

000 001 SAE AS A CRYSTAL BALL: INTERPRETABLE FEA- 002 TURES PREDICT CROSS-DOMAIN TRANSFERABILITY 003 OF LLMs WITHOUT TRAINING 004 005 006

007 **Anonymous authors**
008 Paper under double-blind review
009
010
011

ABSTRACT

013 In recent years, pre-trained large language models have achieved remarkable suc-
014 ccess across diverse tasks. Besides the pivotal role of self-supervised pre-training,
015 their effectiveness in downstream applications also depends critically on the post-
016 training process, which adapts models to task-specific data and objectives. How-
017 ever, this process inevitably introduces model shifts that can influence perfor-
018 mance in different domains, and how such shifts transfer remains poorly under-
019 stood. To open up the black box, we propose the SAE-based Transferability Score
020 (STS), a new metric that leverages sparse autoencoders (SAEs) to forecast post-
021 training transferability. Taking supervised fine-tuning as an example, STS iden-
022 tifies shifted dimensions in SAE representations and calculates their correlations
023 with downstream domains, enabling reliable estimation of transferability *before*
024 fine-tuning. Extensive experiments across multiple models and domains show that
025 STS accurately predicts the transferability of supervised fine-tuning, achieving
026 Pearson correlation coefficients above 0.75 with actual performance changes. Be-
027 yond this, we take an initial step toward extending STS to reinforcement learning.
028 We believe that STS can serve as an [interpretable](#) tool for guiding post-training
029 strategies in LLMs.
030

1 INTRODUCTION

031 Recent advances in large-scale neural networks have demonstrated that pre-training on massive
032 datasets yields models with strong generalization capabilities (Achiam et al., 2023; Dubey et al.,
033 2024; Yang et al., 2025; Liu et al., 2024). However, due to discrepancies between the pretraining
034 objectives and the specific requirements of downstream tasks, pretraining alone is often insufficient
035 to achieve optimal performance on these tasks. Post-training, which includes supervised fine-tuning
036 (Zhang et al., 2023; Luo et al., 2023), and reinforcement learning (Schulman et al., 2017; Shao et al.,
037 2024), plays a critical role in bridging this gap. By selectively adapting the pretrained model, post-
038 training improves performance in target tasks, and allows models to better capture domain-specific
039 characteristics.
040

041 However, during the post-training process, it is widely observed that improvements on a target task
042 often come at the expense of performance in other domains (Dong et al., 2023; Kumar et al., 2022).
043 For instance, (Li et al., 2025) state that improvements in the reasoning ability of large language
044 models come at the cost of reduced model robustness. Despite these observations, the mechanisms
045 underlying how model features are linked and transferred during post-training remain largely un-
046 explored. As a result, we currently lack the ability to predict which domain performance is likely
047 to benefit or deteriorate under specific post-training adaptations, limiting both interpretability and
048 principled design of post-training strategies.
049

050 In this paper, we analyze the transferability of post-training through the enhanced interpretability
051 provided by sparse autoencoders (Ng et al., 2011). The sparse autoencoder (SAE) is an encoder-
052 decoder architecture that reconstructs the internal activations of models while enforcing sparsity
053 constraints on the hidden layer. Previous works have shown that the SAE encoder features achieve
monosemantics (Cunningham et al., 2023; Gao et al., 2024), where each dimension is only acti-
vated by a certain natural concept. Leveraging this property, we observe that post-training only mod-

054 ifies certain SAE dimensions—for example, those associated with mathematical reasoning. This ob-
 055 servation motivates a natural approach to predict the transferability of post-training: we can identify
 056 the shifted SAE features and examine their correlations with different domains.

057 Concretely, our analysis consists of two steps: (1) identifying the dimensions that are shifted during
 058 post-training, and (2) assessing their correlations with downstream domains. In the first stage, the
 059 primary challenge is to identify the shifted dimensions **prior to post-training**. Inspired by the
 060 observation that in-context learning exhibits behaviors similar to supervised fine-tuning (Wang et al.,
 061 2023; Mosbach et al., 2023), we forecast the shifted dimensions by using the supervised answers
 062 as demonstrations for in-context learning, and then identify the dimensions that undergo the largest
 063 changes. Empirical results show a clear overlap between the predicted and actual shifted dimensions.
 064 In the second stage, leveraging the interpretability of SAE activations, we observe that the activation
 065 values of these shifted dimensions in a domain can capture their correlation. We formalize this as the
 066 SAE-based transferability score (STS), which quantifies how strongly the shifted dimensions relate
 067 to downstream tasks. A higher STS suggests a larger expected performance change after supervised
 068 fine-tuning. Empirically, we find that our metric consistently correlates well with actual performance
 069 shifts—for instance, the Pearson correlation coefficient exceeds 0.75 when evaluating performance
 070 variations across domains in the MMLU-Pro dataset (Wang et al., 2024). At last, we provide a
 071 preliminary exploration of extending our metric to reinforcement learning settings. Together, these
 072 results allow us to develop an **interpretable** framework for predicting the cross-domain transferability
 073 without training. We summarize our contributions as follows:
 074

- 075 • We propose a method to identify shifted dimensions in supervised fine-tuning without re-
 076 quiring access to the fine-tuned models. We observe that when supervised answers are used
 077 as context prompts, the shifted dimensions in in-context learning substantially overlap with
 078 those in supervised fine-tuning.
- 079 • We propose the SAE-based Transferability Score (STS), which uses correlations in SAE
 080 feature space and estimated shifted dimensions to accurately predict LLM transferability
 081 without performing supervised fine-tuning.
- 082 • We empirically show that higher STS values strongly correlate with larger performance
 083 shifts in supervised fine-tuning, achieving Pearson correlations above 0.75 across diverse
 084 scenarios. This confirms that STS is a reliable, fine-tuning-free metric for predicting LLM
 085 cross-domain transferability.

086 2 RELATED WORK & PRELIMINARY

087 **Post-training.** Post-training refers to the stage after large-scale pretraining, where a pretrained
 088 model is further adapted to align with specific objectives, user preferences, or downstream applica-
 089 tions. Unlike pretraining, which relies on massive unlabeled data (Achiam et al., 2023; Yang et al.,
 090 2025), post-training typically leverages smaller but higher-quality datasets. The methods in post-
 091 training can be majorly divided into supervised fine-tuning (Zhang et al., 2023; Luo et al., 2023) and
 092 reinforcement learning (Schulman et al., 2017; Shao et al., 2024). In this paper, we mainly focus on
 093 SFT, and discuss extensions to RL. During the SFT process, given a set of labeled examples $\{x_i, y_i\}$,
 094 the model parameters are updated to minimize the discrepancy between the model’s predictions and
 095 the ground-truth answers via Negative Log-Likelihood (NLL) Loss:
 096

$$097 \mathcal{L}_{\text{SFT}}(\Theta) = -\mathbb{E}_{x_i} \log p(y_i|x_i; \Theta).$$

098 where Θ denotes the model parameters. By aligning the representations with task-specific super-
 099 vision, SFT effectively transfers the general knowledge encoded in pretrained models to particular
 100 applications.

101 Previous studies have shown that supervised fine-tuning (SFT) often reduces performance in do-
 102 mains beyond the target task (Dong et al., 2023; Kumar et al., 2022). For example, (Li et al., 2025)
 103 find that SFT on reasoning data improves the mathematical ability of LLMs but weakens their ro-
 104 bustness against jailbreak attacks. These results suggest that it is important to understand how model
 105 capabilities transfer during post-training. While some works have studied this problem (Sun et al.,
 106 2025; Huan et al., 2025), most of them focus on post-hoc analysis after training. However, such
 107 approaches are less practical because they cannot help predict transfer effects before the fine-tuning

108 process starts. This limitation motivates our work, where we aim to build a method that can predict
 109 transferability without fine-tuning.
 110

111 **Sparse Autoencoders.** Although large language models (LLMs) have demonstrated remarkable
 112 performance across a wide range of downstream tasks, many of their decisions and internal behaviors
 113 remain opaque, which hinders broader deployment in applications. To address this issue, sparse
 114 autoencoders (SAEs) have been proposed as a promising framework for improving the mechanistic
 115 interpretability of LLMs (Gao et al., 2024; Cunningham et al., 2023). Concretely, given a hidden
 116 representation $z \in \mathbb{R}^d$ within the network, an SAE employs an encoder–decoder architecture to
 117 project z into a sparse latent representation and reconstruct it back to the original space. For instance,
 118 in the case of a top-K SAE (Gao et al., 2024), the encoding-decoding process can be formulated as:
 119

$$\begin{aligned} h &= \text{TopK}(W_e z - b), \\ \hat{z} &= W_d h + b. \end{aligned} \quad (1)$$

121 The encoder representation h is computed via a linear transformation defined by $W_e \in \mathbb{R}^{s \times d}$ and
 122 a bias $b \in \mathbb{R}^s$, while the decoder reconstructs the input features using $W_d \in \mathbb{R}^{d \times s}$. The SAE is
 123 trained by minimizing the reconstruction loss:

$$\mathcal{L}_{\text{SAE}}(W_e, W_d, b) = \|\hat{z} - z\|^2.$$

124 Previous studies (Gao et al., 2024) have shown that when the encoder features are sufficiently sparse
 125 (e.g., $K \ll s$), the resulting representations often display monosemanticity. In other words, each
 126 feature dimension is only activated by a certain natural concept, such as a mathematical definition,
 127 a physical property, or a linguistic pattern.
 128

129 **In-context Learning.** In-context learning denotes the ability of large pretrained models to solve
 130 tasks by conditioning on demonstrations provided in the input (Kossen et al., 2023; Wang et al.,
 131 2025). Formally, given a context consisting of k labeled examples
 132

$$\mathcal{C} = \{(x_1, y_1), (x_2, y_2), \dots, (x_k, y_k)\},$$

133 the model receives a new query input x_{k+1} and generates the output \hat{y}_{k+1} by leveraging the conditional
 134 distribution learned during pretraining:
 135

$$\hat{y}_{k+1} \sim p_{\theta}(y \mid x_{k+1}, \mathcal{C}),$$

136 where θ denotes the fixed pretrained parameters. Unlike supervised fine-tuning and reinforcement
 137 learning, in-context learning (ICL) adapts to new tasks during inference without requiring additional
 138 training. Nevertheless, several studies have shown that models under in-context learning still exhibit
 139 many similarities to those trained with supervised fine-tuning and reinforcement learning (Mosbach
 140 et al., 2023; Wang et al., 2023).
 141

144 3 CAPTURING SHIFTED FEATURES IN SUPERVISED FINE-TUNING

145 In this paper, we analyze the transferability of supervised fine-tuning across different domains by
 146 understanding how feature representations shift within neural networks. Since sparse autoencoders
 147 (SAEs) enhance monosemanticity by disentangling overlapping representations, their features pro-
 148 vide a clearer interpretability for tracking representation shifts in different domains. Consequently,
 149 in this section, we start by analyzing how the supervised fine-tuning process modifies SAE features
 150 and how the shifted features can be predicted in advance of the fine-tuning process.
 151

152 3.1 SFT-INDUCED CHANGES IN SAE FEATURES

153 Prior works have shown that SAE encoder features exhibit strong interpretability, with each dimension
 154 corresponding to a certain natural concept. Since supervised fine-tuning (SFT) is generally
 155 tailored to specific downstream tasks and targeted capabilities, we wonder whether it primarily af-
 156 fects only a small subset of SAE dimensions tied to task-relevant features. Taking the mathematical
 157 ability as an example, we investigate how SAE features change when models are fine-tuned on the
 158 math dataset LIMO (Ye et al., 2025). As noted in (Lieberum et al., 2024), the same dimension in
 159 an SAE usually continues to represent similar concepts after fine-tuning. Consequently, we extract
 160 monosemantic features before and after the SFT process using the same SAE on the residual streams
 161 of 25-th layer in Qwen2.5-7B-Instruct (Team, 2024).

162
163
164
165
166
167
168
169
170
171
172 (a) Activation Shifts on SAE Dimensions
173174
175
176
177
178
179 (b) Test Accuracy with Zeroed SAE Dimensions
180

Figure 1: Analysis of feature shifts induced by supervised fine-tuning (SFT). We fine-tune Qwen2.5-7B-Instruct on the LIMO (a mathematical reasoning dataset) and examine shifts of SAE features on the residual stream at layer 25. Figure (a) shows the distribution of shift magnitudes while Figure (b) shows accuracy on Math-LightEval when progressively zeroing the dimensions with the largest shifts. The results indicate that SFT primarily affects a small subset of SAE dimensions tied to specific model capabilities.

As shown in Figure 1a, we find that changes in SAE features are largely concentrated in a small subset of dimensions. With calculation, we find that the top-100 dimensions account for 25% of the total change, indicating that the SFT process primarily affects only a limited portion of SAE features. Furthermore, to observe the relationship between features shifted during SFT and the mathematical ability of the model, we rank SAE features according to their magnitude of change during fine-tuning and then evaluate model performance on the Math-LightEval dataset (Hendrycks et al., 2021) by zeroing out different numbers of features. As shown in Figure 1b, performance on math tasks drops rapidly when the shifted features are removed, whereas the model retains strong mathematical abilities when random SAE features are zeroed. These results indicate that the SFT process primarily changes a small subset of SAE features that are closely associated with specific model capabilities.

192 3.2 IDENTIFYING SHIFTED DIMENSIONS VIA IN-CONTEXT LEARNING

194 As previously discussed, supervised fine-tuning modifies only a small subset of SAE features that
195 correspond to specific semantics. Intuitively, these features are crucial for studying properties of
196 SFT, such as transferability. However, their identification typically requires examining the model
197 after fine-tuning, which confines the analysis to a post-hoc perspective. This limitation motivates a
198 central question of our work: can such features be identified prior to the fine-tuning process, thereby
199 enabling a predictive understanding of transferability?

200 To solve this challenge, we draw on the connection between supervised fine-tuning (SFT) and in-
201 context learning (ICL). Previous works demonstrate that ICL can obtain similar performance to SFT
202 in the large language models (Wang et al., 2023; Mosbach et al., 2023). Consequently, this motivates
203 us to investigate whether the SAE features shifted during ICL and SFT are consistent. To verify this
204 hypothesis, we respectively sort the SAE dimensions according to their changes after SFT and ICL.
205 To be specific, we conduct experiments on Qwen2.5-7B-Instruct. For SFT, we employ ground-truth
206 chain-of-thoughts (CoTs) on LIMO as supervision, while for ICL, we use the same CoTs as context
207 prompts. As shown in Figure 2a, we observe substantial overlap between the shifted features in SFT
208 and ICL; for example, 57% of the top 100 most shifted SAE dimensions coincide. These findings
209 confirm that **the shifted dimensions in ICL and SFT are highly consistent**, suggesting that the
210 shifted dimensions can be identified before the SFT process.

211 To further evaluate whether the selected dimensions are the most relevant to the training task, we
212 conduct selectively fine-tuning based on identified shifted dimensions. To be specific, we first se-
213 lected five layers in Qwen2.5-7B-Instruct/Llama3-8B-Instruct and extracted 3000 dimensions from
214 the SAE representation space at each layer. We then added five linear layers of shape $[3000, d]$,
215 where d is the dimension of the raw (pre-SAE) features. During the forward pass, the 3000 SAE
dimensions are decoded through these learnable linear layers and added back to the raw features.

(a) Degrees of Overlaps between Estimated and Actual Shifted Dimensions

(b) Percentage of Overall Activation Change from Top-Shifted Dimensions

(c) Selective Finetuning Different Models on Estimated Shifted Dimensions

Figure 2: Overlap between estimated dimensions and the training task. Figure (a) demonstrates that the SAE shifted dimensions predicted by ICL substantially overlap with the actual shifted dimensions identified after SFT, whereas applying the same method directly on raw dimensions is less effective. Figure (b) further shows that raw model dimensions, prior to applying SAE, are influenced more uniformly by the SFT process, thereby limiting the ability to identify crucial shifted dimensions. Figure (c) shows that selective finetuning on estimated shifted dimensions shows better performance than randomly selected dimensions.

We fine-tune only these five linear layers on LIMO, keeping all other model parameters frozen. As shown in Figure 2c, selective fine-tuning using the estimated shifted dimensions effectively improves math performance with only five linear layers. This result further validates that the selected dimensions are the most relevant to the training domain. More details can be found in Appendix C.7

We have shown that, by leveraging the connection between ICL and SFT, the shifted SAE dimensions can be identified prior to the SFT process. A natural question then arises: are SAEs necessary for this method? Intuitively, as dimensions in the raw feature space¹ are highly polysemantic and entangled (Elhage et al., 2022), specific abilities of the model (e.g., mathematical reasoning) are distributed across multiple dimensions. As a result, the SFT process tends to affect a broader set of features, which makes it more difficult to identify crucial shifted dimensions. To verify the analysis, we further conduct experiments on the raw features before applying SAEs. We again sort the features by their changes during SFT and ICL. As shown in Figure 2b, the shifted features before SAE are more uniformly distributed. We then investigate the influence on the accuracy of identifying shifted dimensions. With the same empirical settings, Figure 2a shows that the overlap between shifted features in ICL and SFT is much reduced in the raw feature space. These findings indicate that the enhanced monosemanticity introduced by SAEs is crucial for identifying shifted features prior to supervised fine-tuning.

4 PREDICTING THE TRANSFERABILITY OF SUPERVISED FINE-TUNING ACROSS DOMAINS

In Section 3, we introduced a method for predicting shifted SAE dimensions prior to the SFT process. Intuitively, when applying fine-tuned models to downstream tasks, if the shifted dimensions are closely related to a given domain, the SFT influence on that domain will be stronger. Thus, understanding the transferability of SFT across domains requires analyzing the correlations between shifted dimensions and different domains. In this section, we present a metric for evaluating this correlation and predict transferability based on that. Specifically, Section 4.1 introduces the proposed metric, while Section 4.2 validates it across diverse scenarios.

4.1 METRICS FOR MEASURING CROSS-DOMAIN CORRELATIONS

Due to the enhanced monosemanticity of SAEs (Cunningham et al., 2023), the activations in the SAE feature space become interpretable, meaning that the top-activated sequences within a given dimension usually share similar semantics. This property allows us to associate each dimension with specific semantic concepts. Consequently, if the sequences from a particular domain exhibit higher

¹The raw model dimensions refer to the representations that are used as the input of the SAEs.

Figure 3: The Pearson correlation (ρ) between STS and actual absolute performance shifts on MMLU-Pro induced by SFT on LIMO. Each experiment is repeated three times, and we report the mean and standard deviation of ρ ; the fitted line shown corresponds to one of the runs. We extract SAE features from Llama3-8B-Instruct, Qwen2.5-7B-Instruct, and Gemma2-9B-Instruct. During the evaluation process, we select four MMLU-Pro domains with the largest and smallest performance shifts under SFT. The detailed performance shifts can be found in Appendix A.

activation values in a certain dimension, it implies that this dimension is more strongly correlated with that domain. Building on this intuition, we can use the degrees of activations across dimensions to quantify domain–feature correlations and further analyze the transferability of supervised fine-tuning.

Formally, we define our metric as the SAE-based transferability score (STS). In the first step, given an SFT dataset $\mathcal{T} = \{x_i, y_i\}$, we extract SAE features for each sample. Let the SAE features be denoted as $h(x_i; \Theta)$, where Θ represents the parameters of the pretrained model, and h is the SAE encoder trained on top of the pretrained model. Similarly, with in-context learning, the features are denoted as $h(x_0, y_0, \dots, x_t, y_t, x_i; \Theta)$, where $\{x_0, y_0, \dots, x_t, y_t\}$ are the context prompts. We then identify the N dimensions with the largest changes, i.e.,

$$D_N = \text{TopN}(\mathbb{E}_{x_i} \|h_j(x_i; \Theta) - h_j(x_0, y_0, \dots, x_t, y_t, x_i; \Theta)\|^2),$$

where h_j denotes the j -th dimension of the SAE features.

In the second step, given a downstream domain dataset $\tilde{\mathcal{T}} = \{\tilde{x}_i\}$, we compute the activation values on the shifted dimensions identified in the first step:

$$\text{STS}_{\text{act}}(\tilde{\mathcal{T}}) = \mathbb{E}_{\tilde{x}_i} \sum_{j \in D_N} h_j(\tilde{x}_i; \Theta).$$

It is important to note that **we do not use the model after SFT in this estimation**, which means that our metric serves as a predictive measure rather than a post-hoc analysis.

Besides directly computing the average activation values, we introduce an alternative method based on in-context learning (ICL) to capture the correlation between the downstream domain and the shifted dimensions. We know that ICL leverages multiple demonstrations to guide the model in performing downstream tasks, effectively injecting domain-specific signals into the representation. Intuitively, by comparing the SAE features extracted with and without ICL demonstrations, we can isolate the effect of domain knowledge on the shifted dimensions. This difference reflects how strongly the features are modulated by task-relevant information, thereby offering a reliable estimate of the correlation between a domain and the shifted dimensions.

Figure 4: **Ablation studies on the implementation of our metric.** We evaluate (a) SAEs with varying hidden dimensions in the representation space, (b) SAEs trained on different layers of the pre-trained model, (c) different ranges of top-shifted dimensions, (d) different sparsity in SAE representations, (e) the comparison between STS and directly using activations.

Consequently, we estimate the correlation by measuring the difference between features extracted with and without in-context demonstrations. Formally, let $\{\tilde{x}_i, \tilde{y}_i\}_{i=1}^m$ denote m ground-truth question-answer pairs in the downstream domain. We define the metric as

$$\text{STS}_{\text{ICL}}(\tilde{\mathcal{T}}) = \mathbb{E}_{\tilde{x}_i} \sum_{j \in D_N} \|h_j(\tilde{x}_0, \tilde{y}_0, \dots, \tilde{x}_m, \tilde{y}_m, \tilde{x}_i; \Theta) - h_j(\tilde{x}_i; \Theta)\|^2.$$

This metric captures how much the presence of domain-relevant context (the demonstrations) influences the shifted dimensions, providing another reliable estimate of domain-feature correlation besides using maximum activation values.

4.2 EMPIRICAL VERIFICATIONS ON PREDICTING THE TRANSFERABILITY

Based on the proposed metric, we now empirically evaluate the correlation between the STS score and the actual transferability across different downstream domains. Specifically, we use the LIMO dataset (Ye et al., 2025) as the SFT training set, which contains 817 high-quality mathematical examples. We fine-tune three models (Qwen2.5-7B-Instruct, Llama3-8B-Instruct, and Gemma2-9B-Instruct) on LIMO, and compare their performances before and after SFT on different domains of MMLU-Pro (Wang et al., 2024). To extract SAE features, we apply SAEs to the residual streams of the models prior to SFT. For computing the STS metric, we employ two ground-truth CoTs from LIMO as in-context demonstrations to identify the top-100 shifted dimensions. When estimating the correlations between the domains and the predicted shifted dimensions, we use five ground-truth CoTs from the domain of MMLU-Pro as prompts to calculate STS_{ICL} . More details of the experiments can be found in the Appendix.

As shown in Figure 3, the correlation between STS and performance changes across different domains remains consistently high for all three models, with Pearson correlation coefficients exceeding 60%. These findings validate that our metric provides a reliable estimation of the transferability of the SFT process. Besides, we note that the performance of STS_{ICL} is more stable than STS_{act} (the coefficients keeps above 75%), which suggests that leveraging in-context learning yields a more accurate estimation of the correlation between domains and SAE dimensions than relying solely on activation values.

We conduct several ablation studies to evaluate STS under different conditions. First, we examine the role of monosemanticity by extracting SAE features with different hidden dimensions (16k vs.

Figure 5: Comparison of data mixture strategies in the SFT process. We focus on the domains with the largest (engineering) and smallest (law) performance shifts induced by SFT of Qwen2.5-7B-Instruct on LIMO. In total, 220 extra examples from a mixture of engineering and law data are added. Figure (a) reports engineering performance with varying amounts of engineering data, while Figure (b) reports law performance with varying amounts of law data. Figure (c) compares the downstream performance without additional data and with additional data mixed according to the ratio of their corresponding STS values.

131k). As shown in Figure 4a, weaker monosemanticity causes a clear drop in prediction accuracy, indicating its importance for STS. We also compare SAEs applied to different layers of Qwen2.5-7B-Instruct (layers 15, 20, and 25). Figure 4b shows that STS consistently correlates with performance changes across layers, confirming its robustness. Finally, we vary the sparsity levels of SAE representations. As illustrated in Figure 4c, higher sparsity—typically linked to stronger monosemanticity—yields more accurate predictions, further underscoring the essential role of monosemantic features in STS.

In addition to evaluating different SAEs, we examine another critical hyperparameter of our metric: the range of estimated shifted dimensions. Selecting dimensions with small shifts risks including those unaffected by the SFT process. As shown in Figure 4d, the correlation between STS and downstream performance decreases when smaller-shifted dimensions are selected, supporting this analysis. These findings underscore that the choice of shifted dimensions directly impacts metric reliability, highlighting the need for an appropriate selection strategy that only identify dimensions with largest shifts. Furthermore, we conducted additional experiments to directly predict the performance improvements from SFT using model activations. In Figure 4e, we compare our method with predicting the improvements based on the model activations (using an optimized probe). As shown in the table, neither raw activations nor SAE feature activations exhibit meaningful correlation with the actual performance shifts. These results suggest that simply probing activations is insufficient; identifying the shifted dimensions induced by SFT is essential. Besides, we also note that this is a task where SAE beats probes, which further shows the potential of the monosemantic representation space.

5 APPLICATIONS: A DATA MIXTURE PRINCIPLE

In Section 4, we demonstrated that our proposed metric, the SAE-based transferability score (STS), exhibits a strong correlation with actual performance changes. Building on this result, we now explore a practical application of STS. Specifically, we leverage predicted transferability to optimize data mixture strategies during post-training. Using STS, we can identify the domains most likely to be affected by supervised fine-tuning (SFT). A common approach to mitigate performance degradation in such domains is to introduce additional data. Intuitively, with a predicted ranking of performance changes across domains, we can allocate more data to those at higher risk of degradation. To validate this idea, we examine two domains in MMLU-Pro: engineering (with the largest performance drop when fine-tuning Qwen2.5-7B-Instruct on LIMO) and law (with the smallest). In our experiments, we fine-tune Qwen2.5-7B-Instruct on LIMO with additional data in MMLU-Pro. We split MMLU-Pro into training and testing sets with a 1:1 ratio. For training, we use Qwen2.5-7B-Instruct’s outputs prior to SFT as supervised answers. In addition to the original LIMO data, we augment the training set with 220 extra examples sampled from the mixture of engineering and law domains.

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

(a) Overlaps between Estimated and Actual Shifted Dimensions Induced by SFT and RL

(b) Different Implementations of STS Metric

Figure 6: The explorations on extending STS metric to the RL scenarios. We optimize Qwen2.5-7B-Instruct on Math-LightEval using GRPO. Figure (a) shows that the identified dimensions in RL show smaller overlap with the actual shifted dimensions compared to SFT, which limits the accuracy of the metric. Figure (b) shows that when the estimated shifted dimensions are replaced with the actual ones, the correlation between STS and downstream performance changes becomes much stronger.

As shown in Figure 5, we observe that domains with larger performance changes require more additional data. For example, allocating more data to the engineering domain leads to substantial improvements (Figure 5a), whereas allocating extra data to the law domain yields only marginal gains (Figure 5b). Moreover, when the data mixture ratio is adjusted to align with the ratio of their corresponding STS values, the resulting model achieves balanced performance across both engineering and law (Figure 5c). These findings suggest that STS can serve as an [interpretable](#) guide for designing data mixture ratios, enabling more effective post-training while mitigating uneven performance shifts across domains.

6 EXPLORATIONS ON REINFORCEMENT LEARNING

In this paper, we primarily investigate the impact of supervised fine-tuning across different domains. Nevertheless, reinforcement learning (RL) represents another non-negligible post-training paradigm, motivating us to explore whether our method can be extended to RL. We begin by applying the STS metric directly, as in the supervised fine-tuning setting. Specifically, we train Qwen2.5-7B-Instruct using the GRPO framework (Shao et al., 2024) on the Math-LightEval dataset and evaluate performance changes across domains in MMLU-Pro. When computing STS, we follow the same procedure as in supervised fine-tuning: ground-truth CoTs from Math-LightEval serve as demonstrations to estimate shifted dimensions, and correlations between these dimensions and downstream domains are calculated based on in-context learning. However, as shown in Figure 6b, STS exhibits low correlations with performance changes in the RL setting. In the following, we try to find the reasons behind this discrepancy.

We note that a key distinction between SFT and RL is that RL lacks access to ground-truth answers, making it challenging to select appropriate demonstrations for in-context learning. As a result, the estimation of shifted features may be inaccurate. To test this hypothesis, we compare the overlaps between the actual and predicted shifted dimensions. As shown in Figure 6a, the overlap is substantially lower in RL than in SFT. To further validate this observation, we replace the estimated top-100 dimensions with the ground-truth dimensions with the largest changes after RL and recompute the STS metric. Figure 6b demonstrates that STS calculated with ground-truth shifted dimensions shows a strong correlation with performance changes, indicating that the main challenge lies in accurately estimating shifted dimensions in RL prior to training. And this will be the future direction of our explorations. For now, STS in RL can serve as a metric to predict transferability without evaluating RL models on downstream tasks.

486 7 CONCLUSION
487

488 In this work, we introduce a metric for predicting the transferability of post-training in large-scale
489 neural networks, leveraging the interpretability of sparse autoencoders (SAEs). By identifying the
490 SAE dimensions that are shifted during post-training and measuring their correlations with down-
491 stream domains, we propose the SAE-based transferability score (STS) as a predictive indicator of
492 performance changes. Our experiments show that STS reliably forecasts performance variations
493 across multiple domains, providing new insights into the internal mechanisms of post-training. Be-
494 yond supervised fine-tuning, we further demonstrate the applicability of our approach to reinfor-
495 cements learning settings. Overall, we believe our work establishes an [interpretable](#) framework for
496 understanding and anticipating post-training effects, paving the way for more targeted and effective
497 post-training strategies.

498 ETHICS STATEMENT
499

500 This work makes use of publicly available datasets and models. No private or sensitive data are
501 involved, and no harmful content is included. Therefore, we believe this paper does not raise any
502 ethical concerns.

504 505 REPRODUCIBILITY STATEMENT
506

507 To ensure the reproducibility of our results, we provide comprehensive details of our experiments in
508 both the main paper and the appendix. In Section 3, we describe the details of the methodology for
509 identifying shifted dimensions, while Section 4 presents the procedure for computing correlations
510 between these dimensions and downstream domains. Additionally, Appendix A reports the concrete
511 performance changes across different MMLU-Pro domains, and Appendix B offers further details
512 and complementary discussions. The code will be released upon the publication of this paper.

513 514 REFERENCES

515 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
516 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
517 report. *arXiv preprint arXiv:2303.08774*, 2023.

518 Jingyi Cui, Qi Zhang, Yifei Wang, and Yisen Wang. On the theoretical understanding of identifiable
519 sparse autoencoders and beyond. *arXiv preprint arXiv:2506.15963*, 2025.

520 Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
521 coders find highly interpretable features in language models. *arXiv preprint arXiv:2309.08600*,
522 2023.

523 Guanting Dong, Hongyi Yuan, Keming Lu, Chengpeng Li, Mingfeng Xue, Dayiheng Liu, Wei
524 Wang, Zheng Yuan, Chang Zhou, and Jingren Zhou. How abilities in large language models are
525 affected by supervised fine-tuning data composition. *arXiv preprint arXiv:2310.05492*, 2023.

526 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
527 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
528 *arXiv e-prints*, pp. arXiv–2407, 2024.

529 Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
530 Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposi-
531 tion. *arXiv preprint arXiv:2209.10652*, 2022.

532 Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
533 Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. *arXiv preprint
534 arXiv:2406.04093*, 2024.

535 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
536 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *NeurIPS*,
537 2021.

540 Maggie Huan, Yuetai Li, Tuney Zheng, Xiaoyu Xu, Seungone Kim, Minxin Du, Radha Pooven-
 541 dran, Graham Neubig, and Xiang Yue. Does math reasoning improve general llm capabilities?
 542 understanding transferability of llm reasoning. *arXiv preprint arXiv:2507.00432*, 2025.

543 Jannik Kossen, Yarin Gal, and Tom Rainforth. In-context learning learns label relationships but is
 544 not conventional learning. *arXiv preprint arXiv:2307.12375*, 2023.

545 Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-
 546 tuning can distort pretrained features and underperform out-of-distribution. *arXiv preprint*
 547 *arXiv:2202.10054*, 2022.

548 Ang Li, Yichuan Mo, Mingjie Li, Yifei Wang, and Yisen Wang. Are smarter llms safer? exploring
 549 safety-reasoning trade-offs in prompting and fine-tuning. *arXiv preprint arXiv:2502.09673*, 2025.

550 Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
 551 Varma, János Kramár, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse
 552 autoencoders everywhere all at once on gemma 2. *arXiv preprint arXiv:2408.05147*, 2024.

553 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 554 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 555 *arXiv:2412.19437*, 2024.

556 Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
 557 Ma, Qingwei Lin, and Dixin Jiang. Wizardcoder: Empowering code large language models with
 558 evol-instruct. *arXiv preprint arXiv:2306.08568*, 2023.

559 Marius Mosbach, Tiago Pimentel, Shauli Ravfogel, Dietrich Klakow, and Yanai Elazar. Few-
 560 shot fine-tuning vs. in-context learning: A fair comparison and evaluation. *arXiv preprint*
 561 *arXiv:2305.16938*, 2023.

562 Andrew Ng et al. Sparse autoencoder. *CS294A Lecture notes*, 72(2011):1–19, 2011.

563 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 564 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

565 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 566 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
 567 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

568 Yiyou Sun, Shawn Hu, Georgia Zhou, Ken Zheng, Hannaneh Hajishirzi, Nouha Dziri, and Dawn
 569 Song. Omega: Can llms reason outside the box in math? evaluating exploratory, compositional,
 570 and transformative generalization. *arXiv preprint arXiv:2506.18880*, 2025.

571 Qwen Team. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2, 2024.

572 Qixun Wang, Yifei Wang, Xianghua Ying, and Yisen Wang. Can in-context learning really general-
 573 ize to out-of-distribution tasks? In *ICLR*, 2025.

574 Xindi Wang, Yufei Wang, Can Xu, Xiubo Geng, Bowen Zhang, Chongyang Tao, Frank Rudzicz,
 575 Robert E Mercer, and Dixin Jiang. Investigating the learning behaviour of in-context learning: a
 576 comparison with supervised learning. *arXiv preprint arXiv:2307.15411*, 2023.

577 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 578 Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging
 579 multi-task language understanding benchmark. In *NeurIPS*, 2024.

580 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 581 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
 582 *arXiv:2505.09388*, 2025.

583 Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more
 584 for reasoning. *arXiv preprint arXiv:2502.03387*, 2025.

585 Yifan Zhang, Jingqin Yang, Yang Yuan, and Andrew Chi-Chih Yao. Cumulative reasoning with
 586 large language models. *arXiv preprint arXiv:2308.04371*, 2023.

594 A PERFORMANCE CHANGES AFTER SFT
595
596
597598 Table 1: Performance change on different domains of MMLU-Pro (Llama3-8B-Instruct fine-tuned
599 on LIMO).

Performance Change (%)	engineering	physics	chemistry	law
	-11.97	-5.7	-5.39	-3.72
Performance Change (%)	philosophy	other	health	computer science
	-2.61	-2.49	-1.1	-0.97
Performance Change (%)	economics	math	psychology	biology
	-0.95	-0.89	-0.63	-0.42
Performance Change (%)	history	business		
	-0.26	-0.12		

600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
Table 2: Performance change on different domains of MMLU-Pro (Qwen2.5-7B-Instruct fine-tuned
on LIMO).

Performance Change (%)	engineering	chemistry	physics	computer science
	-9.8	-6.36	-5.24	-4.88
Performance Change (%)	business	health	math	economics
	-4.43	-2.93	-2.89	-2.61
Performance Change (%)	philosophy	biology	other	psychology
	-2.4	+1.53	-1.3	-0.37
Performance Change (%)	history	law		
	+0.26	-0.19		

648 Table 3: Performance change on different domains of MMLU-Pro (Gemma2-9B-Instruct fine-tuned
649 on LIMO).

Performance Change (%)	engineering	computer science	other	law
	-9.29	-3.66	-2.05	-1.73
Performance Change (%)	health	math	business	history
	-1.47	+1.41	-1.27	-0.79
Performance Change (%)	economics	chemistry	biology	physics
	-0.71	-0.62	-0.56	-0.54
Performance Change (%)	psychology	philosophy		
	-0.05	0		

We show the concrete signed performance change of models after SFT on LIMO in Table 1,2, 3. In our experiments with SFT on LIMO, we observe that performance decreases across nearly all downstream domains, and the primary difference between domains lies in the magnitude of the decrease. This is consistent with the known limitations of SFT in generalization. Consequently, our work focuses on predicting the magnitude of performance change rather than its sign. We consider this meaningful because accurately estimating the degree of decrease provides insights into model behavior under SFT and informs strategies to mitigate these decreases (e.g., the STS-guided data mixing strategy in Section 5).

648
649

B EXPERIMENTS DETAILS

650
651

B.1 DETAILS OF APPLIED SAEs

652
653
654
655

For feature extraction with sparse autoencoders (SAEs), we use one SAE for each backbone model on a specific layer of the transformer. Each SAE is an encoder-decoder architecture. The encoder and decoder are two linear layers while there exists an activation function following the encoder. We introduce the details of SAEs in the following.

656
657
658
659
660
661

Concretely, for Llama3-8B-Instruct, we use a ReLU SAE with 16384 hidden dimensions trained on residual-stream activations from layer 25. The SAE is trained on the openWebText dataset with context size as 1024. The SAE is optimized using the AdamW optimizer with $\beta_1=0.9$, $\beta_2=0.999$, and weight decay of 0.01. The learning rate is set to 1e-5. An L1 sparsity penalty of 5 (with warm-up) is applied on the hidden activations to induce sparse and monosemantic features, following standard SAE training practices.

662
663
664
665
666
667

For Qwen2.5-7B-Instruct, we use a ReLU SAE with 28672 hidden dimensions trained on residual-stream activations from layer 25. The SAE is trained on the openWebText dataset with a context size of 2048. The model is optimized using the AdamW optimizer with $\beta_1=0.9$, $\beta_2=0.999$, and a cosine-annealing learning-rate schedule starting at 7e-5 with warm-up. An L1 sparsity penalty of 5 (with warm-up) is applied to encourage sparse and monosemantic features, following standard SAE training setups.

668
669
670
671
672
673

For Gemma2-9B-Instruct, we use a ReLU SAE with 131072 hidden dimensions trained on residual-stream activations from layer 31. The SAE is trained on the openWebText dataset with a context size of 1024. The model is optimized using the AdamW optimizer with $\beta_1=0.9$, $\beta_2=0.999$, and a cosine-annealing learning-rate schedule over the first 10,000 steps. We also apply a linear warmup of the sparsity coefficient over the first 10,000 steps to stabilize training and encourage sparse feature activations.

674
675
676

B.2 DETAILS OF ICL PROMPTS

677
678
679
680
681

To identify shifted SAE dimensions induced by post-training, we first sample activations from 20,000 tokens before and after in-context learning (ICL), where the ICL demonstrations are constructed using supervised answers from LIMO. The prompt looks like [x1,y1,x2,y2,x3], where x1,x2,x3 are the questions in LIMO while y1, y2 are the responses in LIMO. To be specific, we provide a concrete example in the following

682
683

In-context Learning Prompts

684
685
686
687
688
689
690
691
692

```
[{'content': "A fenced, rectangular field measures 24 meters by 52 meters.  
...  
What is the largest number of square test plots into which the field can be partitioned using all or some of the 1994 meters of fence? Let's think step by step and output the final answer within \boxed{ }.",  
'role': 'user'},  
{'content': 'Okay, so I have this problem where there's a rectangular field that's 24 meters by 52 meters. The farmer wants to partition this entire field into square test plots, with the sides of the squares parallel to the edges of the field.  
...  
So, I'll call this over. Thus, the answer is 702.  
**Final Answer**  
\boxed{702},  
'role': 'assistant'},  
{'content': "A hotel packed breakfast for each of three guests.  
...  
Given that the probability each guest got one roll of each type is  $\frac{m}{n}$ , where  $m$  and  $n$  are relatively prime integers, find  $m + n$ . Let's think step by step and output the final answer within \boxed{ }.",  
'role': 'assistant'}]
```

693
694
695
696
697
698
699
700
701

```

702
703     'role': 'user'},
704     {'content': "Okay, so here's this problem about a hotel packing breakfast for three guests.
705     Each breakfast is supposed to have one nut roll, one cheese roll, and one fruit roll.
706     ...
707     The total number of ways to choose three rolls from the remaining 6: C(6,3)=20. So proba-
708     bility Therefore, 9/70 is correct. Thus, m + n=79. Therefore, the answer is 79.
709     **Final Answer**  

710     \boxed{79},
711     'role': 'assistant',
712     {'content': "For how many pairs of consecutive integers in
713     1000, 1001, 1002, ..., 2000 is no carrying required when the two integers are added? Let's
714     think step by step and output the final answer within \boxed{}."},
715     'role': 'user'}

```

716 We then compute the activation differences across SAE dimensions and select those exhibiting the
717 largest shifts. Finally, to quantify the correlations between shifted dimensions and downstream
718 domains, we sample activations from 10,000 tokens for each domain and compute their correlations
719 with the identified dimensions.

720

721 B.3 DETAILS OF SUPERVISED FINE-TUNING

722

723 When fine-tuning the pre-trained models Qwen2.5-7B-Instruct, Llama3-8B-Instruct, and Gemma2-
724 9B-Instruct on the LIMO dataset, we adopt a unified experimental setup across models. Specifically,
725 the maximum prompt length is set to 8192 tokens, with sequences truncated from the left to fit within
726 this constraint. All models are fine-tuned for 10 epochs using four H20 GPUs. We train the models
727 with a total batch size of 256 and a micro-batch size of 1 per GPU. Models are trained using FSDP
728 with fp32 precision, gradient checkpointing enabled, and no CPU offload. We use the AdamW
729 optimizer with betas (0.9, 0.95), weight decay 0.01, and gradient clipping of 1.0. A cosine learning
730 rate scheduler is applied with a warmup of 10% of the total training steps.

731

732 C ADDITIONAL EXPERIMENTS

733

734 C.1 COMPARISON WITH TRADITIONAL REPRESENTATION SHIFT ANALYSIS

735

736 We note that our work is not a trivial reframe of existing analyses on representation drift or feature
737 correlations. The key distinction is that prior studies examine raw representation shifts **after** fine-
738 tuning, whereas our paper demonstrates that **the sparsity and monosemanticity brought by SAEs**
739 **enable us to predict feature shifts and find correlations before fine-tuning**. As shown in Figure
740 2, when using raw model features without SAEs, the overlap between predicted and actual shifted
741 dimensions is quite low, indicating that **traditional representation analyses cannot accurately**
identify shifted dimensions.

742

743 To further distinguish our method from traditional representation analysis, we conduct additional
744 experiments comparing STS with three baselines: (1) raw feature activations in downstream do-
745 mains, (2) representation similarity between downstream and training domains, and (3) representa-
746 tion similarity between models before and after SFT. For Qwen2.5-7B-Instruct, Table 1 reports the
747 correlations between these measures and actual performance shifts.

748

Table 4: Correlation coefficient between actual performance shifts (Qwen2.5-7B-Instruct tuned on
LIMO) and different baselines.

750

751

752

753

754

755

	Feature Activations	Representation Similarity between Downstream Domains and Training Domain	Representation Similarity between Models before and after SFT	STS
Uses Model after SFT	No	No	Yes	No
Coefficient	0.03	0.11	0.61	0.79

756 As shown in the table, neither raw feature activations nor representation similarity between training
 757 and downstream domains strongly correlates with performance shifts. Even when using post-
 758 SFT representations, the correlation remains substantially lower than that of our method. These
 759 results further demonstrate that our approach is not a minor variation of traditional representation
 760 drift analyses.

762 C.2 VERIFICATIONS ON DIFFERENT TRAINING DOMAINS

764 To better reveal the correlation between ICL feature drift and SFT, we further conduct the following
 765 experiments to provide more empirical support. Specifically, we include a code-generation dataset
 766 (Verifiable-Coding-Problems-Python-10k-Dataset) and a health dialogue dataset (CoT-Clinical-
 767 MH-Reasoning-Dataset) to further evaluate the overlap between ICL-induced feature drift and SFT-
 768 induced shifts. In addition, we examine how well our metric STS correlates with actual downstream
 769 performance changes. Taking Qwen2.5-7B-Instruct as an example, the empirical results are sum-
 770 marized in the following table.

771 Table 5: Verification on a code dataset (Verifiable-Coding-Problems-Python-10k-Dataset) and a clin-
 772 ical reasoning dataset (CoT-Clinical-MH-Reasoning-Dataset). The Qwen-2.5-7B-Instruct model is
 773 trained on each dataset, and we evaluate: (1) the correlation between ICL feature shifts and SFT,
 774 and (2) the correlation between actual performance shifts and our proposed metric.

776 Training Domain	Overlap between Top 100 Esti- 777 mated and Actual Shifted SAE 778 Dimensions	Correlations between Actual 779 Performance Shifts and STS_{ICL}
779 Code	62	0.77 ± 0.01
780 Health	57	0.71 ± 0.02

782 As shown in the table above, our central hypothesis that there is a substantial overlap between ICL
 783 and SFT shifted dimensions in the SAE representation space **continues to hold across different**
 784 **training datasets**. In addition, we observe a strong correlation between our proposed metric and
 785 actual performance shifts across different datasets. These results reinforce the validity of our method
 786 and expand the scope of our paper by demonstrating its effect across diverse training domains.

787 C.3 REPEATED EXPERIMENTS ON EVALUATING THE CORRELATION COEFFICIENT

789 We ran additional experiments with three independent seeds and report the mean \pm standard devia-
 790 tion in the table below.

792 Table 6: The Pearson correlation coefficient between STS and actual performance shifts on MMLU-
 793 Pro induced by SFT on LIMO.

794 Metric / Model	795 LLaMA3-8B	796 Qwen2.5-7B	797 Gemma2-9B
STS_{act}	0.71 ± 0.01	0.90 ± 0.02	0.60 ± 0.03
STS_{ICL}	0.81 ± 0.01	0.78 ± 0.01	0.77 ± 0.01

799 As shown in the table, the results further verify that the correlations are statistically significant.

801 C.4 QUALITATIVE ANALYSIS OF THE IDENTIFIED SHIFTED DIMENSIONS

803 We annotate SAE dimensions following the auto-interpretability scoring pipeline in (Cunningham
 804 et al., 2023). The procedure is as follows:

- 805 1. We construct a dataset consisting of three domains: math (LIMO), code (Verifiable-Coding-
 806 Problems-Python-10k-Dataset), and dialogue (HH-RLHF).
- 807 2. We encode these samples and extract the corresponding SAE features (using the 25th layer of
 808 Qwen2.5-7B-Instruct as an example).
- 809 3. For each SAE dimension, we collect the top 10 samples with the highest activations.

810 4. We then prompt an LLM (Llama3-8B-Instruct) to determine whether these samples belong to
 811 math, code, or general dialogue.

812 5. Finally, each dimension is assigned a label (math/code/dialogue) based on the LLM’s judgment.

813 With the annotated data, we respectively calculate whether the top 50, top 100, and top 200 estimated
 814 shifted dimensions belong to the training task, i.e., the math.

815 Table 7: The percentage of the estimated shifted dimensions that are explained as the math dimension.

Selected Dimensions	50	100	200
	89%	93%	92%

816 As shown in the table, the estimated shifted dimensions show an extremely high correlation with the
 817 training task (math), which further verifies the effectiveness of our method.

818 Furthermore, we then evaluate how many math-related features are recalled among the top-changed
 819 SAE activations. Specifically, we sample 100 dimensions annotated as math and 100 dimensions
 820 annotated as code. We then compute the proportion of these dimensions that appear among the top
 821 500 estimated shifted dimensions.

822 Table 8: Proportion of 100 annotated dimensions recalled among the top 500 estimated shifted
 823 dimensions.

	Annotation	Math	Code
Recall	63%	7%	

824 As shown in the table, math-related dimensions are recalled at a substantially higher rate than code-
 825 related dimensions. This demonstrates that our estimation process accurately identifies the SAE
 826 dimensions most relevant to the training task.

827 C.5 R² BETWEEN STS AND ACTUAL PERFORMANCE SHIFTS

828 We report the corresponding R² results in the following table.

829 Table 9: R² between STS and actual performance shifts on MMLU-Pro induced by SFT on LIMO.

Metric / Model	LLaMA3-8B	Qwen2.5-7B	Gemma2-9B
STS_{act}	0.50 ± 0.01	0.80 ± 0.04	0.36 ± 0.03
STS_{ICL}	0.66 ± 0.01	0.61 ± 0.02	0.60 ± 0.02

830 As shown in the table, both STS_{act} and STS_{ICL} are effective across models. Notably, the STS_{ICL}
 831 values are highly consistent across the three models (0.60–0.66 with small standard deviations),
 832 underscoring the effectiveness of this metric in predicting performance shifts.

833 C.6 TEST ACCURACY ON THE MATH DATASET

834 In Figure 5, we report downstream accuracy on the law and engineering domains. **It is important**
 835 **to note that the SFT process was conducted on the math dataset LIMO.** In the following table,
 836 we present the test accuracy on the Math-LightEVAL dataset before and after SFT.

837 Table 10: Test accuracy (%) of Qwen2.5-7B-Instruct before and after SFT on LIMO.

Before SFT	SFT on LIMO	SFT on STS-Guided Data
74.7	81.3 (+6.6)	80.1 (+5.4)

864 Table 11: Test accuracy (%) of Qwen2.5-7B-Instruct after selectively fine-tuning.
865

866 Selected Dims	867 Before SFT	868 SFT on Random	869 Dimensions	870 SFT on Estimated
1000	74.7	74.2		75.6
3000	74.7	74.0		76.9

871
872 As shown in the table, SFT leads to a substantial improvement on Math-LightEVAL. Combined with
873 the observations in Figure 5, these results indicate that SFT on STS-guided data effectively enhances
874 math performance while maintaining the model’s capabilities in other domains.
875

876 C.7 SELECTIVELY FINE-TUNING ON ESTIMATED SHIFTED DIMENSIONS 877

878 Indeed, in our selective fine-tuning experiments, we tune the top- K dimensions rather than a single
879 dimension ($K = 3000$ in Table 11). We also evaluate $K = 1000$, with the results shown below.
880

881 As shown in the table, selective fine-tuning on the estimated 1000 or 3000 shifted dimensions effec-
882 tively improves math performance. These results further confirm that the identified shifted dimen-
883 sions are highly aligned with the training task.
884

885 C.8 ABLATION STUDY ON THE SPARITY OF SAEs 886

887 Following prior work, we experiment with different sparsity levels in this representation space. The
888 following Table reports the results using SAEs trained with varying L_0 norms.
889

890 Table 12: Pearson correlation coefficients between STS and actual performance shifts on MMLU-
891 Pro induced by fine-tuning Gemma2-9B-Instruct on LIMO. STS is computed using SAEs with dif-
892 ferent L_0 norms.
893

893 L_0	894 13	895 22	896 37	897 63	898 109
Correlation	0.78	0.77	0.72	0.75	0.65

899 As shown in the table, increased sparsity in the SAE leads to more accurate prediction of per-
900 formance changes. Since stronger sparsity is generally associated with stronger monosemantics
901 (Cunningham et al., 2023), these results further highlight the critical role of monosemantic repre-
902 sentations in our method.
903

904 C.9 PREDICTING PERFORMANCE SHIFTS BASED ON MODEL ACTIVATIONS 905

906 We conducted additional experiments to directly predict the performance improvements from SFT
907 using model activations. Using Qwen2.5-7B-Instruct as an example, we fine-tune the model on
908 LIMO and measure the performance shifts across different MMLU-Pro domains. In the following
909 table, we compare our method with predicting the improvements based on the model activations
910 (using an optimized probe).
911

912 Table 13: Comparison between STS and predictions based on model activations.
913

911	912 Raw Feature Activations	913 SAE Feature Activations	914 STS
Correlation Coefficient	0.03	0.08	0.79

915 As shown in the table, neither raw activations nor SAE feature activations exhibit meaningful cor-
916 relation with the actual performance shifts. These results suggest that simply probing activations is
917 insufficient; identifying the shifted dimensions induced by SFT is essential for understanding and
918 predicting model behavior during the fine-tuning process.
919

918 C.10 ADDITIONAL DISCUSSION ON FIGURE 2B
919920 As shown in Figure 2(b) of the paper, we compare the raw and SAE dimensions in terms of the
921 proportion of total shifts captured by the top shifted dimensions. We observe that the top 1% of raw
922 features account for a smaller fraction, indicating that the shifts are distributed relatively uniformly
923 across the raw dimensions, which makes it difficult to identify the core shifted features. In contrast,
924 shifts in the SAE dimensions are more concentrated, highlighting the effectiveness in capturing key
925 shifted dimensions.926 C.11 ADDITIONAL DISCUSSION ON THE MONOSEMANTICITY ASSUMPTION
927928 We note that recent empirical works and theoretical studies (Cunningham et al., 2023; Gao et al.,
929 2024; Cui et al., 2025) provide consistent evidence that sparse autoencoders trained on LLMs tend to
930 yield monosemantic representations. These findings support the validity of relying on the monose-
931 manticity assumption in our method. We also believe that the monosemantic representation induced
932 by SAEs is a key distinction of our approach compared with traditional representation analysis tech-
933 niques because it allows us to identify shifted features in a semantically interpretable space and
934 thereby predict transferability before conducting SFT. Besides, we clarify that our method does not
935 require any additional curated demonstrations beyond the responses already used for SFT. In prac-
936 tice, we only randomly sample two responses from the SFT training set.937 D THE USE OF LARGE LANGUAGE MODELS (LLMs)
938939 In this work, the use of LLMs was limited to minor language editing to improve readability. All
940 conceptual development, theoretical analysis, experimental design, and result interpretation were
941 conducted independently by the authors. Thus, the use of LLMs was purely auxiliary and had no
942 impact on the scientific contributions of this paper.943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971