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ABSTRACT

Reliable evaluation of Al models is critical for scientific progress and practical
application. While existing VLM benchmarks provide general insights into model
capabilities, their heterogeneous designs and limited focus on a few imaging
domains pose significant challenges for both cross-domain performance comparison
and targeted domain-specific evaluation. To address this, we propose three key
contributions: (1) a framework for the resource-efficient creation of domain-specific
VLM benchmarks enabled by task augmentation for creating multiple diverse tasks
from a single existing task, (2) the release of new VLM benchmarks for seven
domains, created according to the same homogeneous protocol and including
162,946 thoroughly human-validated answers, and (3) an extensive benchmarking
of 22 state-of-the-art VLMs on a total of 37,171 tasks, revealing performance
variances across domains and tasks, thereby supporting the need for tailored VLM
benchmarks. Adoption of our methodology will pave the way for the resource-
efficient domain-specific selection of models and guide future research efforts
toward addressing core open questions.

1 INTRODUCTION

The reliable and objective performance assessment, i.e., validation of Al models is crucial for both the
measurement of scientific progress and translation into practice. Benchmarking for traditional narrow,
task-specific Al already comes with numerous challenges (Myllyaho et al., 2021), but validation
has proven to be even more complex and error-prone in the emerging field of generalist multimodal
foundation models (Schaeffer et al., 2024). In the context of Vision-Language Models (VLMs),
one issue that has received limited attention is the heterogeneous and often non-targeted nature
of model validation (Tong et al., 2024a}b). Widely used VLM benchmarks span diverse domains
and encompass a variety of tasks, providing a broad view of model capabilities across different
contexts (Fu et al.,2024b; |Liu et al., |2024; | Ying et al., 2024; |Al-Tahan et al., [2024; | Yue et al.| 2024)).

We identify three key trends that highlight the critical need for personalized benchmarking approaches:

Domain-specific benchmark demand: Numerous datasets and benchmarks are continually being
released in the general computer vision field. According to our analyses, ~400 out of the 2,700 CVPR
2024 publications propose a new or modified dataset as detailed in Appendix [A.T} These benchmarks
cover a wide range of domains, from autonomous driving to wildlife monitoring, underscoring the
need for domain-specific benchmarks.

Popular arena platforms do not scale from an individual user’s perspective: Arena-style platforms
such as Chatbot Arena or WildVision Aren{] allow users to submit single tasks and rate the outputs
of different (anonymized) models. The aggregated user ratings, in turn, can be used for the objective

!Chatbot Arena: Imarena.ai/?leaderboard; WildVision Arena: huggingface.co/spaces/WildVision/vision-
arena
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and comparative assessment of models. While this allows for personalized and domain-relevant
evaluation, large-scale assessment from a single user perspective would be cumbersome due to the
required annotation effort.

Homogeneous evaluation: Most existing VLM benchmarks (Fu et al.,[2024b}; [Yue et al.} [2024}; [Wang
et all 2024} [Zhang et all 2024c), generally evaluate models using a single question per image. While
this can suffice when large datasets are available—allowing for a broad range of tasks—domain
experts with smaller, curated datasets face a more significant limitation. From a resource standpoint,
image acquisition may also be expensive, and few tasks emerge if there is only one question per
image. Furthermore, such an approach provides little insight into whether a VLM truly comprehends
broad aspects of an image’s semantic content.

Taking these three trends together we conclude that there is a lack of guidance on how to set up a
framework that enables personalized, domain-specific benchmarking in a resource-efficient manner.
Such a framework must address the scarcity of labeled data, leverage task diversity by systematically
generating multiple questions per image, and maintain resource efficiency to ensure accessibility for
researchers working in specialized fields, such as wildlife monitoring, or autonomous driving.

In this work, we propose a resource-efficient framework for creating domain-specific VLM bench-
marks via task augmentation. Our approach transforms a single type of annotation—instance
segmentation—into a diverse set of tasks that test a broad range of perception abilities, such as object
counting, occlusion detection, brightness comparison, and more. Specifically, we focus on 2D natural
images that either (1) already include instance segmentations or (2) can be annotated using recent
advances in semi-automatic labeling tools (e.g., SAM [2024)). This approach allows even
domains with limited labeled data to efficiently generate custom evaluation tasks. Our main contribu-
tion, summarized in Figure[T] is a resource-efficient framework for creating domain-specific VLM
benchmarks via task augmentation, transforming a single type of annotation (instance segmentation)
into a diverse set of tasks. We apply this framework to create seven new domain-specific VLM
benchmarks and comprehensively evaluate 22 open and closed VLMs on over 37,000 tasks (for
the full model list see Appendix[C.I)). To establish strong reference points for model evaluation, we
collected an additional 162,946 human baseline answers corresponding to 37,171 questions across
1,704 images.
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Figure 1: Summary of contributions. (1) New concept: We propose a new framework for the
resource-efficient creation of domain-specific VLM benchmarks. It is based on the concept of
task augmentation designed for creating multiple tasks from a single existing task using metadata
annotations from multiple sources (humans, pre-defined heuristics, models). (2) 7 new datasets:
We apply our framework to generate seven domain-specific VLM benchmarks with highly reliable
reference data. As a unique feature compared to existing benchmarks, we quantify the ambiguity of
each question for each image by acquiring human answers from a total of six raters. (3) New insights:
We apply our framework to a total of 22 open and frontier closed models to demonstrate the benefit
of task augmentation and to shed light on current VLM capabilities.
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Figure 2: Framework for resource-efficient in-domain benchmarking. Starting from a single task
with fine-grained annotations (here: instance segmentations), metadata for each image is obtained
from both automatic sources (heuristics and models) and a small number of manual sources (human
annotations). This process transforms the initial task into a collection of tasks, enabling resource-
efficient and easy to use in-domain benchmarking of general VLM capabilities while maintaining
cross-domain comparability.

2 RELATED WORK

2.1 VISION-LANGUAGE BENCHMARKS

Recent studies propose a range of evaluation benchmarks for VLMs, varying in size, number, and
type of VL capabilities. Examples include Blink and MMBench
(>3,000 multiple-choice questions each), and MME (Yes/No questions on
perception and cognition). The largest benchmarks include MMT-Bench 2024) (>31,000
questions), MME-RealWorld (Zhang et all, 2024c) (>29,000 image-question pairs), and MMMU
(>11,500 questions). While these benchmarks cover multiple VL capabilities
and domains, they require extensive labeling efforts. For example, MME-RealWorld involved 25
annotators and seven VLM experts, MMMU relied on 50 college students, while MMT-Bench lacks
details on annotator numbers. Other benchmarks focus on much smaller question sets (Chen et al.
2024; [Yu et al.| 2024), integrating multiple existing benchmarks (Jiang et al.| 2024} [Al-Tahan et al.
2024), or collecting individual human preferences (Lu et al., [2024; [Xu et al.} 2023). [Tong et al
(20244) present a critical examination of multimodal LLM benchmarks.

Despite the variety of datasets and tasks, a resource-efficient and generalizable approach that enables
extensive evaluation of VLMs across multiple (domain-specific) tasks is still lacking. Our framework
addresses this gap by empowering users to create domain-specific VLM perception benchmarks from
just a few images.

2.2 TASK AUGMENTATION AND METADATA

Task augmentation refers to generating multiple diverse tasks from a single existing task (Muennighoff
et al.l [2023). While task augmentation has been addressed from various directions (Johnson et al.,

2017} Zhang et al., 20244; [Zamir et al., [2018a; [Wang et al, 2023} 2024} [Kuznetsova et al., [2020;

Krishna et al.| 017) an easy to use framework for evaluating VLMs by domain users on their own

images is still missing. The closest works to ours are[Zhang et al.| (2024a) and [Zhang et al.| (2024b),

which programmatically generate benchmarks using a library of visual assets and task templates. A
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Figure 3: Our framework yields a diverse set of tasks. (a) The spider diagram illustrates high
Accuracy variability across tasks for the VLMs. We present the results of all the best ranked models
while a comprehensive performance summary for all 22 tested models can be found in Appendix [C.7]
(b) Based on a single image with instance segmentations, our framework enables the generation of
25 tasks from eight different vision-language categories, ranging from pixel-level to image-level
perception.

comprehensive comparison to other task augmentations works and their applicability is provided
in Appendix[AZ3]

2.3 RESOURCE-EFFICIENT VLM BENCHMARKING

Most existing benchmarks often focus on performance metrics without considering the human and
computational resources required to generate a benchmark (see, e.g., (Fu et al.} 2024}, [Liu et all}
[2024)). The work that has been done on efficient benchmarking has been focused in the realm of
unimodal language models (Polo et al., 2024} [Perlitz et al.| 2023). An exception has been|Ging et al|
(2024), who investigated the automatic creation of VLM benchmarks from classification datasets.
Nevertheless, the increasing prominence of VLMs in research and industry (Li et al., 2024} [Yang
2023) is not yet reflected in efforts to increase efficiency during benchmark creation.

3 METHODS

3.1 FRAMEWORK FOR RESOURCE-EFFICIENT IN-DOMAIN BENCHMARKING

The framework for resource-efficient in-domain benchmarking is depicted in Figure 2] Starting
with domain images that include instance segmentations (existing or created with semi-automatic
labeling tools, such as SAM 2024)), metadata for each image is acquired from multiple
sources (humans, pre-defined heuristics, and models) to transform the single task into a collection of
perception tasks.

For our seven new datasets, we use existing instance segmentation as the core perceptual task to
generate the diverse set of VLM benchmark tasks depicted in Appendix [A-4] (examples in Figure 3]
and more detailed in Appendix [B.2).

The metadata enrichment is derived from three sources:

1) Human annotators were used to generate information that cannot be extracted from the existing
annotations or using established models. To this end, we outsourced annotations to a professional
annotation company (Quality Match GmbH in Heidelberg). Specifically, human raters were tasked
with determining the presence of occlusion and truncation in the images. Furthermore, they were
asked to assess the direction in which the objects were facing. These annotations cost ~27 USD on
average with a total turnover time of two days.

2) Pre-defined heuristics and rules were employed to transform existing information into metadata.
For example, instance segmentations were utilized to quantify the number of objects within a specific
class or to determine whether specific instance segmentation masks were touching each other.
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Domain | Icon | #Images | #Objects | #Tasks | #H Annotations
Wildlife @ 268 853 5,528 24,024
Persons ; 250 7,812 6,122 26,548
Vehicles | = 235 2,199 5,219 22,976
Animals ‘4 273 1,162 5,724 24,907
Kitchen O\ 272 2,143 5,332 23,793

Food o 236 5,673 5,249 23,221

Kitti = 170 1,458 3,997 17,477

Total 1,704 21,300 | 37,171 162,946

Table 1: Dataset statistics across different domains. The table presents the total number of images,
objects, tasks, and human annotations across all domains.

3) An existing depth foundation model, Depth Anything v2 (Yang et al.}[2024), was used to generate
depth maps for each image.

3.2 SEVEN NEW DATASETS FROM DIVERSE DOMAINS

We applied our proposed framework to images from seven different domains. Overall, the input
images and instance segmentations for our framework were extracted from KITTI (Geiger et al.|
2012), COCO (Lin et al.,|2014), and COCONut (Deng et al.l 2024). In summary, we added 300,000
metadata annotations to a total of 1,704 images across seven domains. This includes 15 annotations
per object (e.g. occlusion, relative_size, segmask_touches_segmask, or average_depth). For truncation,
occlusion, and direction, we obtained up to five annotations per object from human annotators (UL
example is displayed in Appendix[A.2). Early stopping was applied when four annotators reached a
consensus. The complete list is provided in Appendix Table 4]

The metadata were then used to define a set of 25 different VLM tasks (see Figure[3)), including six
tasks concerning the entire image, 13 related to individual objects, and six focused on object pairs.

Setup for automatic task processing after metadata extraction: To create a concrete list of vision-
language tasks for each image we employed a systematic process. We began by prioritizing images
in the datasets that featured a higher number of classes and objects to maximize task diversity and
complexity. Next, specific criteria for each task were evaluated to ensure appropriate task generation
for each image. For instance, in tasks requiring the comparison of two objects, it was essential
that both objects were present in the image and belonged to the relevant classes. Furthermore, we
established minimum thresholds for various measures, such as requiring a substantial depth difference
between objects, to ensure the correct answers for the task could be reliably determined. Overall, our
objective was to generate as many of the 25 different tasks as possible for each image. No LLMs or
VLMs were used for task generation, as these methods are prone to injecting hallucinations (Wang
et al.,[2023}2024)). We prioritized quality and reliability instead.

Human ambiguity baseline: To rate the difficulty and ambiguity for each of the 37,171 tasks, we
further acquired annotations from six human raters per image. We implemented early stopping if four
raters reached agreement on a task. Overall, this resulted in 162,946 human reference annotations.
An overview of the resulting datasets is provided in Table [Thnd exemplary images for all generated
datasets are included in Appendix [B]

3.3 BENCHMARKING STRATEGY

VLM benchmarking results can vary substantially with various factors, such as the images used, the
domain, and the applied prompts. This often renders comparison of results across papers infeasible.
For example, Accuracy is a prevalence-dependent metric, meaning that results should not be compared
across datasets. To address this bottleneck, we fully homogenized our benchmarking framework
using the proposed framework.
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Overall Wildlife Animals Kitti Person Vehicles Food Kitchen

® % w | = ® Q

Human 93.7 93.4 93.9 94.6 95.2 924 93.6 92.6
Gemini_1.5_pro 72.4 74.6 75.4 78.0 70.8 71.7 70.0 66.6
GPT-40 69.8 714 71.4 76.2 69.0 69.3 67.0

Claude_3.5_Sonnet [[N69I08N  73.7 72.4 67.8 65.7 63.8
Qwen2_72B 68.8 70.8 75.0 61.7 64.7
Llama_3.2_90B 65.9 71.3 70.2 68.6 646 63.1 62.9 60.8

Gemini_1.5flash | 657 QEISIN 702 708 602 652  6L1 610

Table 2: The rankings of models differ strongly across the tested domains. Model Accuracies
across different generated datasets. The *Overall’ column represents the mean accuracy across all

datasets. 1st place (Gold) 2nd place (Silver) . 3rd place (Bronze) 4th place

5th place 6th place. Only the top six models are shown. The *Overall’ column represents
the mean accuracy across all datasets. Due to space constraints, results for additional models are
provided in Appendix Table[9} Note that Accuracy does not account for shared images between
questions; this issue is addressed in FigureEl

Model selection: We selected 22 frontier and open VLMs of various sizes and from various providers
and sources, as illustrated in Appendix [C.1} The oldest model was released in January 2024, while
the most recent one included was released at the end of September 2024.

Benchmarking workflow: To ensure fair and consistent evaluation of all selected VLMs, we
developed a standardized benchmarking workflow applied uniformly across all models. We assessed
them in a zero-shot setting without any additional fine-tuning or domain-specific training. We strictly
followed the configurations and setups recommended by each model’s authors, using the exact
settings provided in their official repositories (e.g., on Hugging Face) to ensure that each model was
evaluated under conditions intended by its creators. Each model was provided with a carefully crafted
text prompt alongside the corresponding image. To eliminate potential ambiguities in the questions,
we conducted iterative testing of these prompts among human evaluators in our department. Through
four rounds of refinement, we adjusted the prompts until all four human evaluators consistently
agreed on their interpretation. Furthermore, we evaluated the sensitivity of the VLMs to variations in
image markers, as many questions involved marked objects. Altering the box colors used to highlight
objects—from green and red to other colors—resulted in slight performance fluctuations in both
directions across different VLMs. To maintain consistency, we used the commonly recognized colors
red and green, assigning them to objects at random.

VLM tasks: We evaluated the models on a comprehensive set of 25 tasks derived from our task
augmentation framework (overview in Figure 3] full list in Appendix [A.4]and examples per dataset
in Appendix [B). Each task was associated with specific evaluation criteria and standardized prompts.
For instance, when dealing with multiple-choice questions or tasks involving object selection, we
established clear guidelines on how options were presented and how objects were chosen within
images. This attention to detail ensured that the evaluation was both rigorous and reproducible.

Metrics and rankings: Choosing an adequate strategy for performance assessment is far from trivial
and a research topic of its own (Maier-Hein et al., 2024} Reinke et al., 2024)). In this work, we
were specifically interested in relative performance differences rather than in the specific ability of
VLMs to serve a specific task. To obtain aggregated performance values across images, we define the
Accuracy % (t) metric with a threshold ¢ € [0, 1]. For each image 4 in a dataset D, let Q; denote the
set of questions associated with that image. Let C; 4, € {0, 1} indicate whether model m correctly
answered question ¢ for image 7 (1 for correct, 0 otherwise). The model m is considered to meet the
threshold ¢ on image 7 if the fraction of questions ¢ in (); answered correctly by the model is at least
t. Formally, we define:

Accuracy%,, (t) =
1
o2 I((1d1 > Cigm) =t) x 100
i€D q€Q;
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Here, I(-) is an indicator function defined as:

1, ifx>t
I > t — ) — b
(z21) {O, otherwise.

Explanation:

Y 1€Q; C},q,m: Total number of correctly answered questions for image i.
. 1 . . . . . .
tenl > 4cq; Ci,q,m: Fraction of questions answered correctly for image i.

* t € [0, 1]: Desired minimum accuracy level assessed for each Q);.

4 EXPERIMENTS AND RESULTS

The primary purpose of our experiments was to showcase the benefit of our task augmentation
approach (sec. [4.1). To assess the value of each task for VLM benchmarking, we related it to average
model performance, resources needed to create the task, and corresponding human ambiguity (sec.
M.2). Finally, we leveraged our concept and data to explore the capabilities of the most recent open
and closed VLM (sec. [4.3]).

4.1 BENEFIT OF THE PROPOSED FRAMEWORK

Figure [2] shows aggregated performance values for all models, separated by imaging domain. As the
tasks and prompts were homogenized, the results clearly indicate that performance varies substantially
across domains, supporting the hypothesis that in-domain validation is crucial for real-world transla-
tion. Note that this holds true despite the fact that we purposely chose domains that are relatively
common (presumably captured in the model training) and closely related to one another.

Furthermore, as shown in Figure [3p, the performance of models varies substantially across VLM
tasks, suggesting that the tasks generated by our framework are diverse. The hardest tasks on average
across domains are (1) T7.2 “Jigsaw Puzzle Completion”, (2), T1.2 “Object Counting”, (3), T7.1
“Rotated Jigsaw Puzzle Completion”, (4), T2.1 “Object Occlusion Detection”, and (5) T5.2 “Second
Brightest Image Selection”. The easiest task on average was T1.3 “Additional Object Presence
Detection” (see Figure 24).

4.2 HUMAN AMBIGUITY

As demonstrated in Appendix [C.3] there is a high discrepancy in task rankings between humans and
models. While the “Jigsaw Puzzle Completion” tasks ranked amongst the most challenging for the
models, humans found ”Object Occlusion Detection” and “Object Touching Detection” to be the
most difficult.

From a resource perspective, tasks should be (1) hard to solve for models and (2) require as little
human annotation as possible. This potential trade-off is captured in Appendix [subsection C.6 It
can be seen that many hard tasks, including the top four, can already be extracted from instance
segmentations alone.

4.3 INSIGHTS ON CURRENT MODELS

Figure [ summarizes the performance of a model selection and reference baselines. Further detailed
analysis, including all tested models, examples, and errors for each generated dataset are provided in
the Appendix. The following insights can be extracted:

Confirming common findings from the community: Our analysis confirms well-known trends:
closed models still outperform across tasks, though open models have notably narrowed the gap. In
particular, Qwen2 72B stands out as the strongest performer among open models. The superiority of
human evaluation remains evident, with human raters achieving near-perfect performance on most
tasks, though they notably struggle with specific challenges such as counting, occlusion, and direction-
related tasks—counting being particularly problematic. Regarding model scaling, larger variants
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(b) The Area under the Accuracy%(t) Curve serves as a metric for comprehensive image understanding.
With a maximum possible value of 1, higher values indicate better performance. Notably, the current
state-of-the-art model, Gemini_1.5_pro, achieves only 0.53, highlighting significant room for improvement.
Only the top 10 models are shown. Curves for all 22 models and datasets are displayed in Appendix@

Figure 4: Performance varies across domains, highlighting the need for specialized in-domain
evaluation; even the best models still lag behind human performance. The Accuracy%(t) metric
represents the percentage of images for which at least a specified proportion of questions are correctly
answered. It can (a) be computed for specific thresholds or (b) be aggregated over multiple thresholds
to remove dependence on a specific t. The Area under the Accuracy%(t) Curve captures model
performance in a single value, ranging from 0.37 to 0.53 for the top 10 models tested.

typically show better performance, with some notable exceptions such as Molmo 7B outperforming
Pixtral 12B.

Interesting new findings: The need for specific in-domain evaluation is highlighted by the high
performance variability across imaging domains for the same tasks, see Table[2]and Figure[2] The
overall best model, Gemini 1.5 Pro, varies between domains from 22% (Kitchen) to 72% (Kitti).
Qwen2 72B slightly surpasses Gemini 1.5 Pro on the kitchen and animals datasets but ranks only
fifth on the person dataset. Additional insights emerge from model comparisons, with Qwen2
7B consistently outperforming Molmo 7B across most datasets, and Gemini Flash 1.5 showing
superior Point Depth Comparison capabilities over Gemini Pro. These results indicate that our newly
introduced metric, Accuracy%(t), can effectively capture model performance in a single value.

5 DISCUSSION

This paper contributes to the advancement of VLM benchmarking in three ways:

1) Framework for resource-efficient and domain-specific benchmarking: We showed that task
augmentation, using instance segmentation as the root task, enables the generation of a diverse set
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Figure 5: Our framework yields a diverse set of tasks. Exemplary tasks that were generated with
the framework for a given image. A broad range of examples and errors for each generated dataset is
provided in Appendix

of VLM tasks and could thus evolve as a core method for resource-efficient domain-specific VLM
benchmarking. The insights gained on the varying difficulty of presented VLM tasks will further
guide the design of future benchmarks. The framework can be easily applied to other domains, even
with a small number of images. The computational and monetary costs for each generated dataset are
minimal and displayed in Appendix [A.6]

2) Seven new openly available datasets: Our seven new datasets will help assess generalist capabili-
ties of future VLMs. Furthermore, we release the six human annotations per task (totaling 162,946
annotations) to assist researchers working on human annotations.

3) New insights: The insights on current capabilities of closed and open VLMs highlight the
narrowing gap between closed and open models. Most importantly, we showcased the need for
domain-specific validation. Core strengths of our contribution include the broad applicability of our
concept, the open dataset and benchmark contribution, and the wide range of state-of-the-art closed
and open models investigated.

As an implicit contribution, we introduced the new metric Accuracy%(t), which offers several
key strengths. First, it captures model performance in a single very intuitive value. The metric is
extendable with additional tasks, allowing for gradually increasing difficulty, and can be adapted to
evaluate domain-specific tasks effectively. It is worth mentioning, however, that the specific properties
of the metric require further analyses (Reinke et al., [2024). For example, some questions require
specific image conditions, such as the presence of multiple objects for comparison. This can result in
a varying number of questions per image, which, in turn, has an influence on the metric. Furthermore,
tasks are treated equally without any weighting, which may overlook differences in task difficulty or
importance. Users can, however, easily modify the weighting scheme to better reflect their specific
evaluation priorities.

A limitation of our work is model family dependence, as many models come from closely related
families, which may hinder statistical analysis. For closed-source models, specific information about
training and data is often unavailable, creating transparency issues. We provide further statistical
analysis, such as ranking variability in Appendix [C] Model performance showed small variations
with prompt phrasing, which we mitigated through iterative testing for consistency. Additionally, our
human annotations were performed by professional annotators, which may introduce ambiguity since
annotators aim to complete tasks quickly.

Future work should focus on expanding the number of tasks generated, further enhancing the diversity
and comprehensiveness of VLM benchmarks. Additionally, our method can be adapted to different
domains with domain-specific questions or scaled up to support continuous extension, providing a
versatile approach for evaluating models across diverse applications.

CODE / DATASETS / HUMAN ANNOTATIONS

Code, datasets, and annotations will be made available.
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We provide further detail on i) the ressource-efficient framework, ii) the seven generated domain-

specific datasets, and iii) the benchmarking insights and model evaluations.

IMPACT STATEMENT

This paper advances Machine Learning by enabling researchers to benchmark with their own data on
a minimal budget. All human annotations were sourced from a reputable company following ethical

guidelines.
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A  RESOURCE-EFFICIENT VLM BENCHMARKING FRAMEWORK

A.1 CVPR 2024 PAPER ANALYSIS

CVPR 2024 Manually verified papers | Agreement LLMs and
Human verification

Total number of papers 2,708 | - -

With new or modified dataset: 397 40 (10%) 1

Without new or modified dataset: | 2,311 | 50 (2%) 1

Table 3: A notable portion of CVPR 2024 papers contribute new or modified datasets, highlight-
ing a rising trend in dataset-focused research. CVPR 2024 paper analysis summary.

We analyzed all papers from CVPR 2024 using three different large language models (LLMs). If
the majority of models indicated that a paper introduced a new or modified dataset, we tagged it
accordingly. This process identified 397 publications proposing a new or modified dataset. To validate
the accuracy of the tagging, we randomly selected 10% of these flagged papers for a human review.
All human-verified publications were confirmed to propose a new dataset.
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A.2 EXAMPLE OF HUMAN GENERATED METADATA

Which direction is the animal facing?

10730

left left and front right and front

back

Q)

Can't Solve

{

Figure 6: Example of human-generated metadata enriching object annotations in initializa-
tion tasks. These annotations demonstrate the process of enriching objects with human-provided
metadata during the initial setup phase. The visual displays in the instructions enable consistent

annotations (Radsch et al.} [2023).
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A.3 METADATA SOURCES

Human Raters

Attribute Description

Occluded Object occluded or fully visible (other object in front)
Truncated Object truncated or fully visible (edge of image)
Direction Direction the object is facing

Existing Annotations

Attribute Description

relative_size

Relative size compared to image size

bbox_touches_bbox

Bounding box touching another bounding box

segmask_touches_segmask

Segmentation mask touching another segmentation mask

segmask_touches_segmask_with

Specific segmentation masks touching each other

segmentation_area

Area covered by segmentation

brightness_score

Brightness score

michelson_contrast_score

Michelson contrast score

bbox_x_min, bbox_y_min,
bbox_x_max, bbox_y_max

Bounding box coordinates

class_name

Class name of the object

Model Generated

Attribute

Description

average_depth

Average depth of the object

top_95_depth

Depth of the top 95% portion of the object

bottom_5_depth

Depth of the bottom 5% portion of the object

Table 4: Overview of metadata sources used for enriching instance segmentation datasets.
Metadata was created from existing annotations, specialized models, or manually annotated by

human raters.
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A.4 VLM TASKS OVERVIEW

Here we present the VLM tasks overview and its corresponding meta categories in [Figure 7} Further
information on each task is provided in[Table 5|on the next page.

Wrixel-level
Crop-level
Image-level

|
l_._l T1
I_- _l Object Detection

Color and
Reflectance Analysis

1610
- Depth Perception
1
ey Left Rotation of Image 1.704
 Object L& Ji 77,
1,571 s Ot o et & 9say, Pus 2
Q\ed W gs%,? 7>2/e Image 1,5, Spat|a| P e
GO TS &g Q o%( )f’l‘et,'-cf M Relationships uzzle Solving
* RN (90 ~'¢$°7 'E?Q %'5 % f 500 /Ip‘/?e/
N KIS =5 o e g
o ‘é' '74,3”! 72 % 3%3@" »%,% 2
7 FERE3NGR Y > T
X 2 3 % 9, 2 Object Interaction Image Variant
& A @f & ..:.: 5 2 0 and Orientation Analysis
Y S ) 2
T B . %
.y s e 2

Figure 7: Our framework yields a diverse set of tasks. Based on a single image with instance
segmentations, our framework enables the generation of 25 tasks from eight different vision-language

categories, ranging from pixel-level to image-level perception.
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ID Task Name Task Description Answer Type
TI1.1 Is Object Present | Determines whether a specified object is present in the | Binary
image.
T1.2 | Count Objects Determines the number of objects in the image Count
T1.3 | Is Oth Object | Determines whether or not there is more than one object | Binary
Present in the image
T2.1 Is Object Oc- | Determines if the specified object is partially or fully | Quiz (A/B/C/D)
cluded occluded.
T2.2 | Is Object Trun- | Determines if the specified object is truncated in the | Binary
cated image frame.
T2.3 | Blur Object Determines whether an object is blurred Quiz (A/B/C/D)
T2.4 | Noise Object Determines whether an object contains noise Quiz (A/B/C/D)
T2.5 Blur Of Image Determines which image variant is least blurred Quiz (A/B/C/D)
T2.6 Noise Of Image | Determines which image variant is not corrupted Quiz (A/B/C/D)
T3.1 Size Compari- | Determines which of two objects is larger Color
son
T3.2 Horizontal Com- | Determines which object is further to the left of the | Color
parison image
T3.3 | Vertical Compar- | Determines which object is further to the bottom of the | Color
ison image
T3.4 | Is Oth Object | Determines whether there is another image further to the | Binary
Left left of an object
T3.5 | Is Oth Object | Determines whether there is another image further to the | Binary
Lower bottom of an object
T4.1 Is Object Touch- | Determines if two objects are touching each other Binary
ing other Object
T4.2 | Is Object Facing | Determines if the object is facing the camera Quiz (A/B/C/D)
Camera
T5.1 Color  Object | Determines which of four tiles show the correct color | Quiz (A/B/C/D)
Matching for the given image
T5.2 2nd  Brightest | Determines which of the images is the 2nd brightest | Quiz (A/B/C/D)
Image image
T5.3 | Color Of Image | Determines which image variant is not corrupted Quiz (A/B/C/D)
T5.4 | Brightness Com- | Determines which of two points is brighter Binary
parison of Two
Points
T6.1 Depth Compari- | Determines which of two objects is closer to the camera | Color
son
T6.2 | Depth Two | Determines which point is closer Binary
Points Image
T7.1 Jigsaw rotation | Determines which of four rotated tiles fits best into a cut | Quiz (A/B/C/D)
Puzzle out area of the image
T7.2 Jigsaw  Puzzle | Determines which of four tiles fits best into a cut out | Quiz (A/B/C/D)
Image area of the image
T8.1 Rotation Of Im- | Determines which image variant is not rotated Quiz (A/B/C/D)
age

Table 5: Overview of VLM Benchmark Tasks generated with the framework. We provide a small
task description and answer type for each generated task. Examples across datasets are displayed

in[subsection B.1
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A.5 TASK AUGMENTATION METHODS COMPARISON

Metric CLEVR Task Me Taskonomy Wang 2023 JourneyBench ProVision Ours
Anything
Johnson Zhang et al. Zamir et al. Wang et al. Wang et al. Zhang et al. Ours
et al.|(2017) (2024a) (2018b) (2023) (2024) (2024b)
V] (partly,
Real images/objects X needs scene “ V| X v/ v/
graph)
Diversity core 4 V| V| V| V| V| v/|
perception tasks (subjective)
. . ‘Strong' Not relevant, no X (2,200 hours
Focus on resource Synthetic synthetic )
. new tasks/data X of human V| V|
efficiency data data focus can be added .
and flexible annotation)
e | @ | om | x| Bewe [ 2 | @
and benchmark / poss1blz, butno
Easily extendable code)
Not reliant on
generative models “ “ 4 X X X 4
Object-centric v/| v/| X v/| X (hard to say) v/ V|
Validated across
multiple visual X X X V| V| v/| V|
content domains
Human Ambiguity
Scores X X X X X X V|
Easily scalable 4 V] X 4 4 v/ 4
Task creation code
reato v v X X v v V]
(imited -
Evaluated on SOTA X #of X 4 (but SOTA* —](llmlFEd # of X %
. proprietary
VLMs proprietary 2023)
models)
models)

Table 6: Our framework uniquely combines comprehensive evaluation capabilities with method-
ological advantages. Systematic comparison of task augmentation approaches across key metrics,
highlighting distinct features in VLM evaluation, programmatic task generation, and efficiency mea-
sures relative to existing frameworks.

Our work is positioned within the broader context of research on large VLMs, programmatic task
generation and task augmentation. A comparison to other relevant work (Johnson et al.,|2017; |Zhang
et al,[2024a; [Zamir et al.} 2018b; [Wang et al.,[2023} 2024) is provided in

We deliberately excluded large datasets primarily designed for task generation, such as Visual
Genome (Krishna et al.| [2017)) and the Open Images Dataset (Kuznetsova et al., |2020), as these
datasets are not suitable for directly using their own images for evaluation. Instead, our focus is
on empowering domain-specific users to efficiently test a wide range of capabilities with a small
number of real-world images containing relevant objects, while operating under limited resources.
For instance, the human annotations required to generate the tasks in our framework can be achieved
at a minimal cost of approximately $27 USD (average across all seven datasets). Our approach is
complementary to existing research, offering a lightweight and accessible alternative for specific use
cases. Thus enabling researchers and practitioners to iterate more quickly and effectively in the right
direction.
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A.6 COMPUTATIONAL AND MONETARY COST

. Metadata Enrichment Perception
Domain | Icon Pre-defined Task
. ML Model | Human Annotations .
Heuristics (in seconds) | for task generation Generation
(in seconds) ‘ ) ke (in seconds)
wildlife | © 15 50 124
Persons | | 354 496 ~ 273 USD 160
Vehicles | = 73 211 on average 129
' “ per dataset
Animals | 41 138 (2-day average 129
Kitchen | & 48 156 turnover) 161
Food | *® 295 117 144
Kitti & 23 108 146

Table 7: Our framework is resource-efficient in both computation and cost. Displayed are the
timings (in seconds) for metadata enrichment and question generation across domains, demonstrating
the scalability and efficiency of our approach. Annotation costs averaged $27 per dataset, calculated
based on the number of objects and manually added metadata points. The turnover time for task

annotations was two days. All computations were performed on an RTX 3090 GPU and Ryzen 9
5900X CPU.
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B DOMAIN-SPECIFIC DATASETS

B.1 ANIMALS DATASET EXAMPLES

Question: Question:

How many cows are visible in the image? Please respond only with Each cow is marked with a coloured bounding box.

the number. Which cow is closer to the camera? Only respond with the color of the
bounding box.
Answer: Red

Question:

Question:

Each cow is marked with a coloured bounding box. Which cow is Each cow is marked with a colored bounding box.
further to the left in the image? Only respond with the color of the Which cow occupies more pixels in the image? Only respond with the
bounding box. color of the bounding box.

Answer: Red Answer: Green

IBack to Appendix Table of Contents| | Page 10




Question: Question:
Which point is brighter? Please only respond with the letter. Which tile fits best in the image? Please respond only with the letter..
Answer: B Answer: A

Question:

Which tile shows the correct color pattern? Please respond only with
the letter.

Answer: B

IBack to Appendix Table of Contents| | Page 11




B.2 PERSON DATASET EXAMPLES

University of lowa | digital.lib.uiowa.edulictcs

Question:

One person is marked with a bounding box. Is there another person in
the image? Please respond only with yes or no.

Answer: Yes

University of lowa | digital.lib.uiowa.edulictcs
Question:
Each person is marked with a coloured bounding box. Which person is
closer to the camera? Only respond with the color of the bounding
box.
Answer: Green

University of lowa | digital.lib.uiowa.edulictcs

University of lowa | digital.lib.uiowa.edulictcs

Question:

The person is marked with a coloured bounding box. Is the marked
person (A) fully visible (B) slightly occluded up to 50%. (C) occluded
more than 50% or (D) cannot tell? Please respond only with the letter.
Answer: C

Question:

The person is marked with a coloured bounding box. Is the marked
person truncated? Truncated means that the object is cut off af the
edge of the image. Please respond only with yes or no.

Answer: Yes

IBack to Appendix Table of Contents| | Page 12




University of lowa | digital.lib.uiowa.edulictcs

Question:

Which image variant is the second brightest version of the image?
Please respond only with the letter.

Answer: D

Question:
Which point is brighter? Please respond only with the letter.
Answer: A

Question:

Which tile fits best in the image? Please respond only with the letter.

Answer: B

IBack to Appendix Table of Contents| | Page 13




B.3 FooOD DATASET EXAMPLES

Fod Dataset

. *I\
B v i
5

Question:

How many bananas are visible in the image? Please respond only
with the number.

Answer: 6

Question:
Each banana is marked with a coloured bounding box. Which banana
occupies more pixels in the image? Only respond with the color of the
bounding box.

Answer: Red

Question:
The banana is marked with a coloured bounding box. Is the marked
banana (A) fully visible (B) slightly occluded up to 50%, (C) occluded
more than 50% or (D) cannot tell? Please respond only with the letter.
Answer: B

Each banana is marked with a coloured bounding box. Which banana is
closer to the camera? Only respond with the color of the bounding box.
Answer: Red
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Question: Question:

Which image variant is not corrupted? Please respond only with the Which image variant is not corrupted? Please respond only with the
letter. letter.

Answer: A Answer: C

Question:

One banana is marked with a bounding box. Is there another banana
further to the left in the image? Please respond only with yes or no.
Answer: Yes

[Back to Appendix Table of Contents|| Page 15




B.4 VEHICLES DATASET EXAMPLES

-=-\/ehicles Dataset

Question:

The boat is marked with a coloured bounding box. Is the marked boat
truncated? Truncated means that the object is cut off at the edge of
the image. Please respond only with yes or no.

Answer: No

Question:

Which image variant is not rotated? Please respond only with the
letter.

Answer: C

Question:

The boat is marked with a coloured bounding box. Is the marked boat
(A) fully visible (B) slightly occluded up to 50%, (C) occluded more
than 50% or (D) cannot tell? Please respond only with the letter.
Answer: A

Question:

Each boat is marked with a coloured bounding box. Which boat is
further to the left in the image? Only respond with the color of the
bounding box.

Answer: Red
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Question:
Which tile fits best in the image? Please respond only with the letter.
Answer: D

Question:

Which image variant contains the smallest amount of blur? Please
respond only with the letter.

Answer: D

Question:
Which point is closer? Please respond only with the letter.
Answer: A
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B.5 WILDLIFE DATASET EXAMPLES

Wildlife Dataset

Question:

The coloured bounding box marks an area of interest. Is there a giraffe
in the bounding box? Please respond only with yes or no.

Answer: No

Question:

Each zebra is marked with a coloured bounding box. Which zebra is
closer to the bottom of the image? Only respond with the color of the
bounding box.

Answer: Red

Question:

The zebra is marked with a colored point. Does the zebra touch another
zebra? Touching means that the pixels of one zebra are directly next to
the pixels of another zebra. Please respond only with yes or no.

Answer: Yes

Question:

Each zebra is marked with a coloured bounding box. Which zebra is
closer to the camera? Only respond with the color of the bounding box.
Answer: Green
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Question:

Which image variant is not rotated? Please respond only with the
letter.

Answer: D

Question:
Which tile fits best in the image? Please respond only with the letter..
Answer: C

Question:

The zebra is marked with a coloured bounding box. Is the marked
zebra truncated? Truncated means that the object is cut off at the
edge of the image. Please respond only with yes or no.

Answer: No
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B.6 KITCHEN DATASET EXAMPLES

Q_ Kitchen Datase
y

Question:

How many forks are visible in the image? Please respond only with the
number.

Answer: 2

Question:

The fork is marked with a colored point. Does the fork touch another
fork? Touching means that the pixels of one fork are directly next to the
pixels of another fork. Please respond only with yes or no.

Answer: Yes

Question:

Each cup is marked with a coloured bounding box. Which cup is closer
to the camera? Only respond with the color of the bounding box.
Answer: Green

Question:
Which point is closer? Please respond only with the letter.
Answer: B
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Question:

Each fork is marked with a coloured bounding box. Which fork is closer
to the bottom of the image? Only respond with the color of the
bounding box.

Answer: Red

Question:
Which tile fits best in the image? Please respond only with the letter..
Answer: B

Question:

Each cup is marked with a coloured bounding box. Which cup occupies
more pixels in the image? Only respond with the color of the bounding
box.

Answer: Green
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B.7 KITTI DATASET EXAMPLES

- Kitti Dataset

Question:

The coloured bounding box marks an area of interest. Is there an car in
the bounding box? Please respond only with yes or no.

Answer: Yes

§« |
| l
- ‘i
Question:

Which of the four tiles fits best in the image? Please respond only with
the letter.
Answer: B

Question:

The car is marked with a coloured bounding box. From the cameras
perspective, is the car (A) facing somehow towards the camera, (B)
facing left, (C) facing backwards away from the camera or (D)
facing right? Please respond only with the letter.

Answer: A

Question:

Each car is marked with a coloured bounding box. Which car is further
to the left in the image? Only respond with the color of the bounding
box.

Answer: Green
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Question:

Which image variant is the second brightest version of the image?
Please respond only with the letter.

Answer: D

Question:

Which image variant is not corrupted? Please respond only with the
letter.

Answer: C

Question:
Which point is brighter? Please respond only with the letter.
Answer: B
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B.8 API ERRORS AND SAFETY SETTINGS OF THE GEMINI API

When conducting experiments with the Gemini API, we had to modify the default safety settings to
accommodate our use case, which was already surprising. While the text safety settings could be
adjusted, the image safety settings were locked and required access through a higher-tier customer
account. This limitation was particularly notable given that our experiments exclusively involved
standard computer vision images. Consequently, this restriction resulted in 2% of our tasks remaining

unanswered. In|Figure 8|and [Figure 9| we display some tasks that triggered the safety settings.

&"? B

g

Figure 8: Safety systems in vision-language models can be triggered by benign inputs. Example
showing an image that activated Google Gemini’s content filtering mechanisms despite containing no
harmful content.

Figure 9: Safety systems in vision-language models can be triggered by benign inputs. Example
showing an image that activated Google Gemini’s content filtering mechanisms despite containing no
harmful content.
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C BENCHMARKING INSIGHTS AND MODEL EVALUATIONS

C.1 VLM MODEL OVERVIEW
Access | Size | Name Version Organization Release Date
Closed - GPT-40 gpt-40-2024-08-06 OpenAl 2024-08-08
Closed - GPT-40-mini gpt-40-mini-2024-07-18 OpenAl 2024-07-18
Closed - Gemini 1.5 Pro gemini-1.5-pro-001 Google 2024-05-24
Closed - Gemini 1.5 Flash gemini-1.5-flash-001 Google 2024-05-24
Closed - Claude 3.5 Sonnet claude-3-5-sonnet-20240620 | Anthropic 2024-06-20
Open 1B InternVL2-1B InternVL2-1B OpenGVLab 2024-07-04
Open 8B InternVL2-8B InternVL2-8B OpenGVLab 2024-07-04
Open 40B InternVL2-40B InternVL2-40B OpenGVLab 2024-07-04
Open 7B Qwen2 7B Qwen2-VL-7B-Instruct Alibaba 2024-08-30
Open 72B Qwen2 72B Qwen2-VL-72B-Instruct Alibaba 2024-08-30
Open 7B LLaVA-NeXT 7B llava-v1.6-mistral-7b-hf U. of Wiscon- | 2024-01-30
sin—-Madison
Open 34B | LLaVA-NeXt34B lava-v1.6-34b-hf U. of Wiscon- | 2024-01-30
sin—Madison
Open 7B Chameleon 7B chameleon-7b Meta 2024-05-16
Open 4.2B | Phi-3 Vision Phi-3-vision-128k-instruct Microsoft 2024-04-23
Open 4.2B | Phi-3.5 Vision Phi-3.5-vision-instruct Microsoft 2024-08-20
Open 770M | Florence-2 Florence-2-large-ft Microsoft 2024-06-15
Open 3B PaliGemma 3B 224x224 | paligemma-3b-mix-224 Google 2024-05-14
Open 3B PaliGemma 3B 448x448 | paligemma-3b-mix-448 Google 2024-05-14
Open 12B Pixtral Pixtral-12B-2409 Mistral 2024-09-17
Open 11B Llama 3.2 11B llama-3-2-11b-vision-instruct | Meta 2024-09-25
Open 90B | Llama 3.2 90B Ilama-3-2-90b-vision-instruct | Meta 2024-09-25
Open 7B Molmo 7B Molmo-7B-D Allen Institute | 2024-09-24
for Al

Table 8: Our 22 evaluated SOTA vision-language models span both open and closed-source
architectures. The benchmark includes 22 VLMs with precisely specified versions, representing

current capabilities across both proprietary and publicly available models.
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C.2 ACCURACY%(T) THRESHOLDS FOR ALL DATASETS

Here we present the Accuracy%(t) metric at thresholds 0.4, 0.5, 0.55, 0.6, 0.65, 0.70, 0.75, and 0.80.
The top 10 models for each dataset are displayed as bar plots in[Figure 10} To increase interpretability
of single models across datasets, [Figure 11 displays all 22 models as line plots.
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Figure 10: Accuracy % (t) Tthresholds for the top 10 models across all datasets. Humans (solid
grey bar) consistently achieve near-perfect scores of 1 across all displayed thresholds and datasets.
Performance varies significantly across imaging domains, with dotted lines representing open-source

models and solid lines indicating closed-source models.
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Figure 11: Accuracy % t) Tthresholds for all models for each dataset. Displayed as line plots,
given the large number of models. Humans (dashed-dotted grey line) consistently achieve near-
perfect scores of 1 across all displayed thresholds and datasets. Performance varies significantly
across imaging domains, with dotted lines representing open-source models and solid lines indicating
closed-source models.
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C.3 TASK RANKING COMPARISON BETWEEN MODELS AND HUMANS

Task ranking differs between models and human raters. The plots shows the difficulty of tasks
based on aggregated model scores/human scores (1 = hardest task, 25 = easiest task). The radius
of the blob indicates how often a task was assigned a difficulty rank when considering all seven
domains and all models (n =5 for closed models; n = 16 for open models; n = 21 for all models; n =
1 for humans as majority vote over several raters). The larger the plot, the higher the percentage it
achieved a specific rank. The hardest tasks on average across domains are (1) T7.2 “Jigsaw Puzzle
Completion”, (2), T1.2 “Object Counting”, (3), T7.1 “Rotated Jigsaw Puzzle Completion”, (4), T2.1
“Object Occlusion Detection”, and (5) T5.2 “Second Brightest Image Selection”. The easiest task
on average was T1.3 “Additional Object Presence Detection”. We display aggregated all models

in[Figure 12 human baselines in[Figure 13} all closed-source models in[Figure T4] and all open-source
models in|Figure 15
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Figure 12: All tested vision-language models, both open and closed-source, exhibit consistent
patterns in task difficulty. Aggregated ranking of tasks from easiest to most challenging, revealing
systematic strengths and limitations shared across the complete set of evaluated models regardless of
their accessibility.
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Figure 13: Human performance reveals distinct patterns of task difficulty compared to models.
Ranking of vision tasks from easiest to most challenging based on human evaluator performance,

providing a baseline for understanding natural visual capabilities.
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Figure 14: Clsoed-sourced vision-language models demonstrate shared patterns in task difficulty

despite architectural differences. Aggregated ranking of tasks from easiest to most challenging,
revealing systematic strengths and limitations common across all evaluated closed-source models.



Open models

. PR ¢« e« s e 0 0 0@0- uondsia(08lqo [eUOHIPPY

® o ® @ ®-uonoa1aQ 99Udsald 193[q0

]
.
]
3

®@: <o ecec00 00000 e 00 o0 e 0-UONEIUIP| SBEW| I081I0D-I00D

° c . e e® 0@ e 00000 e 0 o0 o -UONDARQJ SBeW paydniodun

. . c s s e e 0000000000 e - -UONBIRAISIOO [EUONIPPY PrEMYST
° s - e 0000000000 s e e 0 --UNDALEJ-BEW palNgises

@ coes + <ceseseeceeee®e o «-UOSLEIWOD UOHSO [BONIBA 198I00
. s 0000000000000 -uonaale( 198(qo [euonippy Jemo
° ©@° 0000000 s 00 e o o o-UONRIYIUSP| SBEW| pPaTRIOIUN

@+ 0+ 02 0000 0@000000000-e - -UONSRQDOUYINOL B[O

Q@e 0o . . e e -00c 00 00@0 0 @ e -UOSLRAWOD 9ZIS 193[O

@e ot s 0000000000000 -uostedwo) uonisod [euoziioH 19alq0
@ - o000 s e 0 0@00 000 00 e - -Uosuedwod ydagioalgo

@c¢ 00 : 000000000 0 .« -uosiredwo) ssauybug julod

@c o -000000c000000000- - o - -UONBAQUONEIUNI 13O

@+ 00 : 0 :00000 000000 ¢ ¢ -uostredwo) yidaq ulod
@0 co0000000 ¢ o . P . -uonoalaq asIoN 193lqo
@ ° 000000000 - o000 o oo . -uonoaleq JInig 198lqo

@O0eco0c0 e o o oo 0 o . ] «  -Buyoren 1ojoo 108lq0

o - *+ 0000000 000 o s o -uonaaleQ elawe) Buoe 198lqo
0000000000 0 o s 0 oo . -uonosles abew 1seybug puodss
@c e 000000000 -+ 000 -uonoalaQ uoIsnP20 193[qo
00000000 o R R I -uonajdwo) ajzznd mesbir payeloy
@eeccoc - . ... e o 0 0 0 0@ ¢ o -Bununo? 1slqo

.
.
.
.

I RN N NN N SN -uonajdwo) ajzznd meship

123456789m
sue

® 10 @20 @30 @ 40

Percentage of receiving a
specific difficulty rank

IBack to Appendix Table of Contents| | Page 31

Figure 15: Publicly available vision-language models exhibit consistent patterns in task difficulty

across architectures. Aggregated ranking of tasks from easiest to most challenging, revealing

systematic strengths and limitations shared across all evaluated open-source models.



C.4 ACCURACIES ACROSS DATASETS

We display the regular Accuracy scores for all models per dataset in[Table 9]and per task in [Table 10}

Model Overall | wildlife animals  kitti  person vehicles food kitchen
® % = 1 = ® Q
humans | 93.66 | 93.43 93.87 94.60 95.15 9241 93,58 92.59
Gemini_1.5_pro 72.44 74.58 7535 7796 70.84 71.74  69.98  66.60
GPT-40 69.79 71.35 7135 76.16 69.01 69.25  67.00
Claude_3.5_Sonnet | 69.00 | 73.72 72.40 67.75  65.69  63.82
Qwen2_72B 68.76 70.79 75.00 61.70 64.74
Llama_3.2.90B 65.93 71.33 70.21  68.63 64.62 63.13  62.87 60.75
Gemini_1.5_flash 65.72 70.16  70.83  60.23 65.17 61.14 61.01
Qwen2_7B 62.22 51.49
Molmo_7B 57.89 61.11 61.57  59.77 56.12  56.37  53.19
Pixtral 56.80 59.77 59.17 54.44 56.08 54.03 50.90
GPT-40-mini 54.90 59.19 5942  60.80 53.63 5371 4690 50.66
LLaVA-NeXt_34B 53.26 5747 56.67  53.57 54.26 50.72  53.11 47.02
Llama_3.2_11B 50.03 55.14 5451 51.16 47.03 47.02 4730 48.05
Phi-3.5_Vision 49.18 58.14 51.83 47.86 44.46 4543 4921 4734
InternVL2-40B 48.14 49.48 4998 50.64 47.37 4798 44.69 46.85
LLaVA-NeXT_7B 44.52 48.84 46.44 4138 42.39 41.52 4727 43779
Phi-3_Vision 44.39 48.99 4741 4243 41.62 4212 4597 42.18
InternVL2-8B 41.28 43.72 45.60 46.76  35.59 3895 39.26  39.05
PaliGemma_3B_448x448 | 40.66 47.07 45.02 36.00 43.14 37.82 40.64 3494
PaliGemma_3B_224x224 | 36.43 41.26 39.73  31.57 38.26 3413 3732 3276
InternVL2-1B 16.69 18.05 1551 1831 15.94 1454  19.58 14.89
Florence-2 15.47 17.80 16.02  15.01 18.29 13.85 16.67 10.65
Chameleon_7B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 9: Model Accuracies across different datasets. Performance varies greatly between domain
datasets, highlighting the need for in-domain validation. For each column, the top 10 models are

highlighted: Ist place (Gold) 2nd place (Silver) . 3rd place (Bronze) 4th place

5th place 6th place . 7th place 8th place 9th place 10th place.

The ’Overall’ column represents the mean accuracy across all datasets.
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by separate plots for each domain. These visualizations reveal the variations in rankings both globally

Scatter plots illustrating ranking diversity first present a combined view across all domains, followed
and within datasets.

C.5 RANKING VARIABILITY ACROSS DATASETS
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Figure 16: Ranking variation across models
The radius of each blob at position (M odel i

Figure 17: Ranking variation across models for the an
M odel i achieved rank j. Open models are indicated by a dashed border.
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Figure 18: Ranking variation across models for the person dataset. Depicted as a scatter plot.
M odel i achieved rank j. Open models are indicated by a dashed border.
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Figure 19: Ranking variation across models for the food dataset. Depicted as a scatter plot.
The radius of each blob at position (M odel i, rank_j) is proportional to the percentage that model

M odel_i achieved rank j. Open models are indicated by a dashed border.
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Figure 20: Ranking variation across models for the vehicles dataset. Depicted as a scatter plot.
The radius of each blob at position (Model_i, rank_j) is proportional to the percentage that model

M odel i achieved rank j. Open models are indicated by a dashed border.
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Figure 21: Ranking variation across models for the wildlife dataset. Depicted as a scatter plot.
The radius of each blob at position (M odel i, rank_j) is proportional to the percentage that model

M odel_i achieved rank j. Open models are indicated by a dashed border.
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Figure 22: Ranking variation across models for the kitchen dataset. Depicted as a scatter plot.

The radius of each blob at position (Model_i, rank_j) is proportional to the percentage that model

M odel i achieved rank j. Open models are indicated by a dashed border.
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Figure 23: Ranking variation across models for the kitti dataset. Depicted as a scatter plot.
The radius of each blob at position (M odel i, rank_j) is proportional to the percentage that model

M odel_i achieved rank j. Open models are indicated by a dashed border.



C.6 TASK DIFFICULTY COMPARISON BY METADATA SOURCE AND AMBIGUITY

Average Model Performance by Task

Human Ambiguity vs Model Performance
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Task Names
TL1: Object Presence Detection
T1.2: Object Counting
T1.3: Additional Object Presence Detection
T2.1: Object Occlusion Detection
T2.2: Object Truncation Detection
T2.3: Object Blur Detection
T2.4: Object Noise Detection
T2.5: Least Blurred Image Selection
T2.6: Uncorrupted Image Identification
T3.1: Object Size Comparison
T3.2: Object Horizontal Position Comparisen
T3.3: Object Vertical Position Comparison
T3.4: Leftward Additional Object Detection
T3.5: Lower Additional Object Detection
T4.1: Object Touching Detection
T4.2: Object Facing Camera Detection
T5.1: Object Color Matching
T5.2: Second Brightest Image Selection
5 3: Color-Correct Image Identification
TS5 4: Point Brightness Comparison
T6.1: Object Depth Comparison
T6.2: Point Depth Comparison
T7.1: Rotated Jigsaw Puzzle Completion
T7.2: Jigsaw Puzzle Completion
T8.1: Unrotated Image Identification

Figure 24: Instance segmentations alone allow for the extraction of hard tasks. (a) Tasks
were classified in those extractable directly from instance segmentations (blue), requiring external
models (green) and requiring human annotations (red). (b) Human ambiguity plotted against model
performance.
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C.7 TASK DIVERSITY: MODEL ACCURACIES ACROSS TASKS

Here, we present the performance of models across all tasks, using Accuracy (see[lable 10). Spider
plots for closed-source, open-source, and varying model sizes are displayed in [Figure 25

Model | Rank | TL1 T2 T13 T21 T22 T23 T24  T25 T26 T3l T32 T33 T34
humans \ | 9688 6831 9524 7893 9292 9951  100.00 100.00  100.00 97.21  99.83  99.90  89.74
Gemini_1.5_pro 1| 7823 (33680 9232 [ATANNT2OWN 7509 9333 9711 9815 9622 [U7SI95N 9218  74.85
GPT-4o 2 | 8345 3035 87.17 5494 8041 5045 = 8236 [NO7620 87.92 87.07 7499 8563 7045
Claude_3.5_Sonnet 2570 8846  49.96 [ 6456 5046 6332  99.83 9637  89.89 7408 8523  76.66
Qwen2.72B 9210 3411 [OWI8N 39.80 78.67 4576  62.40 86.96  82.08
Llama_3.2.90B 93.82 3011 9146 4142 6521 3021  24.82 93.00  81.21
Gemini_1.5_flash 8421 3133 87.58 39.87 = 68.89 55.65
Qwen2_7B 90.65 3382 90.11 39.87 48.14 3938  38.14 80.03  65.24
Molmo_7B 90.23 [130:881] 8430 2899 2584 27.54  30.74 8249  67.28
Pixtral 86.84 714 [8875 4364 37.04 | 4120 34.18 75.85 | 72.88
GPT-4o-mini 67.68 33.83 3976 4300 6091 5001  54.33

88.84 3102 90.07 4410 2549 3005 3179 5786  61.61 7450 6441 7934

2684 84.86 | 4220 7240 2961 2406 3408 4583 6414 6797 7072 6850
86.88 2333 8271 4393 3132 33.07 2215 5801 6947 4838 4998 5105 6135
63.66 2959 5506 000 3981 | 62.62 ST 60.56  66.63 | 78.00 [7234NNNS2920 60.35
87.08 000 8671 [E3HMSN 30.54 2541 2643 3354 3681 5394 5734 6321 | 7326
90.54 2499 8270 4100 27.84 2865 23.84 5031 | 7556 3655 5177 5241 5561
8678 2447 8539 006 [ 6133 2801 3117 4647 4934 709 366 619 6801
79.68 | 3131 8950 | 31.74 4741 2639 2378  37.00 2839 1774 2639 2659 | 7415
7985 2606 [189281| 3585 4285 2535 2289 2361 2553 1255 1039 1315
3155 000 4784 000 1420 2417 2458 1581 2516 000 000 000  34.83
5098 2696 7761 000 2827 000 000 0.1 011 008 017 080 64.93
000 000 000 000 000 000 000 000 000 000 000 000 000

LLaVA-NeXt_34B
Llama_3.2_11B
Phi-3.5_Vision
InternVL2-40B
LLaVA-NeXT_7B
Phi-3_Vision
InternVL2-8B
PaliGemma_3B_448x448
PaliGemma_3B_224x224
InternVL2-1B
Florence-2
Chameleon_7B
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Ne)
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)
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wn

Model | Rank | T35 T41 T42 T51 T52 T53 T54 T6l T62 T7.1 T7.2 T8l
humans \ | 8257 7534 8239 9856 99.86 99.82 100.00 9378 9072 99.04 9656  99.30
Gemini_1.5_pro 1 | 6902 7032 4097 | 8141 2364 = 99.15 6680 7846 6836 53.67 47.86  79.66
GPT-4o 2 | 6658 6721 51.08 8201 4609 9657 = 5750 7579  43.25 46.66  85.76
Claude_3.5_Sonnet 63.54 | 47.05 61.09 69.65  68.48 6415  39.64 79.61
Qwen2.72B 4 | 6821 6830 52.56 98.63  66.80 [7469 64210 37.12 3274 7951
Llama_3.2.90B 5 | 6743 7245 5878 3568 2837 9795 7500 7899 6249 27.54 23.22

Gemini_1.5_flash 6 | 6395 6817 49.15 41.06 133760 9646 5253  71.80 7340 4223 2755 7720
Qwen2_7B 7 | 6452 6853 3900 3340 3022 8746 75.51 3273 2515 7042
Molmo_7B 8 | 5812  60.06 [ 5605 | 2879 3534 69.54 5321 2887 2605 | 8432
Pixtral 9 | 6337 JEOMBE 36.51 28.00 | 3547 [O4SM 3895 6301 3266 3041 | 2998

GPT-40-mini 10 | 7269 57.68 4514 4857 3458 81.02 5140 49.48 | 55.02 59.98
LLaVA-NeXt 34B 11| 6584 GTS2W 46.67 3569 2483 3962 51.00 [[7204 5233 2819 2604 53.84
Llama 3.2 11B 12 | 63.69 5504 3683 773 2622 4686 [ 6265 6263 5441 2569 2614 3849
Phi-3.5_Vision 13 | 6430 6602 4056 1726 2728 5181  SL4l 4556 [ 6198 3067 2610  52.27
InternVL2-40B 14 | 5675 9.8 000 [N6092W 3340 8267 1654 | 7959 1192 | 3483 3243 6590
LLaVA-NeXT_7B 15 | 6950 | 6259 3597 2337 2602 2481 4925  56.65 [[5559 2377 2497 2864
Phi-3_Vision 16 | 5898 | 6622 ATSON 2242 2604 4652 1866 4242 1659 2791 2588  44.22
InternVL2-8B 17 | 6484 5973 000 5182 2764 5674 5150 1860 5113 27.32 [[28.19 5481
PaliGemma 3B_448x448 | 18 [WGTO7M 60.55 [ 47.86° 1622 2523 3353 4182  27.86 5158 2447 2228  28.83
PaliGemma 3B_224x224 | 19 | 7100 @ 5838 3176 2341 2630 2459 3408 1991 3708 2213 2420 27.14
InternVL2-1B 20 | 2556 1439 000 2438 1064 2442 1282 000 582 2382 2214 2471
Florence-2 21 | 5733 4988 000 000 070 000 007 026 356 483 000 065
Chameleon_7B 22 | 000 000 000 000 000 000 000 000 000 000 000  0.00

Table 10: Model performance across tasks displayed as regular Accuracy. For each column,

the top 10 models are highlighted: 1st place (Gold) 2nd place (Silver) . 3rd place
(Bronze) 4th place 5th place 6th place . 7th place 8th place
9th place 10th place.
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Claude_3.5_Sonnet === Chameleon_7B

—— GPT-40 LLaVA-NeXT_7B

—— GPT-40-mini --- Qwen2_7B

—— Gemini_1.5_flash -=- InternVL2-8B

—— Gemini_1.5_pro --- Llama_3.2_11B

—-=- Molmo_7B ~—~ Pixtral

—-=-=- Florence-2 LLaVA-NeXt_34B

=== InternVL2-1B ~== InternVL2-40B
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——- Phi-3.5_Vision —-- random_baseline

Figure 25: Model architecture and size significantly impact performance patterns across diverse
vision tasks. Spider plots reveal distinct performance profiles between open-source (dashed lines) and
closed-source (solid lines) models across our comprehensive task framework. Each axis represents
task-specific accuracy, demonstrating how different model characteristics influence capabilities.

C.8 ACCURACY%(T) CURVES FOR ALL MODELS

Here we present the Accuracy%(t) curves for all models and datasets. The Accuracy%(t) metric
represents the percentage of images for which at least a specified proportion of questions are correctly
answered. The thresholds for each curve are [0.2, 0.3, 0.4, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85,
0.9, 0.95, 1.0]. First we display the top 10 models per dataset in [Figure 26| for all 22 models in

and Area under the Accuracy%(t) Curves in[Table 11}
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Figure 26: Accuracy% (t) curves for the top 10 models across each dataset, with a maximum
score of 1. Humans (dashed-dotted grey line) consistently achieve the highest performance. Dashed
lines indicate open-source models, while solid lines represent closed-source models. The area under
the Accuracy% (t) curves, detailed in[Table T1] highlights significant variations in model rankings
across domain-specific datasets for the same tasks.
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Figure 27: Accuracy % (t) curves for all models across each dataset, with a maximum score of
1. Humans (dashed-dotted grey line) consistently achieve the highest performance. Dashed lines
indicate open-source models, while solid lines represent closed-source models. The area under the
Accuracy% (t) curves, detailed in[Table T1] highlights significant variations in model rankings across
domain-specific datasets for the same tasks.
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Model Overall | animals food kitchen kitti  person vehicles wildlife
® * QA = f =] @
humans | 7428 | 74.40 7434 7308 7518 75.89 73.01 74.10
Gemini_1.5_pro 52.95 56.02 5039 46.81 5851 51.35 52.17 55.42
GPT-40 50.19 51.87 4724 4452 56.74 49.59 49.72 51.64
Claude_3.5_Sonnet | 49.80 | 46.24 53.03 48.48 54.85
Qwen2_72B 49.57 56.15 45.63 42.27 51.82
Llama_3.2_90B 46.57 51.07 43.16 4145 4925 45.00 43.66 52.42
Gemini_1.5_flash 46.33 51.10 41.61 4139 5156 40.45 45.60
Quen2 7B 4035 | 4608 3787 3494 4281 3193
Molmo_7B 38.27 41.84 36.78 3396 39.78 36.29 41.65
Pixtral 37.34 40.00 3423 3142 35.06 36.56 40.45
GPT-40-mini 35.50 40.49 2734 31.03 4131 34.08 34.00 40.29
LLaVA-NeXt_34B 33.65 37.26 3323 27.67 33.63 34.72 30.71 38.28
Llama_3.2_11B 30.44 3535  27.17 28.06 31.75 27.44 27.19 36.10
random_chance 30.24 29.39 3031 30.86 29.78 30.39 29.70 31.27
Phi-3.5_Vision 29.87 3293  29.22  28.01 2896 2493 25.67 39.35
InternVL2-40B 28.48 30.60 25.16 27.14 30.76  27.85 27.89 29.95
LLaVA-NeXT_7B 24.94 26.88  27.10 24.04 2203 23.12 21.81 29.64
Phi-3_Vision 24.89 27.88  26.05 2274 2341 22.12 22.60 29.44
InternVL2-8B 22.21 26.79  19.83 20.09 2741 16.17 19.81 25.37
PaliGemma_3B_448x448 | 21.44 25,70  20.86 1581 17.04 24.13 18.40 28.16
PaliGemma_3B_224x224 | 17.28 20.82 17.61 1399 1235 18.80 14.72 22.65
InternVL2-1B 2.62 2.14 4.26 2.06 3.03 2.12 1.68 3.03
Florence-2 1.74 1.68 2.03 0.72 1.50 2.54 1.34 2.33
Chameleon_7B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 11: Area under Accuracy % (t) Curves for seven different datasets. Curves calculated for
threshholds at [0.2, 0.3, 0.4, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0] across each

dataset. For each column, the top 10 models are highlighted: 1st place (Gold) 2nd place
(Silver) . 3rd place (Bronze) 4th place 5th place 6th place . 7th place

8th place 9th place 10th place. The *Overall’ column represents the mean area under
the curve across all datasets. The substantial differences in model rankings across domain-specific
datasets for identical tasks highlights the need for specific in-domain evaluation.
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C.9 TASK CORRELATION

Here we present the correlation between tasks, quantified in the heatmap in and visualized
in the dendrogram in[Figure 29] The heatmap shows pairwise task correlations, while the dendrogram
highlights clusters of tasks with similar performance patterns across models

Correlation between tasks (All Datasets Combined)
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—0.50
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Figure 28: Task performance correlations reveals insights on related visual capabilities. Heatmap
visualizing pairwise correlations between task performances across all datasets, with values ranging
from -1 (anti-correlated) to 1 (highly correlated).
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Cluster Dendrogram
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Figure 29: Hierarchical clustering reveals natural groupings of visually related tasks across
domains. Dendrogram visualization of task relationships based on model performance across seven

domains, confirming and extending the correlation patterns observed in the heatmap analysis.
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