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ABSTRACT

In recent years, pre-trained large language models have achieved remarkable suc-
cess across diverse tasks. Besides the pivotal role of self-supervised pre-training,
their effectiveness in downstream applications also depends critically on the post-
training process, which adapts models to task-specific data and objectives. How-
ever, this process inevitably introduces model shifts that can influence perfor-
mance in different domains, and how such shifts transfer remains poorly under-
stood. To open up the black box, we propose the SAE-based Transferability Score
(STS), a new metric that leverages sparse autoencoders (SAEs) to forecast post-
training transferability. Taking supervised fine-tuning as an example, STS iden-
tifies shifted dimensions in SAE representations and calculates their correlations
with downstream domains, enabling reliable estimation of transferability before
fine-tuning. Extensive experiments across multiple models and domains show that
STS accurately predicts the transferability of supervised fine-tuning, achieving
Pearson correlation coefficients above 0.75 with actual performance changes. Be-
yond this, we take an initial step toward extending STS to reinforcement learning.
We believe that STS can serve as an interpretable tool for guiding post-training
strategies in LLMs.

1 INTRODUCTION

Recent advances in large-scale neural networks have demonstrated that pre-training on massive
datasets yields models with strong generalization capabilities (Achiam et al., 2023; Dubey et al.,
2024; Yang et al., 2025; Liu et al., 2024). However, due to discrepancies between the pretraining
objectives and the specific requirements of downstream tasks, pretraining alone is often insufficient
to achieve optimal performance on these tasks. Post-training, which includes supervised fine-tuning
(Zhang et al., 2023; Luo et al., 2023), and reinforcement learning (Schulman et al., 2017; Shao et al.,
2024), plays a critical role in bridging this gap. By selectively adapting the pretrained model, post-
training improves performance in target tasks, and allows models to better capture domain-specific
characteristics.

However, during the post-training process, it is widely observed that improvements on a target task
often come at the expense of performance in other domains (Dong et al., 2023; Kumar et al., 2022).
For instance, (Li et al., 2025) state that improvements in the reasoning ability of large language
models come at the cost of reduced model robustness. Despite these observations, the mechanisms
underlying how model features are linked and transferred during post-training remain largely un-
explored. As a result, we currently lack the ability to predict which domain performance is likely
to benefit or deteriorate under specific post-training adaptations, limiting both interpretability and
principled design of post-training strategies.

In this paper, we analyze the transferability of post-training through the enhanced interpretability
provided by sparse autoencoders (Ng et al., 2011). The sparse autoencoder (SAE) is an encoder-
decoder architecture that reconstructs the internal activations of models while enforcing sparsity
constraints on the hidden layer. Previous works have shown that the SAE encoder features achieve
monosemanticity (Cunningham et al., 2023; Gao et al., 2024), where each dimension is only acti-
vated by a certain natural concept. Leveraging this property, we observe that post-training only mod-
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ifies certain SAE dimensions—for example, those associated with mathematical reasoning. This ob-
servation motivates a natural approach to predict the transferability of post-training: we can identify
the shifted SAE features and examine their correlations with different domains.

Concretely, our analysis consists of two steps: (1) identifying the dimensions that are shifted during
post-training, and (2) assessing their correlations with downstream domains. In the first stage, the
primary challenge is to identify the shifted dimensions prior to post-training. Inspired by the
observation that in-context learning exhibits behaviors similar to supervised fine-tuning (Wang et al.,
2023; Mosbach et al., 2023), we forecast the shifted dimensions by using the supervised answers
as demonstrations for in-context learning, and then identify the dimensions that undergo the largest
changes. Empirical results show a clear overlap between the predicted and actual shifted dimensions.
In the second stage, leveraging the interpretability of SAE activations, we observe that the activation
values of these shifted dimensions in a domain can capture their correlation. We formalize this as the
SAE-based transferability score (STS), which quantifies how strongly the shifted dimensions relate
to downstream tasks. A higher STS suggests a larger expected performance change after supervised
fine-tuning. Empirically, we find that our metric consistently correlates well with actual performance
shifts—for instance, the Pearson correlation coefficient exceeds 0.75 when evaluating performance
variations across domains in the MMLU-Pro dataset (Wang et al., 2024). At last, we provide a
preliminary exploration of extending our metric to reinforcement learning settings. Together, these
results allow us to develop an interpretable framework for predicting the cross-domain transferability
without training. We summarize our contributions as follows:

• We propose a method to identify shifted dimensions in supervised fine-tuning without re-
quiring access to the fine-tuned models. We observe that when supervised answers are used
as context prompts, the shifted dimensions in in-context learning substantially overlap with
those in supervised fine-tuning.

• We propose the SAE-based Transferability Score (STS), which uses correlations in SAE
feature space and estimated shifted dimensions to accurately predict LLM transferability
without performing supervised fine-tuning.

• We empirically show that higher STS values strongly correlate with larger performance
shitfs in supervised fine-tuning , achieving Pearson correlations above 0.75 across diverse
scenarios. This confirms that STS is a reliable, fine-tuning-free metric for predicting LLM
cross-domain transferability.

2 RELATED WORK & PRELIMINARY

Post-training. Post-training refers to the stage after large-scale pretraining, where a pretrained
model is further adapted to align with specific objectives, user preferences, or downstream applica-
tions. Unlike pretraining, which relies on massive unlabeled data (Achiam et al., 2023; Yang et al.,
2025), post-training typically leverages smaller but higher-quality datasets. The methods in post-
training can be majorly divided into supervised fine-tuning (Zhang et al., 2023; Luo et al., 2023) and
reinforcement learning (Schulman et al., 2017; Shao et al., 2024). In this paper, we mainly focus on
SFT, and discuss extensions to RL. During the SFT process, given a set of labeled examples {xi, yi},
the model parameters are updated to minimize the discrepancy between the model’s predictions and
the ground-truth answers via Negative Log-Likelihood (NLL) Loss:

LSFT(Θ) = −Exi log p(yi|xi; Θ).

where Θ denotes the model parameters. By aligning the representations with task-specific super-
vision, SFT effectively transfers the general knowledge encoded in pretrained models to particular
applications.

Previous studies have shown that supervised fine-tuning (SFT) often reduces performance in do-
mains beyond the target task (Dong et al., 2023; Kumar et al., 2022). For example, (Li et al., 2025)
find that SFT on reasoning data improves the mathematical ability of LLMs but weakens their ro-
bustness against jailbreak attacks. These results suggest that it is important to understand how model
capabilities transfer during post-training. While some works have studied this problem (Sun et al.,
2025; Huan et al., 2025), most of them focus on post-hoc analysis after training. However, such
approaches are less practical because they cannot help predict transfer effects before the fine-tuning
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process starts. This limitation motivates our work, where we aim to build a method that can predict
transferability without fine-tuning.

Sparse Autoencoders. Although large language models (LLMs) have demonstrated remarkable
performance across a wide range of downstream tasks, many of their decisions and internal behaviors
remain opaque, which hinders broader deployment in applications. To address this issue, sparse
autoencoders (SAEs) have been proposed as a promising framework for improving the mechanistic
interpretability of LLMs (Gao et al., 2024; Cunningham et al., 2023). Concretely, given a hidden
representation z ∈ Rd within the network, an SAE employs an encoder–decoder architecture to
project z into a sparse latent representation and reconstruct it back to the original space. For instance,
in the case of a top-K SAE (Gao et al., 2024), the encoding-decoding process can be formulated as:

h = TopK(Wez − b),

ẑ = Wdh+ b.
(1)

The encoder representation h is computed via a linear transformation defined by We ∈ Rs×d and
a bias b ∈ Rs, while the decoder reconstructs the input features using Wd ∈ Rd×s. The SAE is
trained by minimizing the reconstruction loss:

LSAE(We,Wd, b) = ∥ẑ − z∥2.
Previous studies (Gao et al., 2024) have shown that when the encoder features are sufficiently sparse
(e.g., K ≪ s), the resulting representations often display monosemanticity. In other words, each
feature dimension is only activated by a certain natural concept, such as a mathematical definition,
a physical property, or a linguistic pattern.

In-context Learning. In-context learning denotes the ability of large pretrained models to solve
tasks by conditioning on demonstrations provided in the input (Kossen et al., 2023; Wang et al.,
2025). Formally, given a context consisting of k labeled examples

C = {(x1, y1), (x2, y2), . . . , (xk, yk)},
the model receives a new query input xk+1 and generates the output ŷk+1 by leveraging the condi-
tional distribution learned during pretraining:

ŷk+1 ∼ pθ(y | xk+1, C),
where θ denotes the fixed pretrained parameters. Unlike supervised fine-tuning and reinforcement
learning, in-context learning (ICL) adapts to new tasks during inference without requiring additional
training. Nevertheless, several studies have shown that models under in-context learning still exhibit
many similarities to those trained with supervised fine-tuning and reinforcement learning (Mosbach
et al., 2023; Wang et al., 2023).

3 CAPTURING SHIFTED FEATURES IN SUPERVISED FINE-TUNING

In this paper, we analyze the transferability of supervised fine-tuning across different domains by
understanding how feature representations shift within neural networks. Since sparse autoencoders
(SAEs) enhance monosemanticity by disentangling overlapping representations, their features pro-
vide a clearer interpretability for tracking representation shifts in different domains. Consequently,
in this section, we start by analyzing how the supervised fine-tuning process modifies SAE features
and how the shifted features can be predicted in advance of the fine-tuning process.

3.1 SFT-INDUCED CHANGES IN SAE FEATURES

Prior works have shown that SAE encoder features exhibit strong interpretability, with each dimen-
sion corresponding to a certain natural concept. Since supervised fine-tuning (SFT) is generally
tailored to specific downstream tasks and targeted capabilities, we wonder whether it primarily af-
fects only a small subset of SAE dimensions tied to task-relevant features. Taking the mathematical
ability as an example, we investigate how SAE features change when models are fine-tuned on the
math dataset LIMO (Ye et al., 2025). As noted in (Lieberum et al., 2024), the same dimension in
an SAE usually continues to represent similar concepts after fine-tuning. Consequently, we extract
monosemantic features before and after the SFT process using the same SAE on the residual streams
of 25-th layer in Qwen2.5-7B-Instruct (Team, 2024).
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Figure 1: Analysis of feature shifts induced by supervised fine-tuning (SFT). We fine-tune Qwen2.5-
7B-Instruct on the LIMO (a mathematical reasoning dataset) and examine shifts of SAE features on
the residual stream at layer 25. Figure (a) shows the distribution of shift magnitudes while Figure
(b) shows accuracy on Math-LightEval when progressively zeroing the dimensions with the largest
shifts. The results indicate that SFT primarily affects a small subset of SAE dimensions tied to
specific model capabilities.

As shown in Figure 1a, we find that changes in SAE features are largely concentrated in a small
subset of dimensions. With calculation, we find that the top-100 dimensions account for 25% of
the total change, indicating that the SFT process primarily affects only a limited portion of SAE
features. Furthermore, to observe the relationship between features shifted during SFT and the
mathematical ability of the model, we rank SAE features according to their magnitude of change
during fine-tuning and then evaluate model performance on the Math-Lighteval dataset (Hendrycks
et al., 2021) by zeroing out different numbers of features. As shown in Figure 1b, performance on
math tasks drops rapidly when the shifted features are removed, whereas the model retains strong
mathematical abilities when random SAE features are zeroed. These results indicate that the SFT
process primarily changes a small subset of SAE features that are closely associated with specific
model capabilities.

3.2 IDENTIFYING SHIFTED DIMENSIONS VIA IN-CONTEXT LEARNING

As previously discussed, supervised fine-tuning modifies only a small subset of SAE features that
correspond to specific semantics. Intuitively, these features are crucial for studying properties of
SFT, such as transferability. However, their identification typically requires examining the model
after fine-tuning, which confines the analysis to a post-hoc perspective. This limitation motivates a
central question of our work: can such features be identified prior to the fine-tuning process, thereby
enabling a predictive understanding of transferability?

To solve this challenge, we draw on the connection between supervised fine-tuning (SFT) and in-
context learning (ICL). Previous works demonstrate that ICL can obtain similar performance to SFT
in the large language models (Wang et al., 2023; Mosbach et al., 2023). Consequently, this motivates
us to investigate whether the SAE features shifted during ICL and SFT are consistent. To verify this
hypothesis, we respectively sort the SAE dimensions according to their changes after SFT and ICL.
To be specific, we conduct experiments on Qwen2.5-7B-Instruct. For SFT, we employ ground-truth
chain-of-thoughts (CoTs) on LIMO as supervision, while for ICL, we use the same CoTs as context
prompts. As shown in Figure 2a, we observe substantial overlap between the shifted features in SFT
and ICL; for example, 57% of the top 100 most shifted SAE dimensions coincide. These findings
confirm that the shifted dimensions in ICL and SFT are highly consistent, suggesting that the
shifted dimensions can be identified before the SFT process.

To further evaluate whether the selected dimensions are the most relevant to the training task, we
conduct selectively fine-tuning based on identified shifted dimensions. To be specific, we first se-
lected five layers in Qwen2.5-7B-Instruct/Llama3-8B-Instruct and extracted 3000 dimensions from
the SAE representation space at each layer. We then added five linear layers of shape [3000, d],
where d is the dimension of the raw (pre-SAE) features. During the forward pass, the 3000 SAE
dimensions are decoded through these learnable linear layers and added back to the raw features.
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Figure 2: Overlap between estimated dimensions and the training task. Figure (a) demonstrates that
the SAE shifted dimensions predicted by ICL substantially overlap with the actual shifted dimen-
sions identified after SFT, whereas applying the same method directly on raw dimensions is less
effective. Figure (b) further shows that raw model dimensions, prior to applying SAE, are influ-
enced more uniformly by the SFT process, thereby limiting the ability to identify crucial shifted
dimensions. Figure (c) shows that selective finetuning on estimated shifted dimensions shows better
performance than randomly selected dimensions.

We fine-tune only these five linear layers on LIMO, keeping all other model parameters frozen.
As shown in Figure 2c, selective fine-tuning using the estimated shifted dimensions effectively im-
proves math performance with only five linear layers. This result further validates that the selected
dimensions are the most relevant to the training domain. More details can be found in Appendix C.7

We have shown that, by leveraging the connection between ICL and SFT, the shifted SAE dimen-
sions can be identified prior to the SFT process. A natural question then arises: are SAEs necessary
for this method? Intuitively, as dimensions in the raw feature space 1 are highly polysemantic and
entangled (Elhage et al., 2022), specific abilities of the model (e.g., mathematical reasoning) are
distributed across multiple dimensions. As a result, the SFT process tends to affect a broader set of
features, which makes it more difficult to identify crucial shifted dimensions. To verify the analy-
sis, we further conduct experiments on the raw features before applying SAEs. We again sort the
features by their changes during SFT and ICL. As shown in Figure 2b, the shifted features before
SAE are more uniformly distributed. We then investigate the influence on the accuracy of identify-
ing shifted dimensions. With the same empirical settings, Figure 2a shows that the overlap between
shifted features in ICL and SFT is much reduced in the raw feature space. These findings indicate
that the enhanced monosemanticity introduced by SAEs is crucial for identifying shifted features
prior to supervised fine-tuning.

4 PREDICTING THE TRANSFERABILITY OF SUPERVISED FINE-TUNING
ACROSS DOMAINS

In Section 3, we introduced a method for predicting shifted SAE dimensions prior to the SFT pro-
cess. Intuitively, when applying fine-tuned models to downstream tasks, if the shifted dimensions
are closely related to a given domain, the SFT influence on that domain will be stronger. Thus,
understanding the transferability of SFT across domains requires analyzing the correlations between
shifted dimensions and different domains. In this section, we present a metric for evaluating this cor-
relation and predict transferability based on that. Specifically, Section 4.1 introduces the proposed
metric, while Section 4.2 validates it across diverse scenarios.

4.1 METRICS FOR MEASURING CROSS-DOMAIN CORRELATIONS

Due to the enhanced monosemanticity of SAEs (Cunningham et al., 2023), the activations in the
SAE feature space become interpretable, meaning that the top-activated sequences within a given
dimension usually share similar semantics. This property allows us to associate each dimension with
specific semantic concepts. Consequently, if the sequences from a particular domain exhibit higher

1The raw model dimensions refer to the representations that are used as the input of the SAEs.
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Figure 3: The Pearson correlation (ρ) between STS and actual absolute performance shifts on
MMLU-Pro induced by SFT on LIMO. Each experiment is repeated three times, and we report the
mean and standard deviation of ρ; the fitted line shown corresponds to one of the runs. We extract
SAE features from Llama3-8B-Instruct, Qwen2.5-7B-Instruct, and Gemma2-9B-Instruct. During
the evaluation process, we select four MMLU-Pro domains with the largest and smallest perfor-
mance shifts under SFT. The detailed performance shifts can be found in Appendix A.

activation values in a certain dimension, it implies that this dimension is more strongly correlated
with that domain. Building on this intuition, we can use the degrees of activations across dimensions
to quantify domain–feature correlations and further analyze the transferability of supervised fine-
tuning.

Formally, we define our metric as the SAE-based transferability score (STS). In the first step, given
an SFT dataset T = {xi, yi}, we extract SAE features for each sample. Let the SAE features be
denoted as h(xi; Θ), where Θ represents the parameters of the pretrained model, and h is the SAE
encoder trained on top of the pretrained model. Similarly, with in-context learning, the features are
denoted as h(x0, y0, · · · , xt, yt, xi; Θ), where {x0, y0, · · · , xt, yt} are the context prompts. We then
identify the N dimensions with the largest changes, i.e.,

DN = TopN(Exi∥hj(xi; Θ)− hj(x0, y0, · · · , xt, yt, xi; Θ)∥2),

where hj denotes the j-th dimension of the SAE features.

In the second step, given a downstream domain dataset T̃ = {x̃i}, we compute the activation values
on the shifted dimensions identified in the first step:

STSact(T̃ ) = Ex̃i

∑
j∈DN

hj(x̃i; Θ).

It is important to note that we do not use the model after SFT in this estimation, which means
that our metric serves as a predictive measure rather than a post-hoc analysis.

Besides directly computing the average activation values, we introduce an alternative method based
on in-context learning (ICL) to capture the correlation between the downstream domain and the
shifted dimensions. We know that ICL leverages multiple demonstrations to guide the model in
performing downstream tasks, effectively injecting domain-specific signals into the representation.
Intuitively, by comparing the SAE features extracted with and without ICL demonstrations, we
can isolate the effect of domain knowledge on the shifted dimensions. This difference reflects how
strongly the features are modulated by task-relevant information, thereby offering a reliable estimate
of the correlation between a domain and the shifted dimensions.
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Figure 4: Ablation studies on the implementation of our metric. We evaluate (a) SAEs with varying
hidden dimensions in the representation space, (b) SAEs trained on different layers of the pre-trained
model, (c) different ranges of top-shifted dimensions, (d) different sparsity in SAE representations,
e) the comparison between STS and directly using activations.

Consequently, we estimate the correlation by measuring the difference between features extracted
with and without in-context demonstrations. Formally, let {x̃i, ỹi}mi=1 denote m ground-truth
question-answer pairs in the downstream domain. We define the metric as

STSICL(T̃ ) = Ex̃i

∑
j∈DN

∥hj(x̃0, ỹ0, · · · , x̃m, ỹm, x̃i; Θ)− hj(x̃i; Θ)∥2.

This metric captures how much the presence of domain-relevant context (the demonstrations) in-
fluences the shifted dimensions, providing another reliable estimate of domain-feature correlation
besides using maximum activation values.

4.2 EMPIRICAL VERIFICATIONS ON PREDICTING THE TRANSFERABILITY

Based on the proposed metric, we now empirically evaluate the correlation between the STS score
and the actual transferability across different downstream domains. Specifically, we use the LIMO
dataset (Ye et al., 2025) as the SFT training set, which contains 817 high-quality mathematical
examples. We fine-tune three models (Qwen2.5-7B-Instruct, Llama3-8B-Instruct, and Gemma2-
9B-Instruct) on LIMO, and compare their performances before and after SFT on different domains
of MMLU-Pro (Wang et al., 2024). To extract SAE features, we apply SAEs to the residual streams
of the models prior to SFT. For computing the STS metric, we employ two ground-truth CoTs from
LIMO as in-context demonstrations to identify the top-100 shifted dimensions. When estimating
the correlations between the domains and the predicted shifted dimensions, we use five ground-
truth CoTs from the domain of MMLU-Pro as prompts to calculate STSICL. More details of the
experiments can be found in the Appendix.

As shown in Figure 3, the correlation between STS and performance changes across different do-
mains remains consistently high for all three models, with Pearson correlation coefficients exceeding
60%. These findings validate that our metric provides a reliable estimation of the transferability of
the SFT process. Besides, we note that the performance of STSICL is more stable than STSact (the
coefficients keeps above 75%), which suggests that leveraging in-context learning yields a more
accurate estimation of the correlation between domains and SAE dimensions than relying solely on
activation values.

We conduct several ablation studies to evaluate STS under different conditions. First, we examine
the role of monosemanticity by extracting SAE features with different hidden dimensions (16k vs.

7
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Figure 5: Comparison of data mixture strategies in the SFT process. We focus on the domains
with the largest (engineering) and smallest (law) performance shifts induced by SFT of Qwen2.5-
7B-Instruct on LIMO. In total, 220 extra examples from a mixture of engineering and law data are
added. Figure (a) reports engineering performance with varying amounts of engineering data, while
Figure (b) reports law performance with varying amounts of law data. Figure (c) compares the
downstream performance without additional data and with additional data mixed according to the
ratio of their corresponding STS values.

131k). As shown in Figure 4a, weaker monosemanticity causes a clear drop in prediction accuracy,
indicating its importance for STS. We also compare SAEs applied to different layers of Qwen2.5-7B-
Instruct (layers 15, 20, and 25). Figure 4b shows that STS consistently correlates with performance
changes across layers, confirming its robustness. Finally, we vary the sparsity levels of SAE rep-
resentations. As illustrated in Figure 4c, higher sparsity—typically linked to stronger monoseman-
ticity—yields more accurate predictions, further underscoring the essential role of monosemantic
features in STS.

In addition to evaluating different SAEs, we examine another critical hyperparameter of our metric:
the range of estimated shifted dimensions. Selecting dimensions with small shifts risks including
those unaffected by the SFT process. As shown in Figure 4d, the correlation between STS and
downstream performance decreases when smaller-shifted dimensions are selected, supporting this
analysis. These findings underscore that the choice of shifted dimensions directly impacts metric
reliability, highlighting the need for an appropriate selection strategy that only identify dimensions
with largest shifts. Furthermore, we conducted additional experiments to directly predict the perfor-
mance improvements from SFT using model activations. In Figure 4e, we compare our method with
predicting the improvements based on the model activations (using an optimized probe). As shown
in the table, neither raw activations nor SAE feature activations exhibit meaningful correlation with
the actual performance shifts. These results suggest that simply probing activations is insufficient;
identifying the shifted dimensions induced by SFT is essential. Besides, we also note that this is a
task where SAE beats probes, which further shows the potential of the monosemantic representation
space.

5 APPLICATIONS: A DATA MIXTURE PRINCIPLE

In Section 4, we demonstrated that our proposed metric, the SAE-based transferability score (STS),
exhibits a strong correlation with actual performance changes. Building on this result, we now
explore a practical application of STS. Specifically, we leverage predicted transferability to opti-
mize data mixture strategies during post-training. Using STS, we can identify the domains most
likely to be affected by supervised fine-tuning (SFT). A common approach to mitigate performance
degradation in such domains is to introduce additional data. Intuitively, with a predicted ranking of
performance changes across domains, we can allocate more data to those at higher risk of degrada-
tion. To validate this idea, we examine two domains in MMLU-Pro: engineering (with the largest
performance drop when fine-tuning Qwen2.5-7B-Instruct on LIMO) and law (with the smallest). In
our experiments, we fine-tune Qwen2.5-7B-Instruct on LIMO with additional data in MMLU-Pro.
We split MMLU-Pro into training and testing sets with a 1:1 ratio. For training, we use Qwen2.5-
7B-Instruct’s outputs prior to SFT as supervised answers. In addition to the original LIMO data, we
augment the training set with 220 extra examples sampled from the mixture of engineering and law
domains.
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(b) Different Implementations of STS Metric

Figure 6: The explorations on extending STS metric to the RL scenarios. We optimize Qwen2.5-7B-
Instruct on Math-LightEval using GRPO. Figure (a) shows that the identified dimensions in RL show
smaller overlap with the actual shifted dimensions compared to SFT, which limits the accuracy of
the metric. Figure (b) shows that when the estimated shifted dimensions are replaced with the actual
ones, the correlation between STS and downstream performance changes becomes much stronger.

As shown in Figure 5, we observe that domains with larger performance changes require more
additional data. For example, allocating more data to the engineering domain leads to substantial
improvements (Figure 5a), whereas allocating extra data to the law domain yields only marginal
gains (Figure 5b). Moreover, when the data mixture ratio is adjusted to align with the ratio of
their corresponding STS values, the resulting model achieves balanced performance across both
engineering and law (Figure 5c). These findings suggest that STS can serve as an interpretable guide
for designing data mixture ratios, enabling more effective post-training while mitigating uneven
performance shifts across domains.

6 EXPLORATIONS ON REINFORCEMENT LEARNING

In this paper, we primarily investigate the impact of supervised fine-tuning across different domains.
Nevertheless, reinforcement learning (RL) represents another non-negligible post-training paradigm,
motivating us to explore whether our method can be extended to RL. We begin by applying the STS
metric directly, as in the supervised fine-tuning setting. Specifically, we train Qwen2.5-7B-Instruct
using the GRPO framework (Shao et al., 2024) on the Math-LightEval dataset and evaluate perfor-
mance changes across domains in MMLU-Pro. When computing STS, we follow the same proce-
dure as in supervised fine-tuning: ground-truth CoTs from Math-LightEval serve as demonstrations
to estimate shifted dimensions, and correlations between these dimensions and downstream domains
are calculated based on in-context learning. However, as shown in Figure 6b, STS exhibits low cor-
relations with performance changes in the RL setting. In the following, we try to find the reasons
behind this discrepancy.

We note that a key distinction between SFT and RL is that RL lacks access to ground-truth answers,
making it challenging to select appropriate demonstrations for in-context learning. As a result, the
estimation of shifted features may be inaccurate. To test this hypothesis, we compare the overlaps
between the actual and predicted shifted dimensions. As shown in Figure 6a, the overlap is substan-
tially lower in RL than in SFT. To further validate this observation, we replace the estimated top-100
dimensions with the ground-truth dimensions with the largest changes after RL and recompute the
STS metric. Figure 6b demonstrates that STS calculated with ground-truth shifted dimensions shows
a strong correlation with performance changes, indicating that the main challenge lies in accurately
estimating shifted dimensions in RL prior to training. And this will be the future direction of our
explorations. For now, STS in RL can serve as a metric to predict transferability without evaluating
RL models on downstream tasks.
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7 CONCLUSION

In this work, we introduce a metric for predicting the transferability of post-training in large-scale
neural networks, leveraging the interpretability of sparse autoencoders (SAEs). By identifying the
SAE dimensions that are shifted during post-training and measuring their correlations with down-
stream domains, we propose the SAE-based transferability score (STS) as a predictive indicator of
performance changes. Our experiments show that STS reliably forecasts performance variations
across multiple domains, providing new insights into the internal mechanisms of post-training. Be-
yond supervised fine-tuning, we further demonstrate the applicability of our approach to reinforce-
ment learning settings. Overall, we believe our work establishes an interpretable framework for
understanding and anticipating post-training effects, paving the way for more targeted and effective
post-training strategies.

ETHICS STATEMENT

This work makes use of publicly available datasets and models. No private or sensitive data are
involved, and no harmful content is included. Therefore, we believe this paper does not raise any
ethical concerns.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide comprehensive details of our experiments in
both the main paper and the appendix. In Section 3, we describe the details of the methodology for
identifying shifted dimensions, while Section 4 presents the procedure for computing correlations
between these dimensions and downstream domains. Additionally, Appendix A reports the concrete
performance changes across different MMLU-Pro domains, and Appendix B offers further details
and complementary discussions. The code will be released upon the publication of this paper.
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A PERFORMANCE CHANGES AFTER SFT

Table 1: Performance change on different domains of MMLU-Pro (Llama3-8B-Instruct fine-tuned
on LIMO).

engineering physics chemistry law
Performance Change (%) -11.97 -5.7 -5.39 -3.72

philosophy other health computer science
Performance Change (%) -2.61 -2.49 -1.1 -0.97

economics math psychology biology
Performance Change (%) -0.95 -0.89 -0.63 -0.42

history business
Performance Change (%) -0.26 -0.12

Table 2: Performance change on different domains of MMLU-Pro (Qwen2.5-7B-Instruct fine-tuned
on LIMO).

engineering chemistry physics computer science
Performance Change (%) -9.8 -6.36 -5.24 -4.88

business health math economics
Performance Change (%) -4.43 -2.93 -2.89 -2.61

philosophy biology other psychology
Performance Change (%) -2.4 +1.53 -1.3 -0.37

history law
Performance Change (%) +0.26 -0.19

Table 3: Performance change on different domains of MMLU-Pro (Gemma2-9B-Instruct fine-tuned
on LIMO).

engineering computer science other law
Performance Change (%) -9.29 -3.66 -2.05 -1.73

health math business history
Performance Change (%) -1.47 +1.41 -1.27 -0.79

economics chemistrcy biology physics
Performance Change (%) -0.71 -0.62 -0.56 -0.54

psychology philosophy
Performance Change (%) -0.05 0

We show the concrete signed performance change of models after SFT on LIMO in Table 1,2, 3.
In our experiments with SFT on LIMO, we observe that performance decreases across nearly all
downstream domains, and the primary difference between domains lies in the magnitude of the
decrease. This is consistent with the known limitations of SFT in generalization. Consequently, our
work focuses on predicting the magnitude of performance change rather than its sign. We consider
this meaningful because accurately estimating the degree of decrease provides insights into model
behavior under SFT and informs strategies to mitigate these decreases (e.g., the STS-guided data
mixing strategy in Section 5).
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B EXPERIMENTS DETAILS

B.1 DETAILS OF APPLIED SAES

For feature extraction with sparse autoencoders (SAEs), we use one SAE for each backbone model
on a specific layer of the transformer. Each SAE is an encoder-decoder architecture. The encoder
and decoder are two linear layers while there exists an activation function following the encoder. We
introduce the details of SAEs in the following.

Concretely, for Llama3-8B-Instruct, we use a ReLU SAE with 16384 hidden dimensions trained
on residual-stream activations from layer 25. The SAE is trained on the openWebText dataset with
context size as 1024. The SAE is optimized using the AdamW optimizer with β1=0.9, β2=0.999, and
weight decay of 0.01. The learning rate is set to 1e-5. An L1 sparsity penalty of 5 (with warm-up)
is applied on the hidden activations to induce sparse and monosemantic features, following standard
SAE training practices.

For Qwen2.5-7B-Instruct, we use a ReLU SAE with 28672 hidden dimensions trained on residual-
stream activations from layer 25. The SAE is trained on the openWebText dataset with a context
size of 2048. The model is optimized using the AdamW optimizer with β1=0.9, β2=0.999, and a
cosine-annealing learning-rate schedule starting at 7e-5 with warm-up. An L1 sparsity penalty of 5
(with warm-up) is applied to encourage sparse and monosemantic features, following standard SAE
training setups.

For Gemma2-9B-Instruct, we use a ReLU SAE with 131072 hidden dimensions trained on residual-
stream activations from layer 31. The SAE is trained on the openWebText dataset with a context
size of 1024. The model is optimized using the AdamW optimizer with β1=0.9, β2=0.999, and a
cosine-annealing learning-rate schedule over the first 10,000 steps. We also apply a linear warmup
of the sparsity coefficient over the first 10,000 steps to stabilize training and encourage sparse feature
activations.

B.2 DETAILS OF ICL PROMPTS

To identify shifted SAE dimensions induced by post-training, we first sample activations from
20,000 tokens before and after in-context learning (ICL), where the ICL demonstrations are con-
structed using supervised answers from LIMO. The prompt looks likes [x1,y1,x2,y2,x3], where
x1,x2,x3 are the questions in LIMO while y1, y2 are the responses in LIMO. To be specific, we
provide a concrete example in the following

In-context Learning Prompts

[{’content’: ”A fenced, rectangular field measures 24 meters by 52 meters.
...
What is the largest number of square test plots into which the field can be partitioned using
all or some of the 1994 meters of fence? Let’s think step by step and output the final answer
within \boxed{}.”,
’role’: ’user’},
{’content’: ’Okay, so I have this problem where thereś a rectangular field thatś 24 meters by
52 meters. The farmer wants to partition this entire field into square test plots, with the sides
of the squares parallel to the edges of the field.
...
So, Iĺl call this over. Thus, the answer is 702.
**Final Answer**
\boxed{702}’,
’role’: ’assistant’},
{’content’: ”A hotel packed breakfast for each of three guests.
...
Given that the probability each guest got one roll of each type is m

n , where m and n are
relatively prime integers, find m + n. Let’s think step by step and output the final answer
within \boxed{}.”,
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’role’: ’user’},
{’content’: ”Okay, so here’s this problem about a hotel packing breakfast for three guests.
Each breakfast is supposed to have one nut roll, one cheese roll, and one fruit roll.
...
The total number of ways to choose three rolls from the remaining 6: C(6,3)=20. So proba-
bility Therefore, 9/70 is correct. Thus, m + n=79. Therefore, the answer is 79.
**Final Answer**
\boxed{79}”,
’role’: ’assistant’},
{’content’: ”For how many pairs of consecutive integers in
1000, 1001, 1002, . . . , 2000 is no carrying required when the two integers are added? Let’s
think step by step and output the final answer within \boxed{}.”,
’role’: ’user’}]

We then compute the activation differences across SAE dimensions and select those exhibiting the
largest shifts. Finally, to quantify the correlations between shifted dimensions and downstream
domains, we sample activations from 10,000 tokens for each domain and compute their correlations
with the identified dimensions.

B.3 DETAILS OF SUPERVISED FINE-TUNING

When fine-tuning the pre-trained models Qwen2.5-7B-Instruct, Llama3-8B-Instruct, and Gemma2-
9B-Instruct on the LIMO dataset, we adopt a unified experimental setup across models. Specifically,
the maximum prompt length is set to 8192 tokens, with sequences truncated from the left to fit within
this constraint. All models are fine-tuned for 10 epochs using four H20 GPUs. We train the models
with a total batch size of 256 and a micro-batch size of 1 per GPU. Models are trained using FSDP
with fp32 precision, gradient checkpointing enabled, and no CPU offload. We use the AdamW
optimizer with betas (0.9, 0.95), weight decay 0.01, and gradient clipping of 1.0. A cosine learning
rate scheduler is applied with a warmup of 10% of the total training steps.

C ADDITIONAL EXPERIMENTS

C.1 COMPARISON WITH TRADITIONAL REPRESENTATION SHIFT ANALYSIS

We note that our work is not a trivial reframe of existing analyses on representation drift or feature
correlations. The key distinction is that prior studies examine raw representation shifts after fine-
tuning, whereas our paper demonstrates that the sparsity and monosemanticity brought by SAEs
enable us to predict feature shifts and find correlations before fine-tuning. As shown in Figure
2, when using raw model features without SAEs, the overlap between predicted and actual shifted
dimensions is quite low, indicating that traditional representation analyses cannot accurately
identify shifted dimensions.

To further distinguish our method from traditional representation analysis, we conduct additional
experiments comparing STS with three baselines: (1) raw feature activations in downstream do-
mains, (2) representation similarity between downstream and training domains, and (3) representa-
tion similarity between models before and after SFT. For Qwen2.5-7B-Instruct, Table 1 reports the
correlations between these measures and actual performance shifts.

Table 4: Correlation coefficient between actual performance shifts (Qwen2.5-7B-Instruct tuned on
LIMO) and different baselines.

Feature Activations
Representation Similarity
between Downstream Domains
and Training Domain

Representation Similarity
between Models before
and after SFT

STS

Uses Model
after SFT No No Yes No
Coefficient 0.03 0.11 0.61 0.79
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As shown in the table, neither raw feature activations nor representation similarity between train-
ing and downstream domains strongly correlates with performance shifts. Even when using post-
SFT representations, the correlation remains substantially lower than that of our method. These
results further demonstrate that our approach is not a minor variation of traditional representation
drift analyses.

C.2 VERIFICATIONS ON DIFFERENT TRAINING DOMAINS

To better reveal the correlation between ICL feature drift and SFT, we further conduct the following
experiments to provide more empirical support. Specifically, we include a code-generation dataset
(Verifiable-Coding-Problems-Python-10k-Dataset) and a health dialogue dataset (CoT-Clinical-
MH-Reasoning-Dataset) to further evaluate the overlap between ICL-induced feature drift and SFT-
induced shifts. In addition, we examine how well our metric STS correlates with actual downstream
performance changes. Taking Qwen2.5-7B-Instruct as an example, the empirical results are sum-
marized in the following table.

Table 5: Verification on a code dataset (Verifiable-Coding-Problems-Python-10k-Dataset) and a clin-
ical reasoning dataset (CoT-Clinical-MH-Reasoning-Dataset). The Qwen-2.5-7B-Instruct model is
trained on each dataset, and we evaluate: (1) the correlation between ICL feature shifts and SFT,
and (2) the correlation between actual performance shifts and our proposed metric.

Training Domain Overlap between Top 100 Esti-
mated and Actual Shifted SAE
Dimensions

Correlations between Actual
Performance Shifts and STSICL

Code 62 0.77 ± 0.01
Health 57 0.71 ± 0.02

As shown in the table above, our central hypothesis that there is a substantial overlap between ICL
and SFT shifted dimensions in the SAE representation space continues to hold across different
training datasets. In addition, we observe a strong correlation between our proposed metric and
actual performance shifts across different datasets. These results reinforce the validity of our method
and expand the scope of our paper by demonstrating its effect across diverse training domains.

C.3 REPEATED EXPERIMENTS ON EVALUATING THE CORRELATION COEFFICIENT

We ran additional experiments with three independent seeds and report the mean ± standard devia-
tion in the table below.

Table 6: The Pearson correlation coefficient between STS and actual performance shifts on MMLU-
Pro induced by SFT on LIMO.

Metric / Model LLaMA3-8B Qwen2.5-7B Gemma2-9B

STSact 0.71 ± 0.01 0.90 ± 0.02 0.60 ± 0.03
STSICL 0.81 ± 0.01 0.78 ± 0.01 0.77 ± 0.01

As shown in the table, the results further verify that the correlations are statistically significant.

C.4 QUALITATIVE ANALYSIS OF THE IDENTIFIED SHIFTED DIMENSIONS

We annotate SAE dimensions following the auto-interpretability scoring pipeline in (Cunningham
et al., 2023). The procedure is as follows:

1. We construct a dataset consisting of three domains: math (LIMO), code (Verifiable-Coding-
Problems-Python-10k-Dataset), and dialogue (HH-RLHF).

2. We encode these samples and extract the corresponding SAE features (using the 25th layer of
Qwen2.5-7B-Instruct as an example) . 3. For each SAE dimension, we collect the top 10 samples
with the highest activations.
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4. We then prompt an LLM (Llama3-8B-Instruct) to determine whether these samples belong to
math, code, or general dialogue.

5. Finally, each dimension is assigned a label (math/code/dialogue) based on the LLM’s judgment.

With the annotated data, we respectively calculate whether the top 50, top 100, and top 200 estimated
shifted dimensions belong to the training task, i.e., the math.

Table 7: The percentage of the estimated shifted dimensions that are explained as the math dimen-
sion.

Selected Dimensions 50 100 200

89% 93% 92%

As shown in the table, the estimated shifted dimensions show an extremely high correlation with the
training task (math), which further verifies the effectiveness of our method.

Furthermore, we then evaluate how many math-related features are recalled among the top-changed
SAE activations. Specifically, we sample 100 dimensions annotated as math and 100 dimensions
annotated as code. We then compute the proportion of these dimensions that appear among the top
500 estimated shifted dimensions.

Table 8: Proportion of 100 annotated dimensions recalled among the top 500 estimated shifted
dimensions.

Annotation Math Code

Recall 63% 7%

As shown in the table, math-related dimensions are recalled at a substantially higher rate than code-
related dimensions. This demonstrates that our estimation process accurately identifies the SAE
dimensions most relevant to the training task.

C.5 R2 BETWEEN STS AND ACTUAL PERFORMANCE SHIFTS

We report the corresponding R² results in the following table.

Table 9: R² between STS and actual performance shifts on MMLU-Pro induced by SFT on LIMO.

Metric / Model LLaMA3-8B Qwen2.5-7B Gemma2-9B

STSact 0.50 ± 0.01 0.80 ± 0.04 0.36 ± 0.03
STSICL 0.66 ± 0.01 0.61 ± 0.02 0.60 ± 0.02

As shown in the table, both STSact and STSICL are effective across models. Notably, the STSICL

values are highly consistent across the three models (0.60–0.66 with small standard deviations),
underscoring the effectiveness of this metric in predicting performance shifts.

C.6 TEST ACCURACY ON THE MATH DATASET

In Figure 5, we report downstream accuracy on the law and engineering domains. It is important
to note that the SFT process was conducted on the math dataset LIMO. In the following table,
we present the test accuracy on the Math-LightEVAL dataset before and after SFT.

Table 10: Test accuracy (%) of Qwen2.5-7B-Instruct before and after SFT on LIMO.

Before SFT SFT on LIMO SFT on STS-Guided Data

74.7 81.3 (+6.6) 80.1 (+5.4)
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Table 11: Test accuracy (%) of Qwen2.5-7B-Instruct after selectively fine-tuning.

Selected Dims Before SFT SFT on Random
Dimensions

SFT on Estimated
Shifted Dimensions

1000 74.7 74.2 75.6
3000 74.7 74.0 76.9

As shown in the table, SFT leads to a substantial improvement on Math-LightEVAL. Combined with
the observations in Figure 5, these results indicate that SFT on STS-guided data effectively enhances
math performance while maintaining the model’s capabilities in other domains.

C.7 SELECTIVELY FINE-TUNING ON ESTIMATED SHIFTED DIMENSIONS

Indeed, in our selective fine-tuning experiments, we tune the top-K dimensions rather than a single
dimension (K = 3000 in Table 11). We also evaluate K = 1000, with the results shown below.

As shown in the table, selective fine-tuning on the estimated 1000 or 3000 shifted dimensions effec-
tively improves math performance. These results further confirm that the identified shifted dimen-
sions are highly aligned with the training task.

C.8 ABLATION STUDY ON THE SPARISTY OF SAES

Following prior work, we experiment with different sparsity levels in this representation space. The
following Table reports the results using SAEs trained with varying L0 norms.

Table 12: Pearson correlation coefficients between STS and actual performance shifts on MMLU-
Pro induced by fine-tuning Gemma2-9B-Instruct on LIMO. STS is computed using SAEs with dif-
ferent L0 norms.

L0 13 22 37 63 109

Correlation 0.78 0.77 0.72 0.75 0.65

As shown in the table, increased sparsity in the SAE leads to more accurate prediction of per-
formance changes. Since stronger sparsity is generally associated with stronger monosemanticity
(Cunningham et al., 2023), these results further highlight the critical role of monosemantic repre-
sentations in our method.

C.9 PREDICTING PERFORMANCE SHIFTS BASED ON MODEL ACTIVATIONS

We conducted additional experiments to directly predict the performance improvements from SFT
using model activations. Using Qwen2.5-7B-Instruct as an example, we fine-tune the model on
LIMO and measure the performance shifts across different MMLU-Pro domains. In the following
table, we compare our method with predicting the improvements based on the model activations
(using an optimized probe).

Table 13: Comparison between STS and predictions based on model activations.

Raw Feature Activations SAE Feature Activations STS

Correlation Coefficient 0.03 0.08 0.79

As shown in the table, neither raw activations nor SAE feature activations exhibit meaningful cor-
relation with the actual performance shifts. These results suggest that simply probing activations is
insufficient; identifying the shifted dimensions induced by SFT is essential for understanding and
predicting model behavior during the fine-tuning process.
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C.10 ADDITIONAL DISCUSSION ON FIGURE 2B

As shown in Figure 2(b) of the paper, we compare the raw and SAE dimensions in terms of the
proportion of total shifts captured by the top shifted dimensions. We observe that the top 1% of raw
features account for a smaller fraction, indicating that the shifts are distributed relatively uniformly
across the raw dimensions, which makes it difficult to identify the core shifted features. In contrast,
shifts in the SAE dimensions are more concentrated, highlighting the effectiveness in capturing key
shifted dimensions.

C.11 ADDITIONAL DISCUSSION ON THE MONOSEMANTICITY ASSUMPTION

We note that recent empirical works and theoretical studies (Cunningham et al., 2023; Gao et al.,
2024; Cui et al., 2025) provide consistent evidence that sparse autoencoders trained on LLMs tend to
yield monosemantic representations. These findings support the validity of relying on the monose-
manticity assumption in our method. We also believe that the monosemantic representation induced
by SAEs is a key distinction of our approach compared with traditional representation analysis tech-
niques because it allows us to identify shifted features in a semantically interpretable space and
thereby predict transferability before conducting SFT. Besides, we clarify that our method does not
require any additional curated demonstrations beyond the responses already used for SFT. In prac-
tice, we only randomly sample two responses from the SFT training set.

D THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, the use of LLMs was limited to minor language editing to improve readability. All
conceptual development, theoretical analysis, experimental design, and result interpretation were
conducted independently by the authors. Thus, the use of LLMs was purely auxiliary and had no
impact on the scientific contributions of this paper.
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