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ABSTRACT

Reliable evaluation of AI models is critical for scientific progress and practical
application. While existing VLM benchmarks provide general insights into model
capabilities, their heterogeneous designs and limited focus on a few imaging
domains pose significant challenges for both cross-domain performance comparison
and targeted domain-specific evaluation. To address this, we propose three key
contributions: (1) a framework for the resource-efficient creation of domain-specific
VLM benchmarks enabled by task augmentation for creating multiple diverse tasks
from a single existing task, (2) the release of new VLM benchmarks for seven
domains, created according to the same homogeneous protocol and including
162,946 thoroughly human-validated answers, and (3) an extensive benchmarking
of 22 state-of-the-art VLMs on a total of 37,171 tasks, revealing performance
variances across domains and tasks, thereby supporting the need for tailored VLM
benchmarks. Adoption of our methodology will pave the way for the resource-
efficient domain-specific selection of models and guide future research efforts
toward addressing core open questions.

1 INTRODUCTION

The reliable and objective performance assessment, i.e., validation of AI models is crucial for both the
measurement of scientific progress and translation into practice. Benchmarking for traditional narrow,
task-specific AI already comes with numerous challenges (Myllyaho et al., 2021), but validation
has proven to be even more complex and error-prone in the emerging field of generalist multimodal
foundation models (Schaeffer et al., 2024). In the context of Vision-Language Models (VLMs),
one issue that has received limited attention is the heterogeneous and often non-targeted nature
of model validation (Tong et al., 2024a;b). Widely used VLM benchmarks span diverse domains
and encompass a variety of tasks, providing a broad view of model capabilities across different
contexts (Fu et al., 2024b; Liu et al., 2024; Ying et al., 2024; Al-Tahan et al., 2024; Yue et al., 2024).

We identify three key trends that highlight the critical need for personalized benchmarking approaches:

Domain-specific benchmark demand: Numerous datasets and benchmarks are continually being
released in the general computer vision field. According to our analyses, ∼400 out of the 2,700 CVPR
2024 publications propose a new or modified dataset as detailed in Appendix A.1. These benchmarks
cover a wide range of domains, from autonomous driving to wildlife monitoring, underscoring the
need for domain-specific benchmarks.

Popular arena platforms do not scale from an individual user’s perspective: Arena-style platforms
such as Chatbot Arena or WildVision Arena1 allow users to submit single tasks and rate the outputs
of different (anonymized) models. The aggregated user ratings, in turn, can be used for the objective

1Chatbot Arena: lmarena.ai/?leaderboard; WildVision Arena: huggingface.co/spaces/WildVision/vision-
arena
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and comparative assessment of models. While this allows for personalized and domain-relevant
evaluation, large-scale assessment from a single user perspective would be cumbersome due to the
required annotation effort.

Homogeneous evaluation: Most existing VLM benchmarks (Fu et al., 2024b; Yue et al., 2024; Wang
et al., 2024; Zhang et al., 2024c), generally evaluate models using a single question per image. While
this can suffice when large datasets are available—allowing for a broad range of tasks—domain
experts with smaller, curated datasets face a more significant limitation. From a resource standpoint,
image acquisition may also be expensive, and few tasks emerge if there is only one question per
image. Furthermore, such an approach provides little insight into whether a VLM truly comprehends
broad aspects of an image’s semantic content.

Taking these three trends together we conclude that there is a lack of guidance on how to set up a
framework that enables personalized, domain-specific benchmarking in a resource-efficient manner.
Such a framework must address the scarcity of labeled data, leverage task diversity by systematically
generating multiple questions per image, and maintain resource efficiency to ensure accessibility for
researchers working in specialized fields, such as wildlife monitoring, or autonomous driving.

In this work, we propose a resource-efficient framework for creating domain-specific VLM bench-
marks via task augmentation. Our approach transforms a single type of annotation—instance
segmentation—into a diverse set of tasks that test a broad range of perception abilities, such as object
counting, occlusion detection, brightness comparison, and more. Specifically, we focus on 2D natural
images that either (1) already include instance segmentations or (2) can be annotated using recent
advances in semi-automatic labeling tools (e.g., SAM (Ravi et al., 2024)). This approach allows even
domains with limited labeled data to efficiently generate custom evaluation tasks. Our main contribu-
tion, summarized in Figure 1, is a resource-efficient framework for creating domain-specific VLM
benchmarks via task augmentation, transforming a single type of annotation (instance segmentation)
into a diverse set of tasks. We apply this framework to create seven new domain-specific VLM
benchmarks and comprehensively evaluate 22 open and closed VLMs on over 37,000 tasks (for
the full model list see Appendix C.1). To establish strong reference points for model evaluation, we
collected an additional 162,946 human baseline answers corresponding to 37,171 questions across
1,704 images.
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Figure 1: Summary of contributions. (1) New concept: We propose a new framework for the
resource-efficient creation of domain-specific VLM benchmarks. It is based on the concept of
task augmentation designed for creating multiple tasks from a single existing task using metadata
annotations from multiple sources (humans, pre-defined heuristics, models). (2) 7 new datasets:
We apply our framework to generate seven domain-specific VLM benchmarks with highly reliable
reference data. As a unique feature compared to existing benchmarks, we quantify the ambiguity of
each question for each image by acquiring human answers from a total of six raters. (3) New insights:
We apply our framework to a total of 22 open and frontier closed models to demonstrate the benefit
of task augmentation and to shed light on current VLM capabilities.
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Figure 2: Framework for resource-efficient in-domain benchmarking. Starting from a single task
with fine-grained annotations (here: instance segmentations), metadata for each image is obtained
from both automatic sources (heuristics and models) and a small number of manual sources (human
annotations). This process transforms the initial task into a collection of tasks, enabling resource-
efficient and easy to use in-domain benchmarking of general VLM capabilities while maintaining
cross-domain comparability.

2 RELATED WORK

2.1 VISION-LANGUAGE BENCHMARKS

Recent studies propose a range of evaluation benchmarks for VLMs, varying in size, number, and
type of VL capabilities. Examples include Blink (Fu et al., 2024b) and MMBench (Liu et al.,
2024) (>3,000 multiple-choice questions each), and MME (Fu et al., 2024a) (Yes/No questions on
perception and cognition). The largest benchmarks include MMT-Bench (Ying et al., 2024) (>31,000
questions), MME-RealWorld (Zhang et al., 2024c) (>29,000 image-question pairs), and MMMU
(Yue et al., 2024) (>11,500 questions). While these benchmarks cover multiple VL capabilities
and domains, they require extensive labeling efforts. For example, MME-RealWorld involved 25
annotators and seven VLM experts, MMMU relied on 50 college students, while MMT-Bench lacks
details on annotator numbers. Other benchmarks focus on much smaller question sets (Chen et al.,
2024; Yu et al., 2024), integrating multiple existing benchmarks (Jiang et al., 2024; Al-Tahan et al.,
2024), or collecting individual human preferences (Lu et al., 2024; Xu et al., 2023). Tong et al.
(2024a) present a critical examination of multimodal LLM benchmarks.

Despite the variety of datasets and tasks, a resource-efficient and generalizable approach that enables
extensive evaluation of VLMs across multiple (domain-specific) tasks is still lacking. Our framework
addresses this gap by empowering users to create domain-specific VLM perception benchmarks from
just a few images.

2.2 TASK AUGMENTATION AND METADATA

Task augmentation refers to generating multiple diverse tasks from a single existing task (Muennighoff
et al., 2023). While task augmentation has been addressed from various directions (Johnson et al.,
2017; Zhang et al., 2024a; Zamir et al., 2018a; Wang et al., 2023; 2024; Kuznetsova et al., 2020;
Krishna et al., 2017), an easy to use framework for evaluating VLMs by domain users on their own
images is still missing. The closest works to ours are Zhang et al. (2024a) and Zhang et al. (2024b),
which programmatically generate benchmarks using a library of visual assets and task templates. A
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Figure 3: Our framework yields a diverse set of tasks. (a) The spider diagram illustrates high
Accuracy variability across tasks for the VLMs. We present the results of all the best ranked models
while a comprehensive performance summary for all 22 tested models can be found in Appendix C.7.
(b) Based on a single image with instance segmentations, our framework enables the generation of
25 tasks from eight different vision-language categories, ranging from pixel-level to image-level
perception.

comprehensive comparison to other task augmentations works and their applicability is provided
in Appendix A.5.

2.3 RESOURCE-EFFICIENT VLM BENCHMARKING

Most existing benchmarks often focus on performance metrics without considering the human and
computational resources required to generate a benchmark (see, e.g., (Fu et al., 2024b; Liu et al.,
2024)). The work that has been done on efficient benchmarking has been focused in the realm of
unimodal language models (Polo et al., 2024; Perlitz et al., 2023). An exception has been Ging et al.
(2024), who investigated the automatic creation of VLM benchmarks from classification datasets.
Nevertheless, the increasing prominence of VLMs in research and industry (Li et al., 2024; Yang
et al., 2023) is not yet reflected in efforts to increase efficiency during benchmark creation.

3 METHODS

3.1 FRAMEWORK FOR RESOURCE-EFFICIENT IN-DOMAIN BENCHMARKING

The framework for resource-efficient in-domain benchmarking is depicted in Figure 2. Starting
with domain images that include instance segmentations (existing or created with semi-automatic
labeling tools, such as SAM (Ravi et al., 2024)), metadata for each image is acquired from multiple
sources (humans, pre-defined heuristics, and models) to transform the single task into a collection of
perception tasks.

For our seven new datasets, we use existing instance segmentation as the core perceptual task to
generate the diverse set of VLM benchmark tasks depicted in Appendix A.4 (examples in Figure 5
and more detailed in Appendix B.2).

The metadata enrichment is derived from three sources:

1) Human annotators were used to generate information that cannot be extracted from the existing
annotations or using established models. To this end, we outsourced annotations to a professional
annotation company (Quality Match GmbH in Heidelberg). Specifically, human raters were tasked
with determining the presence of occlusion and truncation in the images. Furthermore, they were
asked to assess the direction in which the objects were facing. These annotations cost ∼27 USD on
average with a total turnover time of two days.

2) Pre-defined heuristics and rules were employed to transform existing information into metadata.
For example, instance segmentations were utilized to quantify the number of objects within a specific
class or to determine whether specific instance segmentation masks were touching each other.
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Domain Icon #Images #Objects #Tasks #Human Annotations

Wildlife 268 853 5,528 24,024

Persons 250 7,812 6,122 26,548

Vehicles 235 2,199 5,219 22,976

Animals 273 1,162 5,724 24,907

Kitchen 272 2,143 5,332 23,793

Food 236 5,673 5,249 23,221

Kitti 170 1,458 3,997 17,477
Total 1,704 21,300 37,171 162,946

Table 1: Dataset statistics across different domains. The table presents the total number of images,
objects, tasks, and human annotations across all domains.

3) An existing depth foundation model, Depth Anything v2 (Yang et al., 2024), was used to generate
depth maps for each image.

3.2 SEVEN NEW DATASETS FROM DIVERSE DOMAINS

We applied our proposed framework to images from seven different domains. Overall, the input
images and instance segmentations for our framework were extracted from KITTI (Geiger et al.,
2012), COCO (Lin et al., 2014), and COCONut (Deng et al., 2024). In summary, we added 300,000
metadata annotations to a total of 1,704 images across seven domains. This includes 15 annotations
per object (e.g. occlusion, relative size, segmask touches segmask, or average depth). For truncation,
occlusion, and direction, we obtained up to five annotations per object from human annotators (UI
example is displayed in Appendix A.2). Early stopping was applied when four annotators reached a
consensus. The complete list is provided in Appendix Table 4.

The metadata were then used to define a set of 25 different VLM tasks (see Figure 3), including six
tasks concerning the entire image, 13 related to individual objects, and six focused on object pairs.

Setup for automatic task processing after metadata extraction: To create a concrete list of vision-
language tasks for each image we employed a systematic process. We began by prioritizing images
in the datasets that featured a higher number of classes and objects to maximize task diversity and
complexity. Next, specific criteria for each task were evaluated to ensure appropriate task generation
for each image. For instance, in tasks requiring the comparison of two objects, it was essential
that both objects were present in the image and belonged to the relevant classes. Furthermore, we
established minimum thresholds for various measures, such as requiring a substantial depth difference
between objects, to ensure the correct answers for the task could be reliably determined. Overall, our
objective was to generate as many of the 25 different tasks as possible for each image. No LLMs or
VLMs were used for task generation, as these methods are prone to injecting hallucinations (Wang
et al., 2023; 2024). We prioritized quality and reliability instead.

Human ambiguity baseline: To rate the difficulty and ambiguity for each of the 37,171 tasks, we
further acquired annotations from six human raters per image. We implemented early stopping if four
raters reached agreement on a task. Overall, this resulted in 162,946 human reference annotations.
An overview of the resulting datasets is provided in Table 1and exemplary images for all generated
datasets are included in Appendix B.

3.3 BENCHMARKING STRATEGY

VLM benchmarking results can vary substantially with various factors, such as the images used, the
domain, and the applied prompts. This often renders comparison of results across papers infeasible.
For example, Accuracy is a prevalence-dependent metric, meaning that results should not be compared
across datasets. To address this bottleneck, we fully homogenized our benchmarking framework
using the proposed framework.
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Overall Wildlife Animals Kitti Person Vehicles Food Kitchen

Human 93.7 93.4 93.9 94.6 95.2 92.4 93.6 92.6

Gemini 1.5 pro 72.4 74.6 75.4 78.0 70.8 71.7 70.0 66.6
GPT-4o 69.8 71.4 71.4 76.2 69.0 69.3 67.0 64.4
Claude 3.5 Sonnet 69.0 73.7 74.3 72.4 65.3 67.8 65.7 63.8
Qwen2 72B 68.8 70.8 75.0 74.6 61.7 68.2 66.2 64.7
Llama 3.2 90B 65.9 71.3 70.2 68.6 64.6 63.1 62.9 60.8
Gemini 1.5 flash 65.7 71.5 70.2 70.8 60.2 65.2 61.1 61.0

Table 2: The rankings of models differ strongly across the tested domains. Model Accuracies
across different generated datasets. The ’Overall’ column represents the mean accuracy across all

datasets. 1st place (Gold) 2nd place (Silver) 3rd place (Bronze) 4th place

5th place 6th place. Only the top six models are shown. The ’Overall’ column represents
the mean accuracy across all datasets. Due to space constraints, results for additional models are
provided in Appendix Table 9. Note that Accuracy does not account for shared images between
questions; this issue is addressed in Figure 4.

Model selection: We selected 22 frontier and open VLMs of various sizes and from various providers
and sources, as illustrated in Appendix C.1. The oldest model was released in January 2024, while
the most recent one included was released at the end of September 2024.

Benchmarking workflow: To ensure fair and consistent evaluation of all selected VLMs, we
developed a standardized benchmarking workflow applied uniformly across all models. We assessed
them in a zero-shot setting without any additional fine-tuning or domain-specific training. We strictly
followed the configurations and setups recommended by each model’s authors, using the exact
settings provided in their official repositories (e.g., on Hugging Face) to ensure that each model was
evaluated under conditions intended by its creators. Each model was provided with a carefully crafted
text prompt alongside the corresponding image. To eliminate potential ambiguities in the questions,
we conducted iterative testing of these prompts among human evaluators in our department. Through
four rounds of refinement, we adjusted the prompts until all four human evaluators consistently
agreed on their interpretation. Furthermore, we evaluated the sensitivity of the VLMs to variations in
image markers, as many questions involved marked objects. Altering the box colors used to highlight
objects—from green and red to other colors—resulted in slight performance fluctuations in both
directions across different VLMs. To maintain consistency, we used the commonly recognized colors
red and green, assigning them to objects at random.

VLM tasks: We evaluated the models on a comprehensive set of 25 tasks derived from our task
augmentation framework (overview in Figure 3, full list in Appendix A.4 and examples per dataset
in Appendix B). Each task was associated with specific evaluation criteria and standardized prompts.
For instance, when dealing with multiple-choice questions or tasks involving object selection, we
established clear guidelines on how options were presented and how objects were chosen within
images. This attention to detail ensured that the evaluation was both rigorous and reproducible.

Metrics and rankings: Choosing an adequate strategy for performance assessment is far from trivial
and a research topic of its own (Maier-Hein et al., 2024; Reinke et al., 2024). In this work, we
were specifically interested in relative performance differences rather than in the specific ability of
VLMs to serve a specific task. To obtain aggregated performance values across images, we define the
Accuracy%(t) metric with a threshold t ∈ [0, 1]. For each image i in a dataset D, let Qi denote the
set of questions associated with that image. Let Ci,q,m ∈ {0, 1} indicate whether model m correctly
answered question q for image i (1 for correct, 0 otherwise). The model m is considered to meet the
threshold t on image i if the fraction of questions q in Qi answered correctly by the model is at least
t. Formally, we define:

Accuracy%m(t) =

1

|D|
∑
i∈D

I
((

1
|Qi|

∑
q∈Qi

Ci,q,m

)
≥ t

)
× 100

6



Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Here, I(·) is an indicator function defined as:

I(x ≥ t) =

{
1, if x ≥ t,

0, otherwise.

Explanation:

•
∑

q∈Qi
Ci,q,m: Total number of correctly answered questions for image i.

• 1
|Qi|

∑
q∈Qi

Ci,q,m: Fraction of questions answered correctly for image i.

• t ∈ [0, 1]: Desired minimum accuracy level assessed for each Qi.

4 EXPERIMENTS AND RESULTS

The primary purpose of our experiments was to showcase the benefit of our task augmentation
approach (sec. 4.1). To assess the value of each task for VLM benchmarking, we related it to average
model performance, resources needed to create the task, and corresponding human ambiguity (sec.
4.2). Finally, we leveraged our concept and data to explore the capabilities of the most recent open
and closed VLMs (sec. 4.3.).

4.1 BENEFIT OF THE PROPOSED FRAMEWORK

Figure 2 shows aggregated performance values for all models, separated by imaging domain. As the
tasks and prompts were homogenized, the results clearly indicate that performance varies substantially
across domains, supporting the hypothesis that in-domain validation is crucial for real-world transla-
tion. Note that this holds true despite the fact that we purposely chose domains that are relatively
common (presumably captured in the model training) and closely related to one another.

Furthermore, as shown in Figure 3a, the performance of models varies substantially across VLM
tasks, suggesting that the tasks generated by our framework are diverse. The hardest tasks on average
across domains are (1) T7.2 “Jigsaw Puzzle Completion”, (2), T1.2 “Object Counting”, (3), T7.1
“Rotated Jigsaw Puzzle Completion”, (4), T2.1 “Object Occlusion Detection”, and (5) T5.2 “Second
Brightest Image Selection”. The easiest task on average was T1.3 “Additional Object Presence
Detection” (see Figure 24).

4.2 HUMAN AMBIGUITY

As demonstrated in Appendix C.3, there is a high discrepancy in task rankings between humans and
models. While the ”Jigsaw Puzzle Completion” tasks ranked amongst the most challenging for the
models, humans found ”Object Occlusion Detection” and “Object Touching Detection” to be the
most difficult.

From a resource perspective, tasks should be (1) hard to solve for models and (2) require as little
human annotation as possible. This potential trade-off is captured in Appendix subsection C.6. It
can be seen that many hard tasks, including the top four, can already be extracted from instance
segmentations alone.

4.3 INSIGHTS ON CURRENT MODELS

Figure 4 summarizes the performance of a model selection and reference baselines. Further detailed
analysis, including all tested models, examples, and errors for each generated dataset are provided in
the Appendix. The following insights can be extracted:

Confirming common findings from the community: Our analysis confirms well-known trends:
closed models still outperform across tasks, though open models have notably narrowed the gap. In
particular, Qwen2 72B stands out as the strongest performer among open models. The superiority of
human evaluation remains evident, with human raters achieving near-perfect performance on most
tasks, though they notably struggle with specific challenges such as counting, occlusion, and direction-
related tasks—counting being particularly problematic. Regarding model scaling, larger variants
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(a) The need for specific in-domain evaluation is demonstrated by the high performance variability
across imaging domains. The performance of the overall best model Gemini 1.5 pro varies between
domains from 22% (Kitchen dataset) to 72% (Kitti dataset). For the displayed Accuracy%(75), humans
achieve an almost perfect score of 1 for all datasets (see Appendix). The top 10 models per dataset shown.
We display the full plots for all thresholds and models in Appendix C.2.
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(b) The Area under the Accuracy%(t) Curve serves as a metric for comprehensive image understanding.
With a maximum possible value of 1, higher values indicate better performance. Notably, the current
state-of-the-art model, Gemini 1.5 pro, achieves only 0.53, highlighting significant room for improvement.
Only the top 10 models are shown. Curves for all 22 models and datasets are displayed in Appendix C.8.

Figure 4: Performance varies across domains, highlighting the need for specialized in-domain
evaluation; even the best models still lag behind human performance. The Accuracy%(t) metric
represents the percentage of images for which at least a specified proportion of questions are correctly
answered. It can (a) be computed for specific thresholds or (b) be aggregated over multiple thresholds
to remove dependence on a specific t. The Area under the Accuracy%(t) Curve captures model
performance in a single value, ranging from 0.37 to 0.53 for the top 10 models tested.

typically show better performance, with some notable exceptions such as Molmo 7B outperforming
Pixtral 12B.

Interesting new findings: The need for specific in-domain evaluation is highlighted by the high
performance variability across imaging domains for the same tasks, see Table 2 and Figure 2. The
overall best model, Gemini 1.5 Pro, varies between domains from 22% (Kitchen) to 72% (Kitti).
Qwen2 72B slightly surpasses Gemini 1.5 Pro on the kitchen and animals datasets but ranks only
fifth on the person dataset. Additional insights emerge from model comparisons, with Qwen2
7B consistently outperforming Molmo 7B across most datasets, and Gemini Flash 1.5 showing
superior Point Depth Comparison capabilities over Gemini Pro. These results indicate that our newly
introduced metric, Accuracy%(t), can effectively capture model performance in a single value.

5 DISCUSSION

This paper contributes to the advancement of VLM benchmarking in three ways:

1) Framework for resource-efficient and domain-specific benchmarking: We showed that task
augmentation, using instance segmentation as the root task, enables the generation of a diverse set
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Figure 5: Our framework yields a diverse set of tasks. Exemplary tasks that were generated with
the framework for a given image. A broad range of examples and errors for each generated dataset is
provided in Appendix B.

of VLM tasks and could thus evolve as a core method for resource-efficient domain-specific VLM
benchmarking. The insights gained on the varying difficulty of presented VLM tasks will further
guide the design of future benchmarks. The framework can be easily applied to other domains, even
with a small number of images. The computational and monetary costs for each generated dataset are
minimal and displayed in Appendix A.6.

2) Seven new openly available datasets: Our seven new datasets will help assess generalist capabili-
ties of future VLMs. Furthermore, we release the six human annotations per task (totaling 162,946
annotations) to assist researchers working on human annotations.

3) New insights: The insights on current capabilities of closed and open VLMs highlight the
narrowing gap between closed and open models. Most importantly, we showcased the need for
domain-specific validation. Core strengths of our contribution include the broad applicability of our
concept, the open dataset and benchmark contribution, and the wide range of state-of-the-art closed
and open models investigated.

As an implicit contribution, we introduced the new metric Accuracy%(t), which offers several
key strengths. First, it captures model performance in a single very intuitive value. The metric is
extendable with additional tasks, allowing for gradually increasing difficulty, and can be adapted to
evaluate domain-specific tasks effectively. It is worth mentioning, however, that the specific properties
of the metric require further analyses (Reinke et al., 2024). For example, some questions require
specific image conditions, such as the presence of multiple objects for comparison. This can result in
a varying number of questions per image, which, in turn, has an influence on the metric. Furthermore,
tasks are treated equally without any weighting, which may overlook differences in task difficulty or
importance. Users can, however, easily modify the weighting scheme to better reflect their specific
evaluation priorities.

A limitation of our work is model family dependence, as many models come from closely related
families, which may hinder statistical analysis. For closed-source models, specific information about
training and data is often unavailable, creating transparency issues. We provide further statistical
analysis, such as ranking variability in Appendix C. Model performance showed small variations
with prompt phrasing, which we mitigated through iterative testing for consistency. Additionally, our
human annotations were performed by professional annotators, which may introduce ambiguity since
annotators aim to complete tasks quickly.

Future work should focus on expanding the number of tasks generated, further enhancing the diversity
and comprehensiveness of VLM benchmarks. Additionally, our method can be adapted to different
domains with domain-specific questions or scaled up to support continuous extension, providing a
versatile approach for evaluating models across diverse applications.

CODE / DATASETS / HUMAN ANNOTATIONS

Code, datasets, and annotations will be made available.
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We provide further detail on i) the ressource-efficient framework, ii) the seven generated domain-
specific datasets, and iii) the benchmarking insights and model evaluations.

IMPACT STATEMENT

This paper advances Machine Learning by enabling researchers to benchmark with their own data on
a minimal budget. All human annotations were sourced from a reputable company following ethical
guidelines.
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A RESOURCE-EFFICIENT VLM BENCHMARKING FRAMEWORK

A.1 CVPR 2024 PAPER ANALYSIS

CVPR 2024 Manually verified papers Agreement LLMs and
Human verification

Total number of papers 2,708 – –
With new or modified dataset: 397 40 (10%) 1
Without new or modified dataset: 2,311 50 (2%) 1

Table 3: A notable portion of CVPR 2024 papers contribute new or modified datasets, highlight-
ing a rising trend in dataset-focused research. CVPR 2024 paper analysis summary.

We analyzed all papers from CVPR 2024 using three different large language models (LLMs). If
the majority of models indicated that a paper introduced a new or modified dataset, we tagged it
accordingly. This process identified 397 publications proposing a new or modified dataset. To validate
the accuracy of the tagging, we randomly selected 10% of these flagged papers for a human review.
All human-verified publications were confirmed to propose a new dataset.
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A.2 EXAMPLE OF HUMAN GENERATED METADATA

Figure 6: Example of human-generated metadata enriching object annotations in initializa-
tion tasks. These annotations demonstrate the process of enriching objects with human-provided
metadata during the initial setup phase. The visual displays in the instructions enable consistent
annotations (Rädsch et al., 2023).
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A.3 METADATA SOURCES

Human Raters
Attribute Description
Occluded Object occluded or fully visible (other object in front)
Truncated Object truncated or fully visible (edge of image)
Direction Direction the object is facing
Existing Annotations
Attribute Description
relative size Relative size compared to image size
bbox touches bbox Bounding box touching another bounding box
segmask touches segmask Segmentation mask touching another segmentation mask
segmask touches segmask with Specific segmentation masks touching each other
segmentation area Area covered by segmentation
brightness score Brightness score
michelson contrast score Michelson contrast score
bbox x min, bbox y min,
bbox x max, bbox y max

Bounding box coordinates

class name Class name of the object
Model Generated
Attribute Description
average depth Average depth of the object
top 95 depth Depth of the top 95% portion of the object
bottom 5 depth Depth of the bottom 5% portion of the object

Table 4: Overview of metadata sources used for enriching instance segmentation datasets.
Metadata was created from existing annotations, specialized models, or manually annotated by
human raters.

Back to Appendix Table of Contents | Page 5



A.4 VLM TASKS OVERVIEW

Here we present the VLM tasks overview and its corresponding meta categories in Figure 7. Further
information on each task is provided in Table 5 on the next page.

Figure 7: Our framework yields a diverse set of tasks. Based on a single image with instance
segmentations, our framework enables the generation of 25 tasks from eight different vision-language
categories, ranging from pixel-level to image-level perception.
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ID Task Name Task Description Answer Type
T1.1 Is Object Present Determines whether a specified object is present in the

image.
Binary

T1.2 Count Objects Determines the number of objects in the image Count
T1.3 Is Oth Object

Present
Determines whether or not there is more than one object
in the image

Binary

T2.1 Is Object Oc-
cluded

Determines if the specified object is partially or fully
occluded.

Quiz (A/B/C/D)

T2.2 Is Object Trun-
cated

Determines if the specified object is truncated in the
image frame.

Binary

T2.3 Blur Object Determines whether an object is blurred Quiz (A/B/C/D)
T2.4 Noise Object Determines whether an object contains noise Quiz (A/B/C/D)
T2.5 Blur Of Image Determines which image variant is least blurred Quiz (A/B/C/D)
T2.6 Noise Of Image Determines which image variant is not corrupted Quiz (A/B/C/D)
T3.1 Size Compari-

son
Determines which of two objects is larger Color

T3.2 Horizontal Com-
parison

Determines which object is further to the left of the
image

Color

T3.3 Vertical Compar-
ison

Determines which object is further to the bottom of the
image

Color

T3.4 Is Oth Object
Left

Determines whether there is another image further to the
left of an object

Binary

T3.5 Is Oth Object
Lower

Determines whether there is another image further to the
bottom of an object

Binary

T4.1 Is Object Touch-
ing other Object

Determines if two objects are touching each other Binary

T4.2 Is Object Facing
Camera

Determines if the object is facing the camera Quiz (A/B/C/D)

T5.1 Color Object
Matching

Determines which of four tiles show the correct color
for the given image

Quiz (A/B/C/D)

T5.2 2nd Brightest
Image

Determines which of the images is the 2nd brightest
image

Quiz (A/B/C/D)

T5.3 Color Of Image Determines which image variant is not corrupted Quiz (A/B/C/D)
T5.4 Brightness Com-

parison of Two
Points

Determines which of two points is brighter Binary

T6.1 Depth Compari-
son

Determines which of two objects is closer to the camera Color

T6.2 Depth Two
Points Image

Determines which point is closer Binary

T7.1 Jigsaw rotation
Puzzle

Determines which of four rotated tiles fits best into a cut
out area of the image

Quiz (A/B/C/D)

T7.2 Jigsaw Puzzle
Image

Determines which of four tiles fits best into a cut out
area of the image

Quiz (A/B/C/D)

T8.1 Rotation Of Im-
age

Determines which image variant is not rotated Quiz (A/B/C/D)

Table 5: Overview of VLM Benchmark Tasks generated with the framework. We provide a small
task description and answer type for each generated task. Examples across datasets are displayed
in subsection B.1.
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A.5 TASK AUGMENTATION METHODS COMPARISON

Metric CLEVR Task Me
Anything Taskonomy Wang 2023 JourneyBench ProVision Ours

Johnson
et al. (2017)

Zhang et al.
(2024a)

Zamir et al.
(2018b)

Wang et al.
(2023)

Wang et al.
(2024)

Zhang et al.
(2024b) Ours

Real images/objects
(partly,

needs scene
graph)

Diversity core
perception tasks (subjective)

Focus on resource
efficiency

Synthetic
data

Strong
synthetic
data focus

and flexible

Not relevant, no
new tasks/data
can be added

(2,200 hours
of human

annotation)

Enables others to
use their own data
and benchmark /
Easily extendable

(in theory
possible, but no

code)

Not reliant on
generative models

Object-centric (hard to say)
Validated across
multiple visual

content domains
Human Ambiguity

Scores

Easily scalable

Task creation code
public

Evaluated on SOTA
VLMs

(limited
# of

proprietary
models)

(but SoTA*
2023)

(limited # of
proprietary

models)

Table 6: Our framework uniquely combines comprehensive evaluation capabilities with method-
ological advantages. Systematic comparison of task augmentation approaches across key metrics,
highlighting distinct features in VLM evaluation, programmatic task generation, and efficiency mea-
sures relative to existing frameworks.

Our work is positioned within the broader context of research on large VLMs, programmatic task
generation and task augmentation. A comparison to other relevant work (Johnson et al., 2017; Zhang
et al., 2024a; Zamir et al., 2018b; Wang et al., 2023; 2024) is provided in Table 6.

We deliberately excluded large datasets primarily designed for task generation, such as Visual
Genome (Krishna et al., 2017) and the Open Images Dataset (Kuznetsova et al., 2020), as these
datasets are not suitable for directly using their own images for evaluation. Instead, our focus is
on empowering domain-specific users to efficiently test a wide range of capabilities with a small
number of real-world images containing relevant objects, while operating under limited resources.
For instance, the human annotations required to generate the tasks in our framework can be achieved
at a minimal cost of approximately $27 USD (average across all seven datasets). Our approach is
complementary to existing research, offering a lightweight and accessible alternative for specific use
cases. Thus enabling researchers and practitioners to iterate more quickly and effectively in the right
direction.
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A.6 COMPUTATIONAL AND MONETARY COST

Domain Icon
Metadata Enrichment Perception

Task
Generation
(in seconds)

Pre-defined
Heuristics

(in seconds)

ML Model
(in seconds)

Human Annotations
for task generation

Wildlife 15 50
∼ 27$ USD
on average
per dataset

(2-day average
turnover)

124

Persons 354 496 160

Vehicles 73 211 129

Animals 41 138 129

Kitchen 48 156 161

Food 295 117 144

Kitti 23 108 146

Table 7: Our framework is resource-efficient in both computation and cost. Displayed are the
timings (in seconds) for metadata enrichment and question generation across domains, demonstrating
the scalability and efficiency of our approach. Annotation costs averaged $27 per dataset, calculated
based on the number of objects and manually added metadata points. The turnover time for task
annotations was two days. All computations were performed on an RTX 3090 GPU and Ryzen 9
5900X CPU.
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Question: 
How many cows are visible in the image? Please respond only with 
the number.
Answer: 7

Question: 
Each cow is marked with a coloured bounding box. Which cow is 
further to the left in the image? Only respond with the color of the 
bounding box.
Answer: Red

Animals Dataset

Question: 
Each cow is marked with a coloured bounding box. 
Which cow is closer to the camera? Only respond with the color of the 
bounding box.
Answer: Red

Question: 
Each cow is marked with a colored bounding box. 
Which cow occupies more pixels in the image? Only respond with the 
color of the bounding box.
Answer: Green

B DOMAIN-SPECIFIC DATASETS

B.1 ANIMALS DATASET EXAMPLES
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Question: 
Which point is brighter? Please only respond with the letter.
Answer: B

Question: 
Which tile shows the correct color pattern? Please respond only with 
the letter.
Answer: B

Question: 
Which tile fits best in the image? Please respond only with the letter..
Answer: A
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Question:
The person is marked with a coloured bounding box. Is the marked 
person (A) fully visible (B) slightly occluded up to 50%, (C) occluded 
more than 50% or (D) cannot tell? Please respond only with the letter.
Answer: C

Question: 
One person is marked with a bounding box. Is there another person in 
the image? Please respond only with yes or no.
Answer: Yes

Person Dataset

Question:
The person is marked with a coloured bounding box. Is the marked 
person truncated? Truncated means that the object is cut off at the 
edge of the image. Please respond only with yes or no.
Answer: Yes

Question: 
Each person is marked with a coloured bounding box. Which person is 
closer to the camera?  Only respond with the color of the bounding 
box.
Answer: Green

B.2 PERSON DATASET EXAMPLES
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Question: 
Which tile fits best in the image? Please respond only with the letter.
Answer: B

Question: 
Which image variant is the second brightest version of the image? 
Please respond only with the letter.
Answer: D

Question: 
Which point is brighter? Please respond only with the letter.
Answer: A
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Question: 
How many bananas are visible in the image? Please respond only 
with the number.
Answer: 6

Question: 
The banana is marked with a coloured bounding box. Is the marked 
banana (A) fully visible (B) slightly occluded up to 50%, (C) occluded 
more than 50% or (D) cannot tell? Please respond only with the letter.
Answer: B

Food Dataset

Question: 
Each banana is marked with a coloured bounding box. Which banana 
occupies more pixels in the image? Only respond with the color of the 
bounding box.
Answer: Red

Question: 
Each banana is marked with a coloured bounding box. Which banana is 
closer to the camera? Only respond with the color of the bounding box.
Answer: Red

B.3 FOOD DATASET EXAMPLES
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Question: 
One banana is marked with a bounding box. Is there another banana 
further to the left in the image? Please respond only with yes or no.
Answer: Yes

Question: 
Which image variant is not corrupted? Please respond only with the 
letter.
Answer: A

Question: 
Which image variant is not corrupted? Please respond only with the 
letter.
Answer: C
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Question: 
 The boat is marked with a coloured bounding box. Is the marked boat 
(A) fully visible (B) slightly occluded up to 50%, (C) occluded more 
than 50% or (D) cannot tell? Please respond only with the letter.
Answer: A

Question: 
The boat is marked with a coloured bounding box. Is the marked boat 
truncated? Truncated means that the object is cut off at the edge of 
the image. Please respond only with yes or no.
Answer: No

Vehicles Dataset

Question: 
Which image variant is not rotated? Please respond only with the 
letter.
Answer: C

Question: 
 Each boat is marked with a coloured bounding box. Which boat is 
further to the left in the image? Only respond with the color of the 
bounding box.
Answer: Red

B.4 VEHICLES DATASET EXAMPLES
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Question: 
Which tile fits best in the image? Please respond only with the letter.
Answer: D

Question: 
Which point is closer? Please respond only with the letter.
Answer: A

Question: 
Which image variant contains the smallest amount of blur? Please 
respond only with the letter.
Answer: D
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Question: 
The coloured bounding box marks an area of interest. Is there a giraffe 
in the bounding box? Please respond only with yes or no.
Answer: No

Question: 
The zebra is marked with a colored point. Does the zebra touch another 
zebra? Touching means that the pixels of one zebra are directly next to 
the pixels of another zebra. Please respond only with yes or no.
Answer: Yes

Wildlife Dataset

Question: 
 Each zebra is marked with a coloured bounding box. Which zebra is 
closer to the bottom of the image? Only respond with the color of the 
bounding box.
Answer: Red

Question: 
Each zebra is marked with a coloured bounding box. Which zebra is 
closer to the camera? Only respond with the color of the bounding box.
Answer: Green

B.5 WILDLIFE DATASET EXAMPLES
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Question: 
Which image variant is not rotated? Please respond only with the 
letter.
Answer: D

Question: 
The zebra is marked with a coloured bounding box. Is the marked 
zebra truncated? Truncated means that the object is cut off at the 
edge of the image. Please respond only with yes or no.
Answer: No

Question: 
Which tile fits best in the image? Please respond only with the letter..
Answer: C
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Question: 
Each cup is marked with a coloured bounding box. Which cup is closer 
to the camera?  Only respond with the color of the bounding box.
Answer: Green

Question: 
How many forks are visible in the image? Please respond only with the 
number.
Answer: 2

Kitchen Dataset

Question: 
Which point is closer? Please respond only with the letter.
Answer: B

Question: 
The fork is marked with a colored point. Does the fork touch another 
fork? Touching means that the pixels of one fork are directly next to the 
pixels of another fork. Please respond only with yes or no.
Answer: Yes

B.6 KITCHEN DATASET EXAMPLES
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Question: 
Each cup is marked with a coloured bounding box. Which cup occupies 
more pixels in the image? Only respond with the color of the bounding 
box.
Answer: Green

Question: 
 Each fork is marked with a coloured bounding box. Which fork is closer 
to the bottom of the image? Only respond with the color of the 
bounding box.
Answer: Red

Question: 
Which tile fits best in the image? Please respond only with the letter..
Answer: B
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Question: 
The coloured bounding box marks an area of interest. Is there an car in 
the bounding box? Please respond only with yes or no.
Answer: Yes

Question: 
The car is marked with a coloured bounding box. From the cameras 
perspective, is the car (A) facing somehow towards the camera, (B) 
facing left, (C) facing backwards away from the camera or (D) 
facing right? Please respond only with the letter.
Answer: A

Kitti Dataset

Question: 
 Each car is marked with a coloured bounding box. Which car is further 
to the left in the image? Only respond with the color of the bounding 
box.
Answer: Green

Question: 
Which of the four tiles fits best in the image? Please respond only with 
the letter.
Answer: B

B.7 KITTI DATASET EXAMPLES
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Question: 
Which image variant is the second brightest version of the image? 
Please respond only with the letter.
Answer: D

Question: 
Which point is brighter? Please respond only with the letter.
Answer: B

Question: 
Which image variant is not corrupted? Please respond only with the 
letter.
Answer: C
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B.8 API ERRORS AND SAFETY SETTINGS OF THE GEMINI API

When conducting experiments with the Gemini API, we had to modify the default safety settings to
accommodate our use case, which was already surprising. While the text safety settings could be
adjusted, the image safety settings were locked and required access through a higher-tier customer
account. This limitation was particularly notable given that our experiments exclusively involved
standard computer vision images. Consequently, this restriction resulted in 2% of our tasks remaining
unanswered. In Figure 8 and Figure 9 we display some tasks that triggered the safety settings.

Figure 8: Safety systems in vision-language models can be triggered by benign inputs. Example
showing an image that activated Google Gemini’s content filtering mechanisms despite containing no
harmful content.

Figure 9: Safety systems in vision-language models can be triggered by benign inputs. Example
showing an image that activated Google Gemini’s content filtering mechanisms despite containing no
harmful content.
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C BENCHMARKING INSIGHTS AND MODEL EVALUATIONS

C.1 VLM MODEL OVERVIEW

Access Size Name Version Organization Release Date
Closed - GPT-4o gpt-4o-2024-08-06 OpenAI 2024-08-08
Closed - GPT-4o-mini gpt-4o-mini-2024-07-18 OpenAI 2024-07-18
Closed - Gemini 1.5 Pro gemini-1.5-pro-001 Google 2024-05-24
Closed - Gemini 1.5 Flash gemini-1.5-flash-001 Google 2024-05-24
Closed - Claude 3.5 Sonnet claude-3-5-sonnet-20240620 Anthropic 2024-06-20
Open 1B InternVL2-1B InternVL2-1B OpenGVLab 2024-07-04
Open 8B InternVL2-8B InternVL2-8B OpenGVLab 2024-07-04
Open 40B InternVL2-40B InternVL2-40B OpenGVLab 2024-07-04
Open 7B Qwen2 7B Qwen2-VL-7B-Instruct Alibaba 2024-08-30
Open 72B Qwen2 72B Qwen2-VL-72B-Instruct Alibaba 2024-08-30
Open 7B LLaVA-NeXT 7B llava-v1.6-mistral-7b-hf U. of Wiscon-

sin–Madison
2024-01-30

Open 34B LLaVA-NeXt 34B lava-v1.6-34b-hf U. of Wiscon-
sin–Madison

2024-01-30

Open 7B Chameleon 7B chameleon-7b Meta 2024-05-16
Open 4.2B Phi-3 Vision Phi-3-vision-128k-instruct Microsoft 2024-04-23
Open 4.2B Phi-3.5 Vision Phi-3.5-vision-instruct Microsoft 2024-08-20
Open 770M Florence-2 Florence-2-large-ft Microsoft 2024-06-15
Open 3B PaliGemma 3B 224x224 paligemma-3b-mix-224 Google 2024-05-14
Open 3B PaliGemma 3B 448x448 paligemma-3b-mix-448 Google 2024-05-14
Open 12B Pixtral Pixtral-12B-2409 Mistral 2024-09-17
Open 11B Llama 3.2 11B llama-3-2-11b-vision-instruct Meta 2024-09-25
Open 90B Llama 3.2 90B llama-3-2-90b-vision-instruct Meta 2024-09-25
Open 7B Molmo 7B Molmo-7B-D Allen Institute

for AI
2024-09-24

Table 8: Our 22 evaluated SOTA vision-language models span both open and closed-source
architectures. The benchmark includes 22 VLMs with precisely specified versions, representing
current capabilities across both proprietary and publicly available models.
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C.2 ACCURACY%(T) THRESHOLDS FOR ALL DATASETS

Here we present the Accuracy%(t) metric at thresholds 0.4, 0.5, 0.55, 0.6, 0.65, 0.70, 0.75, and 0.80.
The top 10 models for each dataset are displayed as bar plots in Figure 10. To increase interpretability
of single models across datasets, Figure 11 displays all 22 models as line plots.
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Figure 10: Accuracy% (t) ↑thresholds for the top 10 models across all datasets. Humans (solid
grey bar) consistently achieve near-perfect scores of 1 across all displayed thresholds and datasets.
Performance varies significantly across imaging domains, with dotted lines representing open-source
models and solid lines indicating closed-source models.
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Figure 11: Accuracy%(t) ↑thresholds for all models for each dataset. Displayed as line plots,
given the large number of models. Humans (dashed-dotted grey line) consistently achieve near-
perfect scores of 1 across all displayed thresholds and datasets. Performance varies significantly
across imaging domains, with dotted lines representing open-source models and solid lines indicating
closed-source models.
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C.3 TASK RANKING COMPARISON BETWEEN MODELS AND HUMANS

Task ranking differs between models and human raters. The plots shows the difficulty of tasks
based on aggregated model scores/human scores (1 = hardest task, 25 = easiest task). The radius
of the blob indicates how often a task was assigned a difficulty rank when considering all seven
domains and all models (n = 5 for closed models; n = 16 for open models; n = 21 for all models; n =
1 for humans as majority vote over several raters). The larger the plot, the higher the percentage it
achieved a specific rank. The hardest tasks on average across domains are (1) T7.2 “Jigsaw Puzzle
Completion”, (2), T1.2 “Object Counting”, (3), T7.1 “Rotated Jigsaw Puzzle Completion”, (4), T2.1
“Object Occlusion Detection”, and (5) T5.2 “Second Brightest Image Selection”. The easiest task
on average was T1.3 “Additional Object Presence Detection”. We display aggregated all models
in Figure 12, human baselines in Figure 13, all closed-source models in Figure 14, and all open-source
models in Figure 15.
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Figure 12: All tested vision-language models, both open and closed-source, exhibit consistent
patterns in task difficulty. Aggregated ranking of tasks from easiest to most challenging, revealing
systematic strengths and limitations shared across the complete set of evaluated models regardless of
their accessibility.
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Figure 13: Human performance reveals distinct patterns of task difficulty compared to models.
Ranking of vision tasks from easiest to most challenging based on human evaluator performance,
providing a baseline for understanding natural visual capabilities.
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Figure 14: Clsoed-sourced vision-language models demonstrate shared patterns in task difficulty
despite architectural differences. Aggregated ranking of tasks from easiest to most challenging,
revealing systematic strengths and limitations common across all evaluated closed-source models.
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Figure 15: Publicly available vision-language models exhibit consistent patterns in task difficulty
across architectures. Aggregated ranking of tasks from easiest to most challenging, revealing
systematic strengths and limitations shared across all evaluated open-source models.
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C.4 ACCURACIES ACROSS DATASETS

We display the regular Accuracy scores for all models per dataset in Table 9 and per task in Table 10.

Model Overall wildlife animals kitti person vehicles food kitchen

humans 93.66 93.43 93.87 94.60 95.15 92.41 93.58 92.59
Gemini 1.5 pro 72.44 74.58 75.35 77.96 70.84 71.74 69.98 66.60
GPT-4o 69.79 71.35 71.35 76.16 69.01 69.25 67.00 64.42
Claude 3.5 Sonnet 69.00 73.72 74.28 72.40 65.34 67.75 65.69 63.82
Qwen2 72B 68.76 70.79 75.00 74.63 61.70 68.23 66.22 64.74
Llama 3.2 90B 65.93 71.33 70.21 68.63 64.62 63.13 62.87 60.75
Gemini 1.5 flash 65.72 71.53 70.16 70.83 60.23 65.17 61.14 61.01
Qwen2 7B 59.71 67.82 65.01 62.22 51.49 59.32 57.34 54.80
Molmo 7B 57.89 61.11 61.57 59.77 57.09 56.12 56.37 53.19
Pixtral 56.80 59.77 59.17 63.20 54.44 56.08 54.03 50.90
GPT-4o-mini 54.90 59.19 59.42 60.80 53.63 53.71 46.90 50.66
LLaVA-NeXt 34B 53.26 57.47 56.67 53.57 54.26 50.72 53.11 47.02
Llama 3.2 11B 50.03 55.14 54.51 51.16 47.03 47.02 47.30 48.05
Phi-3.5 Vision 49.18 58.14 51.83 47.86 44.46 45.43 49.21 47.34
InternVL2-40B 48.14 49.48 49.98 50.64 47.37 47.98 44.69 46.85
LLaVA-NeXT 7B 44.52 48.84 46.44 41.38 42.39 41.52 47.27 43.79
Phi-3 Vision 44.39 48.99 47.41 42.43 41.62 42.12 45.97 42.18
InternVL2-8B 41.28 43.72 45.60 46.76 35.59 38.95 39.26 39.05
PaliGemma 3B 448x448 40.66 47.07 45.02 36.00 43.14 37.82 40.64 34.94
PaliGemma 3B 224x224 36.43 41.26 39.73 31.57 38.26 34.13 37.32 32.76
InternVL2-1B 16.69 18.05 15.51 18.31 15.94 14.54 19.58 14.89
Florence-2 15.47 17.80 16.02 15.01 18.29 13.85 16.67 10.65
Chameleon 7B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 9: Model Accuracies across different datasets. Performance varies greatly between domain
datasets, highlighting the need for in-domain validation. For each column, the top 10 models are

highlighted: 1st place (Gold) 2nd place (Silver) 3rd place (Bronze) 4th place

5th place 6th place 7th place 8th place 9th place 10th place.
The ’Overall’ column represents the mean accuracy across all datasets.
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C.5 RANKING VARIABILITY ACROSS DATASETS

Scatter plots illustrating ranking diversity first present a combined view across all domains, followed
by separate plots for each domain. These visualizations reveal the variations in rankings both globally
and within datasets.
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Figure 16: Ranking variation across models for all datasets combined. Depicted as a scatter plot.
The radius of each blob at position (Model i, rank j) is proportional to the percentage that model
Model i achieved rank j. Open models are indicated by a dashed border.
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Figure 17: Ranking variation across models for the animals dataset. Depicted as a scatter plot.
The radius of each blob at position (Model i, rank j) is proportional to the percentage that model
Model i achieved rank j. Open models are indicated by a dashed border.
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Figure 18: Ranking variation across models for the person dataset. Depicted as a scatter plot.
The radius of each blob at position (Model i, rank j) is proportional to the percentage that model
Model i achieved rank j. Open models are indicated by a dashed border.
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Figure 19: Ranking variation across models for the food dataset. Depicted as a scatter plot.
The radius of each blob at position (Model i, rank j) is proportional to the percentage that model
Model i achieved rank j. Open models are indicated by a dashed border.
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Figure 20: Ranking variation across models for the vehicles dataset. Depicted as a scatter plot.
The radius of each blob at position (Model i, rank j) is proportional to the percentage that model
Model i achieved rank j. Open models are indicated by a dashed border.
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Figure 21: Ranking variation across models for the wildlife dataset. Depicted as a scatter plot.
The radius of each blob at position (Model i, rank j) is proportional to the percentage that model
Model i achieved rank j. Open models are indicated by a dashed border.
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Figure 22: Ranking variation across models for the kitchen dataset. Depicted as a scatter plot.
The radius of each blob at position (Model i, rank j) is proportional to the percentage that model
Model i achieved rank j. Open models are indicated by a dashed border.
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Figure 23: Ranking variation across models for the kitti dataset. Depicted as a scatter plot.
The radius of each blob at position (Model i, rank j) is proportional to the percentage that model
Model i achieved rank j. Open models are indicated by a dashed border.
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C.6 TASK DIFFICULTY COMPARISON BY METADATA SOURCE AND AMBIGUITY

Figure 24: Instance segmentations alone allow for the extraction of hard tasks. (a) Tasks
were classified in those extractable directly from instance segmentations (blue), requiring external
models (green) and requiring human annotations (red). (b) Human ambiguity plotted against model
performance.
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C.7 TASK DIVERSITY: MODEL ACCURACIES ACROSS TASKS

Here, we present the performance of models across all tasks, using Accuracy (see Table 10). Spider
plots for closed-source, open-source, and varying model sizes are displayed in Figure 25.

Model Rank T1.1 T1.2 T1.3 T2.1 T2.2 T2.3 T2.4 T2.5 T2.6 T3.1 T3.2 T3.3 T3.4

humans 96.88 68.31 95.24 78.93 92.92 99.51 100.00 100.00 100.00 97.21 99.83 99.90 89.74

Gemini 1.5 pro 1 78.23 33.68 92.32 47.74 72.91 75.09 93.33 97.11 98.15 96.22 75.95 92.18 74.85
GPT-4o 2 83.45 30.35 87.17 54.94 80.41 50.45 82.36 97.62 87.92 87.07 74.99 85.63 70.45
Claude 3.5 Sonnet 3 88.98 25.70 88.46 49.96 64.56 50.46 63.32 99.83 96.37 89.89 74.08 85.23 76.66
Qwen2 72B 4 92.10 34.11 91.18 39.80 78.67 45.76 62.40 96.39 85.35 86.97 71.26 86.96 82.08
Llama 3.2 90B 5 93.82 30.11 91.46 41.42 65.21 30.21 24.82 98.53 88.38 90.75 79.31 93.00 81.21
Gemini 1.5 flash 6 84.21 31.33 87.58 39.87 68.89 54.81 63.51 94.22 89.21 94.00 77.79 89.16 55.65
Qwen2 7B 7 90.65 33.82 90.11 39.87 48.14 39.38 38.14 76.98 69.56 80.16 70.88 80.03 65.24
Molmo 7B 8 90.23 30.88 84.30 28.99 25.84 27.54 30.74 78.23 76.44 79.53 74.20 82.49 67.28
Pixtral 9 86.84 7.14 88.75 43.64 37.04 41.20 34.18 78.29 85.89 71.29 63.09 75.85 72.88
GPT-4o-mini 10 79.86 23.35 67.68 33.83 39.76 43.70 60.91 80.17 72.04 62.47 65.35 59.01 54.33
LLaVA-NeXt 34B 11 88.84 31.02 90.07 44.10 25.49 30.05 31.79 57.86 61.61 74.50 64.41 79.34 76.97
Llama 3.2 11B 12 90.84 26.84 84.86 42.20 72.40 29.61 24.06 34.08 45.83 64.14 67.97 70.72 68.50
Phi-3.5 Vision 13 86.88 23.33 82.71 43.93 31.32 33.07 22.15 58.01 69.47 48.38 49.98 51.05 61.35
InternVL2-40B 14 63.66 29.59 55.06 0.00 39.81 62.62 57.09 60.56 66.63 78.00 72.34 82.92 60.35
LLaVA-NeXT 7B 15 87.08 0.00 86.71 43.45 30.54 25.41 26.43 33.54 36.81 53.94 57.34 63.21 73.26
Phi-3 Vision 16 90.54 24.99 82.70 41.00 27.84 28.65 23.84 50.31 75.56 36.55 51.77 52.41 55.61
InternVL2-8B 17 86.78 24.47 85.39 0.06 61.33 28.01 31.17 46.47 49.34 7.09 3.66 6.19 68.01
PaliGemma 3B 448x448 18 79.68 31.31 89.50 31.74 47.41 26.39 23.78 37.00 28.39 17.74 26.39 26.59 74.15
PaliGemma 3B 224x224 19 79.85 26.06 89.28 35.85 42.85 25.35 22.89 23.61 25.53 12.55 10.39 13.15 73.53
InternVL2-1B 20 31.55 0.00 47.84 0.00 14.20 24.17 24.58 15.81 25.16 0.00 0.00 0.00 34.83
Florence-2 21 50.98 26.96 77.61 0.00 28.27 0.00 0.00 0.11 0.11 0.08 0.17 0.80 64.93
Chameleon 7B 22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Model Rank T3.5 T4.1 T4.2 T5.1 T5.2 T5.3 T5.4 T6.1 T6.2 T7.1 T7.2 T8.1

humans 82.57 75.34 82.39 98.56 99.86 99.82 100.00 93.78 90.72 99.04 96.56 99.30

Gemini 1.5 pro 1 69.02 70.32 40.97 81.41 23.64 99.15 66.80 78.46 68.36 53.67 47.86 79.66
GPT-4o 2 66.58 67.21 51.08 82.01 46.09 96.57 57.50 75.79 43.25 41.58 46.66 85.76
Claude 3.5 Sonnet 3 69.86 63.54 47.05 46.37 61.09 98.36 69.65 68.48 64.15 39.64 37.98 79.61
Qwen2 72B 4 68.21 68.30 53.98 52.56 45.81 98.63 66.89 74.69 64.21 37.12 32.74 79.51
Llama 3.2 90B 5 67.43 72.45 58.78 35.68 28.37 97.95 75.00 78.99 62.49 27.54 23.22 78.99
Gemini 1.5 flash 6 63.95 68.17 49.15 41.06 33.76 96.46 52.53 71.80 73.40 42.23 27.55 77.20
Qwen2 7B 7 64.52 68.53 39.00 33.40 30.22 87.46 61.72 75.51 56.72 32.73 25.15 70.42
Molmo 7B 8 58.12 60.06 56.05 28.79 35.34 69.54 67.60 78.68 53.21 28.87 26.05 84.32
Pixtral 9 63.37 70.13 36.51 28.00 35.47 94.85 38.95 63.01 32.66 30.41 29.98 81.35
GPT-4o-mini 10 72.69 57.68 45.14 48.57 34.58 81.02 51.40 49.48 55.02 33.01 29.64 59.98
LLaVA-NeXt 34B 11 65.84 67.52 46.67 35.69 24.83 39.62 51.00 72.04 52.33 28.19 26.04 53.84
Llama 3.2 11B 12 63.69 55.04 36.83 7.73 26.22 46.86 62.65 62.63 54.41 25.69 26.14 38.49
Phi-3.5 Vision 13 64.30 66.02 40.56 17.26 27.28 51.81 51.41 45.56 61.98 30.67 26.10 52.27
InternVL2-40B 14 56.75 9.18 0.00 60.92 33.40 82.67 16.54 79.59 11.92 34.83 32.43 65.90
LLaVA-NeXT 7B 15 69.50 62.59 35.97 23.37 26.02 24.81 49.25 56.65 55.59 23.77 24.97 28.64
Phi-3 Vision 16 58.98 66.22 47.50 22.42 26.04 46.52 18.66 42.42 16.59 27.91 25.88 44.22
InternVL2-8B 17 64.84 59.73 0.00 51.82 27.64 56.74 51.50 18.60 51.13 27.32 28.19 54.81
PaliGemma 3B 448x448 18 67.97 60.55 47.86 16.22 25.23 33.53 41.82 27.86 51.58 24.47 22.28 28.83
PaliGemma 3B 224x224 19 71.00 58.38 31.76 23.41 26.30 24.59 34.08 19.91 37.08 22.13 24.20 27.14
InternVL2-1B 20 25.56 14.39 0.00 24.38 10.64 24.42 12.82 0.00 5.82 23.82 22.14 24.71
Florence-2 21 57.33 49.88 0.00 0.00 0.70 0.00 0.17 0.26 3.56 4.83 0.00 0.65
Chameleon 7B 22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 10: Model performance across tasks displayed as regular Accuracy. For each column,

the top 10 models are highlighted: 1st place (Gold) 2nd place (Silver) 3rd place

(Bronze) 4th place 5th place 6th place 7th place 8th place

9th place 10th place.
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Figure 25: Model architecture and size significantly impact performance patterns across diverse
vision tasks. Spider plots reveal distinct performance profiles between open-source (dashed lines) and
closed-source (solid lines) models across our comprehensive task framework. Each axis represents
task-specific accuracy, demonstrating how different model characteristics influence capabilities.

C.8 ACCURACY%(T) CURVES FOR ALL MODELS

Here we present the Accuracy%(t) curves for all models and datasets. The Accuracy%(t) metric
represents the percentage of images for which at least a specified proportion of questions are correctly
answered. The thresholds for each curve are [0.2, 0.3, 0.4, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85,
0.9, 0.95, 1.0]. First we display the top 10 models per dataset in Figure 26, for all 22 models in
Figure 27, and Area under the Accuracy%(t) Curves in Table 11.
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Figure 26: Accuracy% (t) curves for the top 10 models across each dataset, with a maximum
score of 1. Humans (dashed-dotted grey line) consistently achieve the highest performance. Dashed
lines indicate open-source models, while solid lines represent closed-source models. The area under
the Accuracy% (t) curves, detailed in Table 11, highlights significant variations in model rankings
across domain-specific datasets for the same tasks.
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Figure 27: Accuracy% (t) curves for all models across each dataset, with a maximum score of
1. Humans (dashed-dotted grey line) consistently achieve the highest performance. Dashed lines
indicate open-source models, while solid lines represent closed-source models. The area under the
Accuracy% (t) curves, detailed in Table 11, highlights significant variations in model rankings across
domain-specific datasets for the same tasks.
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Model Overall animals food kitchen kitti person vehicles wildlife

humans 74.28 74.40 74.34 73.08 75.18 75.89 73.01 74.10
Gemini 1.5 pro 52.95 56.02 50.39 46.81 58.51 51.35 52.17 55.42
GPT-4o 50.19 51.87 47.24 44.52 56.74 49.59 49.72 51.64
Claude 3.5 Sonnet 49.80 55.36 46.24 44.73 53.03 45.92 48.48 54.85
Qwen2 72B 49.57 56.15 46.89 45.63 55.38 42.27 48.85 51.82
Llama 3.2 90B 46.57 51.07 43.16 41.45 49.25 45.00 43.66 52.42
Gemini 1.5 flash 46.33 51.10 41.61 41.39 51.56 40.45 45.60 52.63
Qwen2 7B 40.35 46.08 37.87 34.94 42.81 31.93 39.73 49.11
Molmo 7B 38.27 41.84 36.78 33.96 39.78 37.60 36.29 41.65
Pixtral 37.34 40.00 34.23 31.42 43.69 35.06 36.56 40.45
GPT-4o-mini 35.50 40.49 27.34 31.03 41.31 34.08 34.00 40.29
LLaVA-NeXt 34B 33.65 37.26 33.23 27.67 33.63 34.72 30.71 38.28
Llama 3.2 11B 30.44 35.35 27.17 28.06 31.75 27.44 27.19 36.10
random chance 30.24 29.39 30.31 30.86 29.78 30.39 29.70 31.27
Phi-3.5 Vision 29.87 32.93 29.22 28.01 28.96 24.93 25.67 39.35
InternVL2-40B 28.48 30.60 25.16 27.14 30.76 27.85 27.89 29.95
LLaVA-NeXT 7B 24.94 26.88 27.10 24.04 22.03 23.12 21.81 29.64
Phi-3 Vision 24.89 27.88 26.05 22.74 23.41 22.12 22.60 29.44
InternVL2-8B 22.21 26.79 19.83 20.09 27.41 16.17 19.81 25.37
PaliGemma 3B 448x448 21.44 25.70 20.86 15.81 17.04 24.13 18.40 28.16
PaliGemma 3B 224x224 17.28 20.82 17.61 13.99 12.35 18.80 14.72 22.65
InternVL2-1B 2.62 2.14 4.26 2.06 3.03 2.12 1.68 3.03
Florence-2 1.74 1.68 2.03 0.72 1.50 2.54 1.34 2.33
Chameleon 7B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 11: Area under Accuracy%(t) Curves for seven different datasets. Curves calculated for
threshholds at [0.2, 0.3, 0.4, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0] across each

dataset. For each column, the top 10 models are highlighted: 1st place (Gold) 2nd place

(Silver) 3rd place (Bronze) 4th place 5th place 6th place 7th place

8th place 9th place 10th place. The ’Overall’ column represents the mean area under
the curve across all datasets. The substantial differences in model rankings across domain-specific
datasets for identical tasks highlights the need for specific in-domain evaluation.
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C.9 TASK CORRELATION

Here we present the correlation between tasks, quantified in the heatmap in Figure 28 and visualized
in the dendrogram in Figure 29. The heatmap shows pairwise task correlations, while the dendrogram
highlights clusters of tasks with similar performance patterns across models

Figure 28: Task performance correlations reveals insights on related visual capabilities. Heatmap
visualizing pairwise correlations between task performances across all datasets, with values ranging
from -1 (anti-correlated) to 1 (highly correlated).
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Figure 29: Hierarchical clustering reveals natural groupings of visually related tasks across
domains. Dendrogram visualization of task relationships based on model performance across seven
domains, confirming and extending the correlation patterns observed in the heatmap analysis.
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