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Abstract

Pseudo-label-based Semi-Supervised Learning (SSL) often suffers from classi-
fier bias, particularly under class imbalance, as inaccurate pseudo-labels tend to
exacerbate existing biases towards majority classes. Existing methods, such as CD-
MAD[37], utilize simplistic reference inputs—typically uniform or blank-colored
images—to estimate and correct this bias. However, such simplistic references
fundamentally ignore realistic statistical information inherent to real datasets,
specifically typical color distributions, texture details, and frequency characteris-
tics. This lack of statistical representativeness can lead the model to inaccurately
estimate its inherent bias, limiting the effectiveness of bias correction, particularly
under severe class imbalance or substantial distribution mismatches between la-
beled and unlabeled datasets. To overcome these limitations, we introduce the
FARAD (Fourier-Adapted Reference for Accurate Debiasing) System. This system
utilizes random-phase images, constructed by preserving the amplitude spectrum
of real data while randomizing the phase spectrum. This strategy ensures two
critical properties: (1) Semantic Irrelevance, as randomizing phase removes any
structural or recognizable semantic cues, and (2) Statistical Representativeness,
as preserving the amplitude spectrum maintains realistic textures, color distribu-
tions, and frequency characteristics. Grounded theoretically in classical Fourier
analysis, the FARAD System provides a robust, accurate estimation of per-class
biases. Furthermore, computational efficiency is enhanced through optimized
real-to-complex (R2C) batched Fast Fourier Transforms (FFTs). Comprehensive
experiments demonstrate that our approach, significantly improves minority-class
accuracy and overall SSL performance, particularly under challenging imbalance
scenarios, compared with existing reference-based bias correction methods.

1 Introduction

Long-tailed semi-supervised learning (SSL) has emerged as a core challenge in deep learning, as it
must simultaneously contend with two difficulties: severe class imbalance and limited labeled data.
Real-world datasets often contain a handful of majority classes with abundant labels, alongside a "long
tail" of classes that have very few (or even zero) labeled examples[45, 58, 60, 66, 41, 16]. In such
scenarios, standard learning algorithms tend to overfit to the majority classes, leaving minority classes
underrepresented and poorly modeled[46, 63]. Meanwhile, semi-supervised approaches typically
rely on plentiful unlabeled data to compensate for sparse labeled samples[54, 28, 17]. However, this
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strategy can inadvertently exacerbate imbalance if the unlabeled data distribution skews similarly or
even diverges from the labeled set, further amplifying the classifier’s inherent bias toward majority
classes[1, 68, 40, 15] across diverse domains from medicine to autonomous systems.

A promising avenue to address this issue lies in estimating and subtracting the classifier’s intrinsic
bias[37]. Concretely, suppose we feed the classifier an image devoid of meaningful semantic content;
any strong class preferences in the output must reflect learned biases rather than genuine discriminative
features. By capturing the classifier’s response (logits) to such a carefully crafted “reference image”
and subtracting these reference logits from the classifier’s predictions on real inputs, we can mitigate
the bias that naturally arises from class imbalance. This bias-correction step can be applied both
during training and inference: at training, it helps to produce more balanced pseudo-labels and
gradient signals; at inference, it continues to offset the learned bias so that minority-class instances
are not systematically overlooked[67, 64].
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Figure 1: Experimental comparison on CIFAR-
10-LT[10] references, mapping shape presence
vs. statistical fidelity. Our random-phase im-
ages achieve high fidelity (color/frequency align-
ment) with minimal shape cues, while purely
blank references (CDMAD[37]) may fail to cap-
ture realistic data distributions.

Core Insight. The key intuition behind
reference-based bias subtraction is straight-
forward: if a classifier assigns strong class
preferences to an image devoid of meaningful
semantic content, these preferences must reflect
learned biases rather than genuine semantic
features. Eliminating semantic cues is thus
essential; however, ensuring that the reference
images still respect the realistic statistics of the
target data distribution is equally crucial. Overly
simplistic inputs (e.g., uniform-gray images) can
misrepresent important color or texture patterns,
potentially leading to suboptimal bias estimation
and compromised learning performance.

Motivation and Limitations of Existing Refer-
ences. Previous methods, such as CDMAD[37],
employ minimalistic references (e.g., images
with uniform or blank color) that deliberately
remove recognizable shapes to guarantee seman-
tic irrelevance. While effective at eradicating
structured semantic cues, these references fail
to capture critical statistical characteristics of
real datasets—such as realistic color distributions, texture patterns, and spatial frequency energy.
Consequently, these methods often yield suboptimal results, particularly for minority categories in
highly imbalanced or mismatched labeled-unlabeled distribution scenarios[38, 44].

Two Key Properties for Accurate Bias Estimation. To overcome these shortcomings, we pro-
pose replacing simplistic references with random-phase images that rigorously fulfill two critical
properties:

Semantic Irrelevance
Drawing from insights in cognitive and perceptual
psychology [14], we note that classifiers often rely
heavily on shape and edge information. Our reference
images must therefore be free from any recognizable
shapes or edges. Achieving complete semantic irrele-
vance ensures that any classifier response to these
images cannot stem from genuine semantic clues,
thereby purely reflecting intrinsic biases.

Statistical Representativeness
Aligning with foundational concepts in statistical
learning theory [4], a bias reference must adequately
represent global statistical properties of real data. Un-
like blank images, a statistically representative refer-
ence preserves realistic color distributions, textures,
and frequency spectra, thereby letting the classifier’s
response reflect genuine biases learned from real data
rather than artifacts introduced by trivial references.

Our Random-Phase Approach. Concretely, we construct reference images by preserving the
amplitude spectrum of actual dataset samples, thereby maintaining realistic global statistics such
as color distribution and texture patterns. Simultaneously, by randomizing the phase spectrum, we
eliminate shape-based cues and object structures. This design results in references that exhibit no
coherent edges or meaningful forms, yet still align with the target dataset’s overall energy distribution.
In Figure 1, we illustrate a small-scale experiment on CIFAR-10-LT, mapping each reference type
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onto a plane defined by shape presence” (horizontal axis) vs. statistical fidelity” (vertical axis). The
specific metrics used to quantify ’shape presence’ and ’statistical fidelity’ are detailed in Appendix C.
While uniform-color references appear near minimal shape cues but also have low fidelity, and real
images excel at fidelity but inevitably contain structural information, our random-phase images
better balance both dimensions across all dataset complexity levels. CDMAD’s blank references lie
somewhere in between, indicating that a purely blank or partially structured input may not effectively
address the tension between semantic irrelevance and statistical representativeness.

Contributions and Paper Outline. We validate the effectiveness of our method on multiple
long-tailed benchmarks, showing that subtracting the logits on random-phase images consistently
improves minority-class recognition more substantially than subtracting uniform-color references.
This improvement remains robust under various SSL pipelines (e.g., FixMatch, ReMixMatch),
confirming the method’s broad applicability. We also demonstrate that the added computational cost
can be mitigated via real-to-complex (R2C) FFT implementations, allowing our method to scale
efficiently to larger datasets. Our contributions can be summarized as follows:

• We present a framework for reference-based bias subtraction in long-tailed SSL, constructing
random-phase images that jointly satisfy Semantic Irrelevance and Statistical Representativeness.

• By preserving amplitude spectra and randomizing phase spectra, we retain alignment with real
data’s color and frequency energy while thoroughly removing shape cues.

• Through extensive experiments, we show that subtracting the classifier’s logits on random-phase
references significantly boosts minority-class recognition, especially under severe imbalances.

• We demonstrate that the approach’s computational overhead is manageable using batched R2C
FFT, ensuring scalability to larger datasets and higher-resolution images.

2 Method

In this section, we present our framework for estimating and correcting class bias via random-phase
images that preserve the amplitude spectrum of real data. The goal is to address severe class imbalance
in both labeled and unlabeled sets, especially when their distributions are mismatched. We begin by
giving a high-level motivation and overview of our method in §2.1. We then detail two key properties:
how randomizing the phase spectrum ensures semantic irrelevance (§2.2) and how preserving the
amplitude spectrum ensures statistical representativeness (§2.3). We next explain how these images
serve as a bias estimator for the classifier (§2.4) and how the same principle applies at inference
(§2.5). In §2.6, we discuss computational considerations for large-scale FFT.

2.1 Overall Framework

Class-imbalanced data, often referred to as “long-tailed” data, naturally biases the classifier toward
majority classes. In the semi-supervised setting, this bias can be even more pronounced because the
unlabeled set may have an unknown distribution that differs substantially from the labeled set. Recent
work such as CDMAD proposes subtracting classifier outputs on a solid-color image to remove the
classifier’s inherent bias. While conceptually simple, solid-color images (often a uniform gray or
RGB constant) have no structure and also do not capture realistic statistics (e.g., texture or color
variability) that exist in real images across diverse natural and synthetic domains.

We propose replacing such simple reference images with random-phase images that preserve the
amplitude spectrum of real data. These images: (1) exhibit no recognizable structure (semantic
irrelevance), because the phase spectrum is randomized, which destroys spatial correlations (further
theoretical validation in Appendix G); (2) preserve statistical properties such as overall energy or
color distribution, because the amplitude spectrum is preserved from real samples or a batch-average
amplitude (with theoretical support in Appendix H). Hence, the classifier’s output on such a random-
phase image better reflects the “intrinsic bias” it has learned (analyzed theoretically in Appendix I).
Formally subtracting that output from the logits of a real input thus removes a large fraction of the
bias, improving minority-class recognition significantly across diverse datasets.
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2.2 Semantic Irrelevance via Phase Randomization

Let x ∈ RH×W×3 be an input image with height H , width W , and 3 color channels. Let F{x}
denote its 2D Discrete Fourier Transform (2D-DFT). For each channel, the 2D-DFT at frequency
coordinates (u, v) can be expressed in polar form as:

F{x}(u, v) = A(u, v) exp
(
j Φ(u, v)

)
, (1)

where A(u, v) = |F{x}(u, v)| is the amplitude spectra, Φ(u, v) = ∠F{x}(u, v) is the phase
spectra, and j =

√
−1 is the imaginary unit. (Fundamental concepts of the 2D-DFT are reviewed in

Appendix E.) It is well known in image processing that the phase spectrum Φ(u, v) encodes much
of the semantic or structural information (e.g., contours, shapes), whereas the amplitude A(u, v)
primarily reflects overall energy or color intensity distributions.

To eliminate semantic cues from x, we randomize its phase spectrum, replacing Φ(u, v) with Φ̃(u, v)
drawn from [−π, π] or from a shuffled pool of existing phases. The corresponding random-phase
image is:

xrand = F−1
{
A(u, v) exp

(
j Φ̃(u, v)

)}
. (2)

Because the original spatial structure is corrupted by Φ̃(u, v), xrand contains no coherent edges or
objects. In practice, such random-phase images often appear as turbulent or cloud-like patterns with
seemingly random visual characteristics. Consequently, any strong class-specific response from
the classifier when presented with xrand is likely attributable to a learned internal bias, rather than
genuine evidence for that class. Appendix G provides a formal theoretical justification for why
randomizing the phase ensures this semantic irrelevance.

2.3 Statistical Representativeness via Amplitude Preservation

Whereas randomizing the phase spectrum removes meaningful shapes, preserving the amplitude
spectrum retains the color intensity and frequency energy similar to real data. In contrast, a purely
uniform image keeps only the zero-frequency component (DC value), discarding essentially all
higher-frequency information. Therefore, such uniform or overly simplistic references might fail to
capture how the classifier responds to the normal variability of real images.

To obtain a more stable and representative amplitude spectrum, we average amplitudes over a mini-
batch of real images. Suppose we have a batch {x(1), x(2), . . . , x(B)}. Let A(b)(u, v) and Φ(b)(u, v)
be their amplitude and phase spectra, respectively. We compute the batch-averaged amplitude

A(u, v) =
1

B

B∑
b=1

A(b)(u, v). (3)

We then pair A(u, v) with a new random phase Φ̃(u, v) to construct xrand. This ensures that, while no
true object boundaries remain, the overall energy and color distributions match the typical real data in
the batch. Empirically, we find that using A reduces variance in the random-phase images and yields
more robust bias estimates than simply using amplitude from a single sample. The theoretical basis
for why preserving the amplitude spectrum, especially when averaged, reflects real data statistics
across diverse natural and synthetic contexts is further discussed in Appendix H.

2.4 Class Bias Estimation and Correction

Let fθ(·) : RH×W×3 → {1, . . . , C} be the classifier, and gθ(·) ∈ RC be its logits. For a random-
phase image xrand, we compute

zbias = gθ(xrand), (4)
which reflects the model’s intrinsic preference over C classes, in the absence of meaningful semantic
inputs (a rigorous explanation of how gθ(xrand) reveals this default bias is provided in Appendix I).
We then define the bias-corrected logits for any real input x:

g∗θ(x) = gθ(x) − zbias. (5)

By subtracting zbias, we discount the portion of the logits that arises from the model’s prior bias,
rather than genuine class evidence. In the context of training on a labeled sample (xn, yn) or an
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unlabeled sample um, we replace gθ(x) with g∗θ(x) in the loss function (e.g., supervised cross-entropy
or a consistency regularization loss). This yields more balanced pseudo-labels for the unlabeled data
and reduces overconfidence on majority classes while improving minority class recognition.

Notably, this approach is related in spirit to logit adjustment methods or reference-image subtraction
(e.g., CDMAD), but by preserving the real amplitude spectrum, we aim to make the bias estimator
more reflective of how the classifier responds to typical color/texture distributions in the dataset,
leading to more accurate bias correction across diverse visual domains and learning paradigms.

2.5 Inference Stage Bias Correction

Class imbalance often persists even after training. To further mitigate bias at test time, we continue to
apply bias correction. For each incoming test image xtest, we create a random-phase image xtest

rand
using the same amplitude-spectrum averaging and phase randomization described above. Then,

ztestbias = gθ
(
xtest
rand

)
, (6)

and
g∗θ
(
xtest

)
= gθ

(
xtest

)
− ztestbias. (7)

We finally predict
f∗
θ

(
xtest

)
= argmax

c
g∗θ
(
xtest

)
c
. (8)

Although this requires generating a random-phase image (and one extra forward pass) for each test
sample or mini-batch, it adaptively reduces bias at inference time, providing additional gains on
minority classes, especially if the training distribution was highly skewed or if the test distribution
differs from the training distribution across diverse real-world testing scenarios.

2.6 FFT Computation and Acceleration

A potential concern is the computational overhead of 2D Fourier transforms on large batches. We
address this by using batched real-to-complex (R2C) FFT, which exploits the conjugate symmetry of
real-valued inputs (as detailed in Appendix E, specifically §E.4). Specifically, for a real-valued image
x, its Fourier transform satisfies

F{x}(u, v) = F{x}(−u,−v), (9)

where the overline denotes complex conjugation. This property allows us to compute only half the
spectrum, reducing both runtime and memory usage. Modern libraries such as cuFFT can process
entire mini-batches of images in parallel, further accelerating training.

Crucially, we do not discard high-frequency components of x during randomization. While
randomizing the phase is sufficient to remove recognizable structure, it is essential to preserve the
full amplitude spectrum to retain realistic color, texture, and energy statistics. Appendix J provides a
theoretical analysis showing that these FFT accelerations and practical computational considerations
do not violate the core assumptions underpinning our method.

3 Experimental Results

In this section, we aim to address the following four key questions about FARAD in the context of
long-tailed semi-supervised learning:

Q1: Does FARAD consistently outperform baselines on standard benchmarks?
Q2: Which FARAD components are critical, and how they compare to other correction strategies?
Q3: Why do random-phase images achieve semantic irrelevance & statistical representativeness?

In addition to these core investigations, extensive further experiments are detailed in the Appendix.
These confirm FARAD’s robustness across a wider array of distribution mismatches (including ex-
treme imbalances and domain shifts, as shown in Appendices D.2, D.6, and D.8) and demonstrate its
versatility with additional SSL algorithms and network architectures (Appendices D.3 and D.7). Fur-
thermore, the Appendix presents in-depth studies on optimal reference image design (Appendix D.4)
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Table 1: CIFAR-10-LT results with γl = γu. We report bACC / GM (%) ± std. on three imbalance
factors. “Ours” denotes our proposed method. Best entries in bold.

Algorithm CIFAR-10-LT (bACC / GM)

γ = 50 γ = 100 γ = 150

Vanilla 65.2±0.05 / 61.1±0.09 58.8±0.13 / 58.2±0.11 55.6±0.43 / 44.0±0.98
Re-sampling 64.3±0.48 / 60.6±0.67 55.8±0.47 / 45.1±0.30 52.2±0.05 / 38.2±1.49
LDAM-DRW 68.9±0.07 / 67.0±0.08 62.8±0.17 / 58.9±0.60 57.9±0.20 / 50.4±0.30
cRT 67.8±0.13 / 66.3±0.15 63.2±0.45 / 59.9±0.40 59.3±0.10 / 54.6±0.72

FixMatch 79.2±0.33 / 77.8±0.36 71.5±0.72 / 66.8±1.51 68.4±0.15 / 59.9±0.43
/++DARP+cRT 85.8±0.43 / 85.6±0.56 82.4±0.26 / 81.8±0.17 79.6±0.42 / 78.9±0.35
/+CReST+LA 85.6±0.36 / 81.9±0.45 81.2±0.70 / 74.5±0.99 71.9±2.24 / 64.4±1.75
/+ABC 85.6±0.26 / 85.2±0.29 81.1±1.14 / 80.3±1.29 77.3±1.25 / 75.6±1.65
/+CoSSL 86.8±0.30 / 86.6±0.25 83.2±0.49 / 82.7±0.60 80.3±0.55 / 79.6±0.57
/+SAW+LA 86.2±0.15 / 83.9±0.35 80.7±0.15 / 77.5±0.21 73.7±0.06 / 71.2±0.17
/+Adsh 83.4±0.06 / – 76.5±0.35 / – 71.5±0.30 / –
/+DebiasPL – / – 80.6±0.50 / – – / –
/+UDAL 86.5±0.29 / – 81.4±0.39 / – 77.9±0.33 / –
/+L2AC – / – 82.1±0.57 / 81.5±0.64 77.6±0.53 / 75.8±0.71
/+CDMAD 88.1±0.38 / 87.9±0.34 85.3±0.48 / 85.1±0.45 82.3±0.24 / 81.8±0.28
/+FARAD 91.5±0.38 / 91.3±0.40 88.6±0.47 / 88.5±0.42 85.4±0.35 / 85.1±0.37

ReMixMatch 81.5±0.26 / 80.2±0.32 73.8±0.38 / 69.5±0.84 69.9±0.47 / 62.5±0.35
/+DARP+cRT 87.3±0.61 / 87.0±0.11 83.5±0.07 / 83.1±0.09 79.7±0.54 / 78.9±0.49
/+CReST+LA 84.2±0.11 / – 81.3±0.34 / – 79.2±0.31 / –
/+ABC 87.9±0.47 / 87.6±0.51 84.5±0.32 / 84.1±0.36 80.5±1.18 / 79.5±1.36
/+CoSSL 87.7±0.21 / 87.6±0.25 84.1±0.56 / 83.7±0.66 81.3±0.83 / 80.5±0.76
/+SAW+cRT 87.6±0.21 / 87.4±0.26 85.4±0.32 / 83.9±0.21 79.9±0.15 / 79.9±0.12
/+CDMAD 88.1±0.34 / 88.0±0.35 85.5±0.46 / 85.3±0.44 82.5±0.23 / 82.0±0.30
/+FARAD 91.2±0.39 / 91.0±0.41 88.4±0.44 / 88.2±0.46 85.3±0.24 / 84.8±0.27

and effective bias correction application strategies (Appendix D.5), alongside evaluations of its inter-
action with data augmentation (Appendix D.9) and scalability to higher resolutions (Appendix D.10)
with significant implications for practical deployment scenarios.

3.1 Experimental Settings and Evaluation Metrics

We conduct our experiments on four widely-used long-tailed benchmarks: CIFAR-10-LT[10],
CIFAR-100-LT[10], STL-10-LT[30], and Small-ImageNet-127[11]. Following previous work,
each dataset is artificially made long-tailed by assigning different numbers of labeled samples per
class according to an imbalance factor γl for labeled data and γu for unlabeled data. In some cases,
γl ̸= γu, which simulates realistic scenarios where the labeled and unlabeled data distributions are
not perfectly aligned, reflecting common challenges in practical machine learning deployments.

All methods are trained under the same hyperparameter settings and data augmentations (weak and
strong) as in CDMAD[37] for fair comparisons. For each dataset, we keep the same random seeds
and batch sizes to minimize variance. Our implementation adopts a standard Adam optimizer, with
initial learning rate and weight decay selected via a small validation set or the protocol suggested in
related SSL studies. The detailed experimental details can be found in Appendix B.

Evaluation Metrics. We primarily report the balanced accuracy (bACC)[23], defined as the average
of per-class accuracies, to highlight performance on minority classes. For CIFAR-10-LT and STL-10-
LT, we also present the geometric mean (GM)[32] across classes. In the case of higher-cardinality
datasets such as CIFAR-100-LT and Small-ImageNet-127, we concentrate on bACC since it better
reflects performance under significant label imbalance. We additionally provide standard accuracy
and class-wise confusion matrices in the appendix for further insights.

Under these settings, we compare our approach with a range of baselines, including vanilla al-
gorithm (Deep CNN trained with cross- entropy loss), classic long-tailed methods (e.g., RE-
SAMPLING[26], LDAM-DRW[5], CRT[29], LA[42]), vanilla semi-supervised methods (e.g.,
FixMatch[47], ReMixMatch[33]), and CISSL approaches such as DARP[31], CReST[57], ABC[38],
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Table 3: Small-ImageNet-127 results with γl = γu. We report balanced accuracy (bACC, %). Best
in bold.

Algorithm Small-ImageNet-127 (bACC)

32×32 64×64

FixMatch 29.7 42.3
FixMatch+DARP 30.5 42.5
FixMatch+DARP+cRT 39.7 51.0
FixMatch+CReST 32.5 44.7
FixMatch+CReST+LA 40.9 55.9
FixMatch+ABC 46.9 56.1
FixMatch+CoSSL 43.7 53.8
FixMatch+CDMAD 48.4 59.3
FixMatch+FARAD 50.6 62.1

SAW[34], Adsh[19], DebiasPL[55], UDAL[35], L2AC[53], CDMAD[37], and CoSSL[12]. In the
following sections, we present our experimental results and demonstrate how FARAD tackles each of
the four key questions posed above through rigorous comparative analysis.

3.2 Comparative Evaluation on Long-Tailed SSL Benchmarks(Addressing Q1)

We begin by examining whether FARAD can surpass prior art—including the recent CDMAD
approach—on three standard long-tailed semi-supervised benchmarks where labeled and unlabeled
data share the same imbalance factor (γl = γu). These benchmarks range from a 10-class scenario
(CIFAR-10-LT) to a more demanding 100-class problem (CIFAR-100-LT), and finally to a larger-
scale ImageNet subset (Small-ImageNet-127). We measure balanced accuracy (bACC) and geometric
mean (GM), using the same splits and baselines as [37] with minor numerical variations. As shown
below, FARAD achieves consistent gains of around 3% over the strongest competitor (CDMAD)
across these datasets and imbalance levels, largely because our bias references retain realistic statistics
while stripping away structural cues, thus yielding a more accurate measure of intrinsic bias.

CIFAR-10-LT. Table 1 compares classical rebalancing (e.g. LDAM-DRW, cRT), SSL baselines (Fix-
Match, ReMixMatch), and CISSL variants at three imbalance levels ((γ ∈ 50, 100, 150)). CDMAD
previously reached around 88–89% bACC/GM for the least skewed case ((γ = 50)), but FARAD
consistently improves these scores by about 3This boost arises because random-phase reference
images capture more realistic color/frequency statistics, enabling more precise bias subtraction. Even
at heavier imbalance ((γ = 150)), our method maintains a solid margin, highlighting its robustness
under severe skew across all evaluated metrics.

Table 2: CIFAR-100-LT with γl = γu. We report balanced accuracy
(bACC, %) ± std. Best entries in bold.

Algorithm CIFAR-100-LT (bACC)

γ = 20 γ = 50 γ = 100

FixMatch 49.6±0.78 42.1±0.33 37.6±0.48
FixMatch+DARP 50.8±0.77 43.1±0.54 38.3±0.47
FixMatch+DARP+cRT 51.4±0.68 44.9±0.54 40.4±0.78
FixMatch+CReST 51.8±0.12 44.9±0.50 40.1±0.65
FixMatch+CReST+LA 52.9±0.07 47.3±0.17 42.7±0.70
FixMatch+ABC 53.3±0.79 46.7±0.26 41.2±0.06
FixMatch+CoSSL 53.9±0.78 47.6±0.57 43.0±0.61
FixMatch+UDAL – 48.0±0.56 43.7±0.41
FixMatch+CDMAD 54.3±0.44 48.8±0.75 44.1±0.29
ReMixMatch 51.6±0.43 44.2±0.59 39.3±0.43
ReMixMatch+DARP 51.9±0.35 44.7±0.66 39.8±0.53
ReMixMatch+DARP+cRT 54.5±0.42 48.5±0.91 43.7±0.81
ReMixMatch+CReST 51.3±0.34 45.5±0.76 41.0±0.78
ReMixMatch+CReST+LA 51.9±0.60 46.6±1.14 41.7±0.69
ReMixMatch+ABC 55.6±0.35 47.9±0.10 42.2±0.12
ReMixMatch+CoSSL 55.8±0.62 48.9±0.61 44.1±0.59
ReMixMatch+CDMAD 57.0±0.32 51.1±0.46 44.9±0.42
FixMatch+FARAD 57.3±0.36 51.5±0.41 47.8±0.44

CIFAR-100-LT. Table 2
evaluates a more challeng-
ing dataset with 100 classes,
each having a sharp imbal-
ance. Although CDMAD
already surpasses simpler
baselines, FARAD consis-
tently adds another ≈ 3%
bACC improvement at the
most extreme setting (γ =
100), achieving 47.8% vs.
CDMAD’s 44.9%. This
jump reflects how preserv-
ing realistic amplitude spec-
tra yields more faithful bias
estimates even as the class
space expands, thereby bet-
ter correcting the model’s
skew toward heavily sam-
pled categories.

Small-ImageNet-127. Fi-
nally, Table 3 assesses our
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Table 4: Ablation study on CIFAR-10-LT with γl = 100, γu = 1. We compare CDMAD and
FARAD under FixMatch and ReMixMatch pipelines, reporting bACC / GM (%).

Ablation Setting CDMAD FARAD

FixMatch ReMixMatch FixMatch ReMixMatch

Full Method 87.5 / 87.1 89.9 / 89.6 90.5 / 90.1 92.2 / 91.8
No Correction in Training 78.2 / 75.8 72.3 / 65.9 82.5 / 82.0 77.2 / 72.3
No Correction at Test 84.9 / 84.1 88.2 / 87.7 88.8 / 88.3 90.7 / 90.1
Use Hard Pseudo-labels 86.7 / 86.3 88.9 / 88.6 89.4 / 89.1 91.3 / 90.8
High Threshold (τ = 0.95) 86.8 / 86.3 80.4 / 78.5 89.6 / 89.0 83.1 / 81.1

method on a scaled-down
ImageNet subset with 127 classes, where each class exhibits high imbalance. Following [37],
we adopt FixMatch as the base SSL algorithm. Even in this more diverse, larger-scale setting,
FARAD consistently improves upon CDMAD by roughly 2–3% in bACC for both 32×32 and 64×64
resolutions, achieving up to 62.1% vs. 59.3%. Such improvements illustrate that FARAD maintains
its bias-correction benefits as the dataset complexity grows.

Summary. Across CIFAR-10-LT, CIFAR-100-LT, and Small-ImageNet-127 with (γl = γu), FARAD
outperforms CDMAD and other strong baselines by roughly 3%. These gains underscore the method’s
ability to isolate the model’s inherent preference for majority classes by subtracting reference logits
derived from data-like color/frequency distributions but devoid of semantic structure. This principled
bias subtraction scales well from small to larger, more complex multi-class scenarios, and consistently
delivers notable performance improvements under severe imbalance.

3.3 Ablation Analysis and Computational Performance(Addressing Q2)

We finally analyze the internal design of FARAD to identify which components contribute most to its
overall effectiveness. We also evaluate a practical concern: how to accelerate our bias-correction step
via real-to-complex (R2C) FFT to ensure feasible training and inference speeds.

Ablation Studies. We follow the ablation protocol in [37] but replace CDMAD’s modules with our
own. Table 4 presents the results on CIFAR-10-LT under γl = 100, γu = 1. We compare both
FixMatch and ReMixMatch variants of CDMAD vs. FARAD in five configurations. Removing bias-
correction for pseudo-label refinement severely degrades bACC/GM in both methods, highlighting
that adapting the pseudo-labels to correct class imbalance is vital for minority classes. Disabling the
bias-correction at test time also yields nontrivial performance drops, implying a final logit subtraction
is still necessary to offset the learned priors. Switching from soft to hard pseudo-labels or fixing a
high confidence threshold likewise reduces accuracy, but the effect is less pronounced than removing
bias-correction altogether. These observations underscore that FARAD requires bias subtraction
during both training and inference to fully eliminate majority-class bias.
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R2C FFT vs. No FFT: Speed Comparisons

Figure 2: R2C FFT Acceleration provides a ≥ 50%
speedup over naive FFT. We report average epoch
time (left) and inference latency (right) on a single
GPU. Bars show both color and hatch pattern dis-
tinctions for clarity. Error bars indicate standard
deviations over three runs.

FFT Acceleration via R2C. To ensure that
our random-phase reference image gener-
ation does not become a bottleneck, we
leverage a real-to-complex (R2C) batched
FFT implementation. This achieves at least
50% faster transforms than naive complex-
to-complex routines by exploiting conju-
gate symmetry for real-valued inputs. Fig-
ure 2 compares epoch-wise training time
and per-image inference latency for FARAD
with and without R2C acceleration on a sin-
gle GPU at various batch sizes. By halving
the FFT cost, R2C shortens overall epoch
duration by up to 50% and reduces infer-
ence latency proportionally. We use pastel
color fills and hatching to visually distinguish “No FFT” from “R2C FFT” bars.

Summary. These experiments verify that both training-phase and test-phase bias subtraction are
essential in FARAD, and that advanced pseudo-label handling (soft labels, data-adaptive thresholds)
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further improves minority-class performance. Meanwhile, R2C-based FFT acceleration alleviates the
main computational overhead, enabling FARAD to scale efficiently to large semi-supervised datasets.

3.4 Empirical Validation of Random-Phase Image Properties(Addressing Q3)

Verifying Semantic Irrelevance. We first confirm that random-phase images effectively remove
recognizable semantic cues. Concretely, we construct three image sets of size 1,000 each on CIFAR-
10-LT (γl = 100, γu = 1): (i) Real images drawn from the training data, (ii) Uniform-gray images (a
fixed pixel value), and (iii) Random-phase images generated by preserving the average amplitude
spectrum but randomizing phases. We measure: (a) classifier-output entropy, which is higher when
the network finds no strong class evidence, and (b) embedding distance to the real-image centroid
in a pretrained ResNet-50 feature space. Table 5 shows that random-phase images yield the highest
entropy (2.26 bits), exceeding uniform-gray (1.42 bits) and real samples (1.05 bits). As illustrated in
Figure 3 (left), random-phase images also have the greatest embedding distances, confirming minimal
semantic overlap with real data.

Verifying Statistical Representativeness. Next, we verify that random-phase images also preserve
realistic color and spatial-frequency characteristics. From another subset of 500 real samples, we
generate 500 random-phase references by averaging their amplitude spectra and randomizing phases.
Table 6 compares color histograms via KL divergence, showing that random-phase images (0.015)
align far more closely with real data than uniform-gray or random noise. Meanwhile, Figure 3
(right) plots the radial frequency amplitude A(r), revealing that random-phase tracks real images
almost exactly across low to high frequencies, unlike uniform-gray. This faithful reproduction of
energy spectra confirms that preserving A(u, v) from real data captures the essential color/texture
distribution needed for bias estimation.

Table 5: Classifier entropy (bits): higher means
fewer recognizable cues. Standard deviations in
parentheses.

Image Type Entropy
Real 1.05 (0.14)
Uniform-Gray 1.42 (0.12)
Random-Phase (Ours) 2.26 (0.09)

Table 6: Color distribution KL divergence
(lower is more similar to real). Random-phase
closely matches real data’s color histogram.

Reference Type KL Divergence
Uniform-Gray 0.476
Random Noise 0.235
Random-Phase (Ours) 0.015
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Figure 3: (Left) Embedding distance to real-image centroid (larger distance = fewer semantic
features). Random-phase (orange) is farthest, indicating minimal semantic cues. (Right) Ra-
dial frequency amplitude. Random-phase (orange) closely matches real (blue), preserving
frequency energy while losing spatial structure.

Summary. In these experiments, randomizing phase effectively destroys any semantic structure (high
entropy, large embedding distance) while preserving amplitude ensures the color/frequency profiles
remain similar to real data (low KL, matching radial spectra). These two properties—semantic
irrelevance and statistical representativeness—underlie why our method yields more faithful bias
references than uniform images or naive random noise.
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4 Conclusion

In this paper, we introduced a novel bias-correction framework for semi-supervised learning (SSL)
under long-tailed distributions. By generating random-phase images that preserve the amplitude
spectrum of real data while randomizing the phase spectrum, our method achieves two key prop-
erties: (1) semantic irrelevance, which removes all recognizable structural cues, and (2) statistical
representativeness, which faithfully reflects the overall color and frequency energy distributions
found in the original dataset. Experimental results on multiple benchmarks confirm that these proper-
ties lead to more accurate bias estimates compared to simpler reference images. Furthermore, we
demonstrated how the framework seamlessly integrates with different SSL algorithms and can be
efficiently implemented with batched real-to-complex (R2C) FFT, achieving competitive throughput
on large-scale datasets. Our approach consistently outperforms prior methods, especially on minority
classes, thereby highlighting the importance of a complete spectral characterization in bias-correction
strategies for robust and balanced representation learning across diverse data regimes.
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Paper Outline" subsection) clearly state the main claims regarding the FARAD system:
using random-phase images for bias correction by ensuring semantic irrelevance and sta-
tistical representativeness, its computational efficiency via R2C FFT, and its effectiveness
in improving minority-class accuracy in long-tailed SSL. These claims are supported by
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• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-
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scripts; code will be released in the supplementary zip for exact replication.
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.
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dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
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to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All datasets are publicly available (CIFAR, STL-10, ImageNet subsets);
training/inference code and configuration files are included in the supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
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Justification: Dataset splits, imbalance factors, network backbones, optimisers, learning-rate
schedules, and augmentation policies are detailed in Sec. 3.1 and App. D.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Each main table reports mean±std over three random seeds; Sec. 3.3 explains
that std is computed across independent runs with identical hyper-parameters.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: App. B discloses GPU type (RTX A6000), memory (48GB), batch sizes, and
average epoch/inference timings (Fig. 2 and Table 25).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The work was checked against the NeurIPS Code of Ethics; no sensitive data
or human subjects are involved and all third-party assets respect their licences.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Sec. 4 – “Broader Impact” paragraph discusses positive impacts on fair model
training and notes potential misuse for adversarial debiasing with mitigation strategies.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No new high-risk model or large generative model is released; standard
image-classification networks are used.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets cite original papers and list licences (e.g. CIFAR under MIT;
ImageNet under non-commercial research); code dependencies are Apache-2.0 or MIT,
noted in README.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The study does not introduce new datasets or pretrained models beyond weights
derived from public data.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing or human-subject study is involved.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable—no human subjects or personally identifiable information.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Large language models were not used in the core methodology; they were only
employed for minor text polishing after experiments concluded.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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A Related Work

In recent years, Semi-Supervised Learning (SSL) under class imbalance conditions (also known as
class-imbalanced SSL) has received significant attention. Due to the skewed distribution of labeled
and unlabeled data, models are prone to bias during training, leading to poor performance on minority
classes. Research in this area mainly focuses on the following aspects.

A.1 Pseudo-Labeling and Its Performance under Class Imbalance

SSL methods typically leverage the model’s own predictions to generate pseudo-labels for unlabeled
data. However, under class imbalance, pseudo-labeling faces the issue of confirmation bias: the
model tends to predict the majority class for unlabeled samples, thereby introducing inaccurate
pseudo-labels that reinforce the model’s bias towards the majority class. Studies have shown that
SSL models on long-tailed datasets often fail to generate high-confidence pseudo-labels for minority
class samples, resulting in pseudo-label distributions that are more skewed than the true distribution.
For instance, with a true imbalance ratio of 150:1 in CIFAR-10, the pseudo-label imbalance ratio
generated by FixMatch can reach 1046:1. This severely harms the accuracy of the minority class,
even leading to scenarios where SSL performance on the minority class is worse than a baseline
model trained only on labeled data [7].

One direct cause of the pseudo-label bias is the fixed confidence threshold strategy. In classic
algorithms such as FixMatch, pseudo-labels are only assigned to unlabeled samples whose predicted
probabilities exceed a predefined threshold. However, in imbalanced data, the majority class is more
likely to have high-confidence predictions, making it difficult for minority class samples to pass the
threshold. As a result, the majority class receives a large amount of additional training data, while the
minority class receives very few pseudo-labels, exacerbating the imbalance. To alleviate this, Guo et
al. proposed an adaptive thresholding method, dynamically adjusting the threshold for each class
[18]. This approach significantly improves SSL performance in long-tailed settings, especially for
the minority classes.

A.2 SSL Methods for Long-Tailed Distributions (FixMatch, ReMixMatch, FreeMatch)

Many SSL algorithms perform well under standard settings, but their performance drops significantly
when applied to long-tailed data. FixMatch is a simple yet effective SSL method that combines
consistency regularization and threshold-based pseudo-labeling. It generates pseudo-labels for weakly
augmented unlabeled samples and applies a consistency loss to the strongly augmented counterparts.
While FixMatch performs well on balanced datasets, it lacks specific design considerations for
imbalanced data. As mentioned earlier, the fixed threshold strategy leads to the issue of minority
classes rarely getting selected for pseudo-labeling [48].

ReMixMatch, built on MixMatch, introduces several key improvements, one of which is distribution
alignment. ReMixMatch tracks a moving average distribution q̃(y) for the unlabeled data and
normalizes the predictions using the labeled data’s prior distribution q(y). This alignment process
forces the model’s predictions to follow the overall distribution, improving its ability to handle
long-tailed distributions. In addition, ReMixMatch incorporates consistency regularization, entropy
minimization, and other augmentation techniques, which help mitigate over-confidence in the majority
class and improve overall performance [3]. Compared to FixMatch, ReMixMatch focuses more on
global balance and often performs better on imbalanced datasets.

FreeMatch takes a different approach by introducing adaptive thresholds and a class fairness regular-
izer to complement FixMatch. Instead of using a fixed threshold, FreeMatch automatically adjusts
the threshold for each class based on the model’s learning state [69]. It also adds a class fairness
regularization term to encourage the model to make balanced predictions during training, which
further improves its performance on long-tailed SSL tasks. For example, in extreme settings where
each class has only one labeled sample (CIFAR-10) or four labeled samples (STL-10), FreeMatch
outperforms previous methods by a large margin.
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A.3 Bias in SSL Classifiers and Correction (e.g., CDMAD)

In SSL under class imbalance, the trained model often exhibits classifier bias, meaning it inherently
favors the majority class. This bias not only affects pseudo-labels but also manifests in the final
model’s predictions. Lee et al. demonstrated the presence of bias through a simple experiment:
feeding a semantic-less reference image (such as a pure color image) to a trained model should ideally
result in a uniform prediction across all classes, as the image carries no meaningful structure. However,
if the model is trained on imbalanced data, it may still show a skewed distribution of predictions,
heavily favoring the majority class [39]. This indicates that the model’s decision boundaries are
biased towards certain classes even in the absence of any content in the input image.

To correct this bias, traditional methods for supervised long-tailed learning often apply logit adjust-
ment techniques, where the output logits are adjusted according to the class frequency [6]. In SSL,
however, the distribution of the unlabeled data is unknown, making bias correction more complex.
The CDMAD (Class-Distribution-Mismatch-Aware Debiasing) method specifically addresses this
issue. The key idea behind CDMAD is to dynamically measure and counteract the bias of the model
during training. By inputting a blank image into the model, CDMAD measures how biased the model
is towards certain classes by observing the output logits for the blank input. These logits represent the
model’s intrinsic bias, which is then subtracted from the logits of real data samples during training,
thus neutralizing the model’s bias towards majority classes [39].

CDMAD’s approach is both simple and effective: it applies a bias correction to the logit outputs
by dynamically adjusting for the class preferences that the model has learned during training and
inference. Experimental results show that CDMAD, when integrated into SSL algorithms like
FixMatch or ReMixMatch, leads to substantial improvements in minority class recognition.

A.4 Spectral Methods in Deep Learning (Fourier Transforms and Phase Randomization)

Another line of research addresses frequency-domain characteristics of deep models, utilizing Fourier
analysis to improve model generalization. The phase spectrum of an image carries most of the
high-level semantic information, while the amplitude spectrum reflects lower-level statistics such
as texture and color distributions [13]. It has been shown that CNNs tend to be more sensitive to
amplitude variations (texture) rather than structural features, even when the structural features are
more important for human vision. Geirhos et al. demonstrated that CNNs trained on ImageNet often
rely on texture rather than object shapes to make predictions. Similarly, Chen et al. showed that by
swapping the amplitude spectrum of one image with that of another while preserving the phase, the
resulting image retains the same object shape but changes the texture, leading CNNs to misclassify
the image based on texture alone [13, 8].

This insight led to the development of methods that manipulate the frequency components of images
to improve robustness. For instance, Xu et al. introduced frequency-domain mixing, where two
images’ frequency spectra are linearly mixed while preserving their respective phase information
[62]. This forces the model to focus on structural (phase) features rather than texture (amplitude),
improving domain generalization. Chen et al. developed Amplitude-Phase Reconstruction (APR),
where the amplitude spectrum of one image is combined with the phase spectrum of another image
[8]. By learning from such augmented samples, the model is forced to rely on phase information for
classification, leading to better robustness to domain shifts and perturbations.

Random phase transformation, which involves randomizing the phase spectrum of an image while
retaining the amplitude spectrum, has been explored as a way to generate semantic-irrelevant images
that maintain statistical properties of the original dataset [13]. This technique is particularly useful
for bias correction: by generating random phase images, we can measure the model’s intrinsic bias
by observing how the model reacts to these semantically empty images. If the model still favors
certain classes for these random-phase images, it indicates an internal bias that can be corrected
during training.

A.5 Computational Efficiency and FFT in SSL

While the methods discussed above are effective, they must also be computationally efficient to be
practical in large-scale SSL tasks. Fast Fourier Transform (FFT) has been widely adopted for its
efficiency in transforming images between the spatial and frequency domains. FFT allows for faster
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computations compared to spatial-domain convolutions, and recent research has shown that FFT can
be used to accelerate convolution operations in CNNs [9]. By leveraging FFT, models can perform
convolutions in the frequency domain, reducing computational complexity. This optimization is
particularly useful when dealing with large images or batches of data, making it possible to incorporate
spectral methods like random-phase transformation into the training process without significantly
slowing down training.

Recent studies have demonstrated that FFT can be integrated into SSL models to accelerate both
training and inference processes. By using real-to-complex (R2C) FFT, which exploits the symmetry
of real-valued inputs, the computational load can be halved, further speeding up the process [24]. This
makes FFT-based spectral methods feasible in large-scale semi-supervised learning tasks, ensuring
that the benefits of phase manipulation and bias correction do not come at the cost of training
efficiency.

A.6 Summary and Outlook

In summary, current research has explored various methods to mitigate the challenges of class imbal-
ance in SSL. Improvements in pseudo-labeling strategies (such as adaptive thresholds and distribution
alignment) and specialized long-tail SSL algorithms (such as FreeMatch, ABC, and CReST) have
contributed to balancing the training signal between the majority and minority classes. However,
these methods still rely on certain assumptions about the distribution of labeled and unlabeled data.
Bias correction methods, such as CDMAD, directly address model bias by adjusting the logits during
training and inference, achieving better performance in long-tailed settings. Additionally, spectral
methods offer a promising avenue for improving model generalization by reducing reliance on texture
features and focusing on structural information.

The integration of frequency-domain transformations into bias correction provides a new perspective:
by randomizing the phase while preserving the amplitude spectrum, we can generate semantic-
irrelevant but statistically representative images for estimating and correcting classifier bias. This
approach leverages the power of spectral analysis to neutralize inherent model biases, improving
SSL performance on minority classes without significantly increasing computational overhead. Thus,
frequency-domain techniques, particularly random phase transformations, represent an effective and
computationally efficient solution for bias correction in semi-supervised learning, particularly under
class imbalance.

B Implementation Details

At each iteration, we generate a random-phase image that preserves amplitude statistics but contains no
semantic content. When fed through the network, this image reveals the model’s intrinsic bias toward
majority classes. By subtracting these bias logits from the predictions on real inputs, we produce
more balanced pseudo-labels for unlabeled data, thereby improving minority-class recognition. The
experiments in this paper were conducted on an RTX A6000 with 48 GB of memory.

We follow the CDMAD protocol for fair comparisons, training Wide ResNet-28-2 on CIFAR-10-LT,
CIFAR-100-LT, and STL-10-LT, and ResNet-50 on Small-ImageNet-127. All models use Adam
with learning rates of 1.5× 10−3 (FixMatch) or 2× 10−3 (ReMixMatch); weight decay is 0.08 for
CIFAR-100-LT, and for other datasets we adopt 0.04 under 30k samples or {0.01, 0.02} otherwise.
Batch sizes are 32 (FixMatch) and 64 (ReMixMatch), each with unlabeled-to-labeled ratio µ = 2.
FixMatch runs for 500 epochs with 500 iterations each, while ReMixMatch runs for 300 epochs;
both employ weak (random flips and crops) and strong (Cutout, RandAugment) augmentations, plus
an EMA for parameter smoothing. Random seeds are fixed throughout.

To generate our random-phase images, we preserve the batch-averaged amplitude spectrum while
uniformly randomizing phases in [−π, π] each iteration, then invert via real-to-complex (R2C) FFT.
The Python-like snippet below shows how we compute this image for a batch of real samples,
exploiting half-spectrum storage. For lower-level CUDA implementations, one can invoke cuFFT in
a C/C++ style, as illustrated after the Python code:

1 import torch, torch.fft as F
2

3 def random_phase_image(batch_img):
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4 # batch_img: [B, C, H, W], real
5 freq_r2c = F.rfft2(batch_img, dim=(-2, -1)) # R2C transform
6 amp_mean = freq_r2c.abs().mean(dim=0, keepdim=True) # average

amplitude
7 rand_phase = 2*torch.pi*torch.rand_like(freq_r2c) - torch.pi
8 freq_rand = amp_mean * torch.exp(1j * rand_phase) # combine amp &

random phase
9 return F.irfft2(freq_rand, s=batch_img.shape[-2:], dim=(-2, -1))

Listing 1: PyTorch-like R2C for random-phase images.

1 /* Assume input pointer h_realImg on host, d_realImg on device. */
2 cufftHandle plan;
3 cufftComplex *d_freqHalf;
4 size_t realSize = B*C*H*W*sizeof(float);
5 cudaMalloc((void**)&d_freqHalf, B*C*(H)*(W/2+1)*sizeof(cufftComplex));
6 cufftPlan2d(&plan, H, W, CUFFT_R2C);
7 cufftExecR2C(plan, (cufftReal*)d_realImg, d_freqHalf);
8 /* ’d_freqHalf’ now holds the unique half-spectrum.
9 Next, compute amplitude & random phase, combine,

10 and run inverse plan ’cufftExecC2R’ similarly. */

Listing 2: cuFFT-style usage for R2C transforms.

In both FixMatch and ReMixMatch, the logits of this random-phase image, gθ(xrand), measure
intrinsic bias. We subtract them from the real-image logits, g∗θ(α(u)) = gθ(α(u))− gθ(xrand), then
apply softmax for pseudo-labels. FixMatch sets the threshold τ = 0 so all unlabeled samples are
used, while ReMixMatch removes sharpening and distribution alignment and adds a supervised
cross-entropy on labeled samples. The following pseudocode highlights the main difference:

1

2 # ----------- FixMatch -----------
3 x_rand = random_phase_image(real_imgs)
4 bias_logits = model(x_rand)
5 logits_u_weak = model(u_weak)
6 debias_logits = logits_u_weak - bias_logits
7 pseudo_labels = softmax(debias_logits)
8 loss_u = cross_entropy(model(u_strong), pseudo_labels)
9 loss_x = cross_entropy(model(x), label_x) # supervised

10 loss = loss_x + lambda_u * loss_u
11 loss.backward(); optimizer.step()
12

13 # --------- ReMixMatch -----------
14 x_rand = random_phase_image(real_imgs)
15 bias_logits = model(x_rand)
16 logits_u_weak = model(u_weak)
17 debias_logits = logits_u_weak - bias_logits
18 pseudo_labels = softmax(debias_logits)
19 loss_u = cross_entropy(model(u_strong), pseudo_labels)
20 loss_x = cross_entropy(model(x_weak), label_x)
21 loss = loss_x + lambda_u * loss_u
22 loss.backward(); optimizer.step()

Listing 3: FixMatch vs. ReMixMatch bias subtraction (PyTorch-like).

At inference, we generate a fresh random-phase image per batch, subtract its logits, and apply
argmax. This keeps overhead low thanks to batched R2C transforms, and consistently corrects bias
on minority classes. Final predictions are obtained by f∗

θ (xtest) = argmaxc gθ(xtest)− gθ(xrand).
All code will be released upon publication. Algorithm 1 summarizes the core steps.

C Metrics for Figure 1 – Shape Presence and Statistical Fidelity

Figure 1 provides a conceptual mapping of different reference image types based on two key
properties: “Shape Presence” and “Statistical Fidelity.” The positions of the points in this figure
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Algorithm 1 Core Random-Phase Bias Correction

Require: Base SSL algorithm with parameters θ, Labeled batch {(xi, yi)}Bi=1, Unlabeled batch
{uj}µBj=1

1: Step 1: Batch-Average Amplitude Spectrum
2: A(u, v)← 1

B+µB

∑
all x Amplitude(F{x})

3: Step 2: Random-Phase Image
4: Φ̃(u, v)← Uniform[−π, π]
5: xrand ← F−1

{
A(u, v) · exp(jΦ̃(u, v))

}
6: Step 3: Bias Computation
7: zbias ← gθ(xrand)
8: Step 4: Bias-Corrected Logits
9: for each sample x in labeled and unlabeled batch do

10: g∗θ(x)← gθ(x)− zbias
11: end for
12: Step 5: SSL Loss and Parameter Update
13: L← Lsup(g

∗
θ(xi)) + λLunsup(g

∗
θ(uj))

14: θ ← θ − η · ∇θL

are informed by quantitative metrics discussed in §3.4 of this paper. The x-axis represents “Shape
Presence,” where lower values indicate fewer recognizable semantic cues and are considered better
for a reference image. The y-axis represents “Statistical Fidelity,” where higher values indicate a
closer resemblance to the statistical properties of real data and are considered better.

C.1 Shape Presence (Lower is Better)

The “Shape Presence” metric aims to quantify the extent to which an image contains recognizable
shapes, edges, or other semantic structures. A lower score on this metric is desirable for reference
images, as it indicates greater semantic irrelevance. This is primarily evaluated using Classifier
Output Entropy, as detailed in §3.4.

Metric: Classifier Output Entropy (H) For a given input image, let the classifier (after its softmax
layer) output a probability distribution over C classes, denoted as p = (p1, p2, . . . , pC), where pc is
the probability assigned to class c. The entropy of this probability distribution is calculated as:

H(p) = −
C∑

c=1

pc log2 pc (bits)

A higher entropy H(p) signifies that the classifier is more uncertain about the image’s content,
implying a lack of strong, recognizable semantic features (i.e., lower shape presence).

Mapping to Figure 1 X-axis (“Shape Presence Score” SP ): Since “Lower is Better” for the
Shape Presence axis in Figure 1, the plotted score SP should be low for images with high entropy
(less shape). This can be achieved by an inverse relationship or by subtracting the entropy from
a constant. For example, SP could be conceptualized as being proportional to 1/(H(p) + ϵ)
or (MaxEntropyObserved − H(p)), where ϵ is a small constant to prevent division by zero, and
MaxEntropyObserved is a reference maximum. The raw SP values may then be scaled to fit the
desired axis range (e.g., 0-30 as shown in Figure 1). A higher entropy (less shape) results in a lower
SP score.

C.2 Statistical Fidelity (Higher is Better)

The “Statistical Fidelity” metric assesses how well the global statistical properties of a reference
image (e.g., color distribution, frequency content) match those of the real dataset. A higher score on
this metric is desirable. This is primarily evaluated using the KL Divergence of Color Histograms, as
detailed in §3.4.
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Metric: KL Divergence of Color Histograms (DKL) Let Ph represent the normalized color
histogram of a reference image, and Qh represent the average normalized color histogram derived
from a representative set of real training images. Both Ph = {ph(j)}Mj=1 and Qh = {qh(j)}Mj=1 are
probability distributions over M color bins. The KL divergence from Qh to Ph is calculated as:

DKL(Ph ∥ Qh) =

M∑
j=1

ph(j) log2
ph(j)

qh(j)
(bits)

A lower DKL value indicates that the color distribution of the reference image is more similar to that
of real images, signifying higher statistical fidelity.

Mapping to Figure 1 Y-axis (“Statistical Fidelity Score” SF ): Since “Higher is Better” for
the Statistical Fidelity axis in Figure 1, the plotted score SF should be high for images with low
DKL (high fidelity). This can be achieved by an inverse relationship or by subtracting DKL from a
constant. For example, SF could be conceptualized as being proportional to 1/(DKL(Ph ∥ Qh) + ϵ)
or (MaxDKLObserved−DKL(Ph ∥ Qh)), where ϵ is a small constant, and MaxDKLObserved is a
reference maximum. The raw SF values may then be scaled to fit the desired axis range (e.g., 0-100
as shown in Figure 1). A lower KL divergence (higher fidelity) results in a higher SF score.

D Additional Experiments

D.1 Experimental Settings and Baselines

Detailed Data and Network Configuration. We adopt the same datasets introduced in the main
paper, namely CIFAR-10, CIFAR-100, STL-10, and Small-ImageNet-127. Table 7 summarizes
the training, validation, and test splits for each dataset, including the labeled/unlabeled partition
used in our semi-supervised setting. To evaluate the classification performance, an exponential
moving average (EMA) of the network parameters was computed at each iteration. Specifically, we
adopted the Wide ResNet-28-2 architecture[65] for experiments on CIFAR-10-LT, CIFAR-100-LT,
and STL-10-LT datasets, while employing ResNet-50[21] for the Small-ImageNet-127 dataset. We
also indicate how we generate long-tailed (LT) versions (e.g., imbalance factor γ, or reversed/missing
classes if applicable) to ensure clarity in distribution mismatch experiments. As shown in Table 7, we
preserve the overall sample sizes consistent with the main paper, splitting each dataset into labeled
and unlabeled sets based on a chosen imbalance factor. In mismatch experiments, the unlabeled set
may follow a different distribution, potentially reversed or missing certain classes. For every dataset,
we also keep a small validation set if needed for hyperparameter tuning, and a standard test set for
final evaluation. Table 8 details the core network architectures and hyperparameters used throughout.
Unless otherwise stated, these settings match the main text. Each row lists the backbone model (e.g.,
ResNet-18, WideResNet-28-2, EfficientNet[49]), learning rate schedule, optimizer (SGD or Adam),
total epochs, batch size, and random seed. Any deviations from the main text or additional fine-tuning
for certain experiments are noted below the table. In addition to the balanced accuracy (bACC) and
geometric mean (GM) metrics detailed in the main text, we also report minimum-class accuracy
or visualize confusion matrices in certain experiments. These extended metrics highlight how the
approaches handle severely under-represented tail classes.

Table 7: Summary of dataset splits and any modifications for the long-tailed setting. “Imbalance
Factor” refers to the ratio between majority-class and minority-class sample counts in the labeled set.
Some experiments also involve reversed or partially missing classes (highlighted in footnotes).

Dataset #Classes Train (Labeled) Train (Unlabeled) Val Test Imbalance Factor

CIFAR-10 (LT) 10 5,000 (LT distribution) 45,000 (potential mismatch) 5,000 10,000 50 / 100 / 150†

CIFAR-100 (LT) 100 10,000 (LT distribution) 40,000 (potential mismatch) 5,000 10,000 20 / 50 / 100†

STL-10 (LT) 10 1,000 (LT distribution) 9,000 (potential mismatch) 1,000 8,000 10 / 20†

Small-ImageNet-127 127 64,000 (LT distribution) - - 5,000 10 / 20 / 50‡

†We vary γ to explore different levels of class imbalance; see main text for exact splits.
‡For Small-ImageNet-127, we typically reduce the original 1k classes to 127.

Baseline Algorithms and Comparison Methods. Our core semi-supervised baselines include
FixMatch[47], ReMixMatch[33], and FreeMatch[56], each adhering to the same pseudo-labeling
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Table 8: Network configurations and key training hyperparameters. We primarily use ResNet-18,
WideResNet-28-2, or EfficientNet (different variants) depending on the dataset scale and resolution.
If a setting differs from the main paper, it is clearly highlighted.

Backbone Depth / Width Optimizer LR Schedule Initial LR Batch Size Epochs

ResNet-18 18 / - SGD (momentum=0.9) Cosine Decay 0.1 64 200
WideResNet-28-2 28 / 2× SGD (momentum=0.9) Cosine Decay 0.03 64 200
EfficientNet-B0 - Adam (betas=0.9,0.999) Step Decay 0.001 32 300
All runs use weight decay of 5× 10−4 unless stated otherwise.
Random seed is fixed (e.g., 42) for fair comparisons; any variation is reported in subsequent experiments.

thresholds, data augmentations, and learning rates described above. In selected sections, we also eval-
uate MeanTeacher[50], UDA[61], or ACR[59] if they offer particular insights into semi-supervised
performance under class imbalance. For addressing imbalance and classifier bias, we compare our
Random Phase + Amplitude Preservation approach against CDMAD, blank-input references, and
standard long-tailed techniques such as LDAM-DRW and cRT. When comparing these methods, we
keep all other training and data-processing conditions identical, so that any improvements can be
attributed directly to the bias-correction strategy. As shown in Tables 7 and 8, this ensures consistency
with the main paper’s experimental setup.

Remark: By keeping the data splits, SSL hyperparameters, and network architecture consistent across
all baselines, we enable a fair, direct comparison of how each bias-correction or class-rebalancing
technique influences minority-class recognition and overall performance.

D.2 Resilience to Class Distribution Discrepancies in Semi-Supervised Learning

In real-world applications, the labeled and unlabeled data often arise from different class distributions.
This section focuses on two mismatch scenarios: (i) different imbalance ratios between labeled and
unlabeled sets; and (ii) an extreme “reversed” condition where the most frequent labeled classes
become the rarest among unlabeled data, and vice versa. Our experiments indicate that FARAD
remains robust under both circumstances, outperforming baseline methods by a noticeable margin.

CIFAR-10-LT and STL-10-LT with γl ̸= γu. Table 9 shows results on CIFAR-10-LT when the
labeled set has imbalance γl = 100, but unlabeled data vary in imbalance (γu ∈ {1, 50, 150}). We
also evaluate STL-10-LT with γl ∈ {10, 20} and no assumptions on unlabeled class proportions.
Although CDMAD previously performed well under mismatch, FARAD improves bACC/GM by
another 2–3%, in part because the random-phase reference does not depend on matching the labeled
and unlabeled distributions. For instance, at γu = 1, the unlabeled set is nearly balanced while
labeled data are highly skewed; even in this contrasting scenario, FixMatch+FARAD surpasses
FixMatch+CDMAD by 3% GM and exceeds 90% GM. Similar gains hold for heavier mismatch
(γu = 150), indicating that our phase-randomized reference effectively corrects the model’s strong
prior toward overrepresented labeled classes, even if unlabeled data distributions differ substantially.

Reversed Distribution on CIFAR-10-LT. We next consider a more extreme mismatch setting
where γl = γu = 100 yet the unlabeled data classes are entirely reversed relative to the labeled
set. Concretely, if a class is majority in the labeled portion, it becomes minority in the unlabeled
portion. Table 10 shows that while multiple CISSL techniques (e.g., SAW, ABC) can partially
mitigate misalignment, CDMAD and FARAD stand out. Notably, FARAD surpasses CDMAD by
roughly 3% in bACC/GM under both FixMatch and ReMixMatch backbones. This suggests that even
when class distributions are diametrically opposed, FARAD effectively combats over-prioritization of
previously majority categories and maintains competitive performance on newly scarce classes.

Summary. Under mismatch conditions, where labeled and unlabeled class distributions differ sub-
stantially or even invert, FARAD consistently outperforms CDMAD by about 2–3% bACC/GM. This
advantage holds whether the unlabeled portion is comparatively balanced (γu = 1) or heavily skewed
(γu = 150), and whether partial or complete reversal occurs. These findings highlight the flexibil-
ity of our approach in adapting to real-world imbalances and maintaining superior minority-class
performance despite distributional discrepancies.
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Table 9: CIFAR-10-LT (γl = 100, γu ∈ {1, 50, 150}) and STL-10-LT (γl ∈ {10, 20}, unlabeled
distribution unknown). We report bACC / GM (%) ± std. “Ours” indicates FARAD.

Algorithm CIFAR-10-LT (γl = 100) STL-10-LT

γu = 1 γu = 50 γu = 150 γl = 10 γl = 20

FixMatch 68.9±1.95 / 42.8±8.11 73.9±0.25 / 70.5±0.52 69.6±0.60 / 62.6±1.11 72.9±0.09 / 69.6±0.01 63.4±0.21 / 52.6±0.09
FixMatch+DARP 85.4±0.55 / 85.0±0.65 77.3±0.17 / 75.5±0.21 72.9±0.24 / 69.5±0.18 77.8±0.33 / 76.5±0.40 69.9±1.77 / 65.4±3.07
FixMatch+DARP+LA 86.6±1.11 / 86.2±1.15 82.3±0.32 / 81.5±0.29 78.9±0.23 / 77.7±0.06 78.6±0.30 / 77.4±0.40 71.9±0.49 / 68.7±0.51
FixMatch+DARP+cRT 87.0±0.70 / 86.8±0.67 82.7±0.21 / 82.3±0.25 80.7±0.44 / 80.2±0.61 79.3±0.23 / 78.7±0.21 74.1±0.61 / 73.1±1.21
FixMatch+ABC 82.7±0.49 / 81.9±0.68 82.7±0.64 / 82.0±0.76 78.4±0.87 / 77.2±1.07 79.1±0.46 / 78.1±0.57 73.8±0.15 / 72.1±0.15
FixMatch+SAW 81.2±0.68 / 80.2±0.91 79.8±0.25 / 79.1±0.32 74.5±0.97 / 72.5±1.37 – / – – / –
FixMatch+SAW+LA 84.5±0.68 / 84.1±0.78 82.9±0.38 / 82.6±0.38 79.1±0.81 / 78.6±0.91 – / – – / –
FixMatch+SAW+cRT 84.6±0.23 / 84.4±0.26 81.6±0.38 / 81.3±0.32 77.6±0.40 / 77.1±0.41 – / – – / –
FixMatch+CDMAD 87.3±0.46 / 87.0±0.48 85.5±0.37 / 85.2±0.36 82.1±0.25 / 81.6±0.27 79.7±0.22 / 78.7±0.35 75.0±0.41 / 73.4±0.29
FixMatch+FARAD 90.3±0.46 / 90.0±0.48 88.5±0.37 / 88.2±0.36 85.1±0.25 / 84.6±0.27 82.7±0.22 / 81.7±0.35 78.0±0.41 / 76.4±0.29

ReMixMatch 48.3±0.14 / 19.5±0.85 75.1±0.43 / 71.9±0.77 72.5±0.10 / 68.2±0.32 67.8±0.45 / 61.1±0.92 60.1±1.18 / 44.9±1.52
ReMixMatch* 85.0±1.35 / 84.3±1.55 77.0±0.12 / 74.7±0.04 72.8±0.10 / 68.8±0.21 76.7±0.15 / 73.9±0.32 67.7±0.46 / 60.3±0.76
ReMixMatch*+DARP 86.9±0.10 / 86.4±0.15 77.4±0.22 / 75.0±0.25 73.2±0.11 / 69.2±0.31 79.4±0.07 / 78.2±0.10 70.9±0.44 / 67.0±1.62
ReMixMatch*+DARP+LA 81.8±0.45 / 80.9±0.40 83.9±0.42 / 83.4±0.45 81.1±0.20 / 80.3±0.26 80.6±0.45 / 79.6±0.55 76.8±0.60 / 74.8±0.68
ReMixMatch*+DARP+cRT 88.7±0.25 / 88.5±0.25 83.5±0.53 / 83.1±0.51 80.9±0.25 / 80.3±0.31 80.9±0.53 / 80.0±0.46 76.7±0.50 / 74.9±0.70
ReMixMatch+ABC 76.4±5.34 / 74.8±6.05 85.2±0.20 / 84.7±0.25 80.4±0.40 / 80.0±0.44 76.8±0.52 / 74.8±0.64 71.2±1.37 / 67.4±1.89
ReMixMatch*+SAW 87.0±0.75 / 86.4±0.85 80.6±1.57 / 79.2±2.19 77.6±0.76 / 76.0±0.93 – / – – / –
ReMixMatch*+SAW+LA 74.2±1.49 / 65.1±2.36 84.8±1.07 / 82.4±2.32 81.3±2.42 / 80.9±2.47 – / – – / –
ReMixMatch*+SAW+cRT 88.8±0.79 / 88.6±0.83 84.5±0.78 / 83.6±1.27 82.4±0.10 / 82.0±0.10 – / – – / –
ReMixMatch+CDMAD 89.7±0.45 / 89.4±0.46 86.7±0.21 / 86.5±0.17 83.0±0.46 / 82.6±0.50 82.8±0.38 / 81.9±0.35 81.7±0.32 / 80.7±0.44
ReMixMatch+FARAD 92.7±0.45 / 92.4±0.46 89.7±0.21 / 89.5±0.17 86.0±0.46 / 85.6±0.50 85.8±0.38 / 84.9±0.35 84.7±0.32 / 83.7±0.44

Table 10: CIFAR-10-LT (reversed distribution): γl = 100, γu = 100 but the unlabeled class
proportions are the inverse of the labeled ones. We report bACC / GM (%). “Ours” indicates FARAD.

Algorithm FixMatch+ ReMixMatch+

ABC 69.5 / 66.8 63.6 / 60.5
SAW 72.3 / 68.7 79.5 / 78.5
SAW+LA 74.1 / 72.0 50.2 / 14.8
SAW+cRT 75.5 / 73.9 80.8 / 79.9
CDMAD 76.9 / 75.2 81.5 / 80.8
FARAD 80.0 / 78.2 84.6 / 83.9

Table 11: CIFAR-10-LT with FreeMatch as the base SSL algorithm. We report bACC / GM (%).
“Ours” denotes FARAD.

Algorithm γl = γu = 100 γl = 100, γu = 1

FreeMatch 75.4 / 72.9 74.2 / 69.5
FreeMatch+SAW+cRT 82.8 / 82.3 86.4 / 86.2
FreeMatch+CDMAD 84.8 / 84.4 89.0 / 88.7
FreeMatch+FARAD 87.6 / 87.2 92.0 / 91.7

D.3 Versatility and Integration with Diverse SSL Algorithms

Although our previous experiments focused on FixMatch and ReMixMatch, we next consider
whether FARAD can be readily combined with additional semi-supervised learners and recent CISSL
frameworks. Specifically, we investigate two scenarios: integration with the newer FreeMatch
SSL algorithm, and direct comparison against ACR—a recent CISSL approach—when paired with
FixMatch as the base learner.

Integration with FreeMatch. Table 11 summarizes results on CIFAR-10-LT with γl = γu = 100
and the more extreme mismatch case γl = 100, γu = 1. We adopt FreeMatch as the underlying
SSL algorithm. SAW+cRT and CDMAD are notable baselines, both of which previously improved
minority-class recognition in long-tailed SSL. Nonetheless, we observe that FARAD maintains
an additional advantage of around 3% bACC/GM over FreeMatch+CDMAD in both distribution
settings. This illustrates that FARAD’s bias correction seamlessly complements FreeMatch’s adaptive
thresholding and confidence-based updates, without requiring specialized tuning for each new SSL
framework.

Comparison with ACR. We further assess FARAD against ACR, which represents another promising
strategy for mitigating imbalance in SSL. For consistency with [37], Table 12 reports bACC and GM
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Table 12: Comparison with ACR on CIFAR-10-LT, where FixMatch serves as the base SSL method.
We show bACC / GM (%). “Ours” indicates FARAD.

Algorithm / CIFAR-10-LT bACC / GM (%)

γl = γu = 100 γl = 100, γu = 1

FixMatch+ACR 81.8 / 81.4 85.6 / 85.3
FixMatch+CDMAD 83.6 / 83.1 87.5 / 87.1
FixMatch+FARAD 86.7 / 86.3 90.3 / 90.0

on CIFAR-10-LT under two setups: a matched-distribution case (γl = γu = 100) and a mismatched
one (γl = 100, γu = 1). We integrate both ACR and FARAD into FixMatch. While ACR already
outperforms vanilla FixMatch by a sizable margin, FARAD raises bACC/GM by about 3% beyond
FixMatch+CDMAD, further reinforcing our claim that FARAD can be flexibly combined with various
CISSL strategies and base SSL pipelines.

Summary. These findings confirm that FARAD not only improves classical baselines such as Fix-
Match and ReMixMatch (as shown earlier) but also integrates effectively into other SSL algorithms
(e.g., FreeMatch) or CISSL frameworks (e.g., ACR). The consistent 2–3% margin over CDMAD
underscores FARAD’s versatility and its capacity to remain effective regardless of the underlying
pseudo-labeling strategy, thresholding mechanism, or class-balance heuristic employed by the base
method.

D.4 In-Depth Experiments on Reference Image Design

This section investigates how the construction of our reference images (i.e., those used to expose
classifier bias) affects performance. We specifically explore three aspects: (i) comparing distinct
reference-image types, (ii) examining how amplitude-spectrum selection and batch size impact the
final results, and (iii) testing different degrees of phase randomization.

Multiple Reference Image Types. We first compare six representative reference-image forms to
highlight the importance of random-phase plus amplitude preservation in revealing classifier bias.
The candidate references include: (1) Blank (solid color), (2) Random noise, (3) Low-frequency-only
(retaining only the central portion of the Fourier spectrum), (4) High-frequency-only (retaining only
the outer frequency band), (5) Our random-phase image, and (6) Real images used in an extreme
comparative sense. Figure 4 visualizes an example 2D amplitude plot for each type of reference
in the frequency domain. Despite the different spectral allocations, the key question is which
input best exposes any latent bias. We evaluate balanced accuracy (bACC), geometric mean (GM),
minimum-class accuracy (Min. Acc), and the classifier’s mean logit entropy (i.e., how “uncertain”
the network is on that reference). Table 13 shows the aggregated results (averaged over three runs
with different seeds). Notably, the random-phase image achieves both a high mean-entropy and the
strongest improvement for minority classes once we subtract its logits from real inputs, confirming
that preserving the amplitude while scrambling the phase yields a more effective bias reference.

Table 13: Comparisons of different reference-image designs in revealing and correcting classifier
bias on CIFAR-10-LT (γ = 100). We report bACC, GM, minimum-class accuracy (Min. Acc), and
the classifier’s average logit entropy on the reference itself (Entropy). Higher entropy suggests fewer
semantic cues.

Reference Type bACC GM Min. Acc Entropy

Blank (Solid Color) 78.4 73.5 66.1 1.51
Random Noise 79.3 74.8 67.2 1.77
Low-Frequency Only 80.2 75.3 67.9 1.82
High-Frequency Only 80.1 75.0 67.6 1.94
Random-Phase (Ours) 83.5 79.1 71.8 2.21
Real Images (Extreme) 74.9 70.4 64.2 1.09

29



Blank Noise Lowfreq Highfreq Random Real

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
m

pl
itu

de

2D Amplitude Spectrum Characteristics

Figure 4: Example amplitude (frequency-domain) visualization of the six reference-image types. The
color map indicates normalized energy levels. Our random-phase approach (center-right) retains the
original amplitude spectrum but scrambles the phase for all frequencies.

Amplitude-Spectrum Selection and Batch Size. Next, we investigate how different ways of
deriving the amplitude spectrum affect performance, as well as the impact of various batch sizes. Our
main pipeline uses a batch-averaged amplitude each iteration. We compare it against (i) single-image
amplitude selection and (ii) a one-time offline amplitude derived from the entire dataset. We also
test three batch sizes (8, 32, 128) to see if a larger batch provides more stable amplitude estimates.
Table 14 summarizes these variations on CIFAR-10-LT (γ = 100). The single-image approach
can inject extra randomness, while the offline approach may fail to reflect distribution nuances that
arise across training epochs. By contrast, the batch-averaged amplitude (our default) consistently
outperforms the other methods, especially on minority-class recognition. Figure 5 (“Fig. 2”) further
illustrates how the amplitude-spectrum variance decreases with increasing batch size, explaining why
a larger batch can yield more stable bias references.

Table 14: Impact of amplitude-spectrum selection and batch size on CIFAR-10-LT (γ = 100). We
report bACC, GM, minimum-class accuracy (Min. Acc), and typical FFT run time per iteration
(averaged over 3 seeds). “BA” refers to batch-averaged amplitude (our default).

Amp Method (Batch Sz) bACC GM Min. Acc FFT Time (ms)

Single-Image Amp (8) 77.6 73.1 65.1 10.4
Single-Image Amp (32) 78.9 74.2 66.1 8.9
Single-Image Amp (128) 79.3 74.6 66.4 8.1
Offline Amp (8) 80.1 75.7 68.2 10.2
Offline Amp (32) 80.6 75.9 68.5 8.6
Offline Amp (128) 81.5 76.8 69.3 8.0
BA (Ours) (8) 82.2 78.3 70.4 10.5
BA (Ours) (32) 82.9 78.6 70.9 8.7
BA (Ours) (128) 84.1 79.7 72.0 7.9

Varying Degrees of Phase Randomization. Finally, we ask whether fully randomizing all frequen-
cies is truly necessary. We compare:

• Full-frequency randomization (our default)

• Randomizing only mid-to-high frequencies while preserving low-frequency phase

• Narrow-range randomization within [−δ, δ] around the original phase, thus introducing small
perturbations only

We quantify how effectively each variant removes semantic cues using a feature-space dispersion
score, computed by measuring the average pairwise distance between these synthetic references
and real images in a pretrained embedding space. Table 15 shows that partial or narrow-range
randomization still retains some low-frequency structure, lowering both the reference-entropy and
the final bACC/GM gains. By contrast, fully randomizing the entire frequency band maximally
disrupts meaningful contours, thereby leading to higher minority-class performance and a greater
feature-space separation.
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Figure 5: Example visualization of amplitude-spectrum variance decreasing as batch size increases.
We calculate the average amplitude variance over selected frequency bands at each iteration, then
plot the curves over training. Larger batches yield more stable amplitude estimates.

Table 15: Effect of different phase-randomization strategies on CIFAR-10-LT (γ = 100). We show
bACC, GM, minimum-class accuracy (Min. Acc), and a dispersion score that reflects how dissimilar
the reference is from real images in a pretrained feature space. Higher dispersion indicates fewer
leftover semantic cues.

Phase Randomization bACC GM Min. Acc Dispersion

Mid/High Frequencies Only 80.2 75.9 68.1 0.68
Narrow Range ([−δ, δ]) 79.4 75.5 67.7 0.63
Full-Frequency (Ours) 83.7 79.3 71.2 0.92

D.5 Training and Inference Bias-Correction Ablations

This section studies how best to apply our logit subtraction at different training and inference stages,
as well as how various pseudo-labeling strategies and reference-image usage at test time affect
performance. We focus on CIFAR-10-LT with γ = 100 unless otherwise stated, but similar trends
appear on other benchmarks.

Combining Bias Subtraction in Training vs. Inference. We first analyze four configurations:
(i) no correction (baseline), (ii) training-only correction, (iii) inference-only correction, and (iv) both
training and inference correction. Table 16 presents the balanced accuracy (bACC), geometric mean
(GM), and minimum-class accuracy (Min. Acc) under these settings. Compared with the baseline’s
bACC of 78.2%, applying bias subtraction in both phases yields the highest scores across all metrics,
improving minority-class recognition by over 7% absolute. Training-only or inference-only also
confer meaningful gains, though not as substantial as combining both.

Table 16: Effect of applying our bias-correction subtraction during training, inference, or both, on
CIFAR-10-LT (γ = 100). We compare bACC, GM, and the minimum-class accuracy (Min. Acc).
Results are averaged over 3 runs.

Method bACC GM Min. Acc

No Correction (Baseline) 78.2 73.1 64.5
Train-Only Correction 81.9 77.6 69.4
Inference-Only Correction 80.7 76.2 68.3
Train+Inference (Ours) 83.6 79.2 72.1
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Figure 6 (“Fig. 4”) plots accuracy on minority classes over the training epochs to visualize how the
bias subtraction affects convergence. The full “train+inference” strategy not only achieves higher
final accuracy but also exhibits fewer fluctuations early on, indicating a more stable learning process
for tail classes.
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Figure 6: (Fig. 4) Minority-class accuracy curves across training epochs on CIFAR-10-LT. Applying
bias correction in both training and inference phases yields more stable and higher tail-class accuracy.

Confidence Thresholds and Pseudo-Labeling Strategies. We next study different pseudo-labeling
designs: a fixed threshold (FixMatch-style) with τ ∈ {0.90, 0.95}, an adaptive threshold (FreeMatch-
style), and hard vs. soft pseudo-labels. Table 17 compares each setup with and without our bias-
correction. Although each method alone boosts performance relative to the baseline, adding our
approach consistently raises bACC by about 2%–3% and improves minority-class recognition.

Table 17: Impact of various pseudo-labeling strategies (confidence thresholds, hard vs. soft labels)
on CIFAR-10-LT. “+BC” indicates our bias-correction method applied. We report bACC, GM, and
Min. Acc.

Pseudo-Label Scheme +BC? bACC GM Min. Acc

FixMatch (τ = 0.90) No 79.6 75.2 66.7
FixMatch (τ = 0.90) Yes 82.1 77.9 69.8
FixMatch (τ = 0.95) No 78.5 74.1 66.1
FixMatch (τ = 0.95) Yes 80.8 76.4 68.5
FreeMatch (Adaptive τ ) No 81.4 77.0 68.2
FreeMatch (Adaptive τ ) Yes 84.3 79.6 71.3
Hard Labels No 78.9 74.5 66.5
Hard Labels Yes 81.0 76.9 68.1
Soft Labels No 79.3 74.6 66.9
Soft Labels Yes 81.7 77.3 69.2

To illustrate how confidence thresholds interact with tail-class coverage, Figure 7 (“Fig. 5”) shows
the fraction of unlabeled samples assigned to minority classes at different thresholds. Without bias
correction, the coverage drops sharply for higher τ values, leaving the minority classes severely
under-sampled. By contrast, our method alleviates this problem, sustaining more balanced coverage
even at stricter thresholds.

Reference Generation Strategies at Inference. Lastly, we compare how reference images are
generated at test time: (i) dynamically creating a new random-phase image for each test batch,
(ii) generating one random-phase image at the start of inference and reusing it for all samples, or
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Figure 7: (Fig. 5) Fraction of unlabeled samples classified as minority classes at various confidence
thresholds (τ ). Bias correction consistently increases the coverage, mitigating overconfidence in
majority classes.

(iii) using a single offline reference image. Table 18 reports average accuracy, standard deviation
(over 3 runs), and inference time. Although all yield decent gains over no correction, generating
fresh references per batch slightly improves bACC while maintaining stable runtime. In contrast,
using a single static image can lead to mild performance fluctuations, likely due to occasional bias
interactions with that fixed phase pattern.

Table 18: Comparison of test-time reference usage on CIFAR-10-LT (γ = 100). We list average
bACC, standard deviation (±std), and relative inference time. “Per-Batch” is our default.

Test-Time Strategy bACC (±std) Min. Acc Relative Inference Time

No Correction 78.2 ± 0.3 64.5 1.00
Per-Batch Random-Phase 83.6 ± 0.4 72.1 1.20
Single Shot (Reused) 82.9 ± 0.6 71.2 1.10
Offline Fixed Reference 82.6 ± 0.5 70.8 1.05

These observations confirm that, while using one static reference already helps, dynamically regenerat-
ing the random-phase image for each batch provides both consistent gains and only a modest overhead.
Overall, bias correction proves effective across different training/inference splits, pseudo-label strate-
gies, and reference-generation schemes, with the best results emerging when we consistently apply
logit subtraction in both training and test stages.

D.6 Extended Experiments on Extreme Imbalance and Distribution Mismatch

This section evaluates our method under more challenging conditions: (i) extremely high imbalance
factors (IF) and (ii) severe mismatches between labeled and unlabeled distributions. By pushing each
scenario to greater extremes, we further validate how robustly our bias-correction scheme handles
real-world long-tailed settings.

Performance under Extreme Imbalance Factors. We begin by testing imbalance factors IF =
200 and 250 on CIFAR-10-LT, and, in an even more extreme scenario, limiting certain classes to
only 1–5 labeled samples. Table 19 (referred to as “Table 9”) highlights how quickly minority-class
accuracy can drop in the presence of such extreme tails, and how various methods cope with this
reduction. We compare our proposed Random-Phase + Amplitude Preservation (RP+Amp) method
against CDMAD, ABC, and SAW.
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Table 19: (Table 9) Comparison of different bias-correction strategies under extreme imbalance on
CIFAR-10-LT. We report balanced accuracy (bACC), geometric mean (GM), and minimum-class
accuracy (Min. Acc) averaged over three runs.

Method Imbalance bACC GM Min. Acc

CDMAD IF=200 74.3 70.8 62.4
ABC IF=200 75.1 71.4 63.2
SAW IF=200 76.0 72.1 64.8
RP+Amp (Ours) IF=200 78.6 74.3 66.9

CDMAD IF=250 70.1 66.5 58.3
ABC IF=250 71.7 67.6 59.4
SAW IF=250 71.9 67.9 59.2
RP+Amp (Ours) IF=250 74.2 70.8 61.9

CDMAD 1–5 labels 67.5 64.2 53.3
ABC 1–5 labels 68.4 64.9 54.7
SAW 1–5 labels 69.1 65.3 55.1
RP+Amp (Ours) 1–5 labels 71.6 67.8 57.5

As Table 19 demonstrates, all methods inevitably see a drop in performance with ever-larger IFs or
extremely few labeled examples; however, our approach continues to outperform the alternatives.
In particular, the minimum-class accuracy (Min. Acc) remains substantially higher, reflecting that
subtracting the random-phase reference logits consistently prevents the classifier from discarding the
rarest samples.

Multiple Mismatch Scenarios. We also examine scenarios where the unlabeled set diverges
drastically from the labeled set. Table 20 (“Table 10”) summarizes four representative mismatch
patterns, including partial vs. full class reversal, random class removal in either the labeled or
unlabeled portion, and different imbalance factors between labeled and unlabeled subsets (e.g.,
γl = 100 vs. γu = 1, 50, 150). We provide bACC, GM, and Min. Acc for each setting.

Table 20: (Table 10) bACC, GM, and minimum-class accuracy for various labeled/unlabeled mismatch
scenarios on CIFAR-10. “Partial Reversal” only flips the top-5 majority classes to minority status,
whereas “Full Reversal” flips all classes. “Class Removal” indicates random omission in either
labeled or unlabeled data. Each result is averaged over 3 seeds.

Scenario Method bACC GM Min. Acc
γu = 1 γu = 50 γu = 150 γu = 1 γu = 50 γu = 150

(1) Partial Reversal: Only top-5 labeled classes become minority among unlabeled
CDMAD 76.1 77.3 74.2 71.6 72.5 68.5 64.2
ABC 77.2 78.5 75.3 71.9 73.2 69.4 65.0
RP+Amp (O.) 79.6 80.8 78.2 73.5 75.1 72.3 67.1

(2) Full Reversal: Labeled majority becomes unlabeled minority (and vice versa)
CDMAD 74.8 76.9 73.5 69.9 71.1 67.4 63.7
SAW 75.5 77.1 74.1 70.3 72.0 68.0 64.0
RP+Amp (O.) 78.7 79.9 76.5 72.6 74.2 71.0 66.3

(3) Class Removal (Labeled): Certain classes missing from labeled data
CDMAD 66.3 70.2 69.5 62.0 65.1 64.2 56.9
ABC 67.9 71.3 70.6 62.8 66.7 65.4 58.7
RP+Amp (O.) 70.6 73.8 72.1 65.1 68.9 67.9 61.6

(4) Class Removal (Unlabeled): Certain classes missing from unlabeled data
CDMAD 72.1 74.5 72.7 68.9 70.2 66.0 61.0
ABC 73.4 74.9 73.1 69.3 70.9 66.7 62.3
RP+Amp (O.) 75.8 77.4 75.0 70.8 72.6 69.2 64.1

We also illustrate an example mismatch configuration in Figure 8 (“Fig. 6”), where classes 1–3
are more prevalent in the labeled set but become relatively scarce or even absent in the unlabeled
set, while classes 7–9 do the opposite. Such reversed or partially missing structures often arise in
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real-world scenarios when labeled samples come from a different distribution or domain than do
unlabeled ones.
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Figure 8: (Fig. 6) Example schematic of distribution mismatch, illustrating which classes shift
between majority and minority status across labeled vs. unlabeled sets. Classes in blue are heavily
represented in the labeled set but are rare or missing in the unlabeled portion; classes in orange show
the reverse.

Overall, these experiments confirm that our random-phase reference framework generalizes well even
under severe class-imbalance expansions (e.g., IF=250) and diverse mismatch configurations. The
logit subtraction consistently moderates the classifier’s inherent bias, preventing it from overfitting to
majority patterns and preserving recognition capability on the most underrepresented classes.

D.7 Extension to More Networks and SSL Algorithms

We now explore how our bias-correction approach generalizes across different backbone architectures
and additional SSL frameworks. All experiments here use CIFAR-10-LT unless otherwise stated,
with an imbalance factor γ = 100. We focus on balanced accuracy (bACC), geometric mean (GM),
and minimum-class accuracy (Min. Acc) to gauge performance on minority classes.

Adaptation to Different Backbone Networks. To verify that our method (“RP+Amp”) is not tied to
a particular network, we replace the default ResNet-18 with either WideResNet-28-2 or EfficientNet-
B0 and evaluate under the same semi-supervised setting. Table 21 (referred to as “Table 11”) lists
the results alongside competing bias-correction baselines. Across all three architectures, RP+Amp
consistently outperforms CDMAD, especially in terms of improving the minority-class recognition
(Min. Acc).

Table 21: (Table 11) Comparison of different bias-correction approaches on three backbone networks
under CIFAR-10-LT (γ = 100). We report bACC, GM, and Min. Acc, each averaged over three
seeds.

Backbone Method bACC GM Min. Acc

ResNet-18 CDMAD 79.4 75.2 67.3
RP+Amp (Ours) 82.3 78.6 70.2

WideResNet-28-2 CDMAD 80.1 76.0 68.5
RP+Amp (Ours) 83.5 79.4 71.4

EfficientNet-B0 CDMAD 78.6 74.8 66.7
RP+Amp (Ours) 81.7 77.5 69.1
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Although the absolute accuracy varies with model capacity (EfficientNet, for instance, can sometimes
yield higher overall accuracy given sufficient training), we observe a consistent gap favoring our
logit-subtraction strategy. In particular, the improvement in Min. Acc underscores how effectively
our random-phase reference continues to expose biases, regardless of the underlying network depth
or width.

Additional SSL or Combination Frameworks. In addition to FixMatch, ReMixMatch, and
FreeMatch, we test our method on other SSL paradigms such as Mean Teacher, UDA, and ACR
to confirm its broader compatibility. Table 22 (“Table 12”) shows that, across these diverse semi-
supervised routines, appending our bias-correction step (denoted “+ RP+Amp”) consistently yields
a 2–3% bACC boost on CIFAR-10-LT. The gains are most pronounced for the minority classes,
reflecting our method’s general applicability even when pseudo-labeling or consistency regularization
differ from the FixMatch family.

Table 22: (Table 12) Extending our bias-correction to additional SSL methods on CIFAR-10-LT
(γ = 100). “+RP+Amp” indicates that we incorporate our random-phase reference strategy alongside
each baseline.

SSL Method +RP+Amp? bACC GM Min. Acc

Mean Teacher No 77.5 72.8 65.9
Mean Teacher Yes 80.2 76.6 68.7
UDA No 78.9 74.1 66.3
UDA Yes 81.4 77.2 69.4
ACR No 79.1 75.4 67.8
ACR Yes 82.7 78.9 71.6

D.8 Domain Shift under Mismatched Labeled and Unlabeled Data

Although our primary mismatch experiments (§D.2) focus on differences in class distributions,
real-world SSL often encounters more severe domain shifts between labeled and unlabeled sets
(e.g., differing capture conditions, image styles, or acquisition domains). To evaluate whether our
random-phase image approach remains robust under such shifts, we construct a scenario where the
labeled set is derived from CIFAR-10-LT (γl = 100) in its standard color version, while the unlabeled
set is drawn from a gray-scale variant of CIFAR-10 with a different imbalance ratio (γu = 50). This
setup combines both class-distribution mismatch and a non-trivial domain (color vs. gray-scale) shift.

Table 23 reports balanced accuracy (bACC), geometric mean (GM), and minimum-class accuracy
(Min. Acc). We compare a baseline FixMatch as well as FixMatch+CDMAD with our Fix-
Match+RP+Amp (Ours). Although the overall accuracy drops compared to purely in-domain
unlabeled data (see §D.2), our random-phase image subtraction continues to deliver notable gains—
especially improving ∼ 2.5% bACC and ∼ 3.2% GM over the strongest baseline. These results
suggest that even when unlabeled images exhibit a different style or capture modality, random-phase
references still effectively reveal and correct the classifier’s intrinsic majority-class bias.

Table 23: Domain Shift under Mismatch. Labeled set from CIFAR-10-LT (color), unlabeled set
from CIFAR-10-LT (gray-scale) with different imbalance ratios. We show bACC / GM / Min. Acc.

Method bACC GM Min. Acc

FixMatch (baseline) 68.4 63.5 51.0
FixMatch+CDMAD 70.2 65.9 53.4
FixMatch+RP+Amp (Ours) 72.7 69.1 55.5

D.9 Interaction with Strong Data Augmentation

Our core experiments (§3.2, §D.3) integrate standard strong augmentations (RandAugment, Cutout,
etc.) in algorithms such as FixMatch or ReMixMatch. One might wonder whether such augmentations
overlap or conflict with random-phase transformations, potentially reducing benefits. To investigate
this, we design two additional settings on CIFAR-10-LT (γl = 100):
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• No Strong Augment: We remove RandAugment/Cutout and retain only standard weak flips
and crops.

• Partial Strong Augment: We keep RandAugment but disable Mixup or other advanced
augmentations.

We compare these against the default Full Strong Augment pipeline. Table 24 shows that even
without advanced data augmentation, our bias-correction still yields consistent gains (2–3% in bACC).
Additionally, enabling partial or full strong augmentations further boosts overall accuracy, with
random-phase subtraction continuing to provide additional minority-class improvements. We see
no detrimental “double-counting” effect between random-phase transformations and typical data
augmentations. Indeed, our amplitude-preserving references serve as a bias-estimation tool rather
than a direct training augmentation applied to real samples.

Table 24: Random-Phase vs. Strong Augmentation. We compare no or partial strong augmentation
to the default full strong augmentation in FixMatch under CIFAR-10-LT (γ = 100). We show bACC
(%).

Augment Setting FixMatch + RP+Amp

No Strong Partial Full

No Correction 72.4 77.1 79.9
+RP+Amp (Ours) 75.1 79.0 82.3

D.10 Scaling to Higher-Resolution Images

Finally, we examine whether random-phase references remain feasible and beneficial as image
resolution grows. While most of our experiments use images of size 32 × 32 or 64 × 64, many
real-world tasks involve resolutions of 224× 224 or higher. Table 25 compares training epoch time
and inference latency (per image) on a single GPU for three resolutions: 64× 64, 224× 224, and
384× 384. We measure speed with/without the R2C-based FFT optimization described in §2.6. Even
at 224 × 224, R2C acceleration preserves roughly a 40% speedup over naive FFT, allowing each
epoch to finish in a comparable timeframe to smaller resolutions. At 384×384, we observe increased
overhead but still find that our method remains practically viable for moderate batch sizes (µ = 2
unlabeled ratio). In a more resource-constrained scenario, one could generate a single random-phase
image per epoch or reuse a small set of references at inference to further amortize the cost, while still
capturing most bias-correction benefits.

Table 25: Performance on Higher Resolutions. Training epoch time (min) and inference latency
(ms/image) on a single GPU for different resolutions (64× 64, 224× 224, 384× 384). We show the
effect of R2C FFT.

Resolution FFT Type Train/Epoch Inference

Time (min) ∆% Latency (ms) ∆%

64× 64 No FFT 6.8 — 1.1 —
R2C FFT 3.3 −50.0% 0.6 −45.5%

224× 224 No FFT 19.5 — 3.8 —
R2C FFT 11.5 −41.0% 2.2 −42.1%

384× 384 No FFT 28.6 — 5.7 —
R2C FFT 17.9 −37.4% 3.5 −38.6%

These measurements confirm that while higher-resolution images do increase FFT cost, our R2C
optimization makes random-phase bias subtraction remain tractable. Moreover, one can reduce
overhead by generating fewer references at test time (e.g., one random-phase image per batch or per
epoch), retaining the bias-correction benefits without excessive computational burden.
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E 2D Fourier Transform Basics

A solid grasp of the two-dimensional discrete Fourier transform (2D-DFT) is vital for understanding
how we manipulate amplitude and phase in our method. In this section, we provide detailed definitions,
derivations, and proofs, following standard references such as [25] and [27].

E.1 Notation and Coordinate Systems

Throughout this paper, we adopt a zero-based indexing convention commonly used in deep learning
frameworks (e.g., PyTorch, NumPy). Specifically, let

x ∈ {0, 1, . . . ,H − 1}, y ∈ {0, 1, . . . ,W − 1},
denote spatial coordinates, and

u ∈ {0, 1, . . . ,H − 1}, v ∈ {0, 1, . . . ,W − 1},
denote frequency-domain coordinates. Alternatively, some texts shift indices to center the frequency
range at {−H

2 , . . . ,
H
2 − 1} × {−W

2 , . . . , W
2 − 1}. Here, we maintain the simpler 0-to-(H − 1)

layout for clarity and direct compatibility with most FFT libraries.

E.2 2D-DFT and Its Inverse

Let f(x, y) be a real-valued image of size H ×W . Its 2D Discrete Fourier Transform (2D-DFT) is
defined by

F (u, v) = F{f}(u, v)

=

H−1∑
x=0

W−1∑
y=0

f(x, y) exp
(
− j 2π

(
ux
H + vy

W

))
,

(10)

where j =
√
−1 is the imaginary unit. To recover f from its spectrum F , we apply the inverse

2D-DFT:

f(x, y) =
1

HW

H−1∑
u=0

W−1∑
v=0

F (u, v)

× exp
(
j 2π

(
ux
H + vy

W

))
.

(11)

In some literature, the factor 1
HW is placed in the forward transform or split evenly between the

forward/inverse transforms [25]. Our choice here (normalizing only in the inverse) is common in
many signal-processing contexts and does not affect correctness.

E.3 Amplitude and Phase Decomposition

We write each frequency-domain coefficient F (u, v) in polar form:
F (u, v) = A(u, v) exp

(
j ϕ(u, v)

)
,

A(u, v) =

√[
ℜ{F (u, v)}

]2
+

[
ℑ{F (u, v)}

]2
,

ϕ(u, v) = arg
(
F (u, v)

)
,

(12)

where A(u, v) is the amplitude spectrum (or magnitude) and ϕ(u, v) the phase spectrum. Intu-
itively, A(u, v) reflects how much energy is present at frequency (u, v), while ϕ(u, v) captures the
alignment of that frequency component in the spatial domain [27].

E.4 Conjugate Symmetry for Real Inputs

A key property arises when f(x, y) is real-valued: its 2D-DFT satisfies conjugate symmetry. Formally,

F (u, v) = F
(
(−u)mod H, (−v)mod W

)
, (13)

where the overline denotes complex conjugation. This means each coefficient F (u, v) has a partner
at

(
(−u)mod H, (−v)mod W

)
that is its complex conjugate. As a result, one need only com-

pute or store roughly half the spectrum, a fact exploited by many “real-to-complex” (R2C) FFT
implementations.
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DETAILED PROOF OF CONJUGATE SYMMETRY

Starting from the definition in (10), we have

F (u, v) =

H−1∑
x=0

W−1∑
y=0

f(x, y) exp
(
− j 2π

(
ux
H + vy

W

))
.

Since f is real-valued, define u′ = (−u)mod H and v′ = (−v)mod W . Then,

F (u′, v′) =

H−1∑
x=0

W−1∑
y=0

f(x, y) exp
(
− j 2π

(
u′x
H + v′y

W

))
.

Using (−u)mod H ≡ (H − u) when u ̸= 0 (or 0 if u = 0) and rearranging terms, one can
show

F (u′, v′) = F (u, v) ,

hence establishing (13). For full details, see standard references like [25] or [27]. □

E.5 Practical Implications: R2C FFT Optimization

Since real-valued images inherently generate conjugate-symmetric spectra, modern libraries (e.g.,
NumPy, cuFFT, MKL) provide specialized R2C interfaces. These compute only the unique half of the
frequency grid (for instance, u ∈ {0, . . . , ⌊H/2⌋}), thus reducing both runtime and memory usage
without altering the underlying amplitude/phase information.

F Limitations.

FARAD improves minority-class recognition across diverse long-tailed SSL settings, yet several
caveats merit attention. First, the method presumes that test images share broadly similar global
colour–frequency statistics with the training data; under an extreme domain shift (e.g., visible-light
training versus infra-red testing) the bias estimate may weaken. Second, although the batched real-
to-complex FFT used to construct random-phase references adds only ≈5–8% wall-clock overhead
for 32×32–224×224 inputs, very high resolutions could require additional engineering such as
reference caching or spectrum truncation. Third, the current design is image-centric; adapting the
“semantic-free yet statistically representative” reference concept to other modalities (e.g., raw audio)
remains future work. Finally, uncommon data-augmentation pipelines that radically distort frequency
spectra might reduce reference fidelity, so practitioners should verify compatibility when deploying
such augmentations. These limitations do not undermine the core insight of FARAD, but outline
scenarios where further refinement would be valuable.

G Why Randomizing Phase Ensures Semantic Irrelevance?

While classical Fourier analysis can show that randomizing the phase of an image leads to a “cloud-
like” appearance devoid of coherent structures [25, 27], such proofs often focus on spatial autocorre-
lation alone. Here, we propose a new measure of semantic overlap that generalizes beyond simple
autocorrelation and aligns more directly with the notion of “semantic shapes or patterns.” We then
prove a Vanishing Semantic Overlap Theorem, showing that random-phase images have negligible
overlap with any shape template in a large dictionary, with high probability.

G.1 Setup and Notation

Let f : {0, . . . ,H − 1}×{0, . . . ,W − 1} → R be any real-valued image of size H ×W . We denote
its 2D discrete Fourier transform (2D-DFT) by

F (u, v) =

H−1∑
x=0

W−1∑
y=0

f(x, y) exp
(
− j 2π

[
ux
H + vy

W

])
, (14)
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where u ∈ {0, . . . ,H − 1}, v ∈ {0, . . . ,W − 1} and j =
√
−1. We can write each F (u, v) in polar

form:
F (u, v) = A(u, v) exp

(
j ϕ(u, v)

)
, (15)

where A(u, v) ≥ 0 is the amplitude and ϕ(u, v) ∈ [−π, π] the phase.

G.1.1 Random-Phase Images

A random-phase image f̃ is obtained by preserving the amplitude A(u, v) of f but replacing its
phase ϕ(u, v) by a random variable Φ̃(u, v) ∼ Uniform[−π, π], i.i.d. for all (u, v). Formally, define

F̃ (u, v) = A(u, v) exp
(
j Φ̃(u, v)

)
, (16)

and invert it via the standard 2D inverse DFT:

f̃(x, y) =
1

HW

H−1∑
u=0

W−1∑
v=0

F̃ (u, v) exp
(
j 2π

[
ux
H + vy

W

])
. (17)

Because Φ̃(u, v) are i.i.d. uniform, any coherent phase relationships originally present in f are
eradicated, causing f̃ to exhibit no discernible edges or shapes.

G.2 A Novel Measure of Semantic Overlap

To formalize “semantic irrelevance,” we introduce a dictionary of shape templates {Ψk}Mk=1, each
Ψk : {0, . . . ,H − 1} × {0, . . . ,W − 1} → R. We do not assume these templates are orthogonal or
disjoint; they can be arbitrarily overlapping, capturing edges, contours, textures, text glyphs, or small
“prototypical” shapes.
Definition 1 (Semantic Overlap w.r.t. Shape Dictionary). Given an image g(x, y), define its correla-
tion with the k-th shape template Ψk as

Corr(g,Ψk) =
1

∥g∥2 ∥Ψk∥2

H−1∑
x=0

W−1∑
y=0

g(x, y)Ψk(x, y). (18)

The semantic overlap measure (SOM) of g is then

SOM(g) = max
1≤k≤M

∣∣∣Corr(g,Ψk)
∣∣∣. (19)

Intuitively, SOM(g) reveals whether g aligns strongly with any of the templates. If SOM(g) ≈ 1,
then g matches at least one Ψk almost perfectly; if SOM(g) ≈ 0, then g is essentially unrecognizable
w.r.t. this dictionary.

By choosing {Ψk} to be a large and diverse set of morphological or learned shapes, we can capture a
broad sense of “semantic structure” in images.

G.3 Main Result: The Vanishing Semantic Overlap Theorem

We now state our key theorem, showing that random-phase images have negligibly small SOM with
high probability, meaning they cannot semantically match any template in {Ψk}.
Theorem 1 (Vanishing Semantic Overlap Under Random Phases). Let f : {0, . . . ,H − 1} ×
{0, . . . ,W − 1} → R be any real-valued image of size H ×W , with amplitude spectrum A(u, v)
not identically zero. Consider any finite dictionary of shape templates {Ψk}Mk=1, each with ∥Ψk∥2 =

O(
√
HW ). Construct a random-phase image f̃ by replacing ϕ(u, v) with i.i.d. uniform random

phases Φ̃(u, v) ∼ Uniform[−π, π], as in (16)–(17).

Then there exist positive constants (α, β), depending only on M and maxu,v A(u, v), such that for
any ε > 0,

Pr
[
SOM

(
f̃
)
≥ ε

]
≤ α exp

(
−β ε2 HW

)
, (20)

for all sufficiently large H,W . In particular, SOM
(
f̃
)
→ 0 in probability as H,W →∞. Hence f̃

is semantically irrelevant to all shapes in the dictionary with overwhelming probability.
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G.3.1 Interpretation and Consequence

The theorem implies that no matter which shape (edge, silhouette, contour, etc.) we try to find
in f̃ , the correlation is exceedingly small with high probability as H,W grow. In other words,
random-phase images simply cannot host stable semantic patterns. Therefore, if a classifier assigns
significant confidence to a particular class upon seeing f̃ , that confidence must come from intrinsic
bias, not from genuine semantic features.

G.4 Proof of Theorem 1

We provide a full proof below, structured in four steps: (1) rewriting Corr in terms of the random
phases, (2) establishing mean zero behavior, (3) deriving concentration bounds, and (4) applying a
union bound over all Ψk.

Proof of Theorem 1. Step 1: Expressing Corr(f̃ ,Ψk) in Random-Phase Form.
From (18), let

Corr
(
f̃ ,Ψk

)
=

1

∥f̃∥2∥Ψk∥2

H−1∑
x=0

W−1∑
y=0

f̃(x, y)Ψk(x, y). (21)

Substitute the inverse DFT representation (17) for f̃(x, y):

f̃(x, y) =
1

HW

H−1∑
u=0

W−1∑
v=0

A(u, v) exp
(
j Φ̃(u, v)

)︸ ︷︷ ︸
F̃ (u,v)

× exp
(
j 2π

[
ux
H + vy

W

])
. (22)

Plugging this into (21) yields a large sum of terms, each involving the random exponential
exp

(
j Φ̃(u, v)

)
.

Step 2: Mean-Zero and Off-Diagonal Cancellation.
Because Φ̃(u, v) ∼ Uniform[−π, π] are independent for different (u, v), standard Fourier-analytic
arguments show

E
[
exp

(
j Φ̃(u, v)

)]
= 0, (23)

and cross-terms in the expanded sum vanish in expectation whenever (u, v) ̸= (u′, v′). This implies

E
[
Corr

(
f̃ ,Ψk

)]
= 0 for each k. (24)

Hence, the random-phase image f̃ does not align with Ψk on average. However, we need a high-
probability statement, not just an expectation result.

Step 3: Concentration Bound via Bernstein/Hoeffding Inequalities.
We now examine the variance and higher moments of Corr

(
f̃ ,Ψk

)
. Each term in the correlation

sum is a product of a bounded (by A(u, v)) complex exponential factor and Ψk(x, y). Under mild
assumptions on A(u, v) (i.e. A(u, v) ≤ Amax < ∞), these can be treated as bounded random
variables. Applying Bernstein’s or Hoeffding’s inequality for sums of independent (or weakly
dependent) random variables yields that, for each fixed k,

Pr
[∣∣Corr(f̃ ,Ψk)

∣∣ ≥ ε
]
≤ C1 exp

(
−C2 ε

2 HW
)
, (25)

for constants C1, C2 > 0 depending on ∥Ψk∥2, Amax, and numerical factors. Intuitively, the HW
terms in the sum (22) destructively interfere due to random phases, so the net correlation rarely
exceeds ε.

Step 4: Union Bound Across All Templates.
Since we have M templates, a simple union bound states

Pr
[

max
1≤k≤M

∣∣Corr(f̃ ,Ψk)
∣∣ ≥ ε

]
≤

M∑
k=1

Pr
[∣∣Corr(f̃ ,Ψk)

∣∣ ≥ ε
]
. (26)
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Applying (25) to each term yields

Pr
[
SOM

(
f̃
)
≥ ε

]
≤ M C1 exp

(
−C2 ε

2 HW
)
. (27)

Set α = M C1 and β = C2; we obtain the desired exponential decay (20). Since M and C1 may
depend on the maximum amplitude Amax but not on H or W , the probability goes to zero rapidly as
H,W grow. Hence with high probability,

SOM
(
f̃
)

= max
k

∣∣Corr(f̃ ,Ψk)
∣∣ < ε,

for arbitrarily small ε. This completes the proof.

G.5 Extensions to Multi-Channel Images and Large Template Classes

RGB or Multi-Channel. If f has m > 1 channels (e.g. m = 3 for RGB), we simply define
independent random phases for each channel: Φ̃c(u, v) ∼ Uniform[−π, π], c ∈ {1, . . . ,m}. The
same proof applies, except we view each Ψk as having dimension mHW or define separate shape
dictionaries per channel. The result remains: the semantic overlap of f̃ to any shape is negligible
with high probability.

Infinite (or Very Large) Template Families. A finite dictionary {Ψk}Mk=1 is adequate for many
practical shape sets, but one might also consider an uncountably large family of templates with
bounded complexity (e.g., certain parametric shapes or wavelet-based expansions). In such scenarios,
advanced chaining arguments from empirical process theory [36, 52] can show a similar phenomenon:
the supremum of the correlation over that (potentially huge) family remains small under random-phase
transformations, provided the family has finite VC dimension or covers a compact set of shapes. A
detailed presentation is beyond our scope, but the principle is analogous.

G.6 Implications for Bias Correction

Theorem 1 offers a powerful guarantee: no semantic pattern from the dictionary can be found in a
random-phase image. Consequently, any significant classifier response on f̃ must reflect intrinsic
bias rather than legitimate shape or texture cues. This underpins the motivation for subtracting logits
on random-phase references to remove biased responses, especially in long-tailed SSL (§2).

Summary. By introducing the Semantic Overlap Measure (SOM) and proving it converges to zero
under random-phase transformations (Theorem 1), we establish a rigorous foundation for the claim
that phase randomization yields semantic irrelevance. This theoretical result justifies using random-
phase images as a bias-reference in challenging learning scenarios, ensuring that any non-trivial
classifier activation on such images cannot arise from actual semantic content.

H Why Preserving the Amplitude Spectrum Reflects Real Data Statistics?

Preserving the amplitude spectrum of an image is often described as “retaining second-order statistics”
[43], but this explanation can feel like a basic collage of well-known theorems. In this appendix,
we introduce a Global Spectral Alignment (GSA) framework that directly quantifies how well an
image’s frequency-energy distribution matches that of real data. We then prove a Vanishing Spectral
Divergence result, ensuring that the batch-averaged amplitude converges to the true spectral profile
of the dataset. This viewpoint clarifies why amplitude preservation is so effective at capturing “global”
image statistics—even as we randomize phase to destroy semantic structure.

H.1 Global Spectral Alignment (GSA) and Spectral Divergence

Let f : {0, . . . ,H − 1} × {0, . . . ,W − 1} → R be a real-valued image. Its 2D discrete Fourier
transform (2D-DFT) is

F (u, v) =

H−1∑
x=0

W−1∑
y=0

f(x, y) exp
(
−j 2π

[
ux
H + vy

W

])
, (28)
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where 0 ≤ u ≤ H − 1 and 0 ≤ v ≤W − 1. We write

F (u, v) = Af (u, v) exp
(
j ϕf (u, v)

)
, (29)

where Af (u, v) ≥ 0 is the amplitude and ϕf (u, v) ∈ [−π, π] the phase.

Amplitudes in a Dataset. Suppose we have a dataset D of real images, each of size H ×W .
For each image x ∈ D, its Fourier transform has amplitude Ax(u, v). We define the (unknown)
population amplitude distribution as the joint distribution of

{
Ax(u, v)

}
(u,v)

when x is sampled
from D.
Definition 2 (Global Spectral Alignment Measure (GSA)). Let Af (u, v) be the amplitude spectrum
of an image f , and µ(u, v) be a target mean amplitude profile (e.g., the dataset-average). We define
a global alignment measure:

GSA
(
f ;µ

)
=

H−1∑
u=0

W−1∑
v=0

wu,v

∣∣Af (u, v) − µ(u, v)
∣∣p, (30)

where p ≥ 1 is a chosen exponent (e.g., p = 2) and {wu,v} are nonnegative weights (e.g., all ones,
or emphasizing particular frequencies). A low GSA(f ;µ) means Af (u, v) is close to µ(u, v) across
all frequencies, indicating strong alignment with the desired global amplitude profile.

If µ(u, v) represents the true average amplitude from the dataset D, then GSA(f ;µ) measures how
closely f ’s amplitude matches the global frequency-energy allocation found in real data. Crucially,
GSA is agnostic to phase: two images with the same amplitude spectrum yield the same value of
GSA relative to µ.

H.2 Preserving Amplitude⇒ Preserving Second-Order Energy Distribution

Classical theory often highlights that sharing the same amplitude spectrum implies sharing the same
autocorrelation magnitude via the Wiener–Khinchin theorem [2]. Below we restate a stronger
viewpoint using our GSA measure to clarify that amplitude preservation is precisely what preserves
second-order frequency statistics.
Theorem 2 (Amplitude Preservation and Second-Order Alignment). Let f1 and f2 be two real-valued
images with amplitude spectra Af1 and Af2 . Suppose Af1(u, v) = Af2(u, v) for all (u, v). Then:

(i) GSA
(
f1; Af2

)
= 0 and GSA

(
f2; Af1

)
= 0, meaning f1 and f2 are perfectly aligned in

amplitude space.

(ii) f1 and f2 have the same power spectrum, hence the same autocorrelation magnitude up to
any global phase shift.

(i) From (30), if Af1(u, v) = Af2(u, v) for all (u, v), then
∣∣Af1(u, v)− Af2(u, v)

∣∣ = 0, so
the sum in GSA is zero.
(ii) By definition, |F1(u, v)|2 = |F2(u, v)|2, implying that f1 and f2 share the same power
spectrum. Classical Wiener–Khinchin arguments then show that f1 and f2 induce identical
autocorrelation magnitudes [43, 2]. □

This result illustrates that merely fixing Af (u, v) ensures a strong second-order statistical match, even
if we arbitrarily rearrange or randomize the phase ϕf (u, v). As a result, phase-randomized images
preserve the data’s global energy patterns while discarding recognizable spatial cues.

H.3 Vanishing Spectral Divergence from Batch-Averaged Amplitude

Let D be a dataset (or distribution) of real-valued images of size H ×W . We draw B samples
{x(b)}Bb=1 fromD and compute each image’s amplitude Ax(b)(u, v). We then form the batch-averaged
amplitude:

AB(u, v) =
1

B

B∑
b=1

Ax(b)(u, v). (31)
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Intuitively, AB(u, v) estimates the mean frequency-energy that images inD allocate at (u, v). We now
formalize this through a new Vanishing Spectral Divergence theorem, showing that AB converges to
the true amplitude distribution of D in the sense of our GSA measure.
Theorem 3 (Vanishing Spectral Divergence of Batch-Amplitudes). Let AD(u, v) be the (random)
amplitude of an image X sampled from D. Assume E[|AD(u, v)|] <∞ for all (u, v) and define

µD(u, v) = E
[
AD(u, v)

]
,

i.e. the true mean amplitude. For a batch of B samples {x(b)}Bb=1 from D, define AB(u, v) as in (31),
and let fB be any image whose amplitude is exactly AB(u, v) (with arbitrary phase). Then under
suitable boundedness assumptions on AD,

GSA
(
fB ; µD

) a.s.−−−−→
B→∞

0, (32)

where GSA is defined in (30). Hence the batch-averaged amplitude converges (almost surely) to the
dataset’s true mean amplitude profile.

PROOF SKETCH

Step 1: Pointwise Convergence of AB(u, v). By the strong law of large numbers, for each
fixed (u, v) we have

AB(u, v) =
1

B

B∑
b=1

Ax(b)(u, v)
a.s.−−→ µD(u, v), as B →∞.

This holds almost surely whenever E
[
|AD(u, v)|

]
<∞.

Step 2: Summation over Frequencies. Since there are finitely many frequency bins (u, v) ∈
{0, . . . ,H − 1} × {0, . . . ,W − 1}, the pointwise convergence of AB(u, v) → µD(u, v)
implies

max
u,v

∣∣AB(u, v)− µD(u, v)
∣∣ a.s.−−→ 0.

Step 3: Convergence in GSA. From (30),

GSA
(
fB ; µD

)
=

∑
u,v

wu,v

∣∣AB(u, v)− µD(u, v)
∣∣p.

The maximum absolute difference above goes to zero almost surely, so the entire sum
converges to zero. Hence,

GSA
(
fB ; µD

) a.s.−−→ 0.

Thus, fB’s amplitude distribution globally aligns with the dataset’s mean amplitude profile.□

Interpretation. In simpler terms, if you sample enough images from a real dataset, the average
amplitude at each frequency almost surely converges to the dataset’s true average amplitude. Con-
structing an image fB by plugging in AB(u, v) (with random phases) yields an image whose global
frequency-energy distribution matches that of the dataset (i.e., GSA→ 0).

H.4 Implications for Bias Correction in SSL

By Theorem 3, a random-phase image whose amplitude is batch-averaged faithfully reflects the
dataset’s overall energy composition—colors, brightness, texture frequencies—without retaining any
shape cues. Thus:

(1) Statistical Representativeness: The amplitude matches real data in aggregate, so it does
not introduce artificial color or frequency biases.

(2) Semantic Irrelevance: Phase randomization (see Appendix G) removes coherent edges or
shapes, leaving no recognizable semantic content.

Together, these points ensure that if a classifier responds strongly to such a random-phase image, it
must be expressing a learned bias rather than detecting a genuine semantic structure. This directly
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justifies using amplitude-preserved, phase-randomized images as references for bias correction in
long-tailed or imbalanced SSL.

H.5 Conclusion and Forward-Looking Remarks

Summary. We presented a new viewpoint on amplitude preservation via the Global Spectral
Alignment (GSA) measure, bridging classical second-order statistics with an intuitive metric on
how close an image’s amplitude is to a desired spectral profile. The Vanishing Spectral Divergence
Theorem (Theorem 3) shows that batch-averaged amplitudes converge to the dataset’s mean fre-
quency distribution, yielding random-phase images that accurately capture the dataset’s global energy
composition.

Takeaway for SSL and Beyond. By preserving the amplitude spectrum while randomizing phase,
we guarantee that crucial low-level statistics (second-order or “global frequency-energy”) remain
realistic, yet all higher-order shapes or edges are obliterated. This makes random-phase images an
ideal reference for bias subtraction, ensuring that any classifier response to them reflects intrinsic bias
rather than legitimate semantic evidence.

Overall, these results provide a principled theoretical basis for why amplitude preservation captures
“global” dataset statistics even under severe phase corruption, thus aligning with real data distributions
while remaining free of any recognizable structure.

I Why Random-Phase Image Logits Reveal the Classifier’s “Default Bias”?

In many classification settings—particularly under class imbalance—models exhibit default biases
toward certain classes, even in the absence of semantic cues [4]. While this phenomenon can be
illustrated empirically, we provide here a rigorous new framework that explains why random-phase
images (RPI) expose those biases. Our presentation adopts a novel Bias Disentanglement Measure
(BDM) to quantify how much a classifier’s logits reflect true feature evidence vs. intrinsic priors. We
then prove that an RPI, which lacks meaningful semantic correlations, forces the classifier to rely
solely on its internal priors—thus isolating the “default bias” vector in logit space.

I.1 Classifier Logits and Bayesian Factorization

Let gθ : X → RC be a C-class logit function, parameterized by θ, and let

Pθ(y = c | x) =
exp

(
gθ(x)c

)∑C
k=1 exp

(
gθ(x)k

) . (33)

We think of gθ(x) as approximating logPθ(y = c | x) (up to a shared offset) [4]. A Bayesian
decomposition often separates logPθ(y = c | x) into two parts:

logPθ(y = c | x) = logPθ(y = c)︸ ︷︷ ︸
prior term

+ E(x, c)︸ ︷︷ ︸
evidence term

, (34)

where logPθ(y = c) captures the classifier’s internal class bias, and E(x, c) is the log-likelihood
ratio or “feature evidence” that x genuinely belongs to class c [20].

I.2 A New Bias Disentanglement Measure (BDM)

While (34) is conceptually standard, we introduce a measure that directly gauges how much of a logit
vector arises from bias vs. evidence:
Definition 3 (Bias Disentanglement Measure (BDM)). For an input x and classifier gθ, define

BDM(gθ; x) =
∥∥gθ(x) − [

logPθ(y = 1), . . . , logPθ(y = C)
]∥∥

p
, (35)

where ∥ · ∥p is a norm (e.g. p = 1 or p = 2). If BDM(gθ; x) ≈ 0, then gθ(x) is close to the pure
prior vector [logPθ(y = c)]Cc=1, indicating that x contributed little or no feature-based evidence.

In practice, logPθ(y = c) is not directly accessible. But as we now show, an RPI prompts the
classifier to produce logits arbitrarily close to these prior terms, driving BDM to near-zero.
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I.3 Random-Phase Images (RPI) Contain No Discriminative Evidence

Let xrand be an image constructed by preserving only the amplitude spectrum but randomizing the
phase (Appendix G and H). Since random-phase images exhibit no recognizable shapes or edges, we
assume that xrand fails to provide any meaningful evidence about class membership. Formally:

E
(
xrand, c

)
≈ 0, ∀ c ∈ {1, . . . , C}. (36)

Thus, if gθ(x) approximates logPθ(y = c | x), the classifier’s logit vector on xrand must be near:
gθ
(
xrand

)
c
≈ logPθ(y = c), (37)

exposing the model’s default bias or “prior” toward class c.

I.4 Main Theorem: Random-Phase Logits Reveal Default Biases

We now give a theoretical guarantee that if xrand is uninformative about y, then gθ(xrand) converges
to the classifier’s internal prior logits. In turn, the difference gθ(x)− gθ(xrand) disentangles the true
feature-based evidence.
Theorem 4 (RPI Logits as Classifier Prior). Let gθ be a C-class logit function. Suppose xrand is
drawn from a distribution that contains no class-relevant features (i.e., BDM(gθ;xrand) → 0 in
probability). Then as xrand becomes increasingly phase-randomized,∥∥gθ(xrand) −

[
logPθ(y = 1), . . . , logPθ(y = C)

]∥∥
p

prob−−→ 0. (38)

Consequently,
gθ(x) − gθ(xrand)︸ ︷︷ ︸

“bias subtraction”

≈
[
E(x, 1), . . . , E(x,C)

]
, (39)

which is purely the evidence contributed by x.

SKETCH OF PROOF

Step 1: Random Phase⇒ No Class-Specific Features. From the theory of random-phase
images (Appendix G), if xrand has no spatial structure or shape cues, then it lacks any
discriminative features for gθ. In Bayesian terms, E(xrand, c) ≈ 0.
Step 2: Logit Vector Converges to Class Priors. By (34),

gθ
(
xrand

)
c
≈ logPθ(y = c) + E

(
xrand, c

)︸ ︷︷ ︸
≈0

≈ logPθ(y = c).

Hence gθ(xrand) converges to [logPθ(y = c)]Cc=1. That is, as xrand becomes increasingly
“shape-free,” the classifier’s logits become purely default bias terms.
Step 3: Bias Disentanglement. From Definition 3, BDM(gθ;xrand)→ 0 means gθ(xrand)
is arbitrarily close to the prior vector. For any real input x, subtracting these RPI logits yields

g∗θ(x) = gθ(x)− gθ(xrand) ≈
[
E(x, 1), . . . , E(x,C)

]
.

Thus we isolate the log-likelihood difference that x provides relative to the prior. This
completes the bias-subtraction mechanism. □

I.5 Further Remarks and Practical Consequences
(a) Links to Class Imbalance: When training data are imbalanced, the classifier’s learned logPθ(y =

c) becomes skewed toward majority classes. An RPI then reveals that imbalance directly in the
logit outputs (often strongly favoring certain classes), and subtracting it effectively “de-biases” the
model.

(b) Enhanced SSL Labeling: In semi-supervised learning, subtracting the RPI logits helps produce
more balanced pseudo-labels, mitigating the tendency to over-assign unlabeled samples to majority
classes.

(c) Comparison with Uniform Gray References: A uniform gray image can also reveal bias to some
extent [37], but it does not preserve any real amplitude statistics and can inadvertently overestimate
bias. In contrast, a random-phase image matches global color/frequency distributions (Appendix H)
while remaining shape-free, leading to a more faithful estimate of prior logits.
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I.6 Conclusion

Key Insight. A random-phase image xrand with no class-discriminative cues draws out the classifier’s
default biases. In logit space, gθ(xrand) approximates [logPθ(y = 1), . . . , logPθ(y = C)], making
any difference gθ(x) − gθ(xrand) a pure evidence term for x. Thus, RPI-based bias subtraction
precisely disentangles the prior from the discriminative signal.

By theorem and novel measures (BDM), we elevate what is often explained purely at an intuitive
level—i.e., “random-phase images have no shape, so they reveal bias”—into a more formal statement
about Bayesian decomposition and logit-space geometry. This offers a robust theoretical founda-
tion for using random-phase references in long-tailed or semi-supervised learning contexts, where
controlling classifier priors is crucial.

J Why FFT Acceleration Does Not Violate Theoretical Assumptions?

Practical FFT implementations employ real-to-complex (R2C) shortcuts, batched parallelism, and
floating-point arithmetic. A natural concern is whether these approximations undermine the theoretical
guarantees of random-phase irrelevance (§G) or amplitude preservation (§H). We present here a new
framework that quantifies potential distortions via two novel measures—Bounded Phase Distortion
(BPD) and Amplitude Fidelity Divergence (AFD)—and prove they remain negligible for typical
image sizes and precision levels. This shows that efficient FFT computations preserve all essential
theoretical assumptions with overwhelming probability.

J.1 Bounded Phase Distortion (BPD) Under Floating-Point Arithmetic

Let f : {0, . . . ,H − 1}×{0, . . . ,W − 1} → R be an H ×W image, and let F (u, v) be its discrete
Fourier transform (2D-DFT):

F (u, v) =

H−1∑
x=0

W−1∑
y=0

f(x, y) exp
(
−j 2π

[
ux
H + vy

W

])
.

A random-phase image replaces F (u, v)’s phase with some i.i.d. random Φ̃(u, v)∼Uniform[−π, π].
In floating-point arithmetic, we denote the computed phase as

Φ̂(u, v) = Φ̃(u, v) + δu,v, (40)
where δu,v represents roundoff errors or parallel-summation discrepancies. We measure these errors
by:
Definition 4 (Bounded Phase Distortion (BPD)). Define

BPD(δ) = max
u,v

∣∣δu,v∣∣, (41)

the maximum absolute deviation of the computed phase from the ideal Φ̃(u, v). If BPD(δ) is small
(e.g.≪ 1

10 of a radian), then the phase remains effectively uniform on [−π, π] at all (u, v) in practice.

A standard floating-point analysis [22, 51] implies that BPD(δ) = O(ε log(HW )) in typical GPU-
based FFT libraries, where ε is machine precision (≈ 10−7 in single precision or 10−15 in double).
Hence the random-phase distribution cannot deviate by more than a small fraction of a radian in any
frequency bin.

Why Small Phase Distortion Does Not Reintroduce Structure. Even a perfect random phase
can theoretically be off by integer multiples of 2π without changing exp

(
j Φ̃(u, v)

)
. Thus, small

deviations under floating-point rounding are vanishingly unlikely to “re-synchronize” phases across
different (u, v) in a way that reconstructs edges or shapes. Formally, as long as BPD(δ)≪ π, the
random-phase arguments in §G still hold with high probability.

J.2 Amplitude Fidelity Divergence (AFD) in R2C Transforms

Real-to-Complex (R2C) Compression. For real f(x, y), the 2D-DFT F (u, v) satisfies conjugate
symmetry:

F
(
(−u)mod H, (−v)mod W

)
= F (u, v),
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so modern libraries compute and store only the “unique half” of F (u, v). We denote this partial
storage by FR2C(u, v) for (u, v) ∈ Ω ⊆ {0, . . . ,H − 1}×{0, . . . ,W − 1}. Reconstructing F (u, v)

outside Ω is straightforward: F (u, v) = FR2C(u′, v′) for an appropriate (u′, v′) ∈ Ω.

Amplitude Fidelity Divergence. Since amplitude preservation is key to retaining global statistics,
we define:

Definition 5 (Amplitude Fidelity Divergence (AFD)). Let Â(u, v) be the computed amplitude after
an R2C FFT (and inverse FFT if needed), and let A(u, v) be the ideal amplitude in exact arithmetic.
We define

AFD(f) =

H−1∑
u=0

W−1∑
v=0

∣∣∣ Â(u, v) − A(u, v)
∣∣∣. (42)

A small AFD(f) means the R2C compression and floating-point roundoff introduce negligible
amplitude distortion relative to the ideal A(u, v).

We can relate AFD(f) to well-known bounds on FFT stability [22]:

Theorem 5 (Amplitude Preservation in R2C Computations). Consider an H × W real image
f(x, y) with N = HW and amplitude A(u, v) = |F (u, v)|. Suppose an R2C FFT (in single-
or double-precision) produces a partial spectrum F̂R2C from which F̂ (u, v) is reconstructed. Let
Â(u, v) = |F̂ (u, v)| be the computed amplitude. Then with high probability,

AFD(f) ≤ C (logN)N ε max
x,y
|f(x, y)|, (43)

where C > 0 is a small constant. Consequently, AFD(f) scales linearly with N , logN , and ε,
meaning amplitude fidelity remains robust for typical image sizes and standard hardware precision.

SKETCH

We leverage standard backward-error analyses [22, 51] of FFT computations: each butterfly
operation accumulates floating-point error O(ε) times local partial sums. Summing across
O(N logN) operations yields O(εN logN) final error in the worst case. Since amplitude is√
ℜ(F )2 + ℑ(F )2, a second-order expansion shows amplitude errors are similarly bounded

by O(εN logN). Summing over all (u, v) yields (43), up to a small constant C from
union-bounding over H ×W bins. □

J.3 Combined Theorem: Negligible Global Impact on Random-Phase Images

Finally, we show that even when both BPD and AFD are considered, random-phase images remain
shape-free and amplitude-realistic with overwhelming probability:

Theorem 6 (Global FFT Stability for Random-Phase Construction). Let f be an H ×W real image,
N = HW , and ε be the floating-point unit roundoff. Suppose we create a random-phase image f̃ by:

(a) R2C-FFT to get FR2C,
(b) Replace phases by Φ̃(u, v) in floating-point to get Φ̂(u, v) = Φ̃(u, v) + δu,v ,
(c) Inverse R2C-FFT to yield f̃ .

Then:

(i) The phase distortion satisfies BPD(δ) ≤ O(ε logN) with high probability.

(ii) The amplitude fidelity deviation satisfies AFD(f̃) ≤ O(εN logN) with high probability.

Hence none of the random-phase irrelevance or amplitude-statistics arguments are broken by these
approximations, as N logN ε remains small for typical image sizes (e.g. N ≤ 107) and standard
single/double precision.
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(i) Follows from bounding floating-point roundoff within each frequency bin: each δu,v =
O(ε logN) [22]. (ii) Directly from Theorem 5, which applies identically for the forward
and inverse R2C transforms. Since small BPD and small AFD imply that neither the phase
randomization nor amplitude magnitude is significantly altered, the theoretical properties
established in §G and §H remain valid. □

J.4 Conclusion and Outlook

Key Insight. Real-to-complex FFT shortcuts, parallel batched transforms, and finite precision all
induce small deviations in computed amplitude/phase. However, these are rigorously bounded by
O(N logN ε), which remains negligible for practical image sizes and hardware. Consequently:

• Bounded Phase Distortion (BPD) ensures random-phase angles remain effectively uniform,
preventing any reappearance of semantic structure.

• Amplitude Fidelity Divergence (AFD) remains low enough that global energy distributions are
faithfully preserved.

Takeaway. Far from violating our theoretical foundations, modern FFT accelerations simply compress
the transform domain by exploiting conjugate symmetry (R2C) and reorder summations in parallel.
They do not meaningfully alter the amplitude or phase randomization at the levels required to
reintroduce shape cues or degrade amplitude-based statistics. Hence all the key arguments about
random-phase irrelevance, bias subtraction, and amplitude realism still hold in floating-point, large-
batch FFT practice.

In short, efficient FFT implementations are well-aligned with the high-level theory, ensuring the
random-phase approach retains its mathematical integrity under real-world computational con-
straints.
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