with single-timescale step sizes rule, where the step sizes for the actor’s and
critic’s updates are of the same order. Though there are some theoretical achievements for single-timescale
update in other areas such as TDC (Wang et al., 2021) and bi-level optimization (Chen et al., 2021a), similar
theoretical understanding under AC setting is largely unexplored.

Indeed, even when reducing to single-agent setting, the convergence property of single-timescale AC algorithm
is not well established. The works (Fu et al., 2021; Guo et al., 2021) established the finite-time convergence
result under a special single-timescale implementation, where they attained the sample complexity of O(ε−2).
Their analysis is based on an algorithm where the critic optimization step is formulated as a least-square
temporal difference (LSTD) at each iteration, which requires to sample the transition tuples for Õ(ε−1) times
to form the data matrix in the LSTD subproblem. Then, they solve the LSTD subproblem in a closed-form
fashion by inverting a matrix of large size. Later, (Chen et al., 2021a) obtained the same sample complexity
using TD(0) update for critic variables under i.i.d. sampling. Their analysis highly relies on the assumption
that the Jacobian of the stationary distribution is Lipschitz continuous, which is not justified in their work.

The above observations motivate us to ask the following question:

Can we establish finite-time convergence result for decentralized AC algorithm with single-timescale step sizes
rule?1

Main contributions. By answering this question positively, we have the following contributions:

• We design a decentralized AC algorithm, which employs a single-timescale step sizes rule and adopts
Markovian sampling scheme. The proposed algorithm allows communication between agents for
every Kc iterations with Kc being any integer lies in [1,O(ε− 1

2)], rather than communicating at each
iteration as adopted by previous single-loop decentralized AC algorithms (Zeng et al., 2022; Zhang
et al., 2018).

• Using linear approximation for value and reward estimation, we establish the finite-time convergence
result for the proposed algorithm under standard assumptions. In particular, we show that the
algorithm has a sample complexity of Õ(ε−2), which matches the optimal complexity up to a

1As convention in (Fu et al., 2021), when we use "single-timescale", it means we utilize a single-loop algorithmic framework
with single-timescale step sizes rule.

2

Published in Transactions on Machine Learning Research (01/2023)

logarithmic term. In addition, we show that the logarithmic term hidden in the “Õ” can be removed
under the i.i.d. sampling scheme. These convergence results are valid for all the above mentioned
choices for Kc.

• To preserve privacy of local actions, we propose a variant of our algorithm which utilizes noisy local
rewards for estimating global rewards. We show that such an algorithm will maintain the optimal
sample complexity at the expense of communicating at each iteration.

Our key technical result is to reveal the hidden smoothness of the optimal critic variable, so that we can derive
a sufficient descent on the averaged critic’s optimal gap under the single-timescale update. Consequently,
we can resort to the classic convergence analysis for alternating optimization algorithms to establish the
approximate ascent property of the overall optimization process, which leads to the final sample complexity
results. We also designed a Lyapunov function to analyze the descent of the objective function with a
single-timescale update under the decentralized setting.

When we reduce to the non-decentralized case, i.e., the single-agent setting, our results yield new sample
complexity guarantees for the classic centralized AC algorithm using a single-timescale update scheme.

Discussion on a concurrent work. We note that there is a concurrent work (Olshevsky & Gharesifard,
2023) which also analyzes the single-timescale AC algorithm and achieves similar complexity results. Their
analysis is based on the small gain theorem, which is different from ours. These two analysis frameworks
provide useful insights for the AC algorithm from different perspectives. (Olshevsky & Gharesifard, 2023)
shows that the coupled expression on the errors of actor and critic can be fit into a non-linear small gain
theorem framework, which bounds the actor’s error by desired order. Our analysis reveals the hidden
smoothness of the optimal critic variable so that approximate descent on the critic’s objective can be achieved.
In addition, (Olshevsky & Gharesifard, 2023) considers the single-agent setting while our analysis deals
with the more general decentralized setting. Moreover, (Olshevsky & Gharesifard, 2023) analyzes the i.i.d.
sampling scheme where the single agent is assumed to have access to the transition tuples from the stationary
distribution and the discounted state-visitation distribution. By contrast, our setting considers the practical
Markovian sampling scheme, where the transition tuples are from the trajectory generated during the update
of the agents.

2 Preliminary

In this section, we introduce the problem formulation and the policy gradient theorem, which serves as the
preliminary for the analyzed decentralzed AC algorithm.

Suppose there are multiple agents aiming to independently optimize a common global objective, and each
agent can communicate with its neighbors through a network. To model the topology, we define the graph as
G = (N , E), where N is the set of nodes with |N | = N and E is the set of edges with |E| = E. In the graph,
each node represents an agent, and each edge represents a communication link. The interaction between
agents follows the networked multi-agent MDP.

2.1 Markov decision process

A networked multi-agent MDP is defined by a tuple (G,S, {Ai}i∈[N],P, {ri}i∈[N], γ). G denotes the communi-
cation topology (the graph), S is the finite state space observed by all agents, Ai represents the finite action
space of agent i. Let A := A1 × · · · × AN denote the joint action space and P(s′|s, a) : S × A × S → [0, 1]
denote the transition probability from any state s ∈ S to any state s′ ∈ S for any joint action a ∈ A.
ri : S × A → R is the local reward function that determines the reward received by agent i given transition
(s, a); γ ∈ [0, 1] is the discount factor.

For simplicity, we will use a := [a1, · · · , aN] to denote the joint action, and θ ∈ RNdθ to denote concatenation
of all actor’s joint parameters of all actors, with θi ∈ Rdθ . Here, without loss of generality, we assume that
every agent has the same number of parameters for notation brevity. The MDP goes as follows: For a given
state s, each agent make its decision ai based on its policy ai ∼ πθi(·|s). The state transits to the next state
s′ based on the joint action of all the agents: s′ ∼ P(·|s, a). Then, each agent will receive its own reward

3

Published in Transactions on Machine Learning Research (01/2023)

ri(s, a). For the notation brevity, we assume that the reward function mapping is deterministic and does not
depend on the next state without loss of generality. The stationary distribution induced by the policy πθ and
the transition kernel is denoted by µπθ (s).

Our objective is to find a set of policies that maximize the accumulated discounted mean reward received by
agents

θ∗ = arg max
θ

J(θ) := E

[∞∑
k=0

γkr̄(sk, ak)
]
. (1)

Here, k represents the time step. r̄(sk, ak) := 1
N

∑N
i=1 r

i(sk, ak) is the mean reward among agents at time
step k. The randomness of the expectation comes from the initial state distribution µ0(s), the transition
kernel P, and the stochastic policy πθi(·|s).

2.2 Policy gradient Theorem

Under the discounted reward setting, the global state-value function, action-value function, and advantage
function for policy set θ, state s, and action a, are defined as

Vπθ (s) := E

[∞∑
k=0

γkr̄(sk, ak)|s0 = s

]
(2)

Qπθ (s, a) := E

[∞∑
k=0

γkr̄(sk, ak)|s0 = s, a0 = a

]
Aπθ (s, a) := Qπθ (s, a) − Vπθ (s).

To maximize the objective function defined in (1), the policy gradient (Sutton et al., 2000) can be computed
as follow

∇θJ(θ) = Es∼dπθ ,a∼πθ

[
1

1 − γ
Aπθ (s, a)ψπθ (s, a)

]
,

where dπθ (s) := (1 − γ)
∑∞
k=0 γ

kP(sk = s) is the discounted state visitation distribution under policy πθ, and
ψπθ (s, a) := ∇ log πθ(s, a) is the score function.

Following the derivation of (Zhang et al., 2018), the policy gradient for each agent under discounted reward
setting can be expressed as

∇θiJ(θ) = Es∼dπθ ,a∼πθ

[
1

1 − γ
Aπθ (s, a)ψπθi (s, a

i)
]
. (3)

3 Algorithms

3.1 Decentralized single-timescale Actor-Critic

We introduce the decentralized single-timescale AC algorithm; see Algorithm 1. In the remaining parts of
this section, we will explain the updates in the algorithm in details.

In fully-decentralized MARL, each agent can only observe its local reward and action, while trying to maximize
the global reward (mean reward) defined in (1). The decentralized AC algorithm solves the problem by
updating actor and critic variables alternatively on an online trajectory. Specifically, we have N pairs of
actor and critic. In order to maximize J(θ), each critic tries to estimate the global state-value function Vπθ (s)
defined in (2). Then, each actor updates its policy parameter based on approximated policy gradient. We
now provide more details about the algorithm.

Critics’ update. We will use ωi ∈ Rdω to denote the ith critic’s parameter and ω̄ := 1
N

∑N
i=1 ω

i to represent
the averaged parameter of critic. Each critic approximates the global value function as Vπθ (s) ≈ V̂ωi(s).

4

Published in Transactions on Machine Learning Research (01/2023)

Algorithm 1: Decentralized single-timescale AC (reward estimator version)

1: Initialize: Actor parameter θ0, critic parameter ω0, reward estimator parameter λ0, initial state s0.
2: for k = 0, · · · , K − 1 do
3: Option 1: i.i.d. sampling:
4: sk ∼ µθk (s), ak ∼ πθk (·|sk), sk+1 ∼ P(·|sk, ak).
5: Option 2: Markovian sampling:
6: ak ∼ πθk (·|sk), sk+1 ∼ P(·|sk, ak).
7:
8: Periodical consensus: Compute ω̃i

k and λ̃i
k by (4) and (7).

9:
10: for i = 0, · · · , N in parallel do
11: Reward estimator update: update λi

k+1 by (8).
12: Critic update: Update ωi

k+1 by (5).
13: Actor update: Update θi

k+1 by (6).
14: end for
15: end for

The critic’s approximation error can be categorized into two parts, namely, the consensus error 1
N

∑N
i=1 ∥ωi −

ω̄∥, which measures how close the critics’ parameters are; and the approximation error ∥ω̄ − ω∗(θ)∥, which
measures the approximation quality of averaged critic.

In order for critics to reach consensus, each critic exchanges its parameters with neighbors and perform the
following update

ω̃ik =
{∑N

j=1 W
ijωjk if k mod Kc = 0

ωik otherwise.
(4)

Here, Kc denotes the consensus frequency. The communication matrix W ∈ Rn×n is usually determined
artificially in practice and can be sparse, which means that the number of neighbors for each agent is much
fewer than the total number of agents. Thus, the cost for each consensus step is usually much lower than a full
synchronization over the network. The detailed requirements of matrix W will be discussed in Assumption 5.

To reduce the approximation error, we will perform the local TD(0) update (Tsitsiklis & Van Roy, 1997) as

ωik+1 = ΠRω (ω̃ik + βkg
i
c(ξk, ωik)), (5)

where ξ := (s, a, s′) represents a transition tuple, gic(ξ, ω) := δi(ξ, ω)∇V̂ω(s) is the update direction, δi(ξ, ω) :=
ri(s, a) + γV̂ω(s′) − V̂ω(s) is the local temporal difference error (TD-error). βk is the step size for critic at
iteration k. ΠRω projects the parameter into a ball of radius of Rω containing the optimal solution, which
will be explained when discussing Assumptions 1 and 2.

Actors’ update. We will use stochastic gradient ascent to update the policy’s parameter, which is calculated
based on policy gradient theorem in (3). The advantage function Aπθ (s, a) can be estimated by

δ(ξ, θ) := r̄(s, a) + γVπθ (s′) − Vπθ (s),

with a sampled from πθ(·|s). However, to preserve the privacy of each agents, the local reward cannot be
shared to other agents under the fully decentralized setting. Thus, the averaged reward r̄(sk, ak) is not
directly attainable. To this end, we adopt the strategy proposed in (Zhang et al., 2018) to approximate the
averaged reward. In particular, each agent i will have a local reward estimator with parameter λi ∈ Rdλ ,
which estimates the global averaged reward as r̄(sk, ak) ≈ r̂λi(sk, ak).

Thus, the update of the ith actor is given by

θik+1 = θik + αk δ̂(ξk, ωik+1, λ
i
k+1)ψπ

θi
k

(sk, aik), (6)

5

Published in Transactions on Machine Learning Research (01/2023)

Algorithm 2: Decentralized single-timescale AC (noisy reward version)

1: Initialize: Actor parameter θ0, critic parameter ω0, initial state s0.
2: for k = 0, · · · , K − 1 do
3: Option 1: i.i.d. sampling:
4: sk ∼ µθk (s), ak ∼ πθk (·|sk), sk+1 ∼ P(·|sk, ak).
5: Option 2: Markovian sampling:
6: ak ∼ πθk (·|sk), sk+1 ∼ P(·|sk, ak).
7:
8: Periodical consensus: Compute ω̃i

k by (4).
9:

10: for i = 0, · · · , N in parallel do
11: Global reward estimation: estimate r̄k(sk, ak) by (9).
12: Critic update: Update ωi

k+1 by (5).
13: Actor update: Update θi

k+1 by (10).
14: end for
15: end for

where δ̂(ξ, ω, λ) := r̂λ(s, a) + γV̂ω(s′) − V̂ω(s) is the approximated advantage function. αk is the step size for
actor’s update at iteration k.

Reward estimators’ update. Similar to critic, each reward estimator’s approximation error can be
decomposed into consensus error and the approximation error.

For each local reward estimator, we perform the consensus step to minimize the consensus error as

λ̃ik =
{∑N

j=1 W
ijλjk if k mod Kc = 0

λik otherwise.
(7)

To reduce the approximation error, we perform a local update of stochastic gradient descent.

λik+1 = ΠRλ(λ̃ik + ηkg
i
r(ξk, λik)), (8)

where gir(ξ, λ) := (ri(s, a) − r̂λ(s, a))∇r̂λ(s, a) is the update direction. ηk is the step size for reward estimator
at iteration k. Note the calculation of gir(ξ, λ) does not depend on the next state s′; we use ξ in (8) just for
notation brevity. Similar to critic’s update, ΠRλ projects the parameter into a ball of radius of Rλ containing
the optimal solution.

In our Algorithm 1, we will use the same order for αk, βk, and ηk and hence, our algorithm is in single-timescale.

Linear approximation for analysis. In our analysis, we will use linear approximation for both critic
and reward estimator variables, i.e. V̂ω(s) := ϕ(s)Tω; r̂λ(s, a) := φ(s, a)Tλ, where ϕ(s) : S → Rdω and
φ(s, a) : S × A → Rdλ are two feature mappings, whose property will be specified in the discussion of
Assumption 1.

Remarks on sampling scheme. Acquiring unbiased stochastic gradients for critic and actor variables
requires sampling from µπθ and dπθ , respectively. However, in practical implementations, states are usually
collected from an online trajectory (Markovian sampling), whose distribution is generally different from µπθ
and dπθ . Such a distribution mismatch will inevitably cause biases during the update of critic and actor
variables. One has to bound the corresponding error terms when analyzing the algorithm.

3.2 Variant for preserving local action

Note that in Algorithm 1, the reward estimators need the knowledge of joint actions in order to estimate
the global rewards. Inspired by (Chen et al., 2022), we further propose a variant of Algorithm 1 to preserve
the privacy of local actions. It estimates the global rewards by communicating noisy local rewards. As a
trade-off, the approach requires O(log(ε−1)) communication rounds for each iteration; see Algorithm 2.

6

Published in Transactions on Machine Learning Research (01/2023)

Let rik represents rik(sk, ak) for brevity. The reward estimation process goes as follow: for each agent i, we
first produce a noisy local reward r̃ik = rik(1 + z), with z ∼ N (0, σ2). Thus, the noise level is controlled by
the variance σ2, which is chosen artificially. When the noise level σ2 increases, the local reward’s privacy
will be strengthen. In the meantime, the variance of the estimated global reward will increase. To estimate
the global reward, each agent i first initialize the estimation as r̃ik,0 = r̃ik. Then, each agent i perform the
following consensus step for Kr times, i.e.

r̃ik,l+1 =
N∑
j=1

W ij r̃ik,l, l = 0, 1, · · · ,Kr − 1. (9)

The reward r̃ik,Kr will be used for estimating the global reward for agent i at kth iteration. As we will
see, the error |r̃it,l+1 − 1

N

∑N
i=1 r̃

i
k| will converge to 0 linearly. Hence, to reduce the error to ε, we need

Kr = O(log(ε−1)) rounds of communications for each iteration. Based on the estimated global reward, the
ith actor’s update is given by

θik+1 = θik + αk(r̃ik,Kr + γV̂ωi(s′) − V̂ωi(s))ψπθi
k

(sk, aik). (10)

4 Main results

In this section, we first introduce the technical assumptions used for our analysis, which are standard in the
literature. Then, we present the convergence results for both actor and critic variables.

4.1 Assumptions

Assumption 1 (boundedness of rewards and feature vectors). The local rewards are uniformly bounded, i.e.,
there exists a positive constant rmax such that for all feasible (s, a) and i ∈ [N], we have | ri(s, a) | ≤ rmax.
The norm of feature vectors are bounded such that for all s ∈ S, a ∈ A, ∥ϕ(s)∥ ≤ 1, ∥φ(s, a)∥ ≤ 1.2

Assumption 1 is standard and commonly adopted; see, e.g., (Bhandari et al., 2018; Xu et al., 2020; Zeng
et al., 2022; Shen et al., 2020; Qiu et al., 2019). This assumption can be achieved via normalizing the feature
vectors.
Assumption 2 (sufficient exploration). There exists two positive constants λϕ, λφ such that for all policy πθ,
the following two matrices are negative definite

Aθ,ϕ := Es∼µθ(s)[ϕ(s)(γϕ(s′)T − ϕ(s)T)]
Aθ,φ := Es∼µθ(s),a∼πθ(·|s)[−φ(s, a)φ(s, a)T],

with λmax(Aθ,ϕ) ≤ λϕ, λmax(Aθ,φ) ≤ λφ, where λmax(·) represents the largest eigenvalue.

The Assumption 2 characterizes a strong convexity-like property of critic and reward estimator’s objective
function, and thereby ensures sufficient decrease of the estimation error for each update. It will be satisfied
when infθ,s,a πθ(a|s) ≥ c for all policy πθ, s ∈ S, a ∈ A with c being positive. Thus, it can be understood
as an exploration assumption on policy πθ. (see Proposition 3.1 of (Olshevsky & Gharesifard, 2023) for
more detail). This assumption is widely seen in analysis of AC algorithms; see, e.g. (Shen et al., 2020; Xu
& Liang, 2021; Zeng et al., 2022). Together with Assumption 1, we can show that ∥ω∗(θ)∥ ≤ Rω := rmax

λϕ
,

∥λ∗(θ)∥ ≤ Rλ := rmax
λφ

, which justifies the projection step. In practice, one can estimate Rω and Rλ online;
see Section 8.2 of (Bhandari et al., 2018) for one approach. We provide more details for the projection in
Appendix C.
Assumption 3 (Lipschitz properties of policy). There exists constants Cψ, Lψ, Lπ such that for all policy
parameter θ, θ′, s ∈ S and a ∈ A, we have (1). |πθ(a|s) − πθ′(a|s)| ≤ Lπ∥θ− θ′∥; (2). ∥ψθ(s, a) − ψθ′(s, a)∥ ≤
Lψ∥θ − θ′∥; (3). ∥ψθ(s, a)∥ ≤ Cψ.

2Through out the paper, we will use ∥ · ∥ to represent the Euclidean norm for vectors and Frobenius norm for matrices.

7

Published in Transactions on Machine Learning Research (01/2023)

Assumption 3 is common for analyzing policy-based algorithms; see, e.g., (Xu et al., 2019; Wu et al., 2020;
Hairi et al., 2022). The assumption implies the smoothness of objective function J(θ). It holds for policy
classes such as tabular softmax policy (Agarwal et al., 2020), Gaussian policy (Doya, 2000), and Boltzmann
policy (Konda & Borkar, 1999).
Assumption 4 (mixing of Markov chain). There exists constants κ > 0 and ρ ∈ (0, 1) such that

sup
s∈S

dTV (P(sk ∈ ·|s0 = s, πθ), µθ) ≤ κρk, ∀k.

Assumption 4 is a standard assumption; see, e.g. (Bhandari et al., 2018; Wu et al., 2020; Xu et al., 2019). The
assumption always holds for irreducible and aperiodic Markov chain. It ensures the geometric convergence of
state to the stationary distribution.
Assumption 5 (doubly stochastic weight matrix). The communication matrix W is doubly stochastic, i.e.
each column/row sum up to 1. Moreover, the second largest singular value ν is smaller than 1.

Assumption 5 is a common assumption in decentralized optimization and multi-agent reinforcement learning;
see, e.g., (Sun et al., 2020; Chen et al., 2021b; 2022). It ensures the convergence of consensus error for critic
and reward estimator variables.

4.2 Sample complexity for Algorithm 1

Theorem 1. Suppose Assumptions 1-5 hold. Consider the update of Algorithm 1 under Markovian sampling.
Let αk = ᾱ√

K
for some positive constant ᾱ, βk = C9

2λϕαk, and ηk = C10
2λφαk and Kc ≤ O(K1/4), where K is

the total number of iterations. Then, we have

1
K

K∑
k=1

N∑
i=1

E
[∥∥ωik − ω∗(θk)

∥∥2] ≤ O
(

log2 K√
K

)
1
K

K∑
k=1

N∑
i=1

E
[
∥∇θiJ(θk)∥2

]
≤ O

(
log2 K√

K

)
+ O (εapp + εsp) , (11)

where C9, C10 are positive constants defined in proof.

The proof of Theorem 1 can be found in Appendix D.1. It establishes the iteration complexity of
O(log2 K/

√
K), or equivalently, sample complexity of Õ(ε−2) for Algorithm 1. Note that actors, crit-

ics, and reward estimators use the step size of the same order. The rate matches the state-of-the-art sample
complexity of decentralized AC algorithms up to a logarithmic term, which are implemented in double-loop
fashion (Hairi et al., 2022; Chen et al., 2022). The approximation error is defined as

εapp := max
θ,a

Es∼µθ

[∣∣∣Vπθ (s) − V̂ω∗(θ)(s)
∣∣∣2 +

∣∣r̄(s, a) − r̂λ∗(θ)(s, a)
∣∣2]. (12)

The error εapp captures the approximation power of critic and reward estimator. When using function
approximation, such an error is inevitable. Similar terms also appear in the literature (see, e.g., (Xu et al.,
2020; Agarwal et al., 2020; Qiu et al., 2019)). εapp becomes zero in tabular case. The error εsp represents
the mismatch between the discounted state visitation distribution dπθ and stationary distribution µπθ . It is
defined as

εsp := 4C2
θ

(
logρ κ−1 + 1

ρ

)2
(1 − γ)2

.

By policy gradient theorem (3), the states should be sampled from discounted state visitation distribution
in order to attain unbiased estimation of policy gradient. Nevertheless, the state distribution converges to
stationary distribution µπθ due to Markov chain’s mixing, which inevitably introduces the sampling error εsp.
Similar terms also appear in (Zeng et al., 2022; Shen et al., 2020). When γ is close to 1, the error becomes
small. This is because dπθ approaches to µπθ when γ goes to 1. In the literature, some works assume that
sampling from dπθ is permitted, thus eliminate this error; see, e.g., (Chen et al., 2021a).

8

Published in Transactions on Machine Learning Research (01/2023)

Complexity result under i.i.d. sampling. Under the i.i.d. sampling scheme, state can be directly
sampled from µπθ and dπθ . In this case, the logarithmic term caused by the Markovian mixing time, and the
error εsp caused by the distribution mismatch, can be avoided. In this sense, one can attain the iteration
complexity of O(1/

√
K), or equivalently, sample complexity of O(ε−2).

4.3 Sample complexity for Algorithm 2

Theorem 2. Suppose Assumptions 1-5 hold. Consider the update of Algorithm 2 under Markovian sampling.
Let αk = ᾱ√

K
for some positive constant ᾱ and βk = C9

2λϕαk, Kr = log(K1/2), Kc ≤ O(K1/4), where K is the
total number of iterations. Then, we have

1
K

K∑
k=1

N∑
i=1

E
[
∥ωik − ω∗(θk)∥2] ≤ O

(
log2 K√

K

)
1
K

K∑
k=1

N∑
i=1

E
[
∥∇θiJ(θk)∥2] ≤ O

(
log2 K√

K

)
+ O(εcapp + εsp), (13)

where the constants are defined in proof.

The proof of Theorem 2 can be found in Appendix D.2. It establishes the sample complexity of Õ(ε−2) for
Algorithm 2. The εcapp captures the approximation error of the critic variables, which is defined as

εcapp := max
θ

Es∼µθ

[∣∣∣Vπθ (s) − V̂ω∗(θ)(s)
∣∣∣2] .

The Algorithm 2 preserves the privacy of local actions and requires less parameters than Algorithm 1 since
there is no reward estimator. The cost is that it needs to communicate O(log(ε−1)) times for each iteration.

4.4 Proof sketch

We present the main elements for the proof of Theorem 1, which helps in understanding the difference between
classical two-timescale/double-loop analysis and our single-timescale analysis. The proof of Theorem 2 follows
the similar framework.

Under Markovian sampling, it is possible to show the following inequality, which characterizes the ascent of
the objective.

E[J(θk+1)] − J(θk) ≥
N∑
i=1

[αk
2 E∥∇θiJ(θk)∥2 + αk

2 E∥gia(ξk, ωik+1, λ
i
k+1)∥2

−8C2
ψαkE∥ω∗(θk) − ωik+1∥2 − 4C2

ψαkE∥λ∗(θk) − λik+1∥2
]

− O(log2(K)α2
k) − O((εapp + εsp)αk). (14)

To analyze the errors of critic ∥ω∗(θk) − ωik+1∥2 and reward estimator ∥λ∗(θk) − λik+1∥2, the two-timescale
analysis requires O(αk) < min{O(βk),O(ηk)} in order for these two errors to converge. The double-loop
approach runs lower-level update for O(log(ε−1)) times with batch size O(ε−1) to drive these errors below
ε and hence, they cannot allow inner loop size and bath size to be O(1) simultaneously. To obtain the
convergence result for single-timescale update, the idea is to further upper bound these two lower-level errors
by the quantity O(αkE∥gia(ξk, ωik+1, λ

i
k+1)∥2) (through a series of derivations), and then eliminate these errors

by the ascent term αk
2 E∥gia(ξk, ωik+1, λ

i
k+1)∥2.

We mainly focus on the analysis of critic’s error through the proof sketch. The analysis for reward estimator’s
error follows similar procedure. We start by decomposing the error of critic as

N∑
i=1

∥ωik+1 − ω∗(θk)∥2 =
N∑
i=1

(∥ωik+1 − ω̄k+1∥2 + ∥ω̄k+1 − ω∗(θk)∥2). (15)

9

Published in Transactions on Machine Learning Research (01/2023)

The first term represents the consensus error, which can be bounded by the next lemma.
Lemma 1. Suppose Assumptions 1 and 5 hold. Consider the sequence {ωik} generated by Algorithm 1, then
the following holds

∥Qωk+1∥ ≤ ν
k
Kc

−1∥ω0∥ + 4
√
NCδ

k∑
t=0

ν
k−t
Kc

−1βt,

where ωk := [ω1
k, · · · , ωNk]T , Q := I − 1

N 11T , ν ∈ (0, 1) is the second largest singular value of W .

Based on Lemma 1 and follow the step size rule of Theorem 1, it is possible to show ∥Qωk+1∥2 =
∑N
i=1 ∥ωik+1−

ω̄k+1∥2 = O(K2
cβ

2
k). Let Kc = O(β− 1

2
k), we have ∥Qωk+1∥2 = O(βk), which maintains the optimal rate.

To analyze the second term in (15), we first construct the following Lyapunov function

Vk := −J(θk) + ∥ω̄k − ω∗(θk)∥2 + ∥λ̄k − λ∗(θk)∥2. (16)

Then, it remains to derive an approximate descent property of the term ∥ω̄k −ω∗(θk)∥2 in (16). Towards that
end, our key step lies in establishing the smoothness of the optimal critic variables shown in the next lemma.
Lemma 2 (Smoothness of optimal critic). Suppose Assumptions 1-3 hold, under the update of Algorithm 1,
there exists a positive constant Lω,2 such that for any policy parameter θ1, θ2, it holds that

∥∇ω∗(θ1) − ∇ω∗(θ2)∥ ≤ Lω,2∥θ1 − θ2∥,

This smoothness property is essential for achieving our Õ(1/
√
K) convergence rate.

To the best of our knowledge, the smoothness of ω∗(θ) has not been justified in the literature. Equipped with
Lemma 2, we are able to establish the following lemma.
Lemma 3 (Error of critic). Under Assumptions 1-5, consider the update of Algorithm 1. Then, it holds that

E[∥ω̄k+1 − ω∗(θk+1)∥2] ≤ (1 + C9αk)∥ω̄k+1 − ω∗(θk)∥2

+ αk
4

N∑
i=1

∥E[gia(ξk, ωik+1, λ
i
k+1)]∥2 + O(α2

k). (17)

E[∥ω̄k+1 − ω∗(θk)∥2] ≤ (1 − 2λϕβk)∥ω̄k − ω∗(θk)∥2

+ CK1βkβk−ZK + CK2αk−ZKβk. (18)

Here, ZK := min{z ∈ N+|κρz−1 ≤ min{αK , βK , ηK}}, C9, λϕ are constants specified in appendix, and CK1

and CK2 are of order O(log(K)) and O(log2(K)) respectively.

Plug (18) into (17), we can establish the approximate descent property of ∥ω̄k − ω∗(θk)∥2 in (16):

E[∥ω̄k+1 − ω∗(θk+1)∥2] ≤ (1 + C9αk)(1 − 2λϕβk)∥ω̄k − ω∗(θk)∥2

+ αk
4

N∑
i=1

∥E[gia(ξk, ωik+1, λ
i
k+1)]∥2 + O(CK1βkβk−ZK + CK2αk−ZKβk). (19)

Finally, plugging (14), (17), and (19) into (16) gives the ascent of the Lyapunov function, which leads to our
convergence result through steps of standard arguments.

Remarks on update step. In Algorithms 1 and 2, the actor and critic update once for each iteration. This
update scheme can be generalized to the case where actor and critic update arbitrary number of constant
steps without affecting the order of the sample complexity. In particular, suppose that actor updates Ca steps
per iteration, and let gia,k be the actor’s update direction at iteration k. The bounds (14) and (19) become

E[J(θk+1)] − J(θk) ≥
N∑
i=1

[αk
2 E∥∇θiJ(θk)∥2 + αk

2 E∥gia,k∥2 − 8C2
ψαkE∥ω∗(θk) − ωik+1∥2

− 4C2
ψαkE∥λ∗(θk) − λik+1∥2]− O(C2

a log2(K)α2
k) − O((εapp + εsp)αk)

10

Published in Transactions on Machine Learning Research (01/2023)

Figure 1: Averaged reward versus sample complexity and communication complexity. The vertical axis is the
averaged reward over all the agents. The result is averaged over 10 Monte Carlo runs.

E[∥ω̄k+1 − ω∗(θk+1)∥2] ≤ (1 + C9αk)(1 − 2λϕβk)∥ω̄k − ω∗(θk)∥2

+ αk
4

N∑
i=1

∥E[gia,k]∥2 + O(CK1βkβk−ZK + CaCK2αk−ZKβk),

where we replace the norm bound αk∥gia(ξk, ωik+1, λ
i
k+1)∥ = O(αk) with ∥gia,k∥ and apply Cauchy-Schwartz

inequality: ∥gia,k∥ ≤ Ca∥gia(ξk, ωik+1, λ
i
k+1)∥. When Ca is a constant that is not related to K, these two

bounds recovers (14) and (19). Hence, we can follow exactly the same proof procedure and obtain the Õ(ε−2)
sample complexity result as before. When critic update Cc > 1 steps per iteration, the expected temporal
difference error will decrease for each step by controlling step size, so that the bound in (19) still holds. Thus,
updating critic for multiple steps will not affect the sample complexity.

4.5 Convergence of single-timescale decentralized NAC

The natural Actor-Critic (NAC) (Peters & Schaal, 2008) is a popular variant of AC algorithm, which enjoys the
convergence to a global optimum (with compatible function approximation error) instead of a local stationary
point. While our main focus is the convergence of the single-timescale AC algorithm, we find that the proof
technique can be directly extended to establish the global convergence of single-timescale decentralized NAC.
For reference, we design such an algorithm and provide its convergence result in Appendix E as a by-product
of our single-timescale AC’s analysis. To the best of our knowledge, this is the first convergence result of
single-timescale NAC. However, our analysis only establishes a O(ε−6) rate for the algorithm. This result
is sub-optimal compared with the existing best complexity of O(ε−3) (Chen et al., 2022), which is based
on the double-loop implementation. The main reason for the sub-optimality is that in comparison with the
double-loop update, the critic variables under the single-timescale update will inevitably converge slower due
to the change of the actor’s parameter in each iteration. Based on the classical NAC’s analysis, the slower
convergence of critic variables will result in a worse convergence rate of the optimality gap. Please refer to
Appendix E for more discussions on the sub-optimality.

5 Numerical results

5.1 Experiment setting

We adopt the grounded communication environment proposed in (Mordatch & Abbeel, 2018). Our task
consists of N agents and the corresponding N landmarks inhabited in a two-dimension world, where each
agent can observe the relative position of other agents and landmarks. For every discrete time step, agents
take actions to move along certain directions, and receive their rewards. Agents are rewarded based on the
distance to their own landmark, and penalized if they collide with other agents. The objective is to maximize

11

Published in Transactions on Machine Learning Research (01/2023)

the long-term averaged reward over all agents. Since we focus on decentralized setting, each agent shall not
know the target landmark of others, i.e., the reward function of others. To exchange information, each agent
is allowed to send their local information via a fixed communication link. Through all the experiments, the
agent number N is set to be 5, and the discount factor γ is set to be 0.95.

5.2 Comparison with existing decentralized AC algorithms

In this section, we compare the proposed algorithm with existing decentralized AC algorithms under
the cooperative MARL setting (Chen et al., 2022; Zeng et al., 2022) in terms of sample complexity and
communication complexity. In the sequel, we refer Algorithm 1 as "SDAC-re" and Algorithm 2 as "SDAC-noi"
(see Appendix 2). The algorithm proposed in (Chen et al., 2022) is referred as "DLDAC", which is based
on double-loop implementation. The algorithm proposed in (Zeng et al., 2022) is denoted by "TDAC-re",
which is based on two-timescale step size implementation. For comparison, we also implement a noisy reward
version of "TDAC-re" and denote it by "TDAC-noi".

Comparison to double-loop decentralized AC. For "SDAC-re" and "SDAC-noi", we set αk = 0.01(k +
1)−0.5, βk = 0.1(k + 1)−0.5, ηk = 0.1(k + 1)−0.5,Kc = 5, σ = 0.5,Kr = 2. For "DLDAC", we fix Tc = 50,
T ′
c = 10, T ′ = 5, Nc = 10, N = 100, σ = 0.1 3, which is adopted by their paper (see comparisons under

different hyper-parameters in Appendix A). We set α = 0.01, β = 0.1 for "DLDAC" since we observe that
larger step sizes will result in divergence. We have to mention that such a inner loop size Tc = 50 in "DLDAC"
is not necessarily consistent with the theory of a double-loop algorithm, in which the loop size should be
proportional to O(ε−1). The sample complexity and communication complexity results are shown in Figure 1.
For the sample complexity, "SDAC-noi" enjoys a faster convergence compared with "DLDAC". In terms of
communication complexity, "DLDAC" achieves better performance as it applies mini-batch technique and
thereby requires less communication rounds when using the same amount of samples. Such a mini-batch
approach can also be adopted to our proposed algorithms. Thus, we implement a mini-batch version of our
proposed algorithms, which we refer as "SDAC-noi-batch" and "SDAC-re-batch", respectively. We set 10 as
the batch size for actor, critic, and reward estimator. We can see that by applying mini-batch update, these
two variants achieve significantly better communication complexity compared with "DLDAC". This is because
our algorithm updates actor for more times compared with "DLDAC" under the same communication rounds.

Figure 2: Comparison between the proposed algorithms and two-timescale decentralized AC algorithms (Zeng
et al., 2022). The results are averaged over 10 Monte Carlo runs.

Comparison with two-timescale decentralized AC. We fix Kc = 1, Kr = 5 for this experiment. We
set αk = 0.01(k + 1)−0.5, βk = 0.1(k + 1)−0.5, and ηk = 0.1(k + 1)−0.5 for "SDAC-re" and "SDAC-noi"; we
set αk = 0.01(k + 1)−0.6, βk = 0.1(k + 1)−0.4, and ηk = 0.1(k + 1)−0.4 for "TDAC-re" and "TDAC-noi". The
sample complexity is presented in Figure 2. We can observe that the convergence speed of "SDAC-noi" is

3Note that we adopt the notations in (Chen et al., 2022). Here, Tc is the inner loop size, T ′
c is the communication number for

each outer loop, T ′ is the communication number for reward consensus, N is the batch size for actor’s update, and Nc is the
batch size for critic’s update.

12

Published in Transactions on Machine Learning Research (01/2023)

slightly better than that the two-timescale counterpart "TDAC-noi". In addition, when using reward estimator
for the global reward estimation, we see that "SDAC-re" has much more stable convergence behavior than
"TDAC-re", and achieves significantly higher rewards.

Figure 3: Ablation study on the consensus periods. The results are averaged over 10 Monte Carlo runs.

5.3 Ablation study on different choices of Kc

We compare the performance of "SDAC-noi" under different choices of consensus periods Kc. In particular,
we set αk = 0.01(k + 1)−0.5, βk = 0.1(k + 1)−0.5, Kr = 2, σ = 0.5 and examine the consensus periods Kc of
1, 5, 10, and 20, respectively. The corresponding sample complexity and communication complexity results
are summarized in Figure 3. Evidently, in terms of sample complexity, the convergence becomes slower and
relatively unstable as the consensus period Kc increases. Therefore, when the communication cost is low,
choosing a small Kc will yield a better performance. We also plot the communication complexity under the
consensus periods of 1 and 5. We can see that the communication complexity of "cons-5" outperforms "cons-1"
after 12 × 103 communications. Thus, when the communication cost is expensive and high averaged reward is
required, one may use large Kc and run the algorithm for a relatively large number of iterations.

6 Conclusion and future direction
In this paper, we studied the convergence of fully decentralized AC algorithm under practical single-
timescale update. We showed that the algorithm will maintain the optimal sample complexity of Õ(ε−2)
and is communication efficient. We also proposed a variant to preserve the privacy of local actions by
communicating noisy rewards. Extensive simulation results demonstrate the superiority of our algorithms’
empirical performance over existing decentralized AC algorithms. However, directly extending our single-
timescale AC’s analysis technique to single-timescale NAC will result in a sub-optimal sample complexity.
We leave the study on improving the convergence rate and design a more efficient single-timescale NAC
algorithm as promising future directions.

Acknowledgement

The authors would like to thank the Action Editor and anonymous reviewers for their detailed and constructive
comments, which have helped greatly to improve the quality and presentation of the manuscript.

X. Li was partially supported by the National Natural Science Foundation of China (NSFC) under
Grant No. 12201534 and 72150002, by the Shenzhen Science and Technology Program under Grant No.
RCBS20210609103708017, and by the Shenzhen Institute of Artificial Intelligence and Robotics for Society
(AIRS) under Grant No. AC01202101108.

13

Published in Transactions on Machine Learning Research (01/2023)

References
Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy gradient

methods: Optimality, approximation, and distribution shift. ArXiv:1908.00261, 2019.

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. Optimality and approximation with
policy gradient methods in markov decision processes. In Conference on Learning Theory (COLT), pp.
64–66, 2020.

Jonathan Baxter and Peter L. Bartlett. Infinite-horizon policy-gradient estimation. Journal of Artificial
Intelligence Research, 15:319–350, 2001.

Jalaj Bhandari, Daniel Russo, and Raghav Singal. A finite time analysis of temporal difference learning with
linear function approximation. In Conference on Learning Theory (COLT), pp. 1691–1692, 2018.

Tianyi Chen, Yuejiao Sun, and Wotao Yin. Closing the gap: Tighter analysis of alternating stochastic gradient
methods for bilevel problems. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, 2021a. URL https://openreview.net/forum?id=
OItvP2-i9j.

Ziyi Chen, Yi Zhou, and Rongrong Chen. Multi-agent off-policy td learning: Finite-time analysis with
near-optimal sample complexity and communication complexity. arXiv preprint arXiv:2103.13147, 2021b.

Ziyi Chen, Yi Zhou, Rong-Rong Chen, and Shaofeng Zou. Sample and communication-efficient decentralized
actor-critic algorithms with finite-time analysis. In International Conference on Machine Learning, pp.
3794–3834. PMLR, 2022.

Kenji Doya. Reinforcement learning in continuous time and space. Neural Computation, 12(1):219–245, 2000.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron, Vlad
Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with importance weighted
actor-learner architectures. In International Conference on Machine Learning, pp. 1407–1416. PMLR, 2018.

Zuyue Fu, Zhuoran Yang, and Zhaoran Wang. Single-timescale actor-critic provably finds globally optimal
policy. In International Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=pqZV_srUVmK.

Hongyi Guo, Zuyue Fu, Zhuoran Yang, and Zhaoran Wang. Decentralized single-timescale actor-critic on
zero-sum two-player stochastic games. In International Conference on Machine Learning, pp. 3899–3909.
PMLR, 2021.

FNU Hairi, Jia Liu, and Songtao Lu. Finite-time convergence and sample complexity of multi-agent actor-critic
reinforcement learning with average reward. In International Conference on Learning Representations,
2022.

Sham M Kakade. A natural policy gradient. In Proc. Advances in Neural Information Processing Systems
(NIPS), pp. 1531–1538, 2002.

Vijaymohan R Konda and Vivek S Borkar. Actor-critic–type learning algorithms for Markov decision processes.
SIAM Journal on Control and Optimization, 38(1):94–123, 1999.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver,
and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971,
2015.

Yixuan Lin, Kaiqing Zhang, Zhuoran Yang, Zhaoran Wang, Tamer Başar, Romeil Sandhu, and Ji Liu. A
communication-efficient multi-agent actor-critic algorithm for distributed reinforcement learning. In 2019
IEEE 58th Conference on Decision and Control (CDC), pp. 5562–5567, 2019.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In Machine
learning proceedings 1994, pp. 157–163. Elsevier, 1994.

14

https://openreview.net/forum?id=OItvP2-i9j
https://openreview.net/forum?id=OItvP2-i9j
https://openreview.net/forum?id=pqZV_srUVmK
https://openreview.net/forum?id=pqZV_srUVmK

Published in Transactions on Machine Learning Research (01/2023)

Yanli Liu, Kaiqing Zhang, Tamer Basar, and Wotao Yin. An improved analysis of (variance-reduced) policy
gradient and natural policy gradient methods. Advances in Neural Information Processing Systems, 33:
7624–7636, 2020.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. Advances in neural information processing
systems, 30, 2017.

Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-agent populations.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Alex Olshevsky and Bahman Gharesifard. A small gain analysis of single timescale actor critic. To appear in
SIAM Journal on Control and Optimization, 2023, 2023.

Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P How, and John Vian. Deep decentralized
multi-task multi-agent reinforcement learning under partial observability. In International Conference on
Machine Learning, pp. 2681–2690. PMLR, 2017.

Jan Peters and Stefan Schaal. Natural actor-critic. Neurocomputing, 71(7-9):1180–1190, 2008.

Shuang Qiu, Zhuoran Yang, Jieping Ye, and Zhaoran Wang. On the finite-time convergence of actor-critic
algorithm. In Optimization Foundations for Reinforcement Learning Workshop at Advances in Neural
Information Processing Systems (NeurIPS), 2019.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and Shimon
Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent reinforcement learning. In
International Conference on Machine Learning, pp. 4295–4304. PMLR, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

Han Shen, Kaiqing Zhang, Mingyi Hong, and Tianyi Chen. Asynchronous advantage actor critic: Non-
asymptotic analysis and linear speedup. ArXiv:2012.15511, 2020.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas
Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without human
knowledge. nature, 550(7676):354–359, 2017.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning
to factorize with transformation for cooperative multi-agent reinforcement learning. In International
Conference on Machine Learning, pp. 5887–5896. PMLR, 2019.

Jun Sun, Gang Wang, Georgios B Giannakis, Qinmin Yang, and Zaiyue Yang. Finite-sample analysis of
decentralized temporal-difference learning with linear function approximation. In Proc. International
Conference on Artificial Intelligence and Statistics (AISTATS), pp. 4485–4495, 2020.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient methods for
reinforcement learning with function approximation. In Proc. Advances in Neural Information Processing
Systems (NIPS), pp. 1057–1063, 2000.

John N Tsitsiklis and Benjamin Van Roy. Analysis of temporal-diffference learning with function approximation.
In Advances in neural information processing systems (NIPS), pp. 1075–1081, 1997.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in starcraft ii using
multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

15

Published in Transactions on Machine Learning Research (01/2023)

Yue Wang, Shaofeng Zou, and Yi Zhou. Non-asymptotic analysis for two time-scale TDC with gen-
eral smooth function approximation. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp.
9747–9758. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
50e207ab6946b5d78b377ae0144b9e07-Paper.pdf.

Yue Frank Wu, Weitong Zhang, Pan Xu, and Quanquan Gu. A finite-time analysis of two time-scale
actor-critic methods. Advances in Neural Information Processing Systems, 33:17617–17628, 2020.

Pan Xu, Felicia Gao, and Quanquan Gu. An improved convergence analysis of stochastic variance-reduced
policy gradient. In Proc. International Conference on Uncertainty in Artificial Intelligence (UAI), 2019.

Tengyu Xu and Yingbin Liang. Sample complexity bounds for two timescale value-based reinforcement
learning algorithms. In International Conference on Artificial Intelligence and Statistics, pp. 811–819.
PMLR, 2021.

Tengyu Xu, Zhe Wang, and Yingbin Liang. Improving sample complexity bounds for (natural) actor-critic
algorithms. In Proc. Advances in Neural Information Processing Systems (NeurIPS), volume 33, 2020.

Tengyu Xu, Zhuoran Yang, Zhaoran Wang, and Yingbin Liang. Doubly robust off-policy actor-critic:
Convergence and optimality. ArXiv:2102.11866, 2021.

Chao Yu, Xin Wang, Xin Xu, Minjie Zhang, Hongwei Ge, Jiankang Ren, Liang Sun, Bingcai Chen, and
Guozhen Tan. Distributed multiagent coordinated learning for autonomous driving in highways based on
dynamic coordination graphs. IEEE Transactions on Intelligent Transportation Systems, 21(2):735–748,
2019.

Siliang Zeng, Tianyi Chen, Alfredo Garcia, and Mingyi Hong. Learning to coordinate in multi-agent systems:
A coordinated actor-critic algorithm and finite-time guarantees. In Learning for Dynamics and Control
Conference, pp. 278–290. PMLR, 2022.

Haifeng Zhang, Weizhe Chen, Zeren Huang, Minne Li, Yaodong Yang, Weinan Zhang, and Jun Wang. Bi-level
actor-critic for multi-agent coordination. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 7325–7332, 2020.

Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Basar. Fully decentralized multi-agent
reinforcement learning with networked agents. In International Conference on Machine Learning, pp.
5872–5881. PMLR, 2018.

Kaiqing Zhang, Alec Koppel, Hao Zhu, and Tamer Başar. Global convergence of policy gradient methods to
(almost) locally optimal policies. arXiv preprint arXiv:1906.08383, 2019.

Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective overview
of theories and algorithms. Handbook of Reinforcement Learning and Control, pp. 321–384, 2021.

16

https://proceedings.neurips.cc/paper/2021/file/50e207ab6946b5d78b377ae0144b9e07-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/50e207ab6946b5d78b377ae0144b9e07-Paper.pdf

Published in Transactions on Machine Learning Research (01/2023)

Contents

1 Introduction 1

2 Preliminary 3

2.1 Markov decision process . 3

2.2 Policy gradient Theorem . 4

3 Algorithms 4

3.1 Decentralized single-timescale Actor-Critic . 4

3.2 Variant for preserving local action . 6

4 Main results 7

4.1 Assumptions . 7

4.2 Sample complexity for Algorithm 1 . 8

4.3 Sample complexity for Algorithm 2 . 9

4.4 Proof sketch . 9

4.5 Convergence of single-timescale decentralized NAC . 11

5 Numerical results 11

5.1 Experiment setting . 11

5.2 Comparison with existing decentralized AC algorithms . 12

5.3 Ablation study on different choices of Kc . 13

6 Conclusion and future direction 13

A Additional simulation results 19

B Auxiliary lemmas 20

C Supporting lemmas 23

C.1 Error of critic . 23

C.2 Error of reward estimator . 31

C.3 Consensus error . 31

C.4 Error of actor . 33

D Proof of main results 35

D.1 Proof of Theorem 1 . 35

D.2 Proof of Theorem 2 . 40

E Natural Actor-Critic variant and its convergence 42

17

Published in Transactions on Machine Learning Research (01/2023)

E.1 Decentralized natural Actor-Critic . 42

E.2 Convergence of natural Actor-Critic . 43

E.3 Proof of Theorem 3 . 45

18

Published in Transactions on Machine Learning Research (01/2023)

(a) Different actor’s batch sizes. (b) Different critic’s batch sizes.

(c) Different loop sizes.
Figure 4: Comparison between the proposed algorithms and the double-loop decentralized AC algorithm that
uses mini-batch update. The results are averaged over 10 Monte Carlo runs.

A Additional simulation results

In this section, we provide more experiments which compare the proposed algorithms with double-loop based
decentralized AC algorithm under different batch sizes and inner loop sizes.

1. Actor’s batch size. We fix Tc = 50, T ′
c = 10, Nc = 10, 4 which is adopted by (Chen et al., 2022).

We examine values of N in {10, 50, 100}. The results are in Figure 4a. We observe that the best
choice of actor’s batch size N is 50, and the proposed "SDAC-noi" converges faster than it in terms
of sample complexity.

2. Critic’s batch size. We fix Tc = 50, T ′
c = 10, N = 100, which is adopted by (Chen et al., 2022).

We examine values of Nc in {2, 10, 50}. The results are shown in Figure 4b. As we can see, "DLDAC"
with smaller critic’s batch sizes can achieve better sample complexity, indicating that the variance
of critic’s update is relatively small and the mini-batch update is not needed for this task. Our
proposed "SDAC-noi" achieves better convergence compared with the double-loop decentralized AC
under different choices of Nc.

4Note that we adopt the notations in (Chen et al., 2022). Here, Tc is the inner loop size, T ′
c is the communication number for

each outer loop, N is the batch size for actor’s update, and Nc is the batch size for critic’s update.

19

Published in Transactions on Machine Learning Research (01/2023)

3. Inner loop size. We fix T ′
c = 10, N = 100, Nc = 10, which is adopted by (Chen et al., 2022). We

examine values of Tc in {5, 20}. The results are shown in Figure 4c. We can see that the proposed
"SDAC-noi" enjoys a better convergence in terms of sample complexity.

B Auxiliary lemmas

In this section, we provide some auxiliary lemmas, which serves as the preliminary for the proof of main
theorems and lemmas.

The following two lemmas present the Lipschitz properties of the objective function and value function.
Lemma 4 ((Zhang et al., 2019), Lemma 3.2). Suppose Assumption 3 holds, then there exists a positive
constant L such that for any policy parameter θ1 and θ2, we have ∥∇J(θ1) − ∇J(θ2)∥ ≤ L∥θ1 − θ2∥.
Lemma 5 ((Shen et al., 2020), Lemma 4). Suppose Assumption 3 holds, for any policy parameter θ1, θ2 and
s ∈ S, there exits a positive constant LV such that

∥∇Vπθ1
(s)∥ ≤ LV

|Vπθ1
(s) − Vπθ2

(s)| ≤ LV ∥θ1 − θ2∥.

The next lemma shows that the stationary distribution is Lipschitz continuous with respect to policy.
Lemma 6 ((Wu et al., 2020), Lemma B.1). For any policy parameter θ1 and θ2, it holds that

dTV (µθ1 , µθ2) ≤ |A|Lπ(logρ κ−1 + (1 − ρ)−1)∥θ1 − θ2∥
dTV (µθ1 ⊗ πθ1 , µθ2 ⊗ πθ2) ≤ |A|Lπ(1 + logρ κ−1 + (1 − ρ)−1)∥θ1 − θ2∥

dTV (µθ1 ⊗ πθ1 ⊗ P, µθ2 ⊗ πθ2 ⊗ P) ≤ |A|Lπ(1 + logρ κ−1 + (1 − ρ)−1)∥θ1 − θ2∥.

We will define Lµ := |A|Lπ(logρ κ−1 + (1 − ρ)−1) for the proof of main theorems and lemmas.

The following lemma characterizes the geometric mixing of the Markov chain.
Lemma 7 ((Shen et al., 2020), Lemma 1). Suppose Assumption 4 holds, then there exists κ > 0, ρ ∈ [0, 1]
such that for any policy parameter θ we have

sup
s0∈S

dTV (P((sk, ak, sk+1) ∈ ·|s0, πθ), µθ ⊗ πθ ⊗ P) ≤ κρk,

where µθ is the stationary distribution induced by πθ and transition kernel P(·|s, a).

The next lemma bounds the error of the discounted state-visitation distribution and the stationary distribution.
Lemma 8 ((Shen et al., 2020), Lemma 2). Suppose Assumption 4 holds, then for any policy parameter θ,
there exists κ > 0, ρ ∈ [0, 1] such that

dTV (dπθ , µπθ) ≤ 2(logρ κ−1 + 1
1 − ρ

)(1 − γ).

The following lemma bounds the total variation distance between state distribution under a fixed policy and
that under an updating policy. The lemma is used for analyzing the sampling error.
Lemma 9. Consider the Markov chain:

sk−z
θk−z−−−→ ak−z

P−→ sk−z+1
θk−z+1−−−−→ ak−z+1 · · · θk−1−−−→ ak−1

P−→ sk
θk−→ ak

P−→ sk+1.

Also consider the auxiliary Markov chain with fixed policy:

sk−z
θk−z−−−→ ak−z

P−→ sk−z+1
θk−z−−−→ ãk−z+1 · · · θk−z−−−→ ãk−1

P−→ s̃k
θk−z−−−→ ãk

P−→ s̃k+1.

Let ξk := (sk, ak, sk+1) be sampled from chain 1, and ξ̃k := (s̃k, ãk, s̃k+1) be sampled from chain 2. Then we
have

dTV (P(ξk ∈ ·|θk−z, sk−z+1),P(ξ̃k ∈ ·|θk−z, sk−z+1)) ≤ 1
2

z−1∑
m=0

|A|Lπ∥θk−m − θk−z∥.

20

Published in Transactions on Machine Learning Research (01/2023)

Proof.

dTV (P(ξk ∈ ·),P(ξ̃k ∈ ·))

= 1
2

∫
s∈S

∫
s′∈S

∑
a∈A

|P(sk = ds, ak = a, sk+1 = ds′) − P(s̃k = ds, ãk = a, s̃k+1 = ds′)|

= 1
2

∫
s∈S

∑
a∈A

|P(sk = ds, ak = a) − P(s̃k = ds, ãk = a)|
∫
s′∈S

P(sk+1 = ds′|sk = ds, ak = a)

= 1
2

∫
s∈S

∑
a∈A

|P(sk = ds, ak = a) − P(s̃k = ds, ãk = a)|

= 1
2

∫
s∈S

∑
a∈A

|P(sk = ds)πθk(a|ds) − P(s̃k = ds)πθk−z (a|ds)|

≤ 1
2

∫
s∈S

∑
a∈A

|P(sk = ds)πθk(a|ds) − P(sk = ds)πθk−z (a|ds)|

+ 1
2

∫
s∈S

∑
a∈A

|P(sk = ds)πθk−z (a|ds) − P(s̃k = ds)πθk−z (a|ds)|

≤ 1
2

∫
s∈S

|A|Lπ∥θk − θk−z∥P(sk = ds)

+ 1
2

∫
s∈S

|P(sk = ds) − P(s̃k = ds)|
∑
a∈A

πθk−z (a|ds)

= 1
2 |A|Lπ∥θk − θk−z∥ + dTV (P(sk ∈ ·),P(s̃k ∈ ·)). (20)

The second term can be bounded as

dTV (P(sk ∈ ·),P(s̃k ∈ ·))

= 1
2

∫
s′∈S

|P(sk = ds) − P(s̃k = ds)|

= 1
2

∫
s′∈S

|
∑
a∈A

∫
s∈S

P(sk−1 = ds, ak−1 = a, sk = ds′) − P(s̃k−1 = ds, ãk−1 = a, s̃k = ds′)|

≤ 1
2

∫
s′∈S

∑
a∈A

∫
s∈S

|P(sk−1 = ds, ak−1 = a, sk = ds′) − P(s̃k−1 = ds, ãk−1 = a, s̃k = ds′)|

= dTV (P(ξk−1 ∈ ·),P(ξ̃k−1 ∈ ·)). (21)

Combined (20) and (21), we obtain

dTV (P(ξk ∈ ·),P(ξ̃k ∈ ·)) ≤ dTV (P(ξk−1 ∈ ·),P(ξ̃k−1 ∈ ·)) + 1
2 |A|Lπ|θk − θk−z∥.

Sum over z − 1 steps, we obtain

dTV (P(ξk ∈ ·),P(ξ̃k ∈ ·)) ≤ dTV (P(ξk−z ∈ ·),P(ξ̃k−z ∈ ·)) + 1
2

z−1∑
m=0

|A|Lπ∥θk−m − θk−z∥

= 1
2

z−1∑
m=0

|A|Lπ∥θk−m − θk−z∥.

Next, we present some mathematical facts that are useful in our analysis.

21

Published in Transactions on Machine Learning Research (01/2023)

Lemma 10 ((Chen et al., 2021b), Lemma F.3). For a doubly stochastic matrix W ∈ RN×N and the difference
matrix Q := I − 1

N 11T , it holds that for any matrix H ∈ RN×N , ∥W kH∥ ≤ νk∥QH∥, where ν is the second
largest singular value of W .
Lemma 11 (descent lemma in high dimension). Consider the mapping F : Rn → Rm. If there exists a
positive constant L such that

∥∇F (x) − ∇F (y)∥F ≤ L∥x− y∥, ∀x, y ∈ dom(F), (22)

then the following holds

∥F (y) − F (x) − ∇F (x)(y − x)∥ ≤ L

2
√
m∥y − x∥2.

Proof. Observe that (22) directly implies the smoothness of each entry Fi:

∥∇Fi(x) − ∇Fi(y)∥ ≤ ∥∇F (x) − ∇F (y)∥F ≤ L∥x− y∥.

Define
zi(x, y) := Fi(y) − Fi(x) − ∇Fi(x)T (y − x).

We have

∥F (y) − F (x) − ∇F (x)(y − x)∥ =

√√√√ m∑
i=1

zi(x, y)2

≤
√
m(L2 ∥y − x∥2)2

= L1

2
√
m∥y − x∥2,

where the inequality follows the descent lemma.

Lemma 12 (Lipschitz property of multiplication). Suppose f(x) and g(x) are two functions bounded by Cf
and Cg, and are Lf - and Lg-Lipschitz continuous, then f(x)g(x) is CfLg + CgLf -Lipschitz continuous.

Proof.

∥f(x1)g(x1) − f(x2)g(x2)∥ = ∥f(x1)g(x1) − f(x1)g(x2) + f(x1)g(x2) − f(x2)g(x2)∥
≤ ∥f(x1)∥∥g(x1) − g(x2)∥ + ∥f(x1) − f(x2)∥∥g(x2)∥
≤ (CfLg + CgLf)∥x1 − x2∥.

Lemma 13 (invertible property of matrix). If a square matrix A satisfies limt→∞ At = 0, or equivalently,
|λ(A)| < 1, then I −A is invertible.

Proof.

(I −A) lim
t→∞

t∑
i=0

At = lim
t→∞

[
t∑
i=0

At −
t+1∑
i=1

At]

= I − lim
t→∞

At+1

= I

Since I is invertible, by the rank inequality rank(AB) ≤ min(rank(A), rank(B)), I −A and limt→∞
∑t
i=0 A

t

will be full rank and thereby invertible.

22

Published in Transactions on Machine Learning Research (01/2023)

C Supporting lemmas

Before proceeding to the analysis of critic variables, we justify the uniqueness of fix point for critic and reward
estimator variables under the update (5) and (8), respectively. Define the following notations

Aθ,ϕ := E[ϕ(s)(γϕ(s′)T − ϕ(s)T)], (23)
Aθ,φ := E[φ(s, a)φ(s, a)T],
bθ,ϕ := E[ϕ(s)r̄(s, a)],
bθ,φ := E[φ(s, a)r̄(s, a)],

with expectation taken from s ∼ µθ(s), a ∼ πθ, s
′ ∼ P . The optimal critic and reward estimator variables given

policy θ will satisfy Aθ,ϕω∗(θ) + bθ,ϕ = 0;Aθ,φλ∗(θ) + bθ,φ = 0. By Assumption 2, Aθ,ϕ and Aθ,φ are negative
definite with largest eigenvalue λϕ and λφ, which ensures the unique solution ω∗(θ) = −A−1

θ,ϕbθ,ϕ;λ∗(θ) =
−A−1

θ,φbθ,φ. Let Rω := rmax
λϕ

, Rλ := rmax
λφ

. Then the norm of optimal solutions will be bounded as ∥ω∗(θ)∥ ≤
Rω, ∥λ∗(θ)∥ ≤ Rλ, which justifies the projection step of the Algorithm 1. In practice, the knowledge of
λϕ and λφ may not be available. One can estimate projection radius online using the methods proposed in
Section 8.2 of (Bhandari et al., 2018).

We slightly abuse the notation by overwriting Vπθ as Vθ. To study the error of critic, we introduce the
following notations (crf. ξ := (s, a, s′))

δi(ξ, θ) := ri(s, a) + γVθ(s′) − Vθ(s)
δ(ξ, θ) := r̄(s, a) + γVθ(s′) − Vθ(s)
δ̃(ξ, ω) := r̄(s, a) + γϕ(s′)Tω − ϕ(s)Tω

δ̂(ξ, ω, λ) := φ(s, a)Tλ+ γϕ(s′)Tω − ϕ(s)Tω, (24)

For the ease of expression, we further define

gia(ξ, ω, λ) := δ̂(ξ, ω, λ)ψθi(s, ai),
gic(ξ, ω) := δi(ξ, ω)ϕ(s),
ḡc(ξ, ω) := δ̃(ξ, ω)ϕ(s),
gc(θ, ω) := Eξ∼µθ [ḡc(ξ, ω)]. (25)

C.1 Error of critic

The following lemmas and propositions serves as the preliminary for establishing the approximate descent
property of the critic variables’ optimal gap.
Proposition 1 (Lipschitz continuity of ω∗(θ) (Wu et al., 2020)). Suppose Assumptions 1, 2, 3, and 4 hold,
then there exists a positive constant Lω such that for any θ1, θ2 ∈ RNdθ , we have

∥ω∗(θ1) − ω∗(θ2)∥ ≤ Lω∥θ1 − θ2∥.

Lemma 14 (smoothness of stationary distribution). For any θ, θ′ ∈ Rd, there exists a positive constant Lµ,2
such that ∥∇µθ(s) − ∇µθ′(s)∥ ≤ Lµ,2∥θ − θ′∥.

The proof of this Lemma consists of two main steps: 1) Derive the expression of the gradient and 2) establish
that the gradient is Lipschitz continuous. For the first part, we follow the main idea in (Baxter & Bartlett,
2001).

Proof. For a given policy πθ, we define the transition probability Pθ(s|s′) :=
∑
a πθ(a|s′)P (s|s′, a). By the

Assumption 4, there exists a stationary distribution µθ(s) which satisfies for all state s

23

Published in Transactions on Machine Learning Research (01/2023)

µθ(s) =
∑
s′∈S

µθ(s′)Pθ(s|s′) (26)

Define the following notations

µθ := [µθ(s1), µθ(s2), · · · , µθ(sn)]T R|S|×1

Pθ(s) := [Pθ(s|s1), Pθ(s|s2), · · · , Pθ(s|sn)]T R|S|×1

P (θ) := [Pθ(s1), Pθ(s2), · · · , Pθ(sn)] R|S|×|S|

∇µθ := [∇µθ(s1),∇µθ(s2), · · · ,∇µθ(sn)] Rdθ×|S|

∇Pθ(s) := [∇Pθ(s|s1),∇Pθ(s|s2), · · · ,∇Pθ(s|sn)] Rdθ×|S|

Upon taking derivative with respect to θ on both sides of (26), we have

∇µθ(s) =
∑
s′∈S

∇µθ(s′)Pθ(s|s′) + µθ(s′)∇θPθ(s|s′)

= ∇µθPθ(s) + ∇Pθ(s)µθ (27)

(27) can be written in compact form as

∇µθ = ∇µθP (θ) + [∇Pθ(s1)µθ, · · · ,∇Pθ(sn)µθ] (28)

Therefore, we have

[∇Pθ(s1)µθ, · · · ,∇Pθ(sn)µθ] = ∇µθ(I − P (θ))
= ∇µθ(I − (P (θ) − eµTθ)),

where the second inequality is due to ∇µθe = ∇(µθe) = ∇1 = 0.

We now show that I − (P (θ) − eµTθ) is invertible. The first step is to show limt→∞(P (θ) − eµTθ)t = 0. Let
P, µ represent P (θ), µθ for simplicity, we first show (P − eµT)t = P t − P t−1eµT by induction. Observe that
when t = 1, this is trivially satisfied. Suppose the equality holds for t = k, then

(P − eµT)k+1 = (P k − P k−1eµT)P − (P k − P k−1eµT)eµT

= P k+1 − P k−1eµT − P keµT + P k−1(eµT)2

= P k+1 − P keµT ,

where the second equality is due to (26) such that eµTP = eµT and the last equality is due to µT e = 1.

Therefore, we have

lim
t→∞

(P (θ) − eµTθ)t = lim
t→∞

(P (θ)t − P (θ)t−1eµTθ) = eµTθ − eµTθ = 0,

which together with Lemma 13 justifies that I − (P (θ) − eµTθ) is invertible. Thus, we have

∇µθ = (I − (P (θ) − eµTθ))−1[∇Pθ(s1)µθ, · · · ,∇Pθ(sn)µθ]. (29)

24

Published in Transactions on Machine Learning Research (01/2023)

We will utilize Lemma 12 to prove the Lipschitz property of ∇µθ. We first show the Lipschitz continuous of
the first term. Let A(θ) to represent I − (P (θ) − eµTθ), then we have

∥A(θ1) −A(θ2)∥ = ∥P (θ1) − P (θ2) + e(µθ2 − µθ1)T ∥
≤ ∥P (θ1) − P (θ2)∥ + ∥e(µθ2 − µθ1)T ∥

=
√ ∑
s,s′∈S

|
∑
a∈A

(πθ1(a|s′) − πθ2(a|s′))P (s|s′, a)|2 +
√

|S|∥µθ2 − µθ1∥

≤
√ ∑
s,s′∈S

(
∑
a∈A

|(πθ1(a|s′) − πθ2(a|s′))P (s|s′, a)|)2 +
√

|S|∥µθ2 − µθ1∥

≤
√∑
s′∈S

|A|2L2
π∥θ1 − θ2∥2

∑
s∈S

P (s|s′, a)2 +
√

|S|Lµ∥θ1 − θ2∥

=
√

|S|(|A|Lπ + Lµ)∥θ1 − θ2∥.

where the second inequality uses triangle inequality. The last inequality is due to Lipschitz continuous of the
policy specified in Assumption 3, and Lipschitz continuous of µθ implied by Lemma 5.

To see that A−1(θ) is Lipschitz continuous and bounded, observe that

∥A−1(θ1) −A−1(θ2)∥ = ∥A−1(θ2)(A(θ2) −A(θ1))A−1(θ1)∥
≤ ∥A−1(θ2)∥∥A−1(θ1)∥∥A(θ2) −A(θ1)∥

≤
√

|S|(|A|Lπ + Lµ)∥A−1(θ2)∥∥A−1(θ1)∥∥θ2 − θ1∥, (30)

where the first inequality uses Cauchy-Schwartz inequality, and the last inequality uses the Lipschitz continuous
of A(θ) in (30). Since ∥A(θ)∥ is bounded, ∥A−1(θ)∥ is also bounded (due to invertibility), which justifies that
the first term in (29) is Lipschitz continuous and bounded.

We now consider the second term in (29). For any state s

∥∇Pθ1(s)µθ1 − ∇Pθ2(s)µθ2∥ = ∥∇Pθ1(s)(µθ1 − µθ2) + (∇Pθ1(s) − ∇Pθ2(s))µθ2∥
≤ ∥∇Pθ1(s)(µθ1 − µθ2)∥ + ∥(∇Pθ1(s) − ∇Pθ2(s))µθ2∥
≤ ∥∇Pθ1(s)∥∥µθ1 − µθ2∥ + ∥∇Pθ1(s) − ∇Pθ2(s)∥∥µθ2∥

≤
∑
s′∈S

∑
a∈A

∥∇πθ1(a|s′)P (s|s′, a)∥Lµ∥θ1 − θ2∥

+
∑
s′∈S

∑
a∈A

∥(∇πθ1(a|s′) − ∇πθ2(a|s′))P (s|s′, a)∥

≤ |S||A|(CπLµ + Lπ)∥θ1 − θ2∥,

which justifies the Lipschitz continuous of ∇Pθ(s)µθ. Define B(θ) := [∇Pθ(s1)µθ, · · · ,∇Pθ(sn)µθ], we have

∥B(θ1) −B(θ2)∥ ≤ |S|3/2|A|(CπLµ + Lπ)∥θ1 − θ2∥.

Since ∇µθ = A−1(θ)B(θ), with A−1(θ) and B(θ) being Lipschitz continuous and bounded. Therefore,
according to Lemma 12, there exists a positive constant Lµ,2 which satisfies

∥∇µθ1 − ∇µθ2∥ ≤ Lµ,2∥θ1 − θ2∥.

Proposition 2 (restatement of Lemma 2, Lipschitz continuity of ∇θω
∗(θ) (Chen et al., 2021a)). Suppose

Assumptions 1-4 holds, then there exists a positive constant Lω,2 such that

∥∇θω
∗(θ1) − ∇θω

∗(θ2)∥F ≤ Lω,2∥θ1 − θ2∥.

25

Published in Transactions on Machine Learning Research (01/2023)

Proof. The proof follows the derivation of Proposition 8 of (Chen et al., 2021a). However, they make
assumption that µθ(s) is Lipschitz continuous, which we have justified in Lemma 14. We present the proof
for the completeness.

We have ω∗(θ) = −A−1
θ,ϕbθ,ϕ, where Aθ,ϕ is defined in (23). The Jacobian of ω∗(θ) can be calculated as

∇θω
∗(θ) = −∇θ(A−1

θ,ϕbθ,ϕ)
= −A−1

θ,ϕ(∇θAθ,ϕ)A−1
θ,ϕbθ,ϕ −Aθ,ϕ(∇θbθ,ϕ). (31)

We can utilize Lemma 12 to show the Lipschitz continuity of ∇ω∗(θ). We have to verify the Lipschitz
continuity and boundedness of A−1

θ,ϕ, bθ,ϕ,∇θAθ,ϕ, and ∇θbθ,ϕ.

The Lipschitz continuity and boundedness of A−1
θ,ϕ has been shown in (30. Let b1 and b2 represent bθ1,ϕ, bθ2,ϕ,

we have
∥b1 − b2∥ = ∥E[r̄(s, a, s′)ϕ(s)] − E[r(s̃, ã, s̃′)ϕ(s̃)]∥

≤ sup
s,a,s′

∥r(s, a, s′)ϕ(s)∥∥P((s, a, s′ ∈ ·)) − P((s̃, ã, s̃′ ∈ ·))∥TV

≤ rmax∥P((s, a, s′ ∈ ·)) − P((s̃, ã, s̃′ ∈ ·))∥TV
≤ 2|A|Lπ(1 + logρ κ−1 + (1 − ρ)−1∥θ1 − θ2∥,

where the last inequality follows Lemma 6.

We now analyze ∇θAθ,ϕ. We first define
A(s, s′) := ϕ(s)(γϕ(s′) − ϕ(s))T , b(s, a, s′) := r(s, a, s′)ϕ(s).

as

∇θAθ,ϕ = ∇θ

∑
s,a,s′

µθ(s)πθ(a|s)P (s′|s, a)A(s, s′)


=
∑
s,a,s′

[∇θµθ(s)πθ(a|s)P (s′|s, a)A(s, s′) + µθ∇θπθ(a|s)P (s′|s, a)A(s, s′)] .

By Lemma 14 and Lemma 6, and Assumption 3, µθ(s), πθ(a|s),∇θµθ(s), ∇θπθ(a|s) are Lipschitz continuous
and bounded. Therefore, ∇θAθ,ϕ is Lipschitz and bounded.

Finally, we analyze ∇θbθ,ϕ by following the same technique.

∇θbθ,ϕ = ∇θ

∑
s,a,s′

µθ(s)πθ(a|s)P (s′|s, a)b(s, a, s′)


=
∑
s,a,s′

[∇θµθ(s)πθ(a|s)P (s′|s, a)b(s, a, s′) + µθ(s)∇θπθ(a|s)P (s′|s, a)b(s, a, s′)] .

By Lemma 14 and Lemma 6, and Assumption 3, µθ(s), πθ(a|s),∇θµθ(s), ∇θπθ(a|s) are Lipschitz continuous
and bounded. Thus, ∇θbθ,ϕ is bounded and Lipschitz continuous.

We have shown the Lipschitz continuity and boundedness of A−1
θ,ϕ, bθ,ϕ, ∇θAθ,ϕ, and ∇θbθ,ϕ. Therefore, by

applying Lemma 12, we conclude that there exists a positive constant Lω,2 such that ∇θω
∗(θ) in (31) is

Lω,2-Lipschitz continuous.

Lemma 15 (descent of critic’s optimal gap (Markovian sampling)). Under Assumptions 1-5, with ωk+1
generated by Algorithm 1 given ωk and θk under Markovian sampling, then the following holds

E[∥ω̄k+1 − ω∗(θk+1)∥2|θk] ≤

(
1 + 4LωNαk +

L2
ω,2

2 C2
θN
√
dθα

2
k

)
E∥ω̄k+1 − ω∗(θk)∥2

+
(
L2
ω,2

2 C2
θN + L2

ωC
2
θN

)
α2
k + αk

4

N∑
i=1

∥E[gia(ξk, ωik+1, λ
i
k+1)]∥2. (32)

26

Published in Transactions on Machine Learning Research (01/2023)

E[∥ω̄k+1 − ω∗(θk)∥2|θk] ≤ (1 − 2λϕβk)E∥ω̄k − ω∗(θk)∥2 + CK1βkβk−ZK + CK2αk−ZKβk. (33)

where the constants are defined as CK1 := 4C2CδZK + C2
δ , CK2 := 4C1CθZK + 2C3CθZ

2
K + C8, ZK :=

min{z ∈ N+|κρz−1 ≤ min{αK , βK , ηK}}.

Proof. We begin with the optimality gap of averaged critic variables

∥ω̄k+1 − ω∗(θk+1)∥2

= ∥ω̄k+1 − ω∗(θk) + ω∗(θk) − ω∗(θk+1)∥2

= ∥ω̄k+1 − ω∗(θk)∥2 + ∥ω∗(θk) − ω∗(θk+1)∥2 + 2⟨ω̄k+1 − ω∗(θk), ω∗(θk) − ω∗(θk+1)⟩
≤ ∥ω̄k+1 − ω∗(θk)∥2 +NL2

ωC
2
θα

2
k + 2⟨ω̄k+1 − ω∗(θk),∇ω∗(θk)T (θk − θk+1)⟩

+ 2⟨ω̄k+1 − ω∗(θk), ω∗(θk) − ω∗(θk+1) − ∇ω∗(θk)T (θk − θk+1)⟩, (34)

where the inequality is based on the Lipschitz of ω∗(θ) implied by Proposition 1

∥ω∗(θk) − ω∗(θk+1)∥2 ≤ L2
ω∥θk − θk+1∥2,

∥θk − θk+1∥2 =
N∑
i=1

∥αk δ̂(ξk, ωik, λik)ψθi
k
(sk, aik)∥2 ≤ Nα2

kC
2
θ , (35)

with Cθ := CδCψ, and Cδ is defined in (39).

The third term in (34) can be bounded as

⟨ω̄k+1 − ω∗(θk),∇ω∗(θk)T (θk − θk+1)⟩
≤ ∥ω̄k+1 − ω∗(θk)∥∥∇ω∗(θk)T (θk − θk+1)∥
≤ ∥∇ω ∗ (θk)∥∥ω̄k+1 − ω∗(θk)∥∥θk − θk+1∥
≤ Lω∥ω̄k+1 − ω∗(θk)∥∥θk − θk+1∥

≤
N∑
i=1

Lωαk∥ω̄k+1 − ω∗(θk)∥∥gia(ξk, ωik+1, λ
i
k+1)∥

≤
N∑
i=1

(2Lωαk∥ω̄k+1 − ω∗(θk)∥2 + αk
8 ∥gia(ξk, ωik+1, λ

i
k+1)∥2), (36)

where the second inequality follows Proposition 1, the third inequality uses triangle inequality, and the last
inequality uses Young’s inequality.

The last term in (34) can be bounded as

E⟨ω̄k+1 − ω∗(θk), ω∗(θk) − ω∗(θk+1) − ∇ω∗(θk)T (θk − θk+1)⟩

≤
L2
ω,2

2
√
dθE∥ω̄k+1 − ω∗(θk)∥∥θk+1 − θk∥2

≤
L2
ω,2

4
√
dθE∥ω̄k+1 − ω∗(θk)∥2∥θk+1 − θk∥2 +

L2
ω,2

4 ∥θk+1 − θk∥2

≤
L2
ω,2

4
√
dθNC

2
θα

2
kE∥ω̄k+1 − ω∗(θk)∥2 +

L2
ω,2

4 NC2
θα

2
k. (37)

The first inequality uses Lemma 11. The second inequality is induced by Young’s inequality. The last
inequality follows (35).

Plug (36) and (37) into (34) will yield (32).

27

Published in Transactions on Machine Learning Research (01/2023)

We now prove (33). By the critic update rule, we have (crf. gc(θ, ω) := Eξ∼µθ [ḡc(ξ, ω)].)

E∥ω̄k+1 − ω∗(θk)∥2 = E∥ΠRω (ω̄k + βkḡc(ξk, ω̄k)) − ΠRωω
∗(θk)∥2

(i)
≤ E∥ω̄k + βkḡc(ξ, ω̄k) − ω∗(θk)∥2

= ∥ω̄k − ω∗(θk)∥2 + β2
kE∥ḡc(ξk, ω̄k)∥2 + 2βkE[⟨ω̄k − ω∗(θk),E[ḡc(ξk, ω̄k)]⟩]

(ii)
≤ ∥ω̄k − ω∗(θk)∥2 + β2

kC
2
δ + 2βk⟨ω̄k − ω∗(θk),E[ḡc(ξk, ω̄k)]⟩

= ∥ω̄k − ω∗(θk)∥2 + β2
kC

2
δ + 2βk⟨ω̄k − ω∗(θk), gc(θk, ω̄k)⟩

+ 2βkE⟨ω̄k − ω∗(θk),E[ḡc(ξk, ω̄k)] − gc(θk, ω̄k)⟩, (38)

where (i) is due to the non-expansiveness of projection to convex set, and (ii) follows

∥ḡc(ξ, ω)∥ ≤ |r(s, a) + γϕ(s′)Tω − ϕ(s)Tω| ≤ rmax + (1 + γ)Rω := Cδ. (39)

The product in the third term in (38) can be bounded as

⟨ω̄k − ω∗(θk), gc(θk, ω̄k)⟩ = ⟨ω̄k − ω∗(θk),Eξ∼µθk [ḡc(ξk, ω̄k)]⟩
= ⟨ω̄k − ω∗(θk),Eξ∼µθk [ḡc(ξk, ω̄k) − gc(θk, ω∗(θk))]⟩
= βk⟨ω̄k − ω∗(θk),Eξ∼µθk [ϕ(s)(γϕ(s′) − ϕ(s))T |θk](ω̄k − ω∗(θk))⟩
= βk⟨ω̄k − ω∗(θk), Aθk,ϕ(ω̄k − ω∗(θk))⟩
≤ −λϕβk∥ω̄k − ω∗(θk)∥2. (40)

Here the first equality is due to critic’s optimality condition gc(θk, ω∗(θk)) = Eξk∼µθk [ḡc(ξk, ω∗(θk))|θk] = 0.
The last inequality uses the negative definiteness of Aθk,ϕ of Assumption 2.

Plug (40) to (38) gives

E∥ω̄k+1 − ω∗(θk)∥2 ≤ (1 − 2λϕβk)∥ω̄k − ω∗(θk)∥2 + β2
kC

2
δ

+ 2βk⟨ω̄k − ω∗(θk),E[ḡc(ξk, ω̄k)] − gc(θk, ω̄k)⟩. (41)

We now bound the last term in (41). By Lemma 16, for any z ∈ N+, we have

E⟨ω̄k − ω∗(θk), ḡc(ξk, ω̄k) − gc(θk, ω̄k)⟩

≤ C1E∥θk − θk−z∥ + C2E∥ω̄k − ω̄k−z∥ + C3

z−1∑
m=0

E∥θk−m − θk−z∥ + C8κρ
z−1

(i)
≤ C1

z∑
n=1

E∥θk−n+1 − θk−n∥ + C2

z∑
n=1

E∥ω̄k−n+1 − ω̄k−n∥

+ C3

z−1∑
m=0

z−m∑
n=1

E∥θk−m−n+1 − θk−m−n∥ + C8κρ
z−1

≤ 2C1Cθ

z∑
n=1

αk−n + 2C2Cδ

z∑
n=1

βk−n + C3Cθ

z−1∑
m=0

z−m∑
n=1

αk−m−n + C8κρ
z−1

(ii)
≤ 2C1Cθzαk−z + 2C2Cδzβk−z + C3Cθz(z − 1)αk−z + C8κρ

z−1, (42)

where the (i) uses triangle inequality, (ii) uses the non-increasing property of step sizes.

Let z = ZK , we have (crf. ZK := min{z ∈ N+|κρz−1 ≤ min{αK , βK , ηK}})

E⟨ω̄k − ω∗(θk), ḡc(ξk, ω̄k) − gc(θk, ω̄k)⟩
≤ 2C1CθZKαk−ZK + 2C2CδZKβk−ZK + C3CθZ

2
Kαk−ZK + C8αk−ZK . (43)

28

Published in Transactions on Machine Learning Research (01/2023)

Plug (43) into (41) will yield

∥ω̄k+1 − ω∗(θk)∥2 ≤ (1 − 2λϕβk)∥ω̄k − ω∗(θk)∥2 + C2
δβ

2
k

+ 4C1CθZKαk−ZK + 4C2CδZKβk−ZK + 2C3CθZ
2
Kαk−ZK + 2C8αk−ZK .

By defining CK1 := 4C2CδZK + C2
δ , CK2 := 4C1CθZK + 2C3CθZ

2
K + C8, we complete the proof.

Lemma 16. Consider the sequence generated by Algorithm 1, for any z ∈ N+, we have

E⟨ω̄k − ω∗(θk), ḡc(ξk, ω̄k) − gc(θk, ω̄k)⟩ ≤ C1∥θk − θk−z∥ + C2∥ω̄k − ω̄k−z∥

+ C3

z−1∑
m=0

∥θk−m − θk−z∥ + C8κρ
z−1, (44)

where C1 := 4RωCδ|A|Lπ(1 + logρ κ−1 + (1 − ρ)−1) + 2CδLω, C2 := 4(1 + γ)Rω + 2Cδ, C3 :=
4RωCδ|A|Lπ, C8 := 8RωCδ.

Basically, this lemma shows that the term on the left hand side of (44) is of order Õ(αk + βk).

Proof. Consider the Markov chain since timestep k − z:

sk−z
θk−z−−−→ ak−z

P−→ sk−z+1
θk−z+1−−−−→ ak−z+1 · · · θk−1−−−→ ak−1

P−→ sk
θk−→ ak

P−→ sk+1.

Also consider the auxiliary Markov chain with fixed policy since timestep k − z:

sk−z
θk−z−−−→ ak−z

P−→ sk−z+1
θk−z−−−→ ãk−z+1 · · · θk−z−−−→ ãk−1

P−→ s̃k
θk−z−−−→ ãk

P−→ s̃k+1.

Throughout the proof of this lemma, we will use θ, θ′, ω̄, ω̄′, ξ, ξ̃ as shorthand notations of
θk, θk−z, ω̄k, ω̄k−z, ξk, ξ̃k.

For the ease of expression, define

∆1(ξ, θ, ω) := ⟨ω − ω∗(θ), ḡc(ξ, ω) − gc(θ, ω)⟩.

Therefore, we have

⟨ω̄k − ω∗(θk), ḡc(ξk, ω̄k) − gc(θk, ω̄k)⟩ = ∆1(ξ, θ, ω̄)
= ∆1(ξ, θ, ω̄) − ∆1(ξ, θ′, ω̄)︸ ︷︷ ︸

I1

+ ∆1(ξ, θ′, ω̄) − ∆1(ξ, θ′, ω̄′)︸ ︷︷ ︸
I2

+ ∆1(ξ, θ′, ω̄′) − ∆1(ξ̃, θ′, ω̄′)︸ ︷︷ ︸
I3

+ ∆1(ξ̃, θ′, ω̄′)︸ ︷︷ ︸
I4

. (45)

I1 can be expressed as

I1 = ⟨ω̄ − ω∗(θ), ḡc(ξ, ω̄) − gc(θ, ω̄)⟩ − ⟨ω̄ − ω∗(θ′), ḡc(ξ, ω̄) − gc(θ′, ω̄)⟩
= ⟨ω̄ − ω∗(θ), ḡc(ξ, ω̄) − gc(θ, ω̄)⟩ − ⟨ω̄ − ω∗(θ), ḡc(ξ, ω̄) − gc(θ′, ω̄)⟩

+ ⟨ω∗(θ) − ω∗(θ′), ḡc(ξ, ω̄) − gc(θ′, ω̄)⟩
≤ ∥ω̄ − ω∗(θ)∥∥gc(θ′, ω̄) − gc(θ, ω̄)∥ + ∥ω∗(θ) − ω∗(θ′)∥∥ḡc(ξ, ω̄) − gc(θ′, ω̄)∥. (46)

The first term can be bounded as

∥ω̄ − ω∗(θ)∥∥gc(θ′, ω̄) − gc(θ, ω̄)∥ ≤ 2Rω∥Eξ∼µ′
θ
[ḡc(ξ, ω̄)] − Eξ∼µθ [ḡc(ξ, ω̄)]∥

≤ 4Rω sup
ξ

∥ḡc(ξ, ω̄)∥dTV (µ′
θ ⊗ π′

θ ⊗ P, µθ ⊗ πθ ⊗ P)

≤ 4RωCδdTV (µ′
θ ⊗ π′

θ ⊗ P, µθ ⊗ πθ ⊗ P)
≤ 4RωCδ|A|Lπ(1 + logρ κ−1 + (1 − ρ)−1)∥θ − θ′∥, (47)

29

Published in Transactions on Machine Learning Research (01/2023)

where the first inequality is due to ω ≤ Rω induced by the projection step of critic’s update. The third
inequality is due to ∥ḡc(ξ, ω̄)∥ ≤ Cδ, and the last inequality follows Lemma 6.

By the Lipschitz conitinuous of ω∗(θ) proposed in Proposition 1, the second term in (46) can be bounded as

∥ω∗(θ) − ω∗(θ′)∥∥ḡc(ξ, ω̄) − gc(θ, ω̄)∥ ≤ Lω∥θ − θ′∥∥ḡc(ξ, ω̄) − gc(θ, ω̄)∥
≤ 2CδLω∥θ − θ′∥ (48)

Plug (47) and (48) into (46), we can bound I1 as

I1 ≤ (4RωCδ|A|Lπ(1 + logρ κ−1 + (1 − ρ)−1) + 2CδLω)∥θ − θ′∥. (49)

I2 can be decomposed by

I2 = ⟨ω̄ − ω∗(θ′), ḡc(ξ, ω̄) − gc(θ′, ω̄)⟩ − ⟨ω̄′ − ω∗(θ′), ḡc(ξ, ω̄′) − gc(θ′, ω̄′)⟩
= ⟨ω̄ − ω∗(θ′), ḡc(ξ, ω̄) − gc(θ′, ω̄)⟩ − ⟨ω̄′ − ω∗(θ′), ḡc(ξ, ω̄) − gc(θ′, ω̄)⟩

+ ⟨ω̄′ − ω∗(θ′), ḡc(ξ, ω̄) − ḡc(ξ, ω̄′) − gc(θ′, ω̄) + gc(θ′, ω̄′)⟩
= ⟨ω̄ − ω∗(θ′), ḡc(ξ, ω̄) − gc(θ′, ω̄)⟩

+ ⟨ω̄′ − ω∗(θ′), ḡc(ξ, ω̄) − ḡc(ξ, ω̄′) − gc(θ′, ω̄) + gc(θ′, ω̄′)⟩
≤ 2Cδ∥ω̄ − ω∗(θ′)∥ + ⟨ω̄′ − ω∗(θ′), ḡc(ξ, ω̄) − ḡc(ξ, ω̄′) − gc(θ′, ω̄) + gc(θ′, ω̄′)⟩.

The last term can be bounded as

⟨ω̄′ − ω∗(θ′), ḡc(ξ, ω̄) − ḡc(ξ, ω̄′) − gc(θ′, ω̄) + gc(θ′, ω̄′)⟩
≤ ∥ω̄ − ω∗(θ′)∥(∥ḡc(ξ, ω̄) − ḡc(ξ, ω̄′)∥ + ∥gc(θ′, ω̄′) − gc(θ′, ω̄)∥)
≤ 2Rω(∥ḡc(ξ, ω̄) − ḡc(ξ, ω̄′)∥ + ∥gc(θ′, ω̄′) − gc(θ′, ω̄)∥)
≤ 2Rω(∥ḡc(ξ, ω̄) − ḡc(ξ, ω̄′)∥ + Eξ∼µθ′ ∥ḡc(ξ, ω̄′) − gc(ξ, ω̄)∥)
≤ 4Rω(1 + γ)∥ω̄ − ω̄′∥, (50)

where the first inequality applies Cauchy-Schwartz inequality and triangle inequality, the second inequality
follows the projection of each critic step. The last inequality is due to

∥ḡc(ξ, ω̄) − ḡc(ξ, ω̄′)∥ = ∥ϕ(s)(γϕ(s′)T (ω̄ − ω̄′) − ϕ(s)T (ω̄ − ω̄′))∥
≤ γ∥ϕ(s′)T (ω̄ − ω̄′)∥ + ∥ϕ(s)T (ω̄ − ω̄′)∥
≤ (1 + γ)∥ω̄ − ω̄′∥.

Thus, I2 can be bounded as

I2 ≤ (4(1 + γ)Rω + 2Cδ)∥ω̄ − ω̄′∥. (51)

We bound I3 as

E[I3|θ′, sk−z+1] = E[∆1(ξ, θ′, ω̄′) − ∆1(ξ̃, θ′, ω̄′)|θ′, sk−z+1]
≤ 2 sup

ξ
|∆1(ξ, θ′, ω̄′)| dTV (P(ξ ∈ ·|θ′, sk−z+1),P(ξ̃ ∈ ·|θ′, sk−z+1))

≤ 8RωCδdTV (P(ξ ∈ ·|θ′, sk−z+1),P(ξ̃ ∈ ·|θ′, sk−z+1))

≤ 4RωCδ|A|Lπ
z−1∑
m=0

∥θk−m − θk−z∥. (52)

Here, the second inequality is due to ∥∆1(ξ, θ′, ω̄′)∥ ≤ ∥ω′ − ω∗(θ′)∥∥ḡc(ξ, ω′) − gc(θ′, ω′)∥ ≤ 4RωCδ, and the
last inequality is according to Lemma 9.

30

Published in Transactions on Machine Learning Research (01/2023)

We now bound I4

E[I4|θ′, ω̄′, sk+z−1] = E[∆1(ξ̃, θ′, ω̄′)|θ′, ω̄′, sk−z+1]
≤ sup

ξ
|∆1(ξ, θ′, ω̄′)|∥P(ξ ∈ ·|θ′, sk−z+1) − µθ′ ⊗ πθ′ ⊗ P∥

≤ 8RωCδdTV (P(x̃ ∈ ·|θ′, st−z+1), µθ′ ⊗ πθ′ ⊗ P)
≤ 8RωCδκρz−1, (53)

where the last inequality follows Lemma 7.

Plug (49), (51), (52), and (53) into (45), we get

E[∆1(ξ, θ, ω̄)] ≤ (4RωCδ|A|Lπ(1 + logρ κ−1 + (1 − ρ)−1) + 2CδLω)E∥θk − θk−z∥
+ (4(1 + γ)Rω + 2Cδ)E∥ω̄k − ω̄k−z∥

+ (4RωCδ|A|Lπ)
z−1∑
m=0

E∥θk−m − θk−z∥

+ 8RωCδκρz−1,

which completes the proof.

C.2 Error of reward estimator

The analysis for the error of reward estimator is similar to critic. To see this, we only need to change ḡc(ξ, ω̄)
into ḡr(ξ, λ̄) := (r(s, a) − φ(s, a)T λ̄)φ(s, a) to recover most of the proofs.

Lemma 17 and 18 are the counter parts of Lemma 15 and 16 for reward estimator.
Lemma 17. Suppose Assumptions 1 , 2, 3, 4 hold, with λk+1 generated by Algorithm 1 given λk and θk
under Markovian sampling, then the following holds

E[∥λ̄k+1 − λ∗(θk+1)∥2|θk] ≤

(
1 + 4LλNαk +

L2
λ,2

2 C2
θN
√
dθα

2
k

)
E∥λ̄k+1 − λ∗(θk)∥2

+
(
L2
λ,2

2 C2
θN + L2

λC
2
θN

)
α2
k + αk

4

N∑
i=1

∥E[gia(ξk, λik+1, λ
i
k+1)]∥2. (54)

E[∥λ̄k+1 − λ∗(θk)∥2|θk] ≤ (1 − 2ηkλφ)∥λ̄k − λ∗(θk)∥2 + CK3ηkηk−ZK + CK4ηkαk−ZK , (55)

where CK3 := 4C6CλZK + C2
λ, CK4 := 4C5CθZK + 2C7CθZ

2
K + C8, ZK := min{z ∈ N+|κρz−1 ≤

min{αK , βK , ηK}}, Cλ := rmax +Rλ ≥ maxs,a,λ ∥(r(s, a) − λTφ(s, a)φ(s, a))∥.
Lemma 18. Consider the sequence generated by Algorithm 1, for any z ∈ N+, we have

E[⟨λ̄k − λ∗(θ), ḡr(ξk, λ̄k) − gr(θk, λ̄k)⟩] ≤ C5∥θk − θk−z∥ + C6∥λk − λk−z∥

+ C7

z−1∑
m=0

∥θk−m − θk−z∥ + C8κρ
z−1, (56)

where C5 := 4RλCλ|A|Lπ(1 + logρ κ−1 + (1 − ρ)−1) + 2CλLλ, C6 := 4Rλ + 2Cλ, C7 := 4RλCλ|A|Lπ, C8 :=
8RλCλ.

C.3 Consensus error

Lemma 19 (restatement of Lemma 1, bound of consensus error). Define the matrix representation of critics
and reward estimators’ parameters as ωk := [ω1

k, · · · , ωNk]T , λk := [λ1
k, · · · , λNk]T . Let Q := I − 1

N 11T , then

31

Published in Transactions on Machine Learning Research (01/2023)

the consensus error can be expressed as
∑N
i=1 ∥ωik − ω̄k∥2 = ∥Qωk∥2,

∑N
i=1 ∥λik − λ̄k∥2 = ∥Qλk∥2. Suppose

Asssumption 5 holds. Let {ωik}k, {λik}k be the sequence generated by the Algorithm 1, then for any k ≥ 1,
the following inequalities hold

∥Qωk∥ ≤ ν
k
Kc

−1∥ω0∥ + 4
√
NCδ

k∑
t=0

βtν
k−t
Kc

−1 (57)

∥Qλk∥ ≤ ν
k
Kc

−1∥λ0∥ + 4
√
NCλ

k∑
t=0

βtν
k−t
Kc

−1, (58)

where ν ∈ (0, 1) is the second largest singular value of W .

Proof. We will prove the bound in (57) for the critic variables. The analysis for reward estimator in (58)
follows the same routine. To simplify the notation, we will use gik to represent gic(ξk, ωik) throughout the
proof of this lemma. We also use eik to represent the projection update eik := ΠRω (ωik − βkg

i
k) − (ωik − βkg

i
k).

Define ḡk := 1
N

∑N
i=1 g

i
k; ēk := 1

N

∑N
i=1 e

i
k, and the corresponding matrix exressions as

Gk :=

(g1
k)T ,
...

(gNk)T

 , Ek :=

(e1
k)T ,
...

(eNk)T

 .
According to the update rule of critic variables, the following equalities holds

ωk+1 =
{
Wωk − βkGk + Ek, if k mod Kc = 0
ωk − βkGk + Ek, otherwise.

(59)

To bound the consensus error, We first bound the consensus error of critic’s update as

∥QGk∥ =

√√√√ N∑
i=1

∥gik − ḡk∥2
(i)
≤

√√√√ N∑
i=1

2∥gik∥2 + 2∥ḡk∥2 ≤ 2
√
NCδ. (60)

∥QEk∥ =

√√√√ N∑
i=1

∥eit − ēt∥2 ≤

√√√√ N∑
i=1

2∥eik∥2 + 2∥ēk∥2
(ii)
≤

√√√√ N∑
i=1

2β2
k∥gik∥2 + 2β2

k∥ḡk∥2 ≤ 2βk
√
NCδ, (61)

where (i) is due to ∥gik∥ ≤ Cδ; (ii) is ensured by the convexity of the projection set.

We now study the consensus error of critic variables. Let k′ = ⌊ k
Kc

⌋ ∗Kc. By the update rule in (59), we have

Qωk′ = QWωk′−1 − βk′−1QGk′−1 +QEk′−1

= WQωk′−1 − βk′−1QGk′−1 +QEk′−1

= WQωk′−Kc −
k′−1∑

t=k′−Kc

βtW
⌈k′−1−t⌉QGt +

t=k′−1∑
k′−Kc

W ⌈k′−1−t⌉QEt, (62)

where the second equality is due to the doubly stochasticity of matrix W implied by Assumption 5:
QW = W − 1

N 11TW = W − 1
NW11T = WQ. The last equality is indicated by the update rule that

ωk′−1 = ωk′−Kc −
k′−2∑

t=k′−Kc

βtGt +
k′−2∑

t=k′−Kc

Et.

Expand the recursion in (62), we have

Qωk′ = W
k′
KcQω0 −

k′−1∑
t=0

W ctβtQGt +
k′−1∑
t=0

W ctQEt,

32

Published in Transactions on Machine Learning Research (01/2023)

where ct := ⌈k
′−1−t
Kc

⌉. Therefore, the kth iteration’s consensus error can be expressed as

Qωk = Qωk′ −
k−1∑
t=k′

βtQGt +
k−1∑
t=k′

QEt

= W
k′
KcQω0 −

k∑
t=0

W ctβtQGt +
k∑
t=0

W ctQEt. (63)

Take norm on the each side of (63) and apply triangle inequality, we get

∥Qωk∥ ≤ ∥W
k′
KcQω0∥ +

k∑
t=0

βt∥W ctQGt∥ +
k∑
t=0

∥W ctQEt∥

(i)
≤ ν

k′
Kc ∥ω0∥ +

k∑
t=0

βtν
ct∥Gt∥ +

k∑
t=0

νct∥Et∥

(ii)
≤ ν

k′
Kc ∥ω0∥ + 4

√
NCδ

k∑
t=0

βtν
ct

(iii)
≤ ν

k
Kc

−1∥ω0∥ + 4
√
NCδ

k∑
t=0

βtν
k−t
Kc

−1.

where (i) inequality uses Lemma 10 and the fact that the spectral of Q is less than 1; (ii) is due to (60) and
(61); (iii) uses the fact that k′

Kc
≥ k

Kc
− 1 and ⌈k

′−1−t
Kc

⌉ = ⌈k−t
Kc

+ k′−k−1
Kc

⌉ ≥ ⌈k−t
Kc

⌉ − 1 ≥ k−t
Kc

− 1. Thus, the
proof for (57) is completed. The proof of (58) follows a similar procedure, we leave it as an exercise to reader.

C.4 Error of actor

The following lemma characterizes the sampling error of actor.
Lemma 20. Consider the sequence generated by Algorithm 1, for any z ≥ 1 we have

∥Eξ∼µθk [δ(ξ, θk)ψθi
k
(sk, aik)] − E[δ(ξk, θk)ψθi

k
(sk, aik)]∥

≤ 2Cθκρz−1 + C12

z−1∑
m=0

∥θk−m − θk−z∥ + C13∥θk − θk−z∥ + C14∥θik − θik−z∥, (64)

where C12 := 2Cθ|A|Lπ, C13 := |A|L(logρ κ−1 + (1 − ρ)−1)Cθ + 2(1 + γ)LV , C14 := 2CδLψ.

Proof. Consider the Markov chain since timestep k − z:

sk−z
θk−z−−−→ ak−z

P−→ sk−z+1
θk−z+1−−−−→ ak−z+1 · · · θk−1−−−→ ak−1

P−→ sk
θk−→ ak

P−→ sk+1.

Also consider the auxiliary Markov chain with fixed policy since timestep k − z:

sk−z
θk−z−−−→ ak−z

P−→ sk−z+1
θk−z−−−→ ãk−z+1 · · · θk−z−−−→ ãk−1

P−→ s̃k
θk−z−−−→ ãk

P−→ s̃k+1.

Throughout the proof of this lemma, we wil use ψθi to represent ψθi(sk, aik) for brevity.

We define the following notation for the ease of discussion

∆3(ξ, θ) := Eξ∼µθ [δ(ξ, θ)ψθi] − δ(ξ, θ)ψθi].

Then our objective is to bound

E[∥∆3(ξk, θk)∥| θk−z].

33

Published in Transactions on Machine Learning Research (01/2023)

We decompose ∥∆3(ξk, θk)∥ by applying triangle inequality

∥∆3(ξk, θk)∥ ≤ ∥∆3(ξk, θk) − ∆3(ξk, θk−z)∥︸ ︷︷ ︸
I1

+ ∥∆3(ξk, θk−z) − ∆3(ξ̃k, θk−z)∥︸ ︷︷ ︸
I2

+ ∥∆3(ξ̃k, θk−z)∥︸ ︷︷ ︸
I3

. (65)

We apply triangle inequality again to bound I1 as

I1 ≤ ∥δ(ξk, θk−z)ψθi
k−z

− δ(ξk, θk)ψθi
k
∥︸ ︷︷ ︸

I
(1)
1

+ ∥Eξ∼µθk [δ(ξ, θk)ψθi
k
] − Eξ∼µθk−z

[δ(ξ, θk−z)ψθi
k−z

]∥︸ ︷︷ ︸
I

(2)
1

(66)

I
(1)
1 can be bounded as

I
(1)
1 = ∥δ(ξk, θk−z)ψθi

k−z
− δ(ξk, θk)ψθi

k
∥

≤ ∥δ(ξk, θk−z)ψθi
k−z

− δ(ξk, θk)ψθi
k−z

∥

+ ∥δ(ξk, θk)ψθi
k−z

− δ(ξk, θk)ψθi
k
∥

≤ ∥|γ(Vθk−z (s′) − Vθk(s′)) + (Vθk−z (s) − Vθk−z (s′))|ψik−z∥
+ ∥δ(ξk, θk)ψθi

k−z
− δ(ξk, θk)ψθi

k
∥

≤ (1 + γ)LV ∥θk − θk−z∥ + ∥δ(ξk, θk)ψθi
k−z

− δ(ξk, θk)ψθi
k
∥

≤ (1 + γ)LV ∥θk − θk−z∥ + CδLψ∥θik − θik−z∥, (67)

where the second last inequality follows the Lipschitz continuous of value function in Lemma 5, and the last
inequality uses Lipschitz continuous of ψθi .

I
(2)
1 can be bounded as

I
(2)
1 = ∥Eξ∼µθk [δ(ξ, θk)ψθi

k
] − Eξ∼µθk−z

[δ(ξ, θk−z)ψθi
k−z

]∥

= ∥Eξ∼µθk [δ(ξ, θk−z)ψθi
k−z

] − Eξ∼µθk−z
[δ(ξ, θk−z)ψθi

k−z
]

+ Eξ∼µθk [δ(ξ, θk)ψθi
k

− δ(ξ, θk−z)ψθi
k−z

]∥

≤ |A|L(logρ κ−1 + (1 − ρ)−1)Cθ∥θk − θk−z∥
+ ∥Eξ∼µθk [δ(ξ, θk)ψθi

k
− δ(ξ, θk−z)ψθi

k−z
]∥

≤ |A|L(logρ κ−1 + (1 − ρ)−1)Cθ∥θk − θk−z∥
+ (1 + γ)LV ∥θk − θk−z∥ + CδLψ∥θik − θik−z∥, (68)

where the first inequality applies Lemma 6, and the last inequality uses the derivation in (67).

Combine (67) and (68), we have

I1 ≤ |A|L(logρ κ−1 + (1 − ρ)−1)Cθ∥θk − θk−z∥
+ 2(1 + γ)LV ∥θk − θk−z∥ + 2CδLψ∥θik − θik−z∥ (69)

34

Published in Transactions on Machine Learning Research (01/2023)

We now bound I2 as

E[I2] = E∥δ(ξ̃k, θk−z)ψiθk−z
− δ(ξk, θk−z)ψiθk−z

∥

≤ 2 sup
ξ

∥δ(ξ, θk−z)ψθi
k−z

∥dTV (P (ξ̃k ∈ ·|θk−z, sk−z), P (ξk ∈ ·|θk−z, sk−z))

≤ 2Cθ
z−1∑
m=0

|A|Lπ∥θk−m − θk−z∥, (70)

where the last inequality follows Lemma 9.

I3 can be bounded as

I3 = E∥Eξ∼µθk−z
[δ(ξ, θk−z)ψik−z] − δ(ξ̃k, θk−zψ

i
θk−z

)∥

≤ 2 sup
ξ

∥δ(ξ, θk−z)ψiθk−z
∥dTV (P (ξ̃ ∈ ·|θk−z, sk−z), µθk−z ⊗ πθk−z ⊗ P)

≤ 2Cθκρz−1, (71)

where the last inequality follows Lemma 7.

Plug (69), (70), and (71), we have

∥Eξ∼µθk [δ(ξ, θk)ψθi
k
(sk, aik)] − E[δ(ξk, θk)ψθi

k
(sk, aik)]∥

≤ 2Cθκρz−1 + 2CδLψ∥θik − θik−z∥ + 2Cθ
z−1∑
m=0

|A|Lπ∥θk−m − θk−z∥

+ (|A|L(logρ κ−1 + (1 − ρ)−1)Cθ + 2(1 + γ)LV)∥θk − θk−z∥,

which completes the proof.

D Proof of main results

D.1 Proof of Theorem 1

Let θk ∈ RNdθ be the stack of actors’ parameter at timestep k. By Lemma 4, we have

E [J(θk+1)] − J(θk) ≥ E [⟨∇J(θk), θk+1 − θk⟩] − L

2 ∥θk+1 − θk∥2

=
N∑
i=1

E
[
⟨∇θiJ(θk), θik+1 − θik⟩

]
− L

2

N∑
i=1

∥θik+1 − θik∥2

=
N∑
i=1

E
[
αk⟨∇θiJ(θk), gia(ξk, ωik+1, λ

i
k+1)⟩

]
− L

2 α
2
k

N∑
i=1

E∥gia(ξk, ωik+1, λ
i
k+1)∥2

≥
N∑
i=1

[αk
2 ∥∇θiJ(θk)∥2 + αk

2 ∥E
[
gia(ξk, ωik+1, λ

i
k+1)

]
∥2

− αk
2 ∥∇θiJ(θk) − E

[
gia(ξk, ωik+1, λ

i
k+1)

]
∥2
]

− L

2NC
2
θα

2
k, (72)

where the expectation is taken over ξk under Markovian sampling. The last inequality is due to∥∥gia(ξk, ωik+1, λ
i
k+1)

∥∥ =
∥∥∥δ̂(ξk, ωik, λik)ψθi

k
(sk, aik)

∥∥∥ ≤ CδCψ := Cθ. (73)

35

Published in Transactions on Machine Learning Research (01/2023)

For brevity, we will use ψθi
k

to represent ψθi
k
(sk, aik). The gradient bias can be bounded as∥∥∇θiJ(θk) − E

[
gia(ξk, ωik+1, λ

i
k+1)|ωik+1, λ

i
k+1
]∥∥2

≤ 4
∥∥∥∇θiJ(θk) − E

[
δ(ξk, θk)ψθi

k

]∥∥∥2

︸ ︷︷ ︸
I1

+4
∥∥∥E [(δ(ξk, θk) − δ̃(ξk, ω∗(θk)))ψθi

k

]∥∥∥2

︸ ︷︷ ︸
I2

+ 4
∥∥∥E [(δ̃(ξk, ω∗(θk)) − δ̃(ξk, ωik+1))ψθi

k

]∥∥∥2

︸ ︷︷ ︸
I3

+4
∥∥∥E [(δ̃(ξk, ωik+1) − δ̂(ξk, ωik+1, λ

i
k+1))ψθi

k

]∥∥∥2

︸ ︷︷ ︸
I4

, (74)

where the inequality uses ∥a+ b+ c+ c∥2 ≤ 4∥a∥2 + 4∥b∥2 + 4∥c∥2 + 4∥d∥2.

We bound I1 as

I1 =
∥∥∥∇θiJ(θk) − E

[
δ(ξk, θk)ψθi

k
|θk
]∥∥∥2

=
∥∥∥Eξ∼dθk

[
δ(ξ, θk)ψθi

k
|θk
]

− E
[
δ(ξk, θk)ψθi

k
|θk
]∥∥∥2

≤ 2
∥∥∥Eξ∼dθk

[
δ(ξ, θk)ψθi

k
|θk
]

− Eξ∼µθk

[
δ(ξ, θk)ψθi

k
|θk
]∥∥∥2

︸ ︷︷ ︸
I

(1)
1

+2
∥∥∥Eξ∼µθ

[
δ(ξ, θk)ψθi

k
|θk
]

− E
[
δ(ξk, θk)ψθi

k
|θk
]∥∥∥2

︸ ︷︷ ︸
I

(2)
1

(75)

From now on, we will use ξ ∼ dθ to denote s ∼ dπθ , a ∼ π(·|s), s′ ∼ P for notational simplicity. I1 is the
sampling error under perfect value function estimation of critic. It can be bounded as

E
[
I

(1)
1 |θk

]
=
∥∥∥∇θiJ(θk) − E

[
δ(ξk, θk)ψθi

k
|θk
]∥∥∥2

=
∥∥∥Eξ∼dθk

[
δ(ξ, θk)ψθi

k
|θk
]

− Eξ∼µθk

[
δ(ξ, θk)ψθi

k
|θk
]∥∥∥2

≤

(
2 sup

ξ

∥∥∥δ(ξ, θk)ψθi
k

∥∥∥ dTV (µθk ⊗ πθk ⊗ P, dθk ⊗ πθk ⊗ P)
)2

(i)
≤ (2CθdTV (µθk , dθk))2

(ii)
≤ 16C2

θ (logρ κ−1 + 1
ρ

)2(1 − γ2),

where (i) uses (73); (ii) follows Lemma 8. Define εsp := 4C2
θ (logρ κ−1 + 1

ρ)2(1 − γ)2, then we have

I
(1)
1 ≤ 4εsp. (76)

By Lemma 20, I(2)
1 can be bounded as

I
(2)
1 ≤

(
2Cθκρz−1 + C12

z−1∑
m=0

∥θk−m − θk−z∥ + C13∥θk − θk−z∥ + C14∥θik − θik−z∥

)2

≤

(
2Cθκρz−1 + C12

z−1∑
m=0

z−m∑
n=1

∥θk−m−n+1 − θk−m∥ + C13

z∑
n=1

∥θk−n+1 − θk−n∥ + C14

z∑
n=1

∥θik−n+1 − θik−n∥

)2

≤
(

2Cθκρz−1 + C12NCθ
z(z + 1)

2 αk−z + C13NzCθαk−z + C14zCθαk−z

)2

≤ 16C2
θκ

2ρ2z−2 + 2C2
12C

2
θz

2α2
k−z + 4C2

13N
2z2C2

θα
2
k−z + 4C2

14z
2C2

θα
2
k−z, (77)

36

Published in Transactions on Machine Learning Research (01/2023)

where the second inequality uses triangle inequality, and the last inequality applies (a + b + c + d)2 ≤
4a2 + 4b2 + 4c2 + 4d2. Let z = ZK := min{z ∈ N+|κρz−1 ≤ min{αK , βK , ηK}}. Then we have

I
(2)
1 ≤ CK5α

2
k−ZK , (78)

where we define CK5 := 16C2
θ + 2C2

12C
2
θZ

2
K + 4C2

13N
2Z2

KC
2
θ + 4C2

14Z
2
KC

2
θ . Thus, we have

I1 ≤ 4εsp + CK5α
2
k−ZK . (79)

The term I2 describes the approximation quality of linear function class, it can be bounded as

I2 =
∥∥∥E [(δ(ξk, θk) − δ̃(ξk, ω∗(θk)))ψθi

k

]∥∥∥2

(i)
≤ E

[∣∣δ(ξk, θk) − δ̃(ξk, ω∗(θk))
∣∣2 ∥∥∥ψθi

k

∥∥∥2
]

(ii)
≤ C2

ψE
[
γ
∣∣∣Vπθk (sk+1) − V̂ω∗(θk)(sk+1)

∣∣∣+
∣∣∣Vπθk (sk) − V̂ω∗(θk)(sk)

∣∣∣]
(iii)
≤ 2C2

ψ

(
γ2E

[∣∣∣Vθk(sk+1) − V̂ω∗(θk)(sk+1)
∣∣∣2]+ E

[∣∣∣Vθk(sk) − V̂ω∗(θk)(sk)
∣∣∣2])

(iiii)
≤ 2C2

ψ(1 + γ2)εcapp ≤ 4C2
ψε

c
app. (80)

where (i) applies Cauchy Schwarz inequality and triangle inequality; (ii) is due to ∥ψθi
k
∥ ≤ Cψ, which

is ensured by Assumption 3; (iii) uses |a + b|2 ≤ 2|a|2 + 2|b|2; (iiii) follows the definition of the critic’s
approximation error:

εcapp := max
θ

√
Es∼µθ

[∣∣∣Vπθ (s) − V̂ω∗(θ)(s)
∣∣∣2]. (81)

I3 captures the error of critic’s estimator, which can be bounded as

E[I3] =
∥∥∥E [(δ̃(ξk, ω∗(θk)) − δ̃(ξk, ωik+1)

)
ψθi

k

]∥∥∥2

≤ E
[∣∣δ̃(ξk, ω∗(θk)) − δ̃(ξk, ωik+1)

∣∣2 ∥∥∥ψθi
k

∥∥∥2
]

≤ C2
ψE
[∣∣γϕ(sk+1)T

(
ω∗(θk) − ωik+1

)
− ϕ(sk)T

(
ω∗(θk) − ωik+1

)∣∣2]
≤ C2

ψ

(
2E
[∣∣γϕ(sk+1)T

(
ω∗(θk) − ωik+1

)∣∣2]+ 2E
[∣∣ϕ(sk)T

(
ω∗(θk) − ωik+1

)∣∣2])
≤ C2

ψ

(
2γ2E

[
∥ϕ(sk+1)∥2 ∥∥ω∗(θk) − ωik+1

∥∥2]+ 2E
[
∥ϕ(sk)∥2 ∥∥ω∗(θk) − ωik+1

∥∥2])
≤2C2

ψ(1 + γ2)
∥∥ω∗(θk) − ωik+1

∥∥2 ≤ 4C2
ψ

∥∥ω∗(θk) − ωik+1
∥∥2
, (82)

where the last inequality is due to ∥ϕ(s)∥ ≤ 1, which is specified by Assumption 1.

I4 characterizes the error of reward estimator, which can be bounded as

E[I4] =
∥∥∥E [(δ̃(ξk, ωik+1) − δ̂(ξk, ωik+1, λ

i
k+1)

)
ψθi

k
|λik+1

]∥∥∥2

≤ E
[∣∣∣δ̃(ξk, ωik+1) − δ̂(ξk, ωik+1, λ

i
k+1)

∣∣∣2 ∥∥∥ψθi
k

∥∥∥2
|λik+1

]
≤ C2

ψE
[∣∣r̄(sk, ak) − φ(sk, ak)Tλik+1

∣∣2 |λik+1

]
≤ C2

ψ

(
2E
[∣∣r̄(sk, ak) − φ(sk, ak)Tλ∗(θk)

∣∣2]+ 2E
[∣∣φ(sk, ak)Tλ∗(θk) − φ(sk, ak)Tλik+1

∣∣2 |λik+1

])
≤ 2C2

ψε
r
app + 2C2

ψ

∥∥λ∗(θk) − λik+1
∥∥2
, (83)

37

Published in Transactions on Machine Learning Research (01/2023)

where the εrapp in the last inequality is the approximation error of reward estimator, which is defined as

εrapp := max
θ,a

√
Es∼µθ

[∣∣r̄(s, a) − r̂λ∗(θ)(s, a)
∣∣2].

Combining (79), (80), (82), and (83) gives us the bound of the gradient bias error as

∥∇θiF (θk) − E[gia(ξk, ωik+1, λ
i
k+1)]∥2 ≤ 16(εsp + C2

ψεapp) + 16C2
ψ∥ω∗(θk) − ωik+1∥2

+ 8C2
ψ∥λ∗(θk) − λik+1∥2 + 4CK5α

2
k−ZK . (84)

Plug (84) into (72), we get

E[J(θk+1)] − J(θk) ≥
N∑
i=1

(αk
2 E∥∇θiJ(θk)∥2 + αk

2 E∥gia(ξk, ωik+1, λ
i
k+1)∥2

−8C2
ψαkE∥ω∗(θk) − ωik+1∥2 − 4C2

ψαkE∥λ∗(θk) − λik+1∥2)
− L

2NC
2
θα

2
k − 2NCK5α

2
k−ZK − 8(εsp + C2

ψεapp)Nαk. (85)

Consider the Lyapunov function

Vk := −J(θk) + ∥ω̄k − ω∗(θk)∥2 + ∥λ̄k − λ∗(θk)∥2. (86)

The difference between two Lyapunov functions will be

E[Vk+1] − E[Vk] = E[J(θk)] − E[J(θk+1)] + E∥ω̄k+1 − ω∗(θk+1)∥2 − E∥ω̄k − ω∗(θk)∥2

+ E∥λ̄k+1 − λ∗(θk)∥2 − E∥λ̄k − λ∗(θk)∥2

≤
N∑
i=1

(
−αk

2 ∥∇θiJ(θk)∥2 − αk
2 E∥gia(ξk, ωik+1)∥2

)
+ 2NCK5αk−ZK + L

2NC
2
θα

2
k + 8(εsp + C2

ψεapp)Nαk

+
N∑
i=1

8C2
ψαkE∥ω∗(θk) − ωik+1∥2 + E∥ω̄k+1 − ω∗(θk+1)∥2 − E∥ω̄k − ω∗(θk)∥2

︸ ︷︷ ︸
I5

+
N∑
i=1

4C2
ψαkE∥λ∗(θk) − λik+1∥2 + E∥λ̄k+1 − λ∗(θk+1)∥2 − E∥λ̄k − λ∗(θk)∥2

︸ ︷︷ ︸
I6

. (87)

The first two terms of I5 can be bounded as
N∑
i=1

8C2
ψαkE∥ω∗(θk) − ω̄k+1 + ω̄k+1 − ωik+1∥2 + E∥ω̄k+1 − ω∗(θk+1)∥2

=
N∑
i=1

8C2
ψαkE∥ω̄k+1 − ωik+1∥2 + 8C2

ψαkE∥ω̄k+1 − ω∗(θk)∥2 + E∥ω̄k+1 − ω∗(θk+1)∥2

≤ 8C2
ψαkE∥ω̄k+1 − ω∗(θk)∥2 + E∥ω̄k+1 − ω∗(θk+1)∥2 + αkMk1

≤

(
1 + 4LωNαk + 8C2

ψαk +
L2
ω,2

2 C2
θN
√
dθα

2
k

)
E∥ω̄k+1 − ω∗(θk)∥2

+
(
L2
ω,2C

2
θN

2 + L2
ωC

2
θN

)
α2
k + αk

4

N∑
i=1

∥∥E [gia(ξk, ωik+1, λ
i
k+1)

]∥∥2 + αkMk1 , (88)

38

Published in Transactions on Machine Learning Research (01/2023)

where the equality is due to

N∑
i=1

〈
ω∗(θk) − ω̄k+1, ω̄k+1 − ωik+1

〉
= ⟨ω∗(θk) − ω̄k+1, ω̄k+1 − ω̄k+1⟩ = 0.

The first inequality follows the Lemma 19, where Mk1 is defined as

Mk1 := ν
2k
Kc

−2∥ω0∥2 + 16NC2
δ

(
k∑
t=0

βtν
k−t
Kc

−1

)2

+ 8
√
NCδν

k
Kc

−1
k∑
t=0

βtν
k−t
Kc

−1.

The last inequality follows (32) in Lemma 15.

Plug (88) into (87), and define C9 := min
{
c | 4LωNαk + 8C2

ψαk + L2
ω,2
2 C2

θN
√
dθα

2
k ≤ cαk

}
, we get

I5 ≤ (1 + C9αk)E∥ω̄k+1 − ω∗(θk)∥2 +
(
L2
ω,2C

2
θN

2

2 + L2
ωC

2
θN

)
α2
k

+ αk
4

N∑
i=1

∥E[gia(ξk, ωik+1, λ
i
k+1)]∥2 + αkMk1

≤ [(1 + C9αk)(1 − 2λϕβk) − 1]E∥ω̄k − ω∗(θk)∥2

+ (1 + C9αk)(CK1βkβk−ZK + CK2βkαk−ZK)

+
(
L2
ω,2C

2
θN

2 + L2
ωC

2
θN

)
α2
k + αk

4

N∑
i=1

∥∥E [gia (ξk, ωik+1, λ
i
k+1
)]∥∥2 + αkMk1 , (89)

where the last inequality follows (33) in Lemma 15.

By letting βk = C9
2λϕαk, we can ensure

(1 + C9αk)(1 − 2λϕβk) < 1.

Therefore, I5 can be bounded as

I5 ≤ αk
4

N∑
i=1

∥E[gia(ξk, ωik+1, λ
i
k+1)]∥2 + αkMk1 +

(
L2
ω,2C

2
θN

2

2 + L2
ωC

2
θN

)
α2
k

+ (1 + C9αk)(CK1βkβk−ZK + CK2βkαk−ZK). (90)

By applying Lemma 17 and following the similar procedure, we can bound I6 as

I6 ≤ αk
4

N∑
i=1

∥E[gia(ξk, ωik+1, λ
i
k+1)]∥2 + αkMk2 +

(
L2
λ,2C

2
θN

2

2 + L2
λC

2
θN

)
α2
k

+ (1 + C10αk)(CK3ηkηk−ZK + CK4ηkαk−ZK). (91)

with ηk = C10
2λφαk. C10 and Mk2 are defined as

C10 := min
{
c | 4LλNαk + 4C2

ψαk +
L2
λ,2

2 C2
δN
√
dθα

2
k ≤ cαk

}
,

Mk2 := ν
2k
Kc

−2∥λ0∥2 + 16NC2
λ

(
k∑
t=0

ηtν
k−t
Kc

−1

)2

+ 8
√
NCλν

k
Kc

−1
k∑
t=0

ηtν
k−t
Kc

−1. (92)

39

Published in Transactions on Machine Learning Research (01/2023)

Plug (90) and (91) into (87), we have

E[Vk+1] − E[Vk] ≤
N∑
i=1

−αk
2 ∥∇θiJ(θk)∥2 + (Mk1 +Mk2)αk

+ (1 + C9αk)(CK1βkβk−ZK + CK2βkαk−ZK)
+ (1 + C10αk)(CK3ηkηk−ZK + CK4ηkαk−ZK)

+
(
L

2NC
2
θ + C11

)
α2
k + 8(εsp + C2

ψεappN)αk, (93)

where C11 := C2
θN(L

2
ω,2+Lλ,2

2 + L2
ω + L2

λ).

By letting αk = ᾱ√
K

for some positive constant ᾱ, and recall βk = C9
2λϕαk, ηk = C10

2λφαk, we can telescope (93)
as

1
K

K∑
k=0

N∑
i=1

E∥∇θiJ(θk)∥2 ≤ 2E[V0]
Kαk

+ 16(εsp + C2
ψεappN) + 2

K

K∑
k=0

(Mk1 +Mk2)

+ (2 + 2C9αk)(CK1

βk
αk
βk−ZK + CK2

βk
αk
αk−ZK)

+ (2 + 2C10αk)(CK3

ηk
αk
ηk−ZK + CK4

ηk
αk
αk−ZK)

+
(
LNC2

θ + 2C11
)
αk. (94)

The summation of Mk1 can be bounded as

K∑
k=0

Mk1 =
K∑
k=0

ν 2k
Kc

−2∥ω0∥2 + 16NC2
δ

(
k∑
t=0

βtν
k−t
Kc

−1

)2

+ 8
√
NCδν

k
Kc

−1
k∑
t=0

βtν
k−t
Kc

−1


=

K∑
k=0

ν 2k
Kc

−2∥ω0∥2 + 16NC2
δβ

2
k

(
k∑
t=0

ν
k−t
Kc

−1

)2

+ 8
√
NCδν

k
Kc

−1βk

k∑
t=0

ν
k−t
Kc

−1


(i)
≤

K∑
k=0

(
ν

2k
Kc

−2∥ω0∥2 + 16NC2
δβ

2
k

K2
c

ν2(1 − ν)2 + 8
√
NCδν

k
Kc

−1βk
Kc

ν(1 − ν)

)
(ii)
≤ ∥ω0∥2

ν2(1 − ν2/Kc)2 + 16NC2
δβ

2
kK

2
cK

ν2(1 − ν)2 + 8
√
NCδβk

Kc

(1 − νKc)ν(1 − ν)
= O(β2

kK
2
c) = O(

√
K), (95)

where the second equality is according to the step size choice. (i) is due to

k∑
t=0

ν
k−t
Kc

−1 ≤ Kc

⌈ k
Kc

⌉∑
z=0

νz−1 ≤ Kc
1

ν(1 − ν) .

(ii) is due to
∑K
k=0 ν

k
Kc

−1 = 1
ν(1−ν1/Kc) . The last equality uses Kc = O(K1/4). By following similar

arguments, we can show that
∑K
k=0 Mk2 = O(

√
K). Therefore, the third term in (94) is of order O(1√

K
).

Finally, by noticing CK1 = O(log 1
αk

), CK2 = O(log2 1
αk

), CK3 = O(log 1
αk

), CK4 = O(log2 1
αk

), we obtain the
desired iteration complexity of Õ(1√

K
), or equivalently, the sample complexity of Õ(ε−2).

D.2 Proof of Theorem 2

Define the update of actor i using the noisy reward as

gia(ξk, ωik+1) := r̃ik,Kr (sk, ak) + γϕ(s′)Tωik+1 − ϕ(s)Tωik+1. (96)

40

Published in Transactions on Machine Learning Research (01/2023)

Following the derivation of (72), we have

E[J(θk+1] − J(θk) ≥
N∑
i=1

[αk
2 ∥∇θiJ(θk)∥2 + αk

2 ∥E[gia(ξk, ωik+1)]∥2

−αk
2 ∥∇θiJ(θk) − E[gia(ξk, ωik+1)]∥2

]
− L

2NC
2
θα

2
k. (97)

Similarly to the proof of Theorem 1, the gradient bias term can be decomposed as as

∥∇θiJ(θk) − E[gia(ξk, ωik+1)]∥2 ≤ 4 ∥∇θiJ(θk) − E[δ(ξk, θk)ψθi
k
]∥2︸ ︷︷ ︸

I1

+ 4 ∥E[(δ(ξk, θk) − δ̃(ξk, ω∗(θk)))ψθi
k
]∥2︸ ︷︷ ︸

I2

+ 4 ∥E[(δ̃(ξk, ω∗(θk)) − δ̃(ξk, ωik+1))ψθi
k
]∥2︸ ︷︷ ︸

I3

+ 4 ∥E[(r̄k(sk, ak) − r̃k,Kr (sk, ak))ψθi
k
]∥2︸ ︷︷ ︸

I4

(98)

I1, I2, I3 can be bounded following the derivation of (84), (80), and (82), respectively. Plug these bounds
into (97), we have

E[J(θk+1)] − J(θk) ≥
N∑
i=1

(αk
2 E∥∇θiJ(θk)∥2 + αk

2 E∥gia(ξk, ωik+1)∥2 − 8C2
ψαkE∥ω∗(θk) − ωik+1∥2

)
−

N∑
i=1

αk
2 C2

ψ∥r̄k(sk, ak) − r̃ik,Kr (sk, ak)∥2 − L

2NC
2
θα

2
k

− 2NCK5α
2
k−ZK − 8(εsp + C2

ψε
r
app)Nαk. (99)

Define r̃k,Kr := [r1
k,Kr

, · · · , rNk,Kr]
T . The reward bias can be bounded as

N∑
i=1

∥r̄k(sk, ak) − r̃ik,Kr (sk, ak)∥2 = ∥Qr̃k,Kr∥2

= ∥QWKr r̃k,0(sk, ak)∥2

≤ ν2Kr∥r̃k,0(sk, ak)∥2

= ν2Kr
N∑
i=1

(
∥r̃ik,0(sk, ak) − r̄k(sk, ak)∥2 + ∥r̄k(sk, ak)∥2)

≤ ν2KrN(σ2 + rmax), (100)

where σ2 is the variance of the reward noise. Let Kr = 1
2 logν αk and define C15 := σ2 + r2

max. Plug (100)
back to (99), we have

E[J(θk+1)] − J(θk) ≥
N∑
i=1

(αk
2 E∥∇θiJ(θk)∥2 + αk

2 E∥gia(ξk, ωik+1)∥2 − 8C2
ψαkE∥ω∗(θk) − ωik+1∥2

)
+ N

2 (C15 + C2
θL)α2

k − 2NCK5α
2
k−ZK − 8(εsp + C2

ψε
r
app)Nαk.

Consider the Lyapunov function
Vk := −J(θk) + ∥ω̄k − ω∗(θk)∥2.

41

Published in Transactions on Machine Learning Research (01/2023)

The difference between two Lyapunov functions is

E[Vk+1] − E[Vk] ≤
N∑
i=1

(
−αk

2 ∥∇θiJ(θk)∥2 − αk
2 E∥gia(ξk, ωik+1)∥2

)
+ N

2 C16α
2
k − 2NCK5α

2
k−ZK − 8(εsp + C2

ψε
r
app)Nαk

+
N∑
i=1

8C2
ψαkE∥ω∗(θk) − ωik+1∥2 + E∥ω̄k+1 − ω∗(θk+1)∥2 − E∥ω̄k − ω∗(θk)∥2

︸ ︷︷ ︸
I5

.

I5 can be bounded by following the derivation of (90). Thus, we have

E[Vk+1] − E[Vk]

≤
N∑
i=1

−αk
2 ∥∇θiJ(θk)∥2 + N

2 C16α
2
k − 2NCK5α

2
k−ZK − 8(εsp + C2

ψε
r
app)Nαk

+ (1 + C9αk)(CK1βkβk−ZK + CK2βkαk−ZK) +Mk1αk, (101)

where C16 := C15 + C2
θL+ L2

ω,2C
2
θN

2

2 + L2
ω.

Telescoping (101), we have

1
K

K∑
k=0

N∑
i=1

E∥∇θiJ(θk)∥2 ≤ 2E[V0]
Kαk

+ 16(εsp + C2
ψε

r
appN) + 2

K

K∑
k=0

Mk1 + C16αk

+ (1 + C9αk)
(
CK1

βk
αk
βk−ZK + CK2

βk
αk
αk−ZK

)
.

The term 2
K

∑K
k=0 Mk1 has been bounded in (95). Let αk = ᾱ√

K
for some positive constant ᾱ, βk = C9

2λϕαk
will yield the desired rate.

E Natural Actor-Critic variant and its convergence

In this section, we propose a natural Actor-Critic variant of Algorithm 1, where the approach of calculating
the natural policy graident under the decentralized setting is mainly inspired by (Chen et al., 2022). We show
that the gradient norm square of such an algorithm will converge with the optimal sample complexity of
Õ(ε−3). Moreover, the algorithm will converge to the global optimum with the sample complexity of Õ(ε−6).
In the rest of this section, we first explain the update of the algorithm, and then prove its convergence.

E.1 Decentralized natural Actor-Critic

The natural policy gradient (NPG) algorithm (Kakade, 2002) can be viewed as a preconditioned policy
gradient algorithm, which updates as follow:

θk+1 = θk − αkF (θk)†∇J(θk), (102)

where F (θ) := Es∼dπθ ,a∼πθ
[
ψθ(s, a)ψθ(s, a)T

]
is the Fisher information matrix (FIM). The natural Actor-

Critic (NAC) uses the critic variable to estimate the gradient. The main challenge for implementing NAC lies
in the estimation of the matrix-vector product F (θk)†∇J(θk), especially under the decentralized setting. The
work (Chen et al., 2022) proposes to solve the following subproblem in order to estimate the product in a
decentralized way:

h(θk) = arg min
h

fθk(h) := 1
2h

TF (θk)h− ∇J(θk)Th. (103)

42

Published in Transactions on Machine Learning Research (01/2023)

Algorithm 3: Decentralized single-timescale NAC

1: Initialize: Actor parameter θ0, critic parameter ω0, reward estimator parameter λ0, initial state s0, natural
policy gradient estimation hk,0.

2: for k = 0, · · · , K − 1 do
3: Option 1: i.i.d. sampling:
4: sk ∼ µθk (·), ak ∼ πθk (·|sk), sk+1 ∼ P(·|sk, ak).
5: Option 2: Markovian sampling:
6: ak ∼ πθk (·|sk), sk+1 ∼ P(·|sk, ak).
7:
8: Periodical consensus: Compute ω̃i

k and λ̃i
k by (4) and (7).

9:
10: for i = 0, · · · , N in parallel do
11: Reward estimator update: Update λi

k+1 by (8).
12: Critic update: Update ωi

k+1 by (5).
13: Actor update:
14: Collect Na transition samples based on Markovian/i.i.d sampling.
15: for k′ = 1, · · · , Ka do
16: Estimate z̄k′,n, ∀n ∈ [Na] using (104).
17: Update hk,k′+1 by (106).
18: end for
19: Update θi

k+1 by (107).
20: end for
21: end for

Such a problem can be solved by using (stochastic) gradient descent, where the gradient is calculated by
F (θk)h − ∇J(θk). For the centralized setting, the gradient w.r.t. each agent can be approximated as

1
Na

∑Na
n=1 ψ

i
θk

(sn, ain)ψθk(sn, an)Th−gia(ξn, ωk+1, λk+1). However, when considering the decentralized setting,
the term z̄n := ψθk(sn, an)Th =

∑N
i=1 ψ

i
θk

(sn, an)Thi is not accessible for each agent. To approximate this
value under the decentralized setting, agents compute zin,0 := ψiθk(sn, an)Thi locally and then perform the
following communication step for Kz steps:

zin,k′+1 =
N∑
j=1

W ijzin,k′ , ∀n ∈ [Na], k′ = 0, · · · ,Kz − 1. (104)

As we will see, the value Nzin,k′ converges to z̄n linearly. Thus, the gradient of the subproblem (103) for
agent i can be approximated as:

∇̃f iθk(hk,k′) := N

Na

Na∑
n=1

ψiθk(sn, ain)zin,Kz − gia(ξn, ωk+1, λk+1). (105)

Then, each agent i performs the following update for Ka steps to estimate the natural policy gradient
direction:

hik,k′+1 = ΠCh(hik,k′ − ϱ∇̃f iθk(hk,k′)), (106)
where ϱ is a positive constant step size. Since the norm of optimal direction is bounded by Ch :=
λmax(F (θ)−1)Cθ, we project the vector into a ball of norm Ch for each update. Finally, we perform
the approximate natural policy gradient step as:

θik+1 = θik − αkh
i
k,Ka . (107)

E.2 Convergence of natural Actor-Critic

In this section, we establish the sample complexity of Algorithm 3. We first introduce an additional
assumption.

43

Published in Transactions on Machine Learning Research (01/2023)

Assumption 6. (invertible FIM) There exists a positive constant λF such that for all policy θ, λmin(F (θ)) ≥
λF .

Assumption 6 ensures that F (θ) is positive definite so that the problem (103) is strongly convex for all policy.
Such an assumption is also adopted by (Chen et al., 2022; Xu et al., 2021; Liu et al., 2020).

We now show the sample complexity of the Algroithm 3 in terms of gradient norm and the global optimality
gap. To keep the analysis concise, we will consider the i.i.d. sampling scheme where we can directly sample
transition tuples (s, a, s′) from the stationary distribution µπθ . Extending the analysis to the Markovian
sampling scheme essentially follows the similar technique as in AC’s analysis, which introduces an additional
O(log(ε−1)) error terms caused by Markov chain mixing, and an error of order O(1

1−γ) due to the mismatch
between µπθ and dπθ .
Theorem 3. Suppose Assumptions 1-6 hold. Consider the update of Algorithm 3 under the i.i.d. sampling.
Let αk = ᾱ√

K
for some positive constant ᾱ, βk = C9

2λϕαk, ϱ ≤ 1
2C2

ψ

, Na = O(
√
K), Ka = O(log(K1/2)),Kc =

O(log(K1/4)). Then, the following hold

1
K

K∑
k=1

N∑
i=1

E
[
∥∇θiJ(θk)∥2] ≤ O

(
1√
K

)
+ O(εapp + εsp) (108)

1
K

K∑
k=0

J(θ∗) − J(θk) ≤ O
(

1
K1/4

)
+ O(εapp + εsp + εactor). (109)

The error εapp and εsp are defined in (12) and (4.2), respectively. The error εactor is referred as "compatible
function approximation error", which is defined as:

εactor := max
θ

min
d

Es∼dπθ ,a∼πθ [(ψθ(s, a)T d−Aπθ (s, a))2].

Such an error captures the expressivity of the policy parameterization class: it measures the error of
approximating Aπθ(s, a) using ψθ(s, a) as feature. The error becomes 0 when using the softmax-tabular
parameterization; see more discussions in Section 6 of (Agarwal et al., 2019).

Based on Theorem 3, Algorithm 3 needs K = O(ε−2) iterations to achieve ε-error for gradient norm square,
and thus attains the sample complexity of KNaKa = Õ(ε−3), which matches the best existing sample
complexity of NAC (Xu et al., 2020; Chen et al., 2022). In terms of the global optimality gap, the algorithm
requires K = O(ε−4) iterations to achieve ε-error, and thus has the sample complexity of KNaKa = Õ(ε−6).
Such a sample complexity is worse than the best existing sample complexity of Õ(ε−3) (Xu et al., 2020; Chen
et al., 2022).

We now explain the gap for the sub-optimal sample complexity. Mimicking the analysis of (Chen et al., 2022)
allows to establish the following inequality:

1
K

K∑
k=0

J (θ∗) − E[J(θk)] ≤ O

(
1
K

K∑
k=1

N∑
i=1

E[∥∇θiJ(θk)∥2]
)

+ O

(
1
K

K∑
k=1

N∑
i=1

E∥ωik − ω∗(θk)∥
)

+ O
(

1
Kαk

)
. (110)

While our analysis can obtain the iteration complexity of O(1√
K

) for ∥∇J(θk)∥2, we can only achieve O(1
K1/4)

iteration complexity for critic’s error ∥ωk − ω∗(θk)∥. This is because our algorithm uses single-timescale
update, where the critic’s error inevitably converges slower than that of double-loop based algorithms which
have O(1√

K
) complexity for the critic’s error at each iteration. Therefore, the sample complexity in terms of

global optimality gap of our single-timescale NAC is dominated by this critic’s error term, resulting in the
final complexity of Õ(ε−6). Nevertheness, the bound (110) is not necessarily tight. We leave the research on
the tight bound of single-timescale NAC as a future work.

44

Published in Transactions on Machine Learning Research (01/2023)

E.3 Proof of Theorem 3

By Lemma 4, we have

E[J(θk+1)] − J(θk) ≥ E⟨∇θJ(θk), θk+1 − θk⟩ − L

2 ∥θk+1 − θk∥2

(i)
≥ αkE⟨∇θJ(θk), hk⟩ − L

2NC
2
hα

2
k

= αkE⟨∇θJ(θk), F (θk)−1ga(ξk, ωk+1, λk+1)⟩

+ αkE⟨∇θJ(θk), hk − F (θk)−1ga(ξk, ωk+1, λk+1)⟩ − L

2NC
2
hα

2
k

(ii)= αkE⟨F (θk)−1/2∇θJ(θk), F (θk)−1/2ga(ξk, ωk+1, λk+1)⟩

+ αkE⟨∇θJ(θk), hk − F (θk)−1ga(ξk, ωk+1, λk+1)⟩ − L

2NC
2
hα

2
k

= αk
2 ∥F (θk)−1/2∇θJ(θk)∥2 + αk

2 ∥F (θk)−1/2E[ga(ξk, ωk+1, λk+1)]∥2

− αk
2 ∥F (θk)−1/2∇θJ(θk) − F (θk)−1/2E[ga(ξk, ωk+1, λk+1)]∥2

+ αkE⟨∇θJ(θk), hk − F (θk)−1ga(ξk, ωk+1, λk+1)⟩ − L

2NC
2
hα

2
k

(iii)
≥ αk

4 C−2
ψ ∥∇θJ(θk)∥2 + αk

2 λ−1
F ∥E[ga(ξk, ωk+1, λk+1)]∥2

− αk
2 λ−1

F ∥∇θJ(θk) − E[ga(ξk, ωk+1, λk+1)]∥2︸ ︷︷ ︸
I1

− 4αkC2
ψ ∥E[hk] − F (θk)−1E[ga(ξk, ωk+1, λk+1)]∥2︸ ︷︷ ︸

I2

−L

2NC
2
hα

2
k, (111)

where (i) is due to ∥θik+1 − θik∥ ≤ Ch := λFCθ. Note that we use hik to represent hik,Ka for simplifying the
notation. (ii) uses decomposition of positive definite (PD) matrix. Specifically, let A be PD matrix, then by
eigenvalue decomposition, A = V ΛV T for some orthonormal matrix V . Define A−1/2 := V Λ−1/2V T , then
⟨x,A−1y⟩ = ⟨A−1/2x,A−1/2y⟩ for any x and y. (iii) uses C−2

ψ ≤ λ(F (θ)−1) ≤ λ−1
F and Young’s inequality.

I1 represents the error of gradient bias, which we have bounded when analyzing the error of AC. By (84), we
have

I1 ≤
N∑
i=1

[
16(εsp + C2

ψεapp) + 16C2
ψ∥ω∗(θk) − ωik+1∥2 + 8C2

ψ∥λ∗(θk) − λik+1∥2] . (112)

To bound I2, we need to bound the error of hk,k′ . We start with the gradient bias when estimating hk,k′ .
Define ∇fk,k′(hk,k′) := ∇F (θk)hk,k′ − E[ga(ξk, ωik+1, λ

i
k+1)], then it is easy to see that ∇fk,k′(hk,k′) is the

unbiased gradient of the following problem
1
2h

T
k,k′∇F (θk)hk,k′ − E[ga(ξk, ωik+1, λ

i
k+1)]Thk,k′ .

Define the following notation for the ease of expression:

∇̂f ik,k′(hk,k′) := 1
Na

Na∑
n=1

ψθi
k
(sn, ain)ψθk(sn, an)Thk,k′ − gia(ξk,k′ , ωik+1, λ

i
k+1)

∇̂fk,k′(hk,k′) := [∇̂f1
k,k′(hk,k′), · · · , ∇̂fNk,k′(hk,k′)]

∇̃f ik,k′(hk,k′) := N

Na

Na∑
n=1

ψθi
k
(sn, ain)zin,Kz − gia(ξk,k′ , ωik+1, λ

i
k+1)

∇̃fk,k′(hk,k′) := [∇̃f1
k,k′(hk,k′), · · · , ∇̃fNk,k′(hk,k′)].

45

Published in Transactions on Machine Learning Research (01/2023)

We now analyze the error at outer-loop iteration k. For notational simplicity, we omit the subscript k for
the prementioned notations, e.g. we use ∇̂f ik′(hk′), ∇̂fk′(hk′), ∇̃f ik′(hk′), ∇̃fk′(hk′) to represent the above
notations, respectively.

∥∇fk′(hk′) − ∇̃fk′(hk′)∥2 ≤ 2 ∥∇fk′(hk′) − ∇̂fk′(hk′)∥2︸ ︷︷ ︸
I3

+2 ∥∇̂fk′(hk′) − ∇̃fk′(hk′)∥2︸ ︷︷ ︸
I4

.

I3 can be bounded as

I3 = ∥
Na∑
n=1

(1
Na

ψθ(sn, an)ψθ(sn, an)T − F (θ))hk′∥2

≤ ∥
Na∑
n=1

(1
Na

ψθ(sn, an)ψθ(sn, an)T − F (θ))∥2C2
h

≤ 1
Na

C4
ψC

2
h. (113)

I4 can be bounded as

I4 =
N∑
i=1

∥∥∥∥∥ψθi(sn, ain)
(

1
Na

Na∑
n=1

Nzin,Kz − ψθ(sn, an)Thk′

)∥∥∥∥∥
2

≤ 1
Na

NC2
ψ

N∑
i=1

Na∑
n=1

∥zin,Kz − z̄n,Kz∥2

=
NC2

ψ

Na

Na∑
n=1

∥QWKzzn,0∥2

≤
NC2

ψ

Na

Na∑
n=1

νKz∥zn,0∥2 ≤ NC4
ψC

2
hν

Kz . (114)

Let Kz = min{c ∈ N+|νc ≤ 4
NaN

}, then Kz = O(log 1
Na

). Combine (113) and (114) gives us

∥∇fk′(hk′) − ∇̃fk′(hk′)∥2 ≤
4C4

ψC
2
h

Na
.

We now analyze the error of hk,k′ . Note that we omit the subscript k here for simplifying notation. Define

h∗ = arg min
h

f̄θ(h) := hTF (θ)h := −Eξ∼µθ [ga(ξ, ω, λ)]Th. (115)

It is easy to see that the function on the RHS is strongly convex, since F (θ) is positive definite w.r.t. h. We
bound the optimal gap by

E∥hk′+1 − h∗∥2 = E∥hk′ − ϱ∇̃fk′(hk′) − h∗∥2

= E∥hk′ − h∗∥2 − 2ϱE⟨hk′ − h∗, ∇̃fk′(hk′)⟩ + ϱ2∥∇̃fk′(hk′)∥2

≤ E∥hk′ − h∗∥2 − 2ϱE⟨hk′ − h∗,∇fk′(hk′)⟩ + 2ϱE⟨hk′ − h∗,∇fk′(hk′) − ∇̃fk′(hk′)⟩

+ 2ϱ2∥∇fk′(hk′)∥2 + 2ϱ2∥∇̃fk′(hk′) − ∇fk′(hk′)∥2

(i)
≤ (1 − ϱλF)E∥hk′ − h∗∥2 − 2ϱ(fk′(hk′) − f

∗) + 2ϱE⟨hk′ − h∗,∇fk′(hk′) − ∇̃fk′(hk′)⟩

+ 2ϱ2∥∇fk′(hk′)∥2 + 2ϱ2∥∇̃fk′(hk′) − ∇fk′(hk′)∥2

46

Published in Transactions on Machine Learning Research (01/2023)

(ii)
≤ (1 − ϱλF)E∥hk′ − h∗∥2 − 2ϱ(1 − 2ϱC2

ψ)(fk′(hk′) − f
∗)

+ 2ϱE⟨hk′ − h∗,∇fk′(hk′) − ∇̃fk′(hk′)⟩ + 2ϱ2∥∇̃fk′(hk′) − ∇fk′(hk′)∥2

(iii)
≤ (1 − ϱλF)E∥hk′ − h∗∥2 + 2ϱE⟨hk′ − h∗,∇fk′(hk′) − ∇̃fk′(hk′)⟩

+ 2ϱ2∥∇̃fk′(hk′) − ∇fk′(hk′)∥2

(iiii)
≤ (1 − ϱλF

2)E∥hk′ − h∗∥2 + (2ϱ
λF

+ 2ϱ2)∥∇̃fk′(hk′) − ∇fk′(hk′)∥2,

where f∗ is the optimal value of f(h) defined in (115), and the inequality follows the property of λF -strongly
convex function: f(h2) ≥ f(h1) + ⟨∇f(h1), h2 − h2⟩ + λF

2 ∥h1 − h2∥2, ∀h1, h2. (ii) uses the PL condition
implied by λF -strong convexity: f(h∗) − f(h) ≤ − 1

2λF ∥∇f(h)∥2, ∀h. (iii) is due to step size rule that
ϱ ≤ 1

2C2
ψ

. (iiii) applies Young’s inequality.

Use the above induction, we have

E∥hKa − h∗∥2 ≤ (1 − ϱλF
2)Ka∥h0 − h∗∥2 +

Ka∑
t=0

(1 − ϱλF
2)t(2ϱ

λF
+ 2ϱ2)∥∇fKa−t(hKa) − ∇̃fKa(hKa)∥2

≤ 4C2
h(1 − ϱλF

2)Ka + (4ϱ
ϱλ2

F

+ 4ϱ
λF

)C4
ψC

2
h

4
Na

.

Let Ka = min{c ∈ N+|4C2
h(1 − ϱλF

2)c = (4ϱ
ϱλ2
F

+ 4ϱ
λF

)C4
ψC

2
h

1
Na

}, then Ka = O(log(1
Na

)). Define C18 :=
(16ϱ
ϱλ2
F

+ 16ϱ
λF

)C4
ψC

2
h, we have

I2 = E∥hKa − h∗∥2 ≤ 2C18

Na
. (116)

Plug (112) and (116) back to (111), we have

E[J(θk+1)] − J(θk) ≥
N∑
i=1

[αk4 C−2
ψ ∥∇θiJ(θk)∥2 + αk

2 λF ∥F (θk)−1E[gia(ξk, ωik+1, λ
i
k+1)]∥2 + αkC

2
ψ

2C18

Na

+ 8λ−1
F (εsp + C2

ψεapp) + 8λ−1
F C2

ψ∥ω∗(θk) − ωik+1∥2 + 4λ−1
F C2

ψ∥λ∗(θk) − λik+1∥2]

Consider the Lyapunov function

Vk = −J(θk) + λ−1
F (∥ωk − ω∗(θk)∥2 + ∥λk − λ∗(θk)∥2).

The difference of the Lyapunov function is

E[Vk+1] − E[Vk] = E[J(θk)] − E[J(θk+1)] + λ−1
F (E∥ωk+1 − ω∗(θk+1)∥2 − E∥ωk − ω∗(θk)∥2

+ E∥λk+1 − λ∗(θk+1)∥2 − E∥λk − λ∗(θk)∥2)

≤
N∑
i=1

[
αk
4 C−2

ψ E∥∇θiJ(θk)∥2 + αk
2 λF ∥F (θk)−1E[gia(ξk, ωik+1, λ

i
k+1)]∥2 + αkC

2
ψ

2C18

Na

]

+ λ−1
F

[
N∑
i=1

8C2
ψαkE∥ω∗(θk) − ωik+1∥2 + E∥ω̄k+1 − ω∗(θk+1)∥2 − E∥ω̄k − ω∗(θk)∥2

]
︸ ︷︷ ︸

I5

+ λ−1
F

[
N∑
i=1

4C2
ψαkE∥λ∗(θk) − λik+1∥2 + E∥λ̄k+1 − λ∗(θk+1)∥2 − E∥λ̄k − λ∗(θk)∥2

]
︸ ︷︷ ︸

I6

+ 8Nλ−1
F (εsp + C2

ψεapp). (117)

47

Published in Transactions on Machine Learning Research (01/2023)

By following the similar procedures through (87) to (91), we can bound I5 and I6 as

I5 ≤ (1 + C19αk)C2
δβ

2
k + αk

4 λ−1
F

N∑
i=1

E∥F (θk)−1gia(ξk, ωik+1, λ
i
k+1)∥2 + αkMk1 + C20α

2
k (118)

I6 ≤ (1 + C21αk)C2
λη

2
k + αk

4 λ−1
F

N∑
i=1

E∥F (θk)−1gia(ξk, ωik+1, λ
i
k+1)∥2 + αkMk2 + C22α

2
k, (119)

where C19, C20, C21, C22 are some positive constants. Plug (118) and (119) back to (117), we have

E[Vk+1] − E[Vk] ≤
N∑
i=1

[αk4 C−2
ψ E∥∇θiJ(θk)∥2 + αkC

2
ψ

2C18

Na
+ O(α2

k + β2
k + η2

k)

+ (Mk1 +Mk2)αk + O(εsp + εapp)αk]. (120)

By telescoping (120), we can get

1
K

K∑
k=0

N∑
i=1

E∥∇θiJ(θk)∥2 ≤
4C2

ψV0

Kαk
+ O(εsp + εapp) +

8C2
ψC18

Na
+ O(αk + β2

k

αk
+ η2

k

αk
)

+ 4C2
ψ

1
K

K∑
k=0

(Mk1 +Mk2)

By (95), Mk1 + Mk2 = O(1√
K

) when Kc ≤ O(K1/4). Therefore, let C, ᾱ be some positive constants. Set
Na = C

√
K, αk = ᾱ√

K
, βk = C9

2λϕαk, ηk = C10
2λφαk, we obtain the desired result of (108).

We now prove (109). Let Eθ∗ denote the expectation over s ∼ dπθ∗ , a ∼ πθ∗(·|s). By the smoothness of
log πθ(a|s), we have

Eθ∗ [log πθk+1(a|s) − log πθk(a|s)]

≥ αkEθ∗ [ψθk(s, a)Thk] − Lψα
2
k

2 C2
h

≥ αkEθ∗ [ψθk(s, a)T (hk − h∗(θk))] + αkEθ∗ [ψθk(s, a)Th∗(θk) −Aθk(s, a)]

+ αkEθ∗ [Aθk(s, a)] − Lψα
2
k

2 C2
h

≥ −αkCψ∥hk − h∗(θk)∥ − αk
√
εactor + αk(J(θ∗) − J(θk)) − Lψα

2
k

2 C2
h.

By telescoping the above inequality and rearranging terms, we have

1
K

K∑
k=1

(J(θ∗) − J(θk)) ≤ 1
Kαk

Eθ∗ [log πK(a|s) − log π0(a|s)] +
√
εactor

+ 1
K

K∑
k=1

Cψ∥hk − h∗(θk)∥ + 1
K

K∑
k=1

Lψαk
2 .

The term ∥hk − h∗(θk)∥ ≤ ∥hk − F (θk)−1E[ga(ξk, ωk+1, λk+1]∥ + ∥E[ga(ξk, ωk+1, λk+1] − F−1∇J(θk)∥. Since
by the (116) and (84), these two terms are of order O(1

N
1/2
a

) and O(∥ωk − ωk+1∥ + εapp), respectively, we
conclude that ∥hk − h∗(θk)∥ is of order O(∥ωk − ω∗(θk)∥ + εapp). By following the step size rule as suggested
by Theorem 3, we obtain the desired result.

48

	Introduction
	Preliminary
	Markov decision process
	Policy gradient Theorem

	Algorithms
	Decentralized single-timescale Actor-Critic
	Variant for preserving local action

	Main results
	Assumptions
	Sample complexity for Algorithm 1
	Sample complexity for Algorithm 2
	Proof sketch
	Convergence of single-timescale decentralized NAC

	Numerical results
	Experiment setting
	Comparison with existing decentralized AC algorithms
	Ablation study on different choices of Kc

	Conclusion and future direction
	Additional simulation results
	Auxiliary lemmas
	Supporting lemmas
	Error of critic
	Error of reward estimator
	Consensus error
	Error of actor

	Proof of main results
	Proof of Theorem 1
	Proof of Theorem 2

	Natural Actor-Critic variant and its convergence
	Decentralized natural Actor-Critic
	Convergence of natural Actor-Critic
	Proof of Theorem 3

