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Abstract
Competitions for shareable and limited resources
have long been studied with strategic agents. In
reality, agents often have to learn and maximize
the rewards of the resources at the same time. To
design an individualized competing policy, we
model the competition between agents in a novel
multi-player multi-armed bandit (MPMAB) set-
ting where players are selfish and aim to maxi-
mize their own rewards. In addition, when sev-
eral players pull the same arm, we assume that
these players averagely share the arms’ rewards
by expectation. Under this setting, we first ana-
lyze the Nash equilibrium when arms’ rewards are
known. Subsequently, we propose a novel Selfish
MPMAB with Averaging Allocation (SMAA) ap-
proach based on the equilibrium. We theoreti-
cally demonstrate that SMAA could achieve a
good regret guarantee for each player when all
players follow the algorithm. Additionally, we
establish that no single selfish player can signif-
icantly increase their rewards through deviation,
nor can they detrimentally affect other players’
rewards without incurring substantial losses for
themselves. We finally validate the effectiveness
of the method in extensive synthetic experiments.

1. Introduction
Agents compete with each other to maximize their own re-
wards in various applications with shareable and limited
resources, ranging from cognitive radio networks (Mitola
& Maguire, 1999) to algorithm-curated platforms (Hron
et al., 2022). For example, secondary users compete for
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channels to transmit data in cognitive radio networks (Mi-
tola & Maguire, 1999; Haykin, 2005; Meshkati et al., 2007).
Regarding algorithm-curated platforms (such as YouTube
and TikTok), content providers create content with differ-
ent topics to compete for exposure (Ben-Porat et al., 2020;
Hron et al., 2022; Jagadeesan et al., 2022; Yao et al., 2023;
Zhu et al., 2023). In these applications, resources are of-
ten shareable, and each resource has a limited total reward,
such as the quality of each channel in cognitive radio net-
works and the demand for each content topic in algorithm-
curated platforms. As a result, when more agents choose
to acquire the same resource, the reward earned by each
of them will decrease. Meanwhile, agents usually do not
have prior knowledge about the total reward of each re-
source in reality (Jouini et al., 2009; 2010; Li et al., 2010).
Therefore, these agents need to design policies to maximize
their rewards faced with unknown resource rewards and
competition from other agents.

It is a common practice to adopt the multi-player multi-
armed bandit (MPMAB) framework (Anantharam et al.,
1987; Liu & Zhao, 2010; Anandkumar et al., 2011; Bour-
sier & Perchet, 2022) to model the behaviors of multiple
agents with unknown rewards of different resources. In
this framework, players pull arms simultaneously at various
rounds. Since several players may choose the same arm,
different collision models (Bande & Veeravalli, 2019; Liu
et al., 2020; Shi & Shen, 2021; Boyarski et al., 2021; Wang
et al., 2022a;b) are proposed to allocate the arm’s reward to
collided players. However, these works mainly focus on the
cooperative player setting where players are non-strategic
and cooperate to maximize the total reward of all players.
This does not agree with the real scenarios since players
are always selfish and target to maximize their own reward.
Several works (Boursier & Perchet, 2020; Liu et al., 2020;
2021; Jagadeesan et al., 2021) consider the selfish behav-
iors of players while they assume that the resource is not
shareable, as at most one player can get the reward when a
collision occurs.

In this paper, we propose a novel MPMAB setting to char-
acterize the strategic behaviors of agents in applications
with limited and shareable resources. We assume that the
players are selfish, and they could strategically alter their
policies to achieve better rewards. In addition, when several
players pull the same arm, we suppose that these players
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averagely share the arms’ rewards by expectation. We fur-
ther assume that each player could observe his own reward
and the reward of the chosen arm, similar to the statistic
sensing setting in traditional MPMAB literature (Boursier
& Perchet, 2022). Our target is to design an algorithm for
each player that maximizes his own reward and is robust to
the strategic behaviors of any other player. Specifically, the
algorithm should achieve a good regret guarantee when all
players follow the algorithm. Furthermore, no single selfish
player can substantially increase their rewards through devi-
ation, nor can they negatively impact other players’ rewards
without incurring significant personal losses.

To achieve this target, we first analyze the Nash equilibrium
of players’ behaviors when the expected reward of each arm
is known. Based on the equilibrium, we propose a novel
Selfish MPMAB with Averaging Allocation (SMAA) ap-
proach for each player that can explore the rewards of arms,
maximize his own reward, and converge to equilibrium at
the same time. We theoretically analyze our algorithm and
demonstrate that after T rounds, (1) when all players fol-
low SMAA, the regret for each player is O(log T ). We
further show that it matches the lower bound when play-
ers only use the information of chosen arms’ rewards. (2)
When all players follow SMAA, the algorithm could con-
verge to equilibrium, and the number of non-equilibrium
rounds is O(log T ). (3) A selfish player that deviates from
the algorithm will bring at most O(log T ) increase in his
own reward. (4) If a selfish player wants to bring loss u to
another player’s reward, he will also suffer from a loss of
at least βu − O(log T ), where β is a constant. We finally
validate the effectiveness of our method through extensive
synthetic experiments.

To conclude, our contributions are listed as follows.

• We propose a novel MPMAB setting with an averaging
allocation model to characterize the selfish behaviors
of players in applications with limited and shareable
resources.

• We analyze the Nash equilibrium of the problem and
further propose a novel Selfish MPMAB with Averag-
ing Allocation (SMAA) approach for players under the
proposed setting.

• We theoretically demonstrate that SMAA could
achieve a good regret guarantee for each player when
all players follow the algorithm and it is robust to a
single player’s strategic deviation.

2. Preliminaries
2.1. Basic Setting

Suppose there are K arms with indices [K] =
{1, 2, . . . ,K}, N players (he) and T rounds. At round
t ∈ [T ], the reward of arm k is given by Xk(t) drawn i.i.d.

according to a distribution ξk ∈ Ξ with expectation µk > 0
supported on [0, 1]. Here Ξ represents a set of possible
distributions supported on [0, 1] with positive expectations.

The problem is decentralized. At each round t ∈ [T ], N
players choose arms simultaneously based only on their
historical observations. We use πj(t) to denote the arm
chosen by player j and Mk(t) =

∑N
j=1 I[πj(t) = k] to

represent the number of players that pull arm k at round t.

We assume all players are homogeneous, leading to an av-
eraging allocation mechanism when collisions occur. For-
mally, at round t, each player j is endowed with a weight
wj(t) sampled i.i.d. from a distribution Γ supported on
[0, 1]. Then each arm’s reward is allocated proportionally to
the players’ weights. Let random variable Rj(t) denote the
reward earned by player j at round t, and it is given by the
following equation:

Rj(t) = Xπj(t)(t) ·
wj(t)∑N

j′=1 I[πj′(t) = πj(t)]wj′(t)
. (1)

As a result, since all players’ weights are sampled from the
same distribution Γ, we have that for all k ∈ [K] such that
Mk(t) > 0 and j ∈ [N ] such that πj(t) = k,

E [Rj(t)|Xk(t),Mk(t)] = Xk(t)/Mk(t). (2)

This indicates that players averagely share the arms’ rewards
by expectation.

We consider the setting similar to the statistic sensing set-
ting in standard multi-player multi-armed bandit problems
(Boursier & Perchet, 2022). Formally, at each round, player
j could observe his own reward Rj(t) and the total reward
of the selected arm πj(t) (i.e., Xπj(t)(t)).

Example 2.1. We demonstrate one example of our proposed
problem setting. In an algorithm-curated platform (Hron
et al., 2022), such as YouTube and TikTok, content providers
create content with different topics to compete for exposure.
Here content providers are players and different content
topics are arms. The reward of each arm corresponds to
the total exposure to the topic. As the demand for each
topic is usually stable (Ben-Porat et al., 2020; Hron et al.,
2022), the expected amount of exposure for each topic is
unchanged. Therefore, assuming players are homogeneous
(Hron et al., 2022; Jagadeesan et al., 2022), when several
content providers select the same topic, the exposure is
shared averagely among these providers by expectation.

Other mathematical notations We use ⌊x⌋ to denote
the largest integer that is not greater than x and ⌈x⌉ to
denote the smallest integer that is not smaller than x for
any real number x. For any (p, q) ∈ [0, 1]2, let kl(p, q)
denote the Bernoulli Kullback-Leibler divergence defined
as kl(p, q) = p log(p/q) + (1 − p) log((1 − p)/(1 − q))
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(Garivier & Cappé, 2011). In addition, with convention, we
have that 0 log 0 = 0 log 0/0 = 0 and x log x/0 = ∞ if
x > 0.

Background on Nash equilibrium We adopt the defini-
tion of ϵ-Nash equilibrium from the game theory (Nisan
et al., 2007). For a general game problem, let S be the set
of agents’ strategies, and each agent j follows a strategy
sj ∈ S. We use s = {sj}Nj=1 to denote the strategy profile
of all players and (s′, s−j) to denote the profile where a
single player j deviates from the original strategy sj to a
new strategy s′ ∈ S. In addition, we use Uj(s) to denote
the utility of player j when the strategy profile is s. With
these notations, ϵ-Nash equilibrium is defined as follows.
Definition 2.1 (ϵ-Nash equilibrium). For a game specified
by (S, {Uj}Nj=1), a strategy profile s ∈ SN is an ϵ-Nash
equilibrium if for all s′ ∈ S and j ∈ [N ],

E
[
Uj(s

′, s−j)
]
≤ E[Uj(s)] + ϵ. (3)

Moreover, if a strategy profile s is a 0-Nash equilibrium, we
say that the strategy profile s is a Nash equilibrium.

2.2. Evaluation metrics

In this paper, we target an algorithm for each player that
maximizes his own reward and is robust to the strategic
behaviors of any other player. We first introduce two metrics
to evaluate a policy’s performance when all players follow
the algorithm.

Players’ regret Since we focus on the selfish player set-
ting, we evaluate the regret of each player compared with his
best choice in each round. At round t, if player j pulls arm
k ∈ [K]\{πj(t)}, the expected reward is µk/(Mk(t) + 1).
If player j pulls the originally chosen arm πj(t), his ex-
pected reward is µπj(t)/Mπj(t)(t). Combining these two
cases, we can get the following equation for player j’s re-
gret.

Regj(T ) =

T∑
t=1

(
max
k∈[K]

µk

Mk(t) + I[πj(t) ̸= k]
−Rj(t)

)
.

(4)
Notably, each agent’s regret depends on others agents’ poli-
cies since Mk(t) is the number of players on arm k.

Number of non-equilibrium rounds When players know
the arms’ expected rewards, their chosen arms will follow
the Nash equilibrium demonstrated in Section 3.1. As a
result, we use the number of non-equilibrium rounds to
evaluate whether an algorithm could effectively converge.
Formally, the metric can be calculated by the following
equation.

NonEqu(T ) =

T∑
t=1

I [∃k ∈ [K],Mk(t) ̸= m∗
k] , (5)

where m∗
k is provided in Theorem 3.1 and it represents the

number of players that pull arm k in the equilibrium.

We further provide two perspectives to analyze the pol-
icy’s stability when there exists a single strategic player.
We use Spolicy to denote the set of all policies for play-
ers. For any s ∈ SNpolicy, the utility of player j is the total
reward after T rounds, i.e., Upolicy

j (s) = Rewj(T ; s) =

E
[∑T

t=1 Rj(t; s)
]
. Here we slightly abuse the notation

and use Rj(t; s) to represent the reward earned by player j
at round t when the policy profile is s.

ϵ-Nash equilibrium w.r.t. policies We expect a policy
profile s is a ϵ-Nash equilibrium w.r.t. the game specified
by (Spolicy, {Upolicy

j }Nj=1) with a small ϵ such that any single
selfish player can not significantly improve his own reward
by deviation.
Remark 2.1. We note that the equilibrium mentioned here
is not the equilibrium introduced when calculating the num-
ber of non-equilibrium rounds. Here the strategy set Spolicy
represents all policies and the utility function is the total
reward after T rounds. However, in the equilibrium men-
tioned in Equation (5) (Details are provided in Section 3.1),
the strategy set is the set of all arms and the utility function
is the expected reward at a single round.

(β, ϵ)-stable Following (Boursier & Perchet, 2020), we
further analyze how a single selfish player could affect other
players’ reward by the following definition.
Definition 2.2 ((β, ϵ)-stable (Boursier & Perchet, 2020)).
A policy profile s ∈ SNpolicy is (β, ϵ)-stable if for any s′ ∈
Spolicy, u ∈ R+, and i, j ∈ [N ],

E[Rewi(T ; s
′, s−j)] ≤ E[Rewi(T ; s)]− u

=⇒E[Rewj(T ; s
′, s−j)] ≤ E[Rewj(T ; s)] + ϵ− βu.

(6)

Intuitively, if player j wants to incur a considerable loss u
to player i, then he will also suffer from a comparable loss
of at least βu− ϵ.

3. Proposed Methods
We first analyze the Nash equilibrium when the arms’ ex-
pected rewards are known in Section 3.1. Afterward, based
on the equilibrium, we provide the novel Selfish MPMAB
with Averaging Allocation (SMAA) approach for players in
Section 3.2. We theoretically analyze the property of the al-
gorithm in Section 3.3. In these subsections, we assume that
each player knows the number of players and is endowed
with a different rank (i.e., a unique numbering from 1 to N
for each agent). Finally, in Section 3.4, we relax the assump-
tion and demonstrate that combining the classic Musical
Chairs approach (Rosenski et al., 2016) with SMAA could
achieve similar theoretical results.

3



Competing for Shareable Arms in Multi-Player Multi-Armed Bandits

Basic assumption Previous works on the zero collision
reward setting usually assume that the expected rewards of
arms are different (Boursier & Perchet, 2020; Wang et al.,
2020). Extending to the shareable arm case, we slightly
strengthen the assumption as shown in Assumption 3.1.

Assumption 3.1. For any k, k′ ∈ [K] and n, n′ ∈ [N ], we
have µk/n ̸= µk′/n′.

Remark 3.1. We further demonstrate the rationality of the
assumption by proving that it holds with probability 1 when
the expected rewards of different arms µk are sampled ran-
domly from an absolutely continuous probability distribu-
tion with bounded probability densities (such as uniform
and beta distributions). Details can be found in Section A.1.

3.1. Nash Equilibrium When Rewards Are Known

We first analyze the Nash equilibrium at each round when
players know the expected reward of each arm. Since play-
ers are selfish and aim to target their rewards, their strategies
at each round will eventually converge to the Nash equilib-
rium.

At each round, the strategy set for each player is the set of
all arms, i.e., Ssingle = [K]. For a strategy profile s ∈ SNsingle,
we use m(s) = {mk(s)}Kk=1 to denote the number of
players that choose arm k. Then the utility of player j
is the expected reward at this round, which is given by
U single
j (s) = µsj/msj (s) according to the averaging alloca-

tion mechanism.

Our problem setting at each round is a specific instance of
the singleton congestion game (SCG) (Ieong et al., 2005;
Basat et al., 2017). Indeed, Ieong et al. (2005) has de-
veloped polynomial-time algorithms to discover the Nash
equilibrium that corresponds to the maximal social welfare
in SCGs. However, the algorithm is designed for general
SCGs, failing to characterizing the detailed properties of our
problem. As result, it pose significant challenges to adopt
them in online settings where each arms’ rewards remain
unknown. To address this, we develop the following prop-
erty for the Nash equilibria in our problem setting, which
can be seamlessly integrated within online settings.

Theorem 3.1. Under Assumption 3.1, the Nash equilibrium
for the game specified by (Ssingle, {U single

j }Nj=1) exists. More-
over, for any strategy profile s, it is a Nash equilibrium if
and only if m(s) = m∗ where m∗ is given by

m∗ =
{
m∗

k =
⌊µk

z∗

⌋}K

k=1
, (7)

where z∗ = sup

{
z > 0 : h(z) ≜

K∑
k=1

⌊µk

z

⌋
≥ N

}
.

(8)

We further useM∗ = {k ∈ [K] : m∗
k > 0} to represent the

arms chosen in the equilibrium.
Remark 3.2. As shown in Section A.2, the equilibria de-
scribed in Theorem 3.1 are actually strong Nash equilibria,
hence robust to multiple players’ deviations.
Remark 3.3. Although we only consider pure strategies in
Theorem 3.1 (i.e., pure Nash equilibrium (PNE)), our evalu-
ation of the randomized strategies in Section A.3 reveals that
the total welfare (measured as the total rewards of all play-
ers) from any symmetric Mixed Nash equilibrium (MNE)
(i.e., all players follow the same randomized strategy) does
not exceed that from equilibria in Theorem 3.1. We analyze
symmetric MNE due to the computational difficulties inher-
ent in general mixed Nash equilibria (Nisan et al., 2007),
aligning with prior research in algorithm-curated platforms
(Jagadeesan et al., 2022).

We present an example to better explain the intuition behind
Theorem 3.1.
Example 3.1. Suppose there are K = 3 arms with expected
rewards {µ1, µ2, µ3} = {1, 0.4, 0.2} and N = 3 players.
Then in a Nash equilibrium, two players pull arm 1 with
reward 1 and one player pulls arm 2 with reward 0.4.

Theorem 3.1 and Example 3.1 demonstrate that when play-
ers reach an equilibrium, the number of players that choose
each arm is approximately proportional to the corresponding
arms’ expected rewards. However, this may harm the total
welfare (measured as the total rewards of all players). In Ex-
ample 3.1, the total welfare of all players in the equilibrium
is 1.4. By contrast, if a player deviates from arm 1 to arm 3,
the total welfare will increase to 1.6. This phenomenon is
well known as the existence of the price of anarchy (PoA)
(Roughgarden, 2005; Nisan et al., 2007) in game theory,
which indicates the mismatch between agents’ utilities and
the total welfare.

Analysis of the PoA We further analyze the bound on
the value of PoA. Formally, PoA is measured as the ratio
between the maximal total welfare achieved by any strategy
profile and the total welfare in the equilibrium.
Proposition 3.2. PoA is bounded between 1 and (N +
min{K,N} − 1)/N . Furthermore, PoA can take value
at 1 and any close to (N +min{K,N} − 1)/N .

Remark 3.4. Basat et al. (2017) analyze the PoA of the same
setting when N = 2 and demonstrate that PoA is at most
1.5, which is consistent with the proposition when K ≥ 2.
Furthermore, Proposition 3.2 extends their results to more
general scenarios where N may exceed 2. Furthermore, we
would like to highlight that Theorem 3.1 proves that the
Nash equilibrium at each round in our proposed setting is
unique with respect to the number of agents on each arm.
As a result, all of the Nash equilibria in Theorem 3.1 have
the same PoA and total social welfare in our setting. Details
and further analysis can be found in Section A.4.
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3.2. Selfish MPMAB with Averaging Allocation (SMAA)

In this subsection, we present our novel SMAA approach
based on the property of the Nash equilibrium demonstrated
in Theorem 3.1. Our SMAA approach is inspired by the
alternate exploration method (Wang et al., 2020) while we
need to estimate the Nash equilibrium at each round, which
becomes more complicated.

3.2.1. EMPIRICAL STATISTICS

Consider a player with rank j. Let τj,k(t) =∑t
s=1 I[πj(t) = k] be the number of rounds that player

j chooses arm k. The estimation µ̂j,k(t) of player j on the
reward of arm k at round t is given by

µ̂j,k(t) =
1

τj,k(t)

t∑
s=1

I[πj(t) = k]Xk(t). (9)

Exploration is based on the KL-UCB indices (Garivier &
Cappé, 2011). The index of arm k for player j at round t is
given by

b̂j,k(t) = sup {q ≥ µ̂j,k(t) : τj,k(t) kl(µ̂j,k(t), q) ≤ f(t)} ,
(10)

where f(t) = log t+ 4 log(log t).

At round t, the estimated equilibrium m̂j(t) =
{m̂j,k(t)}Kk=1 is calculated by Equations (7) and (8) ac-
cording to the estimated rewards {µ̂j,k(t)}Kk=1. In addition,
let M̂j(t) = {k ∈ [K] : m̂j,k(t) > 0} be the arms in
the estimated equilibrium m̂j(t). For any arm k ∈ M̂j(t),
let r̂j,k(t) = µ̂j,k(t)/m̂j,k(t) denote the expected average
reward to choose arm k in the estimated equilibrium m̂j(t)
with estimated rewards µ̂j,k(t).

3.2.2. ALGORITHM DETAILS

The pseudo-code is shown in Algorithm 1 and the algorithm
consists of two phases.

Initialization phase Each player first conducts an initial-
ization phase with K ′ = N ⌈K/N⌉ rounds. Since K ′ ≥ K
by construction, each player can pull each arm at least one
time. We set the rounds for initialization as K ′ instead of
K because K ′ ≡ 0(modN), which matches the second
exploration-exploitation phase that is conducted in blocks
with N rounds each.

Exploration-exploitation phase Afterward, each player
enters the exploration-exploitation phase. The whole proce-
dure is conducted in blocks with N rounds each. Generally
speaking, in each block, each player sequentially pulls the
arms in the estimated Nash equilibrium based on his histor-
ical observations unless the player pulls the arm with the
smallest average reward for the last time. In this case, he
will explore other arms with probability 1/2.

Algorithm 1 Selfish MPMAB with Averaging Allocation
(SMAA)

1: Input: Player rank j
2: Let K ′ ← N · ⌈K/N⌉
3: Initialization phase 1 ≤ t ≤ K ′:
4: Pull each arm at least one time.
5: Exploration-exploitation phase t > K ′:
6: for t← K ′ + 1 to T do
7: Calculate τ̃j,k(t), µ̃j,k(t), b̃j,k(t), M̃j(t), m̃j(t),

r̃j,k(t) according to Equation (11)
8: Calculate the arms chosen in this block l̃j(t) accord-

ing to Equation (12)
9: Calculate the index i← (t+ j)modN + 1

10: Let k be the i-th element in l̃j(t)
11: if i = N then
12: CalculateHj according to Equation (13)
13: ifHj(t) = ∅ then
14: πj(t)← k
15: else
16: With probability 1

2 , πj(t)← k
17: With probability 1

2 , πj(t) ← k′ chosen uni-
formly at random inHj(t)

18: end if
19: else
20: πj(t)← k
21: end if
22: Pull arm πj(t)
23: end for

Formally, the behaviors of player j in a block are based
on the estimations up to the end of the last block. As a
result, the policy at round t is determined by the following
estimations (with the tilde notation).

τ̃j,k(t) = τj,k

(⌊
t− 1

N

⌋
N

)
, µ̃j,k(t) = µ̂j,k

(⌊
t− 1

N

⌋
N

)
,

b̃j,k(t) = b̂j,k

(⌊
t− 1

N

⌋
N

)
,M̃j(t) = M̂j

(⌊
t− 1

N

⌋
N

)
,

m̃j(t) = m̂j

(⌊
t− 1

N

⌋
N

)
, r̃j,k(t) = r̃j,k

(⌊
t− 1

N

⌋
N

)
.

(11)
Here the value of ⌊(t− 1)/N⌋ is the last round in the previ-
ous block.

For each round t, player j first calculates the list of arms
to choose in the corresponding block as shown in Line 7-8
in Algorithm 1. In particular, player j sorts the arms in
the estimated equilibrium M̃j(t) according to the average
reward r̃j,k(t) by descending order and get the indices of the
arms k1, k2, . . . , k|M̃j(t)|. Then he sequentially aligns these
arms and each arm ki is further repeated by m̃j,ki times.
Formally, the arms chosen in the corresponding block are
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given by

l̃j(t) =

 k1, . . . , k1︸ ︷︷ ︸
m̃j,k1

(t) times

, . . . , ka, · · · , ka︸ ︷︷ ︸
m̃j,ka (t) times

 , (12)

where a = |M̃j(t)|. We demonstrate how l̃j(t) is calculated
through the numerical showcase provided in Example 3.1.
Example 3.2. Suppose the estimated expected reward of
player j at a round t is {µ̃j,k(t)}Kk=1 = {1, 0.4, 0.2}.
Then the estimated number of players on each arm in
the equilibrium {m̃j,k(t)}Kk=1 = {2, 1, 0}, and we have
M̃j(t) = {1, 2}. As a result, the average reward r̃j,k(t) for
arms k in M̃j(t) is 0.5 for arm 1 and 0.4 for arm 2. After
sorting the arms in M̃j(t) according to r̃j,k(t) by descend-
ing order and repeating each arm with m̃j,k(t) times, we
have l̃j(t) = {1, 1, 2}.

Afterward, as shown in Line 9-10, player j chooses the
element k in l̃j(t) with index i = (t + j)modN + 1 as a
candidate to pull at this round. Moreover, when the player
chooses the last element in l̃j(t) (i.e., i = N ), as depicted
in Line 13-18, he will explore the arms inHj(t) uniformly
with probability 1/2 and the setHj(t) is defined as

Hj(t) =
{
k′ ̸∈ M̃j(t) : b̃j,k′(t) ≥ r̃j,ka

}
. (13)

Otherwise, the player will pull arm k as shown in Line 20.

3.3. Theoretical Analysis of SMAA

3.3.1. PERFORMANCES

Let
δ0 = min

x,y∈∆,x ̸=y
|x− y|, (14)

where ∆ = {µk/n : k ∈ [K], n ∈ [N ]} ∪ {0} is the set of
all possible average rewards. Under Assumption 3.1, we
have δ0 > 0. Now we present the theoretical results about
Algorithm 1 on the metrics introduced in Section 2.2.
Theorem 3.3. Under Assumption 3.1, suppose 0 < δ <
δ0/2. Then when all players follow Algorithm 1, the ex-
pected regret for each player j is upper-bounded by

E
[
Regj(T )

]
≤

∑
k ̸∈M∗

(z∗ − µk)(log T + 4 log(log T ))

kl(µk + δ, z∗ − δ)

+ 10N3K(13K + δ−2).

(15)

Remark 3.5. The proof is provided in Appendix C.3.2. We
highlight that δ0 and δ is unknown to the algorithm though
the bounds depend on δ. This theorem demonstrates that
each player can effectively maximize their own reward since
the regret is sublinear. In addition, by letting T tend to∞
and then δ tend to 0, we can get that

lim sup
T→∞

E
[
Regj(T )

]
log T

≤
∑

k ̸∈M∗

z∗ − µk

kl(µk, z∗)
, (16)

which is asymptotically optimal and matches the lower
bound in Theorem 3.6 in Section 3.3.2 when reward distri-
butions are Bernoulli.
Remark 3.6. It is also reasonable to define the regret as the
gap between each agent’s total reward and the average re-
ward in the Nash equilibrium as shown in Theorem 3.1. We
demonstrate in Section A.5 that our algorithm still achieves
a O(log T ) regret under this formulation.
Theorem 3.4. Under Assumption 3.1, suppose 0 < δ <
δ0/2. Then when all players follow Algorithm 1, the ex-
pected number of non-equilibrium rounds demonstrated in
Theorem 3.1 is upper bounded by

E[NonEqu(T )] ≤N
∑

k ̸∈M∗

log T + 4 log(log T )

kl(µk + δ, z∗ − δ)

+ 10N3K(13K + δ−2).

(17)

Remark 3.7. The proof is provided in Appendix C.3.3. This
theorem demonstrates that when all players follow Algo-
rithm 1, they will eventually converge to the Nash equilib-
rium since the expected number of non-equilibrium rounds
is sublinear. Although it is well known that no internal re-
gret strategies converge in average to the set of correlated
equilibria (Nisan et al., 2007), in this paper we prove that
our algorithm can converge to the pure Nash equilibrium at
each round. As a result, standard no internal regret strategies
cannot be adopted directly in our problem setting.
Theorem 3.5. Under Assumption 3.1, suppose 0 < δ <
δ0/2. Then the policy profile where all players follow Algo-
rithm 1 is an ϵ-Nash equilibrium w.r.t. the game specified
by (Spolicy, {Upolicy

j }Nj=1) and is (β, ϵ+ βγ)-stable with

β =
δ0
z∗

,

ϵ =
∑

k ̸∈M∗

(z∗ − µk)(log T + 4 log(log T ))

kl(µk + δ, z∗ − δ)

+ 10N3K(13K + δ−2),

γ =
∑

k ̸∈M∗

log T + 4 log(log T )

kl(µk + δ, z∗ − δ)
+ 10N3K(13K + δ−2).

(18)
Here z∗ is provided in Equation (8).
Remark 3.8. The proof is provided in Appendix C.3.4. This
theorem demonstrates that any player can not significantly
improve his reward by deviation since the policy profile
is ϵ-Nash equilibrium with ϵ = O(log T ). In addition, if
any selfish player wants to harm another player’s reward
significantly (such as O(T )), then he will also suffer from
a big loss (also O(T )). We also note that the bound can
be tighter (ϵ, γ can be smaller) in reality since we prove
the theorem by assuming the strategic player knows all the
parameters beforehand. As a result, SMAA is more stable
to the strategic deviation of a single player in reality since
the actual ϵ and γ are smaller than those demonstrated in
the theorem.
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3.3.2. REGRET LOWER BOUND

We now present the regret lower bound for each player. Sim-
ilar to the previous works on KL-UCB (Garivier & Cappé,
2011; Combes et al., 2015b; Besson & Kaufmann, 2018),
we focus on the Bernoulli reward cases. Formally, we use
IberN,K ⊆ ΞK to denote the set of all problem instances
(ξ1, ξ2, . . . , ξK) that satisfies Assumption 3.1 and each ξk
is a Bernoulli distribution.

Definition 3.1. We say a policy profile A =
(A1, A2, . . . , AN ) ∈ SNpolicy is consistent if for any prob-
lem instance (ξ1, ξ2, . . . , ξK) ∈ IberN,K with expectations
µ1, µ2, . . . , µK and any k ∈M∗, j ∈ [N ],

∀α ∈ (0, 1],
m∗

k

N
T − E[τj,k(T )] ≤ o(Tα). (19)

Here τj,k(T ) is the number of times that arm k is chosen.
m∗

k is the number of times arm k is chosen in the equilibrium
calculated according to Theorem 3.1.M∗ is the set of arms
that in the equilibrium.

We note that Algorithm 1 satisfies the consistent condition
since players sequentially choose the arms in the Nash equi-
librium and sub-optimal arms are chosen at most O(log T )
times (demonstrated by Lemmas C.3, C.4, and C.5 in Ap-
pendix C.3). Any policy profile A that is not consistent
cannot achieve a desirable regret guarantee, when A sat-
isfies a fairness condition that all players are expected to
pull each arm for similar times. The formal formulation and
the proof of this claim can be found in Section A.6. Note
that this fairness condition is also mentioned by (Besson
& Kaufmann, 2018) and is satisfied by all policy profiles
that assigning the same algorithm to all players. Both Algo-
rithm 1 and Algorithm 2 satisify the fairness condition.

With this definition, we show a problem-dependent asymp-
totic lower bound for consistent algorithms that only use the
arms’ reward information.

Theorem 3.6. Suppose a policy profile A ∈ SNpolicy is con-
sistent as defined in Definition 3.1. Assume A only uses
arms’ reward information. Formally, for each agent j, πj(t)
is Fj(t)-measurable and

Fj(t) = σ(Xπj(1)(1), Xπj(2)(2), . . . , Xπj(t−1)(t− 1),

U0, U1, . . . , Ut).
(20)

Here σ(·) denote the sigma algebra and U0, U1, . . . , Ut de-
note the external sources of randomness to determine πj(t)
(e.g., the randomness in Lines 16-17 in Algorithm 1). Then
for any problem instance ξ = (ξ1, ξ2, . . . , ξK) ∈ IberN,K

with expectations µ1, µ2, . . . , µK , we have

∀k ̸∈ M∗, lim inf
T→∞

E[τj,k(T )]
log T

≥ 1

kl(µk, z∗)
. (21)

Furthermore, we have

∀j ∈ [N ], lim inf
T→∞

E[Regj(T )]

log T
≥

∑
k ̸∈M∗

z∗ − µk

kl(µk, z∗)
. (22)

Remark 3.9. The proof is provided in Appendix C.3.5. Here
we additionally assume that algorithms only use the arms’
reward information to avoid the effect of a strategic player
that deliberately collides with other players. Algorithm 1
satisfies the condition. Therefore, under the conditions, our
algorithm’s regret matches the lower bound asymptotically.

3.4. SMAA without Knowledge of N and Rank

In previous subsections, we assume that players have the
knowledge of the total number of players N and each player
has a different rank. However, this information may not be
available in real-world scenarios. In this case, we further
assume that N ≤ K and there is an indicator to inform each
player whether he meets a collision, which is common in
previous works (Rosenski et al., 2016; Boursier & Perchet,
2019; Bande & Veeravalli, 2019).

With these assumptions, we could adopt the Musical Chairs
approach (Rosenski et al., 2016) to estimate the number of
players and assign each player a different rank. The details
of the algorithm is provided in Algorithm 2 in Appendix D.
We demonstrate that the Musical Chairs approach is robust
to a single player’s deviation and prove similar results for
this algorithm with the conclusions in Section 3.3.1.
Corollary 3.7 (Informal version of Theorem D.2). Sup-
pose Assumption 3.1 hold. Then Algorithm 2 satisfies that
∀j ∈ [N ],E[Regj(T )] ≤ O(log T ). E[NonEqu(T )] ≤
O(log T ). In addition, the policy profile where all players
follow Algorithm 2 is an ϵ-Nash equilibrium and is (β, ϵ)-
stable with ϵ = O(log T ) and β = δ0/z

∗.

4. Synthetic Experiments
We validate the effectiveness of the proposed SMAA method
through synthetic experiments. The source code is available
at https://github.com/windxrz/SMAA.

4.1. Experiments When N and Rank Are Known

We first conduct experiments in a setting where players
know N and are endowed with different ranks.

Data-generating process In this setting, we set the num-
ber of arms as K = 10 and the number of players N ∈
{8, 20} to test the models’ performance in both K < N and
K ≥ N scenarios. The number of total rounds T is set to
500, 000. In addition, for each arm’s reward distribution, we
consider two common distributions supported on [0, 1], in-
cluding the beta distribution and Bernoulli distribution. For
the beta distribution Beta(α, β), we randomly sample the

7
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Figure 1. Regret and number of non-equilibrium rounds curve when N and rank is known. K is set to 10. We note that SelfishRobust-
MMAB (Boursier & Perchet, 2020) considers the non-shareable arm setting and can only be applied to the settings when N ≤ K.
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Figure 2. Regret and the number of non-equilibrium rounds curve
when N and rank are unknown. Here N = 8, T = 500, 000, and
the reward of each arm follows the beta distribution.

two shape parameters α and β uniformly in [0, 5] for each
arm. For the Bernoulli distribution Ber(p), we randomly
sample the probability parameter p uniformly in [0, 1].

Baselines We implement the following baselines. Total-
Reward (Bande & Veeravalli, 2019) considers the shareable
reward case while its target is to maximize the total reward
of all players. SelfishRobustMMAB (Boursier & Perchet,
2020) assumes players can be selfish while the arms are
not shareable and players get no reward upon collision. Ex-
ploreThenCommit first randomly explores the rewards of
arms and then commits to the Nash equilibrium based on
the estimation in the exploration phase. Details of these
baselines are provided in Appendix B.

Analysis We implement the experiments for 100 different
simulations by resampling the arms’ reward distributions.
We then evaluate our method (SMAA) and baselines by cal-
culating the average regret among all players and the num-
ber of non-equilibrium rounds according to Equations (4)
and (5). The results are shown in Figure 1 and our method
outperforms all baselines in all settings with various data-

generating processes.

On the one hand, the TotalReward and SelfishRobustMMAB
baselines consider the different MPMAB scenarios and they
can not directly be applied here for the selfish player set-
ting with the averaging collision model. On the other hand,
compared with the explore-then-exploit-based baseline Ex-
ploreThenCommit, our method shows a better exploration-
exploitation trade-off, leading to smaller regret and non-
equilibrium rounds.

4.2. Experiments When N and Rank Are Unknown

We then test under the setting when players do not know N
and ranks.

Data-generating process In this setting, we fix the num-
ber of players as N = 8, and the total rounds as T =
500, 000. In addition, we simulate each arm’s reward using
the beta distribution. We set K ∈ {10, 15, 20, 25} to test
the convergence and performance of our approach.

Analysis Analogous to the experiments when N and rank
are known, we implement the experiments for 100 differ-
ent simulations by resampling the arms’ reward distribu-
tions. We then evaluate SMAA by calculating the average
regret among all players and the number of non-equilibrium
rounds. As shown in Figure 2, we observe that our
method could effectively converge to Nash equilibrium and
achieve small regret since the slopes of these curves become
smoother as the number of rounds increases. In addition,
we observe from Figure 2 that when the number of arms
K becomes larger, the problem becomes more challenging,
and both the regrets and the number of non-equilibrium
rounds increase. However, our method could still effectively
converge since the proportion of non-equilibrium rounds
is about 14% (69, 959/500, 000) when K = 25 at round

8
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500, 000, and the proportion is still decreasing due to the
declining slope of the curve.

5. Related Works
Multi-player multi-armed bandit Multi-armed bandit
(MAB) problems (Lai et al., 1985; Bubeck et al., 2012;
Slivkins et al., 2019; Lattimore & Szepesvári, 2020) have
been extensively studied in different online settings (Kveton
et al., 2015; Lattimore et al., 2016; Agrawal & Devanur,
2016; Xu et al., 2022; Ferreira et al., 2022). Extending MAB,
multi-player multi-armed bandit (MPMAB) (Liu & Zhao,
2008; Jouini et al., 2009; 2010; Brânzei & Peres, 2021)
considers the problem where multiple players act on a single
multi-armed bandits problem instance (Boursier & Perchet,
2022). Most papers in MPMAB assume that players cannot
get any reward when a collision occurs (Rosenski et al.,
2016; Besson & Kaufmann, 2018; Boursier & Perchet, 2019;
2020; Shi et al., 2020; 2021; Huang et al., 2022; Lugosi &
Mehrabian, 2022). A thorough survey can be found in
(Boursier & Perchet, 2022).

Different collision models in MPMAB Several papers
assume different reward allocation mechanisms when a colli-
sion occurs. Liu et al. (2020; 2021); Jagadeesan et al. (2021);
Basu et al. (2021) assume that the player with the maximal
expected reward would get the reward. Some works assume
a threshold (Bande & Veeravalli, 2019; Youssef et al., 2021;
Bande et al., 2021; Magesh & Veeravalli, 2021) or capacity
(Wang et al., 2022a;b) for each arm. Shi & Shen (2021);
Pacchiano et al. (2021) assume that each player gets a re-
duced reward when a collision occurs. Boyarski et al. (2021)
focus on a heterogeneous reward setting. Our work differs
from these works mainly in that we assume an averaging
allocation mechanism with homogeneous arms’ rewards. In
addition, most of these works do not consider selfish player
behaviors and the target is to maximize the total welfare.

Strategic players in MPMAB There are two kinds of
strategic behaviors in MPMAB, including jammers and self-
ish players. Jammers (Attar et al., 2012; Wang et al., 2015;
Sawant et al., 2018; 2019) aim to perturb the cooperative
players as much as possible even at the cost of their re-
wards. Several works also consider the selfish behaviors in
MPMAB while they assume that at most one player will
get the reward. Specifically, Boursier & Perchet (2020) con-
siders the standard zero-reward collision model. Liu et al.
(2020; 2021); Jagadeesan et al. (2021) consider the stable
matching setting. Compared to these works, we assume that
arms are shareable.

Game analysis in applications with shareable resources
Ranging from algorithm-curated platforms (Hron et al.,
2022; Jagadeesan et al., 2022; Ben-Porat et al., 2019a; Yao

et al., 2022a;b; 2023) to cognitive radio communications
(Riahi & Riahi, 2019; Riahi et al., 2016), game theory plays
an important role in allocating limited resources among mul-
tiple strategic players. For algorithm-curated platforms, the
equilibrium of content providers is analyzed (Basat et al.,
2017; Ben-Porat & Tennenholtz, 2018; Ben-Porat et al.,
2019a; Jagadeesan et al., 2022; Hron et al., 2022). Regard-
ing cognitive radio communications, i.e., another commonly
analyzed strategic scenario, Riahi et al. (2016); Riahi &
Riahi (2019) discuss various types of equilibrium among
multiple strategic transmitters. However, most of these
works analyze the equilibrium only and do not analyze the
dynamics of players. Although this gap has been overcome
by several recent works (Riahi & Riahi, 2019; Basat et al.,
2017; Ben-Porat et al., 2019b; 2020), they still assume that
players know the reward for each resource.

In addition, contrary to Yao et al. (2023)’s analysis of
the Price of Anarchy (PoA) in coarse correlated equilib-
ria (CCE) for top-K recommendations, our study situates
within a MPMAB framework, concentrating on pure Nash
equilibrium (PNE). Our aim is to develop algorithms that
maximize individual agent revenue and consistently con-
verge to the PNE, diverging from Yao et al. (2023) focus on
CCE’s PoA and the assumption of no-regret dynamics.

6. Conclusion
In this paper, we propose a novel multi-player multi-armed
setting with an averaging allocation model to characterize
the selfish behaviors of players in applications with lim-
ited and shareable resources. To design policies for each
player in this setting, we first analyze the Nash equilib-
rium when players know the expected reward of each arm.
Based on the equilibrium, we further propose a novel Self-
ish MPMAB with Averaging Allocation (SMAA) approach
for each player. We theoretically demonstrate that SMAA
could achieve a good regret guarantee for each player when
all players follow the algorithm and it is robust to a single
player’s strategic deviation.

Acknowledgment
Peng Cui’s research was supported in part by National
Natural Science Foundation of China (No. U1936219,
62141607), and National Key R&D Program of China
(No. 2018AAA0102004). Bo Li’s research was sup-
ported by the National Natural Science Foundation of
China (No.72171131, 72133002); the Technology and In-
novation Major Project of the Ministry of Science and
Technology of China under Grants 2020AAA0108400 and
2020AAA0108403. We would like to thank Zi Qian and
anonymous reviewers for the helpful feedback.

9



Competing for Shareable Arms in Multi-Player Multi-Armed Bandits

References
Agrawal, S. and Devanur, N. Linear contextual bandits with

knapsacks. Advances in Neural Information Processing
Systems, 29, 2016.

Anandkumar, A., Michael, N., Tang, A. K., and Swami, A.
Distributed algorithms for learning and cognitive medium
access with logarithmic regret. IEEE Journal on Selected
Areas in Communications, 29(4):731–745, 2011.

Anantharam, V., Varaiya, P., and Walrand, J. Asymptotically
efficient allocation rules for the multiarmed bandit prob-
lem with multiple plays-part i: Iid rewards. IEEE Trans-
actions on Automatic Control, 32(11):968–976, 1987.

Attar, A., Tang, H., Vasilakos, A. V., Yu, F. R., and Leung,
V. C. A survey of security challenges in cognitive ra-
dio networks: Solutions and future research directions.
Proceedings of the IEEE, 100(12):3172–3186, 2012.

Bande, M. and Veeravalli, V. V. Multi-user multi-armed
bandits for uncoordinated spectrum access. In 2019 In-
ternational Conference on Computing, Networking and
Communications (ICNC), pp. 653–657. IEEE, 2019.

Bande, M., Magesh, A., and Veeravalli, V. V. Dynamic spec-
trum access using stochastic multi-user bandits. IEEE
Wireless Communications Letters, 10(5):953–956, 2021.

Basat, R. B., Tennenholtz, M., and Kurland, O. A game the-
oretic analysis of the adversarial retrieval setting. Journal
of Artificial Intelligence Research, 60:1127–1164, 2017.

Basu, S., Sankararaman, K. A., and Sankararaman, A. Be-
yond log2(t) regret for decentralized bandits in matching
markets. In International Conference on Machine Learn-
ing, pp. 705–715. PMLR, 2021.

Ben-Porat, O. and Tennenholtz, M. A game-theoretic ap-
proach to recommendation systems with strategic content
providers. Advances in Neural Information Processing
Systems, 31, 2018.

Ben-Porat, O., Goren, G., Rosenberg, I., and Tennenholtz,
M. From recommendation systems to facility location
games. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 33, pp. 1772–1779, 2019a.

Ben-Porat, O., Rosenberg, I., and Tennenholtz, M. Con-
vergence of learning dynamics in information retrieval
games. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 33, pp. 1780–1787, 2019b.

Ben-Porat, O., Rosenberg, I., and Tennenholtz, M. Content
provider dynamics and coordination in recommendation
ecosystems. Advances in Neural Information Processing
Systems, 33:18931–18941, 2020.

Besson, L. and Kaufmann, E. Multi-player bandits revis-
ited. In Algorithmic Learning Theory, pp. 56–92. PMLR,
2018.

Boursier, E. and Perchet, V. Sic-mmab: Synchronisation
involves communication in multiplayer multi-armed ban-
dits. Advances in Neural Information Processing Systems,
32, 2019.

Boursier, E. and Perchet, V. Selfish robustness and equilib-
ria in multi-player bandits. In Conference on Learning
Theory, pp. 530–581. PMLR, 2020.

Boursier, E. and Perchet, V. A survey on multi-player ban-
dits. arXiv preprint arXiv:2211.16275, 2022.

Boyarski, T., Leshem, A., and Krishnamurthy, V. Dis-
tributed learning in congested environments with partial
information. arXiv preprint arXiv:2103.15901, 2021.

Brânzei, S. and Peres, Y. Multiplayer bandit learning, from
competition to cooperation. In Conference on Learning
Theory, pp. 679–723. PMLR, 2021.

Bubeck, S., Cesa-Bianchi, N., et al. Regret analysis of
stochastic and nonstochastic multi-armed bandit prob-
lems. Foundations and Trends® in Machine Learning, 5
(1):1–122, 2012.

Combes, R., Magureanu, S., Proutiere, A., and Laroche, C.
Learning to rank: Regret lower bounds and efficient algo-
rithms. In Proceedings of the 2015 ACM SIGMETRICS
International Conference on Measurement and Modeling
of Computer Systems, pp. 231–244, 2015a.

Combes, R., Talebi Mazraeh Shahi, M. S., Proutiere, A.,
et al. Combinatorial bandits revisited. Advances in neural
information processing systems, 28, 2015b.

Ferreira, K. J., Parthasarathy, S., and Sekar, S. Learning to
rank an assortment of products. Management Science, 68
(3):1828–1848, 2022.
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A. Additional Theoretical Results
A.1. Justification of Assumption 3.1

Proposition A.1. Suppose the expected rewards µ1, µ2, . . . , µK ∈ (0, 1] of arms are i.i.d. and drawn from a absolutely
continuous probability distribution D with bounded probability densities p(µ) (i.e., for all µ ∈ (0, 1], p(µ) ≤ M for a
constant M ). Then Assumption 3.1 holds with probability 1.

The proof is provided in Section C.4.1.

A.2. Extending the Single-Agent Deviation Setting to Multiple-Agent Deviation Setting

We prove that every Nash equilibrium in Theorem 3.1 is a strong Nash equilibrium.
Proposition A.2. For a strategy profile s, we say strategies s′B ∈

∏
j∈B Ssingle are a beneficial deviation for a subset B of

players if
∀j ∈ B, U single

j (s′B , s−B) ≥ U single
j (s) (23)

with the inequality holding strictly for at least one player of B. Then every Nash equilibrium s in Theorem 3.1 has no
coalition of players with a beneficial deviation.

The proof is provided in Section C.4.2.

A.3. Randomized Strategy at Each Round

At each round, the strategy set for each player is the set of all arms, i.e., Ssingle = [K]. Now suppose player j follows
randomized strategy σj = (σj,1, σj,2, . . . , σj,K) on Ssingle where σj,k represents the probability for player j to choose arm
k. Let σ = σ1 × σ2 × · · · × σN be the strategy profile of all players. Then the social welfare under a mixed strategy is
given by

W (σ) = Es∼σ

[
K∑

k=1

µkI[mk(s) > 0]

]
=

K∑
k=1

µkPs∼σ[mk(s) > 0]. (24)

The welfare under the pure Nash equilibrium Theorem 3.1 is given by

W PNE =
∑

k∈M∗

µk. (25)

Definition A.1 (Mixed Nash equilibrium). The randomized strategy profile σ = σ1 × σ2 × · · · × σN is a mixed Nash
equilibrium if for every player j ∈ [N ] and every unilateral deviation s′j , we have

Es∈σ[Uj(s)] ≥ Es∈σ[Uj(s′j , s−j)]. (26)

We provide the following property to show that any symmetric mixed Nash equilibrium’s total welfare is not larger than the
welfare obtained by the pure Nash equilibrium at each round.
Proposition A.3. Suppose σ = σ1 × σ2 × · · · × σN is a symmetric mixed Nash equilibrium (i.e., σ1 = σ2 = · · · = σN ).
Then

W (σ) ≤W PNE. (27)

The proof is provided in Section C.4.3. We further find that it is actually possible that players pull arms that is not inM∗

when all players follow a symmetric mixed Nash equilibrium. However, the welfare under the symmetric mixed Nash
equilibrium is not larger than the welfare under the pure Nash equilibrium as shown by Proposition A.3.
Example A.1. Set N = K = 3 and µ1, µ2, µ3 = 1, 0.6, 0.48. By simulation, we have the profile σ such that

∀j ∈ [K], σj,1 ≈ 0.705, σj,2 ≈ 0.254, σj,3 ≈ 0.041 (28)

formulates a symmetric mixed Nash equilibrium. We can verify that all arms are possible to be chosen in the mixed Nash
equilibrium while the social welfare is given by

W (σ) = Es∈σ

 N∑
j=1

U single
j (s)

 ≈ 1.382. (29)
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In addition, we haveM∗ = {1, 2} and the welfare for the pure Nash equilibrium is

W PNE = 1 + 0.6 = 1.6. (30)

A.4. Formal Analysis of the bound on PoA

Let C∗ be the set of the top min{N,K} arms with the highest expected rewards. Then the total welfare under the equilibrium
demonstrated in Theorem 3.1 is given by

W PNE =
∑

k∈M∗

µk (31)

while the total welfare for maximal social welfare case is given by

WMAX =
∑
k∈C∗

µk. (32)

PoA is measured as follows

PoA = WMAX/W PNE. (33)

Proposition A.4 (Restatement of Proposition 3.2). PoA is bounded between 1 and (N +min{K,N}− 1)/N . Furthermore,
PoA can take value at 1 and any close to (N +min{K,N} − 1)/N .

The proof of Proposition 3.2 can be found in Section C.2. We further analyze the effect of N and K on the upper bound.

• The upper bound increases w.r.t. K when K < N while remains unchanged when K ≥ N . This is because only at
most N arms with highest expected rewards are in the set C∗ while remaining arms do not affect the value of PoA.

• The upper bound increases w.r.t. N when N < K and decreases when N ≥ K. This is because when N < K, the
difference between WMAX and W PNE can be (N − 1)/N ·W PNE and this difference increases w.r.t. N . In addition,
when N ≥ K, it is more easier to make all arms in the equilibrium setM∗ when N is large. Even when some arms in
C∗ are not in the equilibrium, the number of such arms are bounded by K, making them not significantly affect the
PoA value.

A.5. Another Regret Formulation and Regret Bound Analysis

Consider an alternative regret that compares each agent’s total reward with the average reward in the Nash equilibrium.
Formally, it is given by the follows

Reg′j(T ) =

T∑
t=1

(r∗ −Rj(t)) , (34)

where

r∗ =
1

N

∑
k∈M∗

µk. (35)

We can provide the regret bound w.r.t. this regret by the following proposition.

Proposition A.5. Under Assumption 3.1, suppose 0 < δ < δ0/2. Then when all players follow Algorithm 1, the expected
regret for each player j is upper-bounded by

E
[
Reg′j(T )

]
≤
∑

k ̸∈M∗

(z∗ − µk)(log T + 4 log(log T ))

kl(µk + δ, z∗ − δ)
+O(1). (36)

The proof is provided in Section C.4.4.

14



Competing for Shareable Arms in Multi-Player Multi-Armed Bandits

A.6. Justification of Definition 3.1

Proposition A.6. Suppose a policy profile A ∈ SNpolicy satisfies

1. Fairness condition. |E[τj,k(T )]− E[τj′,k(T )]| ≤ o(Tα) for all α > 0, j, j′ ∈ [N ] and k ∈ [K].

2. No regret condition. E[Regj(T )] ≤ o(Tα) for all j ∈ [N ] and α > 0.

Then A is consistent as defined in Definition 3.1.

The proof is provided in Section C.4.5.

B. Experimental Details
B.1. Implementation details of different methods

• SMAA (Ours). We use a hyper-parameter β to control the strength between exploration and exploitation. Specifically,
the KL index in Equation (10) is modified as

b̂j,k(t) = sup {q ≥ µ̂j,k(t) : τj,k(t) kl(µ̂j,k(t), q) ≤ β · f(t)} . (37)

We search the hyper-parameter β ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5}.

• SMAA (Ours) when N and rank are unknown. Besides the hyper-parameter β in the exploration-exploitation phase,
we introduce another hyper-parameter for this method in the Musical Chairs phase. Specifically, we set the parameter
T0 in Algorithm 3 as η ·

⌈
50K2 log(4T )

⌉
and η is searched in {0.01, 0.02, 0.05, 0.1, 0.2, 0.5}.

• SelfishRobustMMAB (Boursier & Perchet, 2020). This baseline considers the setting where no player would get
the reward if collisions occur. As a result, it could only apply to the scenarios K ≥ N . It provides algorithms for
each player that is robust to the deviation of a single selfish player under this setting. This method also adopts the
KL-UCB to calculate the index of sub-optimal arms, as shown in Equation (37). We also search the hyper-parameter
β ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5}.

• TotalReward (Bande et al., 2021). This baseline considers the setting where players can get the reward when collisions
occur. However, the target of this baseline is to maximize the total reward of all players. When K ≥ N , the optimal
solution at each round is to make all players pull the best N arms. When K ≤ N , all arms should be pulled in each
round. To further reduce the regrets of each player, after assigning k players to each arm, we make the rest N −K
players follow the Nash equilibrium in each round. The whole method is conducted in an explore-then-commit fashion.
As a result, we set the algorithm to randomly explore the arms at the first α log T rounds. Afterward, the algorithm
commits to the optimal solution at each round. We search the hyper-parameter α ∈ {100, 200, 500, 1000, 2000}.

• ExploreThenCommit. We further implement an explore-then-commit-based method. Specifically, we first adopt an
exploration stage where all players pull the arms randomly. After the exploration stage, each player estimates the
expected reward of each arm and computes the Nash equilibrium w.r.t. the estimations. They then commit to the
estimated equilibrium till the last round. The exploration phase has α log T rounds where α is a hyper-parameter
searched in {100, 200, 500, 1000, 2000}.

C. Omitted Proofs
C.1. Proof of Theorem 3.1

Proof. (1) We first show that there exists a strategy profile s such that m(s) = m∗.

We only need to prove that
∑K

k=1 m
∗
k = N . Note that z∗ exists since h(z)→∞ when z → 0 and h(z) = 0 when z > 1.

Moreover, under Assumption 3.1, for any δ < δ0 (δ0 is defined in Equation (14)), h(z)− h(z + δ) ≤ 1. As a result, there
must exist z ∈ R+ such that h(z) = N . Therefore, h(z∗) = N since h(z) is right continuous. Now we can get that∑K

k=1 m
∗
k = h(z∗) = N .

(2) We then show that any strategy profile s that satisfies m(s) = m∗ is a Nash equilibrium.
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Suppose a player j deviate from the strategy profile and change the chosen arm from a = sj to b (a ̸= b). By definition,
we have m∗

a > 0. In addition, since m∗
b = ⌊µb/z

∗⌋, we have m∗
b + 1 > µb/z

∗. As a result, the reward after deviation is
µb/(m

∗
b + 1) < z∗. However, the original reward is µa/n

∗
a ≥ z∗, which means that the deviation only leads to the decrease

in the reward of the player. Therefore, m∗ is a Nash equilibrium of the game.

We note that we have demonstrated the existence of the Nash equilibrium through points (1) and (2).

(3) Afterward, we show that for any strategy profile s that is a Nash equilibrium, m(s) = m∗.

Under Assumption 3.1, suppose there exists a Nash equilibrium s such that m(s) ̸= m∗. Let m′ = m(s). Then there exist
two arms a and b such that m∗

a > m′
a and m∗

b < m′
b. Using similar techniques with the first part, it is easy to show that a

player deviate from arm b to arm a in the profile s will lead to an increase in the reward, which results in a contradiction.

Now the claim follows.

C.2. Proofs of Proposition 3.2

Proof. (1) Lower bound 1. The PoA is naturally lower bounded by 1 and can take on this value when the expected rewards
of the top min(N,K) arms are very close, which is possible for any values of N and K.

(2) Upper bound (N +min{K,N} − 1)/N . Due to the definition of z∗ in Theorem 3.1, we have W PNE/N ≥ z∗ > µk for
any k ̸∈ M∗. As a result, for any arm k ∈ C∗\M∗, µk < W PNE/N . In addition, due to the property of Nash equilibrium
demonstrated in Theorem 3.1, all arms in the equilibrium have the highest expected rewards. As a result,M∗ ⊆ C∗. Hence,

WMAX = W PNE +
∑

k∈C∗\M∗

µk ≤W PNE + |C∗\M∗|W PNE/N ≤W PNE (1 + (min(N,K)− 1)/N) . (38)

As a result,
PoA = WMAX/W PNE ≤ (N +min{K,N} − 1)/N. (39)

In addition, the exact value of PoA can be taken any close to (N +min{K,N} − 1)/N by setting µ1 = 1 and the rewards
of other arms very close to but smaller than 1/N .

C.3. Proofs in Section 3.3

C.3.1. BASIC NOTATIONS AND LEMMAS

Fix δ such that 0 < δ < δ0/2. Let K ′ = N ⌈K/N⌉. Define the following random sets

Aj =
{
t > K ′ :M∗\M̃j(t) ̸= ∅

}
,

Bj =
{
t > K ′ : ∃k ∈ M̃j(t), |µ̃j,k(t)− µk| ≥ δ

}
,

Cj =
{
t > K ′ : ∃k ∈M∗, b̃j,k(t) < µk

}
,

Dj =
{
t ∈ Aj\(Bj ∪ Cj) : ∃k ∈M∗\M̃j(t), |µ̃j,k(t)− µk| ≥ δ

}
,

J = {t > K ′ : ∃j ∈ [K], t ∈ (Aj ∪ Bj)} .

(40)

Let l∗ be the optimal list of the arm chosen in a block w.r.t. the expected rewards {µk}Kk=1, using the similar procedures with
that in Equation (12). Formally, we sort the arms in the Nash equilibriumM∗ according to r∗k = µ∗

k/m
∗
k by descending

order and get the indices of the arms k∗1 , k
∗
2 , . . . , k

∗
|M∗|. Then we sequentially choose these arms and each arm k∗i are further

chosen by m∗
i times. The arms list l∗ is given by

l∗ =

k∗1 , . . . , k
∗
1︸ ︷︷ ︸

m∗
k∗
1

times

, . . . , k∗|M∗|, · · · , k∗|M∗|︸ ︷︷ ︸
m∗

k∗
|M∗|

times

 . (41)
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Lemma C.1. Under Assumption 3.1, we have

z∗ = min
k∈[K],m∗

k>0
µk/m

∗
k, (42)

where z∗ is given by Equation (8).

Lemma C.2. Under Assumption 3.1, suppose t > K ′ and t ̸∈ (Aj∪Bj). Let k0 be the last element in l̃j(t). Then l∗ = l̃j(t),
and |r̃j,k0

(t)− z∗| ≤ δ where z∗ is given by Equation (8).

Remark C.1. The proof is provided in Appendix C.3.7. Lemma C.2 demonstrates that when t ̸∈ (Aj ∪ Bj), player j could
find the Nash equilibrium of the game as shown in Theorem 3.1 and choose arms according to l∗ in Equation (41).

Lemma C.3. Under Assumption 3.1, we have Aj ∪ Bj ⊆ Bj ∪ Cj ∪ Dj .

Lemma C.4. Under Assumption 3.1, we have E[|Bj ∪ Cj ∪ Dj |] ≤ 8N2K(12K + δ−2).

Lemma C.5. Under Assumption 3.1, define

Gj,k ≜ {K ′ < t ≤ T : t ̸∈ (Aj ∪ Bj), πj(t) = k} (43)

for any k ̸∈ M∗. Then

E[|Gj,k|] ≤
log T + 4 log(log T )

kl(µk + δ, z∗ − δ)
+ 5 + 2δ−2. (44)

Remark C.2. The proofs of Lemma C.3, Lemma C.4, and Lemma C.5 follow the techniques in (Wang et al., 2020) and
details are provided in Appendix C.3.8, Appendix C.3.9, and Appendix C.3.10, respectively. We highlight that we consider
a more complex setting since players need to calculate the Nash equilibrium in each round according to Theorem 3.1. As a
result, the details of the proofs become more complicated.

C.3.2. PROOF OF THEOREM 3.3

Proof. Consider the set J defined in Equation (40), according to Lemma C.3 and Lemma C.4, we have

E[|J |] ≤
N∑
j=1

E[|Aj ∪ Bj |] ≤
N∑
j=1

E[|Bj ∪ Cj ∪ Dj |] ≤ 8N3K(12K + δ−2). (45)

As a result, we have

E[Regj(T )] =E

[
T∑

t=1

(
max
k∈[k]

µk

Mk(t) + I[πj(t) ̸= k]
−Rj(t)

)]

≤K ′ + E

[
T∑

t=K′+1

I[t ∈ J ]
(
max
k∈[k]

µk

Mk(t) + I[πj(t) ̸= k]
−Rj(t)

)]

+ E

[
T∑

t=K′+1

I[t ̸∈ J ]
(
max
k∈[k]

µk

Mk(t) + I[πj(t) ̸= k]
−Rj(t)

)]

≤K ′ + E[|J |] + E

[
T∑

t=K′+1

I[t ̸∈ J ]
(
max
k∈[k]

µk

Mk(t) + I[πj(t) ̸= k]
−Rj(t)

)]

≤ 8N3K(13K + δ−2) + E

[
T∑

t=K′+1

I[t ̸∈ J ]
(
max
k∈[k]

µk

Mk(t) + I[πj(t) ̸= k]
− µπj(t)

)]
.

(46)

When t > K ′ and t ̸∈ J , according to Lemma C.2, each player j could find the correct Nash equilibriumM∗ and calculate
the correct arms list l∗. Let k0 be the last element in l∗. As a result, at most one player do not follow the equilibriumM∗ by
the construction of Algorithm 1. Formally, this indicates that ∀k ∈M∗\{k0}, Mk(t) = m∗

k and Mk0(t) ≥ m∗
k0
− 1. As a

result, when πj(t) ∈M∗, it will not increase the reward if deviation by the property of the equlibrium and the choice of k0,
i.e.,

I[t ̸∈ J , πj(t) ∈M∗]

(
max
k∈[k]

µk

Mk(t) + I[πj(t) ̸= k]
− µπj(t)]

)
= 0. (47)
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In addition, when πj(t) ̸∈ M∗, because ∀k ∈ M∗\{k0}, Mk(t) = m∗
k and Mk0

(t) ≥ m∗
k0
− 1, it will maximize the

reward if deviating to arm k0. As a result, maxk∈[k] µk/(Mk(t) + I[πj(t) ̸= k]) = z∗ in this case. Therefore, according to
Lemma C.5 and the definition of Gj,k in Equation (43), we have

E[Regj(T )] ≤ 8N3K(13K + δ−2) + E

 ∑
k ̸∈M∗

T∑
t=K′+1

I[t ̸∈ J , t ∈ Gj,k]
(
max
k∈[k]

µk

Mk(t) + I[πj(t) ̸= k]
− µπj(t)

)
= 8N3K(13K + δ−2) + E

 ∑
k ̸∈M∗

T∑
t=K′+1

I[t ̸∈ J , t ∈ Gj,k] (z∗ − µk)


≤ 8N3K(13K + δ−2) + E

 ∑
k ̸∈M∗

(z∗ − µk)

T∑
t=K′+1

I[t ∈ Gj,k]


≤ 8N3K(13K + δ−2) +

∑
k ̸∈M∗

(z∗ − µk)(log T + 4 log(log T ))

kl(µk + δ, z∗ − δ)
+ (5 + 2δ−2)K

≤ 10N3K(13K + δ−2) +
∑

k ̸∈M∗

(z∗ − µk)(log T + 4 log(log T ))

kl(µk + δ, z∗ − δ)
.

(48)
Now the claim follows.

C.3.3. PROOF OF THEOREM 3.4

Proof. Let k0 be the last element in l∗. Similar to the proof of Theorem 3.3 in Appendix C.3.2, we have E[J ] ≤
8N3K(12K + δ−2). In addition, when t > K ′ and t ̸∈ J , we have ∀k ∈M∗\{k0}, Mk(t) = m∗

k and Mk0
(t) ≥ m∗

k0
− 1.

As a result, if players do not achieve the Nash equilibrium at round t, there must exist a player j such that πj(t) ̸∈ M∗. As
a result, according to Lemma C.5 and the definition of Gj,k in Equation (43), we have

E[NonEqu(T )] = E

[
T∑

t=1

I [∃k ∈ [K],Mk(t) ̸= m∗
k]

]

≤ K ′ + E

[
T∑

t=K′+1

I [∃k ∈ [K],Mk(t) ̸= m∗
k, t ∈ J ]

]
+ E

[
T∑

t=K′

I [∃k ∈ [K],Mk(t) ̸= m∗
k, t ̸∈ J ]

]

≤ K ′ + E[|J |] + E

[
T∑

t=K′

I [∃j ∈ [N ], πj(t) ̸∈ M∗, t ̸∈ J ]
]

≤ 8N3K(13K + δ−2) +

N∑
j=1

∑
k ̸∈M∗

E

[
T∑

t=K′

I[t ̸∈ J , πj(t) = k]

]

≤ 8N3K(13K + δ−2) +

N∑
j=1

∑
k ̸∈M∗

E[|Gj,k|]

≤ 8N3K(13K + δ−2) +N
∑

k ̸∈M∗

log T + 4 log(log T )

kl(µk + δ, z∗ − δ)
+ (5 + 2δ−2)NK

≤ 10N3K(13K + δ−2) +N
∑

k ̸∈M∗

log T + 4 log(log T )

kl(µk + δ, z∗ − δ)
.

(49)
Now the claim follows.

C.3.4. PROOF OF THEOREM 3.5

Proof. For the ϵ-Nash equilibrium part, we note that Algorithm 1 only uses the information of Xπj(t)(t), which means that
the behaviors of strategic players will not affect the policy of any other player. As a result, the reward of a strategic player
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deviate from Algorithm 1 to other algorithm is at most the regret demonstrated in Theorem 3.3. Hence, the profile where all
players follow Algorithm 1 is an ϵ-Nash equilibrium with

ϵ =
∑

k ̸∈M∗

(z∗ − µk)(log T + 4 log(log T ))

kl(µk + δ, z∗ − δ)
+ 10N3K(13K + δ−2). (50)

Consider the (β, ϵ+βγ)-stable part. Suppose player j is strategic and player i follows Algorithm 1. When t ∈ J or t ≤ K ′,
the increase of player j’s reward is at most 1 and the decrease in player i’s reward is at most 1. Let k0 be the last element in
l∗.

We first show that when t > K ′ and t ̸∈ J , the loss of player i’s reward in each round due to the deviation of player j is at
most z∗. When t > K ′ and t ̸∈ J , according to the proof of Theorem 3.3 in Appendix C.3.2, we have ∀k ∈ M∗\{k0},
Mk(t) = m∗

k and Mk0
(t) ≥ m∗

k0
− 1. We consider different cases of the values of πi(t)

• Consider the case when πi(t) ∈ M∗\{k0}. Then if πi(t) = πj(t), player j can not lead to a decrease in player i’
reward. If πi(t) ̸= πj(t), player j will deviate to pull arm πi(t) to make player i worse. In this case, when πi(t) ̸= k0,
the loss of player i’s reward is

µk

m∗
k

− µk

m∗
k + 1

=
µk

m∗
k(m

∗
k + 1)

≤ µk

m∗
k + 1

< z∗. (51)

• Consider the case when πi(t) = k0. If Mk0
(t) = m∗

k0
− 1, then m∗

k0
> 1 and the loss of player i’s reward is

µk0

m∗
k0
− 1
− µk0

m∗
k0

=
µk0

m∗
k0
(m∗

k0
− 1)

≤ µk0

m∗
k0

= z∗. (52)

• Consider the case when πi(t) ̸∈ M∗. Then the loss of player i’s reward is µπi(t)/2 < z∗.

We then consider the change of player j’s reward by deviation when t > K ′ and t ̸∈ J . When πj(t) ̸∈ M∗, player j could
increase the reward by at most z∗ − µπj(t). When πj(t) ∈M∗, player j will also incur a loss at least δ0.

Suppose the player j deviate to policy s′, let Q be the set of rounds that player j choose to deviate from Algorithm 1. Let

Q1 = {t ∈ Q : t ∈ J ∪ {1, 2, . . . ,K ′}} ,Q2 = {t ∈ Q : t ̸∈ J , t > K ′, πj(t) ̸∈ M∗},
Q3 = {t ∈ Q : t ̸∈ J , t > K ′, πj(t) ∈M∗}. (53)

Then Q1, Q2, and Q3 are disjoint and Q = Q1 ∪Q2 ∪Q3. Then

Rewi(T ; s
′, s−j) ≥ Rewi(T ; s)− |Q1| − z∗(|Q2|+ |Q3|),

Rewj(T ; s
′, s−j) ≤ Rewj(T ; s) + |Q1|+

 ∑
k ̸∈M∗

(z∗ − µk)|{t ∈ Q2 : πj(t) = k}|

− δ0|Q3|.
(54)

Taking expectations, according to Lemma C.5 and the definition of Gj,k in Equation (43), we have

E[Rewi(T ; s
′, s−j)]− E[Rewi(T ; s)]

≥ − E[|Q1|]− z∗E[|Q2|]− z∗E[|Q3|]
≥ − 8N3K(13K + δ−2)− z∗

∑
k ̸∈M∗

E[|Gj,k|]− z∗E[|Q3|]

≥ − 8N3K(13K + δ−2)− z∗

K(5 + 2δ−2) +
∑

k ̸∈M∗

log T + log(log T )

kl(µk + δ, z∗ − δ)

− z∗E[|Q3|]

≥ − 10N3K(13K + δ−2)−
∑

k ̸∈M∗

log T + log(log T )

kl(µk + δ, z∗ − δ)
− z∗E[|Q3|]

(55)
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In addition,
E[Rewj(T ; s

′, s−j)]− E[Rewj(T ; s)]

≤E[|Q1|] +

 ∑
k ̸∈M∗

(z∗ − µk)E[|{t ∈ Q2 : πj(t) = k}|]

− δ0E[|Q3|]

≤E[|Q1|] +

 ∑
k ̸∈M∗

(z∗ − µk)E[|Gj,k|]

− δ0E[|Q3|]

≤ 10N3K(13K + δ−2) +
∑

k ̸∈M∗

(z∗ − µk)(log T + 4 log(log T ))

kl(µk + δ, z∗ − δ)
− δ0E[|Q3|].

(56)

Here the last inequality is due to Equation (48). Because

γ = 10N3K(13K + δ−2) +
∑

k ̸∈M∗

log T + log(log T )

kl(µk + δ, z∗ − δ)
, (57)

we have

E[Rewi(T ; s
′, s−j)]−E[Rewi(T ; s)] ≥ −γ− z∗E[|Q3|] and E[Rewj(T ; s

′, s−j)]−E[Rewj(T ; s)] ≤ ϵ− δ0E[|Q3|].
(58)

As a result, for any u ∈ R+, if E[Rewi(T ; s
′, s−j)]− E[Rewi(T ; s)] ≤ −u, we have E[|Q3|] ≥ (u− γ)/z∗. Then

E[Rewj(T ; s
′, s−j)]− E[Rewj(T ; s)] ≤ ϵ− δ0

u− γ

z∗
= ϵ+

δ0γ

z∗
− δ0

z∗
u. (59)

Now the claim follows.

C.3.5. PROOF OF THEOREM 3.6

Proof. The proof follows the techniques of the proof of Lemma 3 in (Liu & Zhao, 2010) and Theorem 1 in (Anantharam
et al., 1987).

Let any problem instance ξ = (ξ1, ξ2, . . . , ξK) ∈ IberN,K . Here ξ1, ξ2, . . . , ξK are Bernoulli distributions with expectations
µ1, µ2, . . . , µK . z∗ and m∗ are calculated according to Theorem 3.1. M∗ = {k ∈ [K] : m∗

k > 0}. δ0 is given by
Equation (14). Consider any sub-optimal arm k such that µk < z∗. As a result, m∗

k = 0.

For any β ∈ (0, 1), choose a parameter λ such that

z∗ < λ < z∗ + δ0, |kl(µk, λ)− kl(µk, z
∗)| ≤ β kl(µk, z

∗), and ξ′ ≜ (ξ1, ξ2, . . . , ξk−1, ξ
′
k, ξk+1, . . . , ξK) ∈ Ξ.

(60)
Here ξ′k is the Bernoulli distribution with expectation λ. We use z′∗, m′∗, andM′∗ to denote the Nash equilibrium w.r.t. the
problem instance ξ′. We use Pξ[E] and Pξ′ [E] to denote the probability of an event E when the problem instance is ξ and
ξ′, respectively.

According to Theorem 3.1 and Lemma C.1, let k0 be the arm inM∗ such that µk0/m
∗
k0

= z∗. Since z∗ < λ < z∗ + δ, we
have that

∀k′ ∈M∗\{k0}, m∗
k′ ≤ µk′⌊

µk′
m∗

k′

⌋ <
µk′

z∗ + δ
<

µk′

z∗ + δ
<

µk′

λ
<

µk′

z∗
< m∗

k′ + 1. (61)

As a result, ⌊µk′/λ⌋ = m∗
k′ . In addition, ⌊µk0

/λ⌋ = m∗
k0
− 1. As a result,

K∑
k′=1

⌊
µ′
k′

λ

⌋
=

( ∑
k′∈M∗

⌊
µ′
k′

λ

⌋)
+

⌊
λ

λ

⌋
+

 ∑
k′ ̸∈M∗∪{k}

⌊
µ′
k′

λ

⌋ = N − 1 + 1 + 0 = N. (62)

and we have m′∗
k = 1. Therefore, since algorithm A is consistent, we have T/N −Eξ′ [τj,k(T )] ≤ o(Tα) for any α ∈ (0, β).

Define a random function c(T ) as

c(T ) ≜ max

{
Eξ′

[
T

N
− τj,k(T )

]
, 0

}
− T

N
+ τj,k(T ). (63)
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We have Eξ′ [c(T )] ≥ 0 and

Eξ′

[
c(T ) +

T

N
− τj,k(T )

]
= o(Tα). (64)

Because c(T ) + T/N − τj,k(T ) ≥ 0 a.e., we have

Eξ′

[
c(T ) +

T

N
− τj,k(T )

]
=Eξ′

[
c(T ) +

T

N
− τj,k(T )

∣∣∣τj,k(T ) < (1− β) log T

kl(µk, λ)

]
Pξ′

[
τj,k(T ) <

(1− β) log T

kl(µk, λ)

]
+ Eξ′

[
c(T ) +

T

N
− τj,k(T )

∣∣∣τj,k(T ) ≥ (1− β) log T

kl(µk, λ)

]
Pξ′

[
τj,k(T ) ≥

(1− β) log T

kl(µk, λ)

]
≥Eξ′

[
c(T ) +

T

N
− τj,k(T )

∣∣∣τj,k(T ) < (1− β) log T

kl(µk, λ)

]
Pξ′

[
τj,k(T ) <

(1− β) log T

kl(µk, λ)

]
≥
(
Eξ′ [c(T )] +

T

N
− (1− β) log T

kl(µk, λ)

)
Pξ′

[
τj,k(T ) <

(1− β) log T

kl(µk, λ)

]
.

(65)

Let Sk,1, Sk,2, . . . be the independent observations from arm k. Define

Lt ≜
t∑

i=1

log

(
Pξ[Xk = Sk,i]

Pξ′ [Xk = Sk,i]

)
(66)

and event

C ≜

{
τj,k(T ) <

(1− β) log T

kl(µk, λ)
, Lτj,k(T ) ≤

(
1− α+ β

2

)
log T

}
. (67)

Combining Equations (64) and (65), we have

Pξ′ [C] ≤ Pξ′

[
τj,k(T ) <

(1− β) log T

kl(µk, λ)

]
≤ Eξ′ [c(T ) + T/N − τj,k(T )]

Eξ′ [c(T )] + T/N − (1− β) log T/ kl(µk, λ)

≤ o(Tα)

T/N − (1− β) log T/ kl(µk, λ)
= o(Tα−1).

(68)

Let Cs ≜ {τj,k(T ) = s, Ls ≤ (1− (α+ β)/2) log T}. We have

Pξ′ [Cs] =

∫
{τj,k(T )=s,Ls≤(1−(α+β)/2) log T}

dPξ′ =

∫
{τj,k(T )=s,Ls≤(1−(α+β)/2) log T}

s∏
i=1

Pξ′ [Xk = Sk,i]

Pξ[Xk = Sk,i]
dPξ

≥
∫
{τj,k(T )=s,Ls≤(1−(α+β)/2) log T}

exp (−(1− (α+ β)/2) log T ) dPξ = T (α+β)/2−1Pξ[Cs].

(69)

Since Cs (1 ≤ s < (1− β) log T/ kl(µk, λ)) are disjoint, we have

Pξ[C] ≤ T 1−(α+β)/2Pξ′ [C] = o
(
T

α−β
2

)
→ 0, when T →∞. (70)

In addition, by the law of large numbers, we have that under Pξ, when t→∞, Lt/t→ kl(µk, λ) > 0. As a result, under
Pξ, when t→∞, maxi≤t Li/t→ kl(µk, λ) > 0. Therefore, since β > α, we have (1− (α+ β)/2) > (1− β) and

lim
T→∞

Pξ

[
Li > (1− (α+ β)/2) log T for some i <

(1− β) log T

kl(µk, λ)

]
= 0. (71)

As a result,

lim
T→∞

Pξ

[
τj,k(T ) <

(1− β) log T

kl(µk, λ)
, Lτj,k(T ) >

(
1− α+ β

2

)
log T

]
= 0. (72)

Combining Equations (70) and (72), we have

lim
T→∞

Pξ

[
τj,k(T ) <

(1− β) log T

kl(µk, λ)

]
= 0 (73)
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According to Equation (60), we have kl(µk, λ) ≥ (1− β) kl(µk, z
∗). Therefore,

lim
T→∞

Pξ

[
τj,k(T ) <

(1− β) log T

(1 + β) kl(µk, z∗)

]
= 0. (74)

Now the claim for τj,k(T ) follows by letting β → 0.

For the regret part, since for each arm k that is not in the Nash equilibriumM∗, the regret for deviation is at least z∗ − µk.
Therefore, we have

Regj(T ) = E

[
T∑

t=1

max
k∈[k]

µk

Mk(t) + I[πj(t) ̸= k]
−

T∑
t=1

Rj(t)

]

≥
∑

k ̸∈M∗

E

 ∑
t∈[T ],πj(t)=k

(
max
k∈[k]

µk

Mk(t) + I[πj(t) ̸= k]
−Rj(t)

)
≥
∑

k ̸∈M∗

E[τj,k(T )](z∗ − µk).

(75)

Now the claim for Regj(T ) follows by applying Equation (21).

C.3.6. PROOF OF LEMMA C.1

Proof. On the one hand, for any k such that m∗
k > 0, since m∗

k = ⌊µk/z
∗⌋, we have m∗

k ≤ µk/z
∗ and z∗ ≤ µk/m

∗
k. As

a result, z∗ ≤ mink∈[K],m∗
k>0 µk/m

∗
k. On the other hand, let z = mink∈[K],m∗

k>0 µk/m
∗
k. For any for any k such that

m∗
k > 0, we have that µk/m

∗
k ≥ z. Hence, we have µk/z ≥ m∗

k. As a result,

h(z) =

K∑
k=1

⌊µk

z

⌋
≥

K∑
k=1

m∗
k = N. (76)

By the definition of z∗, we have z∗ ≥ z. To conclude, we have z∗ ≥ mink∈[K],m∗
k>0 µk/m

∗
k and z∗ ≤

mink∈[K],m∗
k>0 µk/m

∗
k.

C.3.7. PROOF OF LEMMA C.2

Proof. Let

z̃j(t) = sup

{
z > 0 : h̃j,t(z) ≜

K∑
k=1

⌊
µ̃j,k(t)

z

⌋
≥ N

}
(77)

and we have z̃j(t) = r̃j,k(t) according to Theorem 3.1 and Lemma C.1.

(1) We first show that l̃j(t) = l∗.

Since t ̸∈ Aj , we haveM∗ ⊆ M̃j(t). Let z0 = z∗ − δ. On the one hand, Fix any k ∈ M̃j(t). Under Assumption 3.1,
according to Theorem 3.1, we know that z∗ > µk/(m

∗
k + 1) and there exists k′ ∈ M∗ such that z∗ = µk′/m∗

k′ . By the
choice of δ, we have

z∗ >
µk

m∗
k + 1

+ 2δ. (78)

As a result, since t ̸∈ Bj , we have

µ̃j,k(t)

z0
<

µk + δ

z∗ − δ
<

µk + δ
µk

m∗
k+1 + δ

= (m∗
k + 1) · µk + δ

µk + (m∗
k + 1)δ

< (m∗
k + 1). (79)

On the other hand, according to Theorem 3.1, we have z∗ ≤ µk/m
∗
k. As a result,

µ̃j,k(t)

z0
>

µk − δ

z∗ − δ
>

µk − δ
µk

m∗
k
− δ

= m∗
k ·

µk − δ

µk −m∗
kδ

> m∗
k. (80)
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Combining the above two equations and we get for any k ∈ M̃j(t),⌊
µ̃j,k(t)

z0

⌋
= m∗

k. (81)

As a result, h̃j,t(z0) ≥
∑

k∈M∗ m∗
k = N . Therefore, z̃j(t) ≥ z0, and

m̃j,k(t) =

⌊
µ̃j,k(t)

z̃j,k(t)

⌋
≤
⌊
µ̃j,k(t)

z∗0

⌋
= m∗

k, ∀k ∈ M̃j(t). (82)

Since m∗
k = 0 for all k ∈ M̃j(t)\M, we have M̃j(t) =M∗ and ∀k ∈M∗, ⌊µ̃j,k(t)/z0⌋ = ⌊µ̃j,k(t)/z̃j(t)⌋. Now we can

conclude that m̃∗
j (t) = m∗.

Furthermore, let k, k′ ∈ M∗ (k ̸= k′) and suppose µk/m
∗
k < rk < rk′ = µk′/m∗

k′ . Then by the choice of δ, we have
µ′
k/m

∗
k′ − µk/m

∗
k > 2δ. As a result, since t ̸∈ Bj , we have

r̃j,k(t)− r̃j,k′(t) =
µ̃j,k(t)

m̃j,k(t)
− µ̃j,k′(t)

m̃j,k′(t)
=

µ̃j,k(t)

m∗
k

− µ̃j,k′(t)

m∗
k′
≥ µk − δ

m∗
k

− µk′ + δ

m∗
k′

>

(
2− 1

m∗
k

− 1

m∗
k′

)
δ > 0. (83)

This equation indicates that we could get the same order if sorting {r∗k = µk/m
∗
k}k∈M∗ and {r̃j,k(t)}k∈M∗ by descending

order. Together with the conclusion m̃j(t) = m∗, we can get l̃j(t) = l∗.

(2) We now show that |r̃j,k0
(t)− z∗| ≤ δ where k0 is the last element in l̃j(t).

From the proof of part (1), we know that z∗ − δ ≤ z̃j(t). In addition, since t ̸∈ Bj , we have

z̃j(t) = r̃j,k0
(t) =

µ̃j,k0
(t)

m̃j,k0
(t)

<
µk0

+ δ

m∗
k0

<
µk0

m∗
k0

+ δ = z∗ + δ. (84)

Here the last equation is based on the fact that l∗ = l̃(t) and hence z∗ = mink′∈M∗ µk′/m∗
k′ = µk0

/m∗
k0

. Now the claim
follows.

C.3.8. PROOF OF LEMMA C.3

Proof. We only need to show that Aj ⊆ Bj ∪ Cj ∪ Dj . Let t ∈ Aj\(Bj ∪ Cj).
Because t ∈ Aj , we have that there exists k ∈M∗\M̃j(t). Since{

M∗\M̃j(t) ̸= ∅
}
=
{
M̃j(t)\M∗ ̸= ∅

}
∪
{
M̃j(t) ⊊M∗

}
. (85)

We consider these two cases respectively.

(1) Consider theM∗\M̃j(t) ̸= ∅ case.

Let k′ ∈ M̃j(t)\M∗. Therefore, we have µ̃j,k(t) ≤ µ̃j,k′(t). Otherwise, a player deviate from arm k′ to arm k will increase
the reward, which indicates that m̃j(t) is not a Nash equilibrium w.r.t. {µ̃j,k(t)}Kk=1 and leads to a contradiction.

In addition, since t ̸∈ Bj , we have that |µ̃j,k′(t)− µk′ | < δ. Furthermore, by the definition of δ0 and the property of the
Nash equilibrium m∗ w.r.t. {µk}Kk=1, we have

µk

m∗
k

− µk′ ≥ δ0 > 2δ. (86)

As a result,
µk − µ̃j,k(t) ≥ m∗

k(µk′ + 2δ)− µ̃j,k′(t) ≥ 2δ + (µk′ − µ̃j,k′(t)) > δ. (87)

Therefore, t ∈ Dj .

(2) Consider the M̃j(t) ⊊M∗ case.

23



Competing for Shareable Arms in Multi-Player Multi-Armed Bandits

Since M̃j(t) ⊊ M∗, there exists k′ ∈ M̃j(t) such that m̃j,k′(t) > m∗
k′ . Because k ̸∈ M̃j(t), we have µ̃j,k(t) ≤

µ̃j,k′(t)/m̃j,k′(t). Furthermore, by the definition of δ0 and the property of the Nash equilibrium m∗ w.r.t. {µk}Kk=1, we
have

µk ≥
µk′

m∗
µk′ + 1

+ 2δ ≥ µk′

m̃j,k′(t)
+ 2δ. (88)

In addition, since t ̸∈ Bj , we have that |µ̃j,k′(t)− µk′ | < δ. As a result,

µk − µ̃j,k(t) ≥
µk′

m̃j,k′(t)
+ 2δ − µ̃j,k(t) >

µ̃j,k′(t)− δ

m̃j,k′(t)
+ 2δ − µ̃j,k(t) ≥ δ

(
2− 1

m̃j,k′(t)

)
≥ δ. (89)

Therefore, t ∈ Dj .

Now the claim follows.

C.3.9. PROOF OF LEMMA C.4

Proof. Since E[|Bj ∪Cj ∪Dj |] ≤ E[|Bj |]+E[|Cj |]+E[|Dj |], we provide the upper bounds of E[|Bj |], E[|Cj |], and E[|Dj |],
respectively. Let Ft be the σ-algebra generated by {Xk(s),∀k ∈ [K]}ts=1.

(1) We first show that E[|Bj |] ≤ NK(17 + 4δ−2).

For any k ∈ [K], let Bj,k =
{
t > K ′ : k ∈ M̃j(t), |µ̃j,k(t)− µk| ≥ δ

}
. Let 1 ≤ pk(t) ≤ N be the index of the last

element that is k in l̃t. Define
Bj,k,1 = {t ∈ Bj,k : t ≡ pk(t)(modN)} . (90)

Let H = {t > K ′ : t ≡ pk(t)(modN)} and Ct = I[πj(t) = k]. Note that I[t ∈ H] is Ft−1-measurable and P[Ct = 1|t ∈
H] ≥ 1/2 by the design of the algorithm. According to Lemma E.1, we can get that

E[|Bj,k,1|] ≤
∑
t>K′

P [t ∈ H, |µ̂j,k(t)− µk| ≥ δ] ≤ 4(4 + δ−2). (91)

∀t ∈ H , it is always the last possible time to choose arm k in the corresponding block w.r.t. t. As a result, ∀t ∈ H , µ̂j,k(t) is
the estimations adopted in the next block. Formally, ∀s > N and s ∈ Bj,k, we have µ̃j,k(s) = µ̂j,k(max{t ∈ H : t < s})
and max{t ∈ H : t < s} ∈ Bj,k,1. In addition, each t ∈ Bj,k,1 corresponds to at most N elements in Bj,k, which means
that

E[|Bj,k|] ≤ N +N · E[|Bj,k,1|] ≤ N(17 + 4δ−2). (92)

Now by the union bound, we have

E[|Bj |] ≤
K∑

k=1

E[|Bj,k|] ≤ NK(17 + 4δ−2). (93)

(2) We then show that E[|Cj |] ≤ 60N2.

For any k ∈M∗, let Cj,k =
{
t > K ′ : b̃j,k(t) < µk

}
. By the design of our algorithm, b̃j,k(t) is updated at the start of each

block. As a result

E[|Cj,k|] =
∑
t>K′

P
[
b̃j,k(t) < µk

]
≤ N

∑
t≥0

P
[
b̃j,k (tN + 1) < µk

]
≤ N +N

∑
t≥1

P
[
b̂j,k(tN) < µk

]
. (94)

According to Lemma E.2 (Theorem 10 in (Garivier & Cappé, 2011)), we can get that for all t ≥ 3,

P
[
b̂j,k (tN) < µk

]
≤ ⌈f(tN) log f(tN)⌉ e1−f(tN). (95)
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Here f(tN) = log(tN) + 4 log(log(tN)). As a result,

E[|Cj,k|] ≤ 3N +N
∑
t≥3

⌈f(tN) log f(tN)⌉ e1−f(tN)

≤ 3N +N
∑
t≥3

⌈f(s) log f(s)⌉ e1−f(s) ≤ 60N,
(96)

where the last inequality is based on the proof of Lemma 4 in (Wang et al., 2020). Therefore, by the union bound, we have

E[|Cj |] ≤
∑

k∈M∗

E[|Cj,k|] ≤ 60N2. (97)

(3) Finally, we show that E[|Dj |] ≤ N2K(17K + 4δ−2).

For any k ∈M∗, let
Dj,k =

{
t ∈ Aj\(Bj ∪ Cj) : k ̸∈ M̃j(t) and |µ̃j,k(t)− µk| ≥ δ

}
. (98)

Fix k ∈ M∗. Suppose t ∈ Dj,k. Since t ̸∈ Cj , we have b̃j,k(t) ≥ µk. In addition, since t ̸∈ Bj , we have that for any
k′ ∈ M̃j(t), |µ̃j,k′(t)− µk′ | < δ. Let k0 be the last element in this list l̃j(t).

In addition, because t ∈ Aj , we have M∗\M̃j(t) ̸= ∅. Because
{
M∗\M̃j(t) ̸= ∅

}
=
{
M̃j(t)\M∗ ̸= ∅

}
∪{

M̃j(t) ⊊M∗
}

. We show that k ∈ Hj(t) in these two cases, respectively.

(a) Suppose M̃j(t)\M∗ ̸= ∅. Let k′ be any element in M̃j(t)\M∗. As a result, since k ∈ M∗ and k′ ̸∈ M∗, under
Assumption 3.1, we have µk ≥ µk′ + 2δ. In addition, by the construction of l̃j(t), we have µ̃j,k′(t) ≥ r̃j,k′(t) ≥ r̃j,k0

(t).
As a result,

b̃j,k(t) ≥ µk ≥ µk′ + 2δ ≥ µ̃j,k′(t) + δ > r̃j,k0
(t). (99)

As a result, k ∈ Hj(t) by the construction of the algorithm.

(b) Suppose M̃j(t) ⊊ M∗. There exists k′ ∈ M̃j(t) such that m̃j,k′(t) > m∗
k′ . Because k ̸∈ M̃j(t), we have

µ̃j,k(t) ≤ µ̃j,k′(t)/m̃j,k′(t). Furthermore, by the definition of δ0 and the property of the Nash equilibrium m∗ w.r.t.
{µk}Kk=1, we have

µk ≥
µk′

m∗
µk′ + 1

+ 2δ ≥ µk′

m̃j,k′(t)
+ 2δ. (100)

As a result, by the construction of l̃j(t), we have µ̃j,k′(t)/m̃j,k′(t) ≥ r̃j,k0
(t). Therefore, we can get

b̃j,k(t) ≥ µk ≥
µk′

m̃j,k′(t)
+ 2δ ≥ µ̃j,k′(t)− δ

m̃j,k′(t)
+ 2δ ≥ r̃j,k0(t) + δ

(
2− 1

m̃j,k′(t)

)
> r̃j,k0(t). (101)

To conclude, from part (a) and (b), we get that k ∈ Hj(t). Therefore, when t0 = N in Algorithm 1, arm k will be chosen
with probability at least 1/(2K). Now use the similar techniques in the proof of part (1). Let

Dj,k,1 = {t ∈ Dj,k : (t+ j) ≡ N − 1(modN)} . (102)

By the construction of the algorithm, for each t ∈ Dj,k,1, arm k will be chosen with probability at least 1/(2K). Let
H = {t ∈ Aj\(Bj ∪ Cj) : k ̸∈ M̃j(t) and (t+ j) ≡ N − 1(modN)}, Ct = I[πj(t) = k]. According to Lemma E.1, we
have

E[|Dj,k,1|] =
∑
t≥1

P[t ∈ H, |µ̃j,k(t)− µk| ≥ δ] ≤ 16K2 + 4Kδ−2. (103)

Similar to the proof of part (1), we have that

E[|Dj,k|] ≤ N(1 + E[|Dj,k,1|]) ≤ NK(17K + 4δ−2). (104)

Finally, by the union bound, we have

E[|Dj |] ≤
∑

k∈M∗

E[|Dj,k|] ≤ N2K(17K + 4δ−2). (105)

Now the claim follows by combining Equations (93), (97), and (105).
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C.3.10. PROOF OF LEMMA C.5

Proof. Define w(t) =
∑t

s=1 I[s ∈ Gj,k] and s0 = (log T + 4 log(log T ))/ kl(µk + δ, z∗ − δ) where z∗ is provided in
Equation (8). Further, let

Gj,k,1 = {t ∈ Gj,k : |µ̃j,k(t)− µk| ≥ δ} and Gj,k,2 = {t ∈ Gj,k : w(t) < s0 + 1}. (106)

(1) We first show that Gj,k ⊆ (Gj,k,1 ∪ Gj,k,2).
Suppose Gj,k\(Gj,k,1 ∪ Gj,k,2) ̸= ∅. Let t ∈ Gj,k\(Gj,k,1 ∪ Gj,k,2). Since t ∈ Gj,k, we have that t ̸∈ Aj andM∗ = M̃j(t).
As a result, k ̸∈ M̃j(t). Therefore, by the design of Algorithm 1, arm k will be chosen at most one time in the block
corresponding to round t. As a result, τ̃j,k(t) ≥ w(t)− 1. In addition, since t ̸∈ Gj,k,2, we have w(t) ≥ s0 + 1. Hence, we
have

τ̃j,k(t) ≥ s0. (107)

Let k′ = l̃j,N (t) ∈ M∗, i.e., the last element in this list l̃j(t) with the smallest estimated average reward r̃j,k′(t). We
note that πj(t) = k only when b̃j,k(t) ≥ r̃j,k′(t) by the choice of Hj(t) in Line 9 of Algorithm 1. In addition, since
t ̸∈ (Aj ∪ Bj), according to Lemma C.2, we have that

b̃j,k(t) ≥ r̃j,k′(t) ≥ z∗ − δ. (108)

Furthermore, since t ̸∈ Gj,k,1, we have |µ̃j,k(t) − µk| < δ. Because k ̸∈ M∗, under Assumption 3.1, we have µk < z∗

(Otherwise, a player that chooses arm q = k∗|M∗| deviate to choose arm k will increase the reward). As a result, by the
construction of δ, we have z∗ − µk > 2δ. Hence,

µ̃j,k(t) ≤ µk + δ < z∗ − δ. (109)

As a result, we can get that

s0 kl (µ̃j,k(t), z
∗ − δ) ≤ τ̃j,k(t) kl (µ̃j,k(t), z

∗ − δ) ≤ τ̃j,k(t) kl
(
µ̃j,k(t), b̃j,k(t)

)
≤ log T + 4 log(log T ). (110)

Here the first inequality is from Equation (107). The second inequality stems from Equation (108) and the fact that
∀0 < x < 1, y 7→ kl(x, y) is an increasing function when x < y < 1 (guaranteed by Equation (109)). The last inequality is
according to the definition of b̃j,k(t). By the definition of s0, we can get that

kl (µ̃j,k(t), z
∗ − δ) ≤ kl (µk + δ, z∗ − δ) . (111)

As a result, µ̃j,k(t) ≥ µk + δ by the fact that x < y < 1, x 7→ kl(x, y) is a decreasing function when 0 < x < 1. As a
result, t ∈ Gj,k,1, which leads to a contradiction.

(2) We show that E[|Gj,k,1|] ≤ 5 + 2δ−2.

Let H = {t ∈ Gj,k : |µ̂j,k(t) − µk| ≥ δ}. According to Lemma E.1 with Ct = c = 1, we have that E[H] ≤ 4 + 2δ−2.
Since k ̸∈ M∗ = M̃j(t), arm k can be chosen at most one time in the corresponding block w.r.t. t. As a result,
E[|Gj,k,1|] ≤ E[|H|] ≤ 5 + 2δ−2.

(3) We show that E[|Gj,k,2|] ≤ (log T + 4 log(log T ))/ kl(µk + δ, z∗ − δ).

By the construction of w(t), we have E[|Gj,k,2|] ≤ s0.

Finally, we can prove that

E[|Gj,k|] ≤ E[|Gj,k,1|] + E[Gj,k,2] ≤
log T + 4 log(log T )

kl(µk + δ, z∗ − δ)
+ 5 + 2δ−2. (112)
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C.4. Proofs in Section A

C.4.1. PROOF OF PROPOSITION A.1

Proof. Let A denote the event that Assumption 3.1 holds and B denote the event that for all i, j ∈ [K] and i ̸= j, µi/µj is
an irrational number. Let Bij denote the event that µi/µj is an irrational number. It is obvious that⋂

1≤i<j≤K

Bij = B ⊆ A. (113)

As a result,

P(A) ≥ P(B) = 1− P(B̄) = 1− P

 ⋃
1≤i<j≤K

B̄i,j

 ≥ 1−
∑

1≤i<j≤K

P(B̄ij). (114)

In addition,
P(B̄ij) = E[P(µj/µ is rational)|µi = µ]. (115)

For a fixed µ ∈ (0, 1], since rational number is countable, let a1, a2, a3, . . . , be the rational numbers in (0, 1/µ]. Fix an
ϵ > 0 and define the following intervals [l1, u1], [l2, u2], . . . with

lt = at − ϵ/2t and rt = at + ϵ/2t. (116)

As a result,

P(µj/µ is rational) = P(µj/µ ∈ {a1, a2, . . . }) ≤ P

µj/µ ∈
⋃
t≥1

[lt, ut]

 ≤∑
t≥1

P (µj/µ ∈ [lt, ut]) . (117)

Since the density ratio of distribution D is bounded by M , we have∑
t≥1

P (µj/µ ∈ [lt, ut]) ≤
∑
t≥1

P (µj ∈ [ltµ, utµ]) ≤Mµ
∑
t≥1

ϵ/2t−1 ≤ 2Mϵ. (118)

By letting ϵ→ 0, we have P(µj/µ is rational) = 0. Now combining Equations (114) and (115), we have P(A) ≥ 1. Now
the claim follows.

C.4.2. PROOF OF PROPOSITION A.2

Proof. Let s be a Nash equilibrium in Theorem 3.1. Suppose there exists a beneficial deviation for players B ∈ [N ] and the
corresponding strategies s′B .

We first prove that s′B ⊆ M∗. Suppose there exists a player j ∈ B and s′j ̸∈ M∗. Then U single
j (s′B , s−B) = µs′j

< z∗

by Theorem 3.1. However, since the original profile s is a Nash equilibrium, we have U single
j (s) ≥ z∗. This leads to the

contradiction with the definition of beneficial deviation. As a result, s′B ⊆M∗.

We now show that m(s′B , s−B) = m(s). Suppose m(s′B , s−B) ̸= m(s), there must exist k ∈ M∗ such that
mk(s

′
B , s−B) > mk(s) = m∗

k. As a result, there must exist a player j ∈ B such that s′j = k and U single
j (s′B , s−B) =

µk/mk(s
′
B , s−B) < µk/m

∗
k < z∗. However, since the original profile s is a Nash equilibrium, we have U single

j (s) ≥ z∗.
This leads to the contradiction with the definition of beneficial deviation. As a result, m(s′B , s−B) = m(s).

Finally, we show that such beneficial deviation does not exist. Base on the previous two claims, we have m(s′B , s−B) =
m(s). As a result, the rewards earned by the players in B after deviation are a permutation of the original rewards earned
by them. Therefore, ∑

j∈B

U single
j (s′B , s−B) =

∑
j∈B

U single
j (s), (119)

which contradicts to the definition of the beneficial deviation which requires that at least one inequality holds strictly for
players in B. Now the claim follows.
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C.4.3. PROOF OF PROPOSITION A.3

Proof. Since σ is a symmetric mixed Nash equilibrium, we suppose σ1 = σ2 = · · · = σN = p = (p1, p2, . . . , pK) where
pk represents the probability for each player to pull arm k. Let P = {k : pk > 0} be the set of all arms that can be chosen
according to p. It is obvious that, if P ⊆M∗, we must have W (σ) ≤W PNE. Now we consider the P\M∗ ̸= ∅ case.

Since σ is a Mixed Nash equilibrium, we have

Es∈σ

[
U single
j (s)

]
=
∑
k∈P

pkEs∈σ

[
U single
j (k, s−j)

]
≤
∑
k∈P

pkEs∈σ

[
U single
j (s)

]
= Es∈σ

[
U single
j (s)

]
. (120)

This indicates that all the inequalities should be equations in the second step and we have that there exists a constant C > 0,
such that

∀k ∈ P, Es∈σ

[
U single
j (k, s−j)

]
= C. (121)

Now we analyze the Es∈σ

[
U single
j (k, s−j)

]
term for any k ∈ P . Let m−j(s) = {m−j,k(s)}Kk=1, where m−j,k(s) denotes

the number of players except player j that choose arm k. Then Es∈σ

[
U single
j (k, s−j)

]
can be expanded as follows:

Es∈σ

[
U single
j (k, s−j)

]
=

N−1∑
t=0

µk

t+ 1
P[m−j,k(s) = t] = µk

N−1∑
t=0

1

t+ 1

(
N − 1

t

)
ptk(1− pk)

N−1−t. (122)

To calculate the above equation, we define the following generating function,

F (x) = (pkx+ (1− pk))
N−1 =

N−1∑
t=0

atx
t, (123)

where at =
(
N−1

t

)
ptk(1− pk)

N−1−t. As a result, Equation (122) can be calculated as follows.

Es∈σ

[
U single
j (k, s−j)

]
= µk

∫ 1

0

F (x)dx = µk ·
(pkx+ (1− pk))

N

pkN

∣∣∣∣∣
1

x=0

=
µk

(
1− (1− pk)

N
)

pkN
= C. (124)

Hence, µk

(
1− (1− pk)

N
)
= CpkN and

W (σ) =

K∑
k=1

µkPs∼σ[mk(s) > 0] =

K∑
k=1

µk

(
1− (1− µk)

N
)
=
∑
k∈P

CpkN = CN. (125)

In addition, Equation (124) indicates that
1− (1− pk)

N

pk
=

CN

µk
. (126)

It is easy to check that function (1− (1− pk)
N )/pk is non-increasing and is bounded in [1, N ] when 0 ≤ pk ≤ 1. As a

result,

∀k ∈ P, CN

µk
≤ N. (127)

Hence we have CN ≤ µkN for any k ∈ P . Combining Equation (126), we have

W (σ) ≤ Nµk, for any k ∈ P. (128)

Since we consider P\M∗ case, there exists an arm k ∈ P\M∗. Since it is not in the setM∗, according to Theorem 3.1,
we have µk < z∗. As a result,

W (σ) ≤ Nµk ≤ Nz∗ =
∑

k∈M∗

m∗
kz

∗ ≤
∑

k∈M∗

µk = W PNE. (129)

Now the claim follows.
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C.4.4. PROOF OF PROPOSITION A.5

Proof. Consider the set J defined in Equation (40), according to Lemma C.3 and Lemma C.4, we have

E[|J |] ≤
N∑
j=1

E[|Aj ∪ Bj |] ≤
N∑
j=1

E[|Bj ∪ Cj ∪ Dj |] ≤ 8N3K(12K + δ−2). (130)

Since E[|J |] = O(1), the expected number of blocks that contain rounds t ∈ J is also in O(1). As a result, the differences
between E[Regj(T )] (defined in Equation (4)) and E[Reg′j(T )] in these blocks are also O(1).

Now we analyze the differences between the two regrets for the blocks of which all rounds are not in J . Suppose a block
with rounds vN, vN + 1, vN + 2, . . . v · (N + 1) for an integer v and (vN + s) ̸∈ J for any 1 ≤ s ≤ N . According
to Lemma C.2, each player j at these rounds calculates the correct l̃j(t) = l∗. In addition, at most one player deviates
according to Algorithm 1 to explore sub-optimal arms. As a result, the optimal arm for player j at each round in the
block is exactly the arm that he plans to pull without the exploration in Lines 16-17 in Algorithm 1. Formally, for each
t ∈ {vN, vN + 1, . . . , v · (N + 1)},

max
k∈[K]

µk

Mk(t) + I[πj(t) ̸= k]
=

µk

m∗
k

. (131)

Since agent j calculates the correct Nash equilibrium and l̃j(t) = l∗, each arm k ∈M∗ is chosen for m∗
k times in l̃j(t). As

a result,
v·(N+1)∑
t=vN+1

max
k∈[K]

µk

Mk(t) + I[πj(t) ̸= k]
=
∑

k∈M∗

µk

m∗
k

·m∗
k =

∑
k∈M∗

µk = N · r∗ =

v·(N+1)∑
t=vN+1

r∗. (132)

As a result, the differences between the two regrets E[Regj(T )] and E[Reg′j(T )] are 0 in these blocks.

Combining these results, we know that E[Regj(T )] and E[Reg′j(T )] have differences at most O(1). According to Theo-
rem 3.3, we have

E[Reg′j(T )] ≤ E[Regj(T )] +O(1) ≤
∑

k ̸∈M∗

(z∗ − µk)(log T + 4 log(log T ))

kl(µk + δ, z∗ − δ)
+O(1). (133)

Now the claim follows.

C.4.5. PROOF OF PROPOSITION A.6

Proof. By the no regret condition, we have
∑N

j=1 E[Regj(T )] ≤ o(Tα). We note that each non-equilibrium round
contributes at least δ0 regret since there must exist at least one player that can gain δ0 increase in reward by deviation. As a
result,

E[Regj(T )]

=

T∑
t=1

E

 N∑
j=1

(
max
k∈[K]

µk

Mk(t) + I[πj(t) ̸= k]
−Rj(t)

)
≥

T∑
t=1

E

 N∑
j=1

(
max
k∈[K]

µk

Mk(t) + I[πj(t) ̸= k]
−Rj(t)

)∣∣∣∣∣∣∃k ∈ [K],M∗
k (t) ̸= m∗

k

P [∃k ∈ [K],M∗
k (t) ̸= m∗

k]

≥ δ0 NonEqu(T ).

(134)

As a result, NonEqu(T ) ≤ o(Tα). Therefore, for all k ∈M∗,

E

 N∑
j=1

τj,k(T )

 ≥ m∗
k (T − E[NonEqu(T )]) . (135)
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Algorithm 2 SMAA (without knowledge of N and rank)

1: N̂ , j ←Musical Chairs Approach ((Rosenski et al., 2016), Algorithm 3)
2: T1 ←

⌈
50K2 log(4T )

⌉
+
⌈
N̂ log(2T )

⌉
3: Call Algorithm 1 for t from T1 + 1 to T .

Algorithm 3 Musical Chairs (Rosenski et al., 2016)
1: T0 ←

⌈
50 log(4T )K2

⌉
2: C ← 0
3: for t← 1 to T0 do
4: Sample arm k uniformly in [K]
5: Observe the collision information η(t)
6: if η(t) = 1 then
7: C ← C + 1
8: end if
9: end for

10: N̂ ← min
{
round

(
log((T0−C)/T0)

log(1−1/K) + 1
)
,K
}

and N̂ ← K if C = T0

11: j ← −1
12: T1 = T0 +

⌈
N̂ log(2T )

⌉
13: for t← T0 + 1 to T1 do
14: if j = −1 then
15: Sample i uniformly in [N̂ ] and pull arm i
16: Observe the collision information η(t)
17: if η(t) = 0 then
18: j ← i
19: end if
20: else
21: Pull arm j
22: end if
23: end for
24: Output: N̂ , j

Therefore, m∗
kT −

∑N
j=1 E[τj,k(T )] ≤ o(Tα). Now due to the fairness condition, we have that for all α > 0, j ∈ [N ] and

k ∈M∗,
m∗

k

N
T − E[τj,k(T )] ≤ o(Tα). (136)

The claim follows.

D. More Details about the Setting When N and Rank is unknown
D.1. Algorithm Details

The pseudo-code of the whole method is shown in Algorithm 2 and the pseudo-code of the Musical Chairs approach is
shown in Algorithm 3. When t ∈ [T0], players randomly choose the arms in [K] and count the number of collisions. The
number of players is then estimated according to Line 10 in Algorithm 3. When t ∈ {T0 + 1, . . . , T}, each player first
randomly chooses the arms in [N̂ ]. If no collision occurs, the player will hold on to the arm in the remaining rounds.
Otherwise, the player re-sampleso an arm uniformly in [N̂ ] and the progress goes on. The output rank of the player is the
index of the arm he holds on.

D.2. Properties

We first show that the strategic player will not affect other players that follow the Musical Chairs approach in Proposition D.1.

Proposition D.1. If N − 1 players follow the Musical Chairs approach, then with probability at least 1 − N/T , after
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T1 =
⌈
50K2 log(4T )

⌉
+ ⌈N log(2T )⌉ rounds, regardless of the policy of the strategic player, each player could estimate

the number of players N accurately and get a different rank j ∈ [N ] with other players except the strategic player.

Similar to Algorithm 1, we could show the properties of Algorithm 2 by the following theorem (formal version of
Corollary 3.7).

Theorem D.2. Under Assumption 3.1, suppose 0 < δ < δ0/2. Let µmax = maxk∈[K] µk. Then Algorithm 2 satisfies the
following properties.

1. When all players follow Algorithm 2, the expected regret for each player j is upper-bounded by the following equation.

E[Regj(T )] ≤
∑

k ̸∈M∗

(z∗ − µk)(log T + 4 log(log T ))

kl(µk + δ, z∗ − δ)
+(50K2+N)µmax log(4T )+10N3K(13K+δ−2)+Nµmax.

(137)

2. When all players follow Algorithm 2, the expected number of rounds that are not a Nash equilibrium demonstrated in
Theorem 3.1 is upper bounded by the following equation.

E[NonEqu(T )] ≤ N
∑

k ̸∈M∗

log T + 4 log(log T )

kl(µk + δ, z∗ − δ)
+ (50K2 +N) log(4T ) + 10N3K(14K + δ−2). (138)

3. The policy profile where all players follow Algorithm 2 is an ϵ-Nash equilibrium w.r.t. to the game specified by
(Spolicy, {Upolicy

j }Nj=1) and is (β, ϵ+ βγ)-stable with

β =
δ0
z∗

,

ϵ =
∑

k ̸∈M∗

(z∗ − µk)(log T + 4 log(log T ))

kl(µk + δ, z∗ − δ)
+ (50K2 +N)µmax log(4T ) + 10N3K(13K + δ−2) +Nµmax,

γ =
∑

k ̸∈M∗

log T + log(log T )

kl(µk + δ, z∗ − δ)
+ (50K2 +N)µmax log(4T ) + 10N3K(13K + δ−2) +Nµmax.

(139)
Here z∗ is provided in Equation (8).

D.3. Proofs

D.3.1. PROOF OF PROPOSITION D.1

Proof. At each round t ∈ [T0], suppose the probability of the strategic behavior to pull arm k is qk(t). As a result, the
probability of any other player j to observe a collision is

P (η(t) = 1) =

K∑
k=1

P (πj(t) = k)P (η(t) = 1|πj(t) = k)

=

K∑
k=1

1

K
·
(
1−

(
1− 1

K

)N−2

(1− qk(t))

)

= 1−
(
1− 1

K

)N−2 K∑
k=1

1− qk(t)

K

= 1−
(
1− 1

K

)N−1

.

(140)

As a result, no matter the behaviors of the strategic player, the probability of other players that follow Algorithm 3 to observe
a collision is constant. According to Lemma 3 in (Rosenski et al., 2016), we can get that if T0 =

⌈
50 log(4T )K2

⌉
, then

with probability at least 1− 1/(2T ), we have N̂ = N .
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For any t ∈ {T0 + 1, . . . , T1}, when N̂ = N , then the probability of a player j that follows Algorithm 3 to have ηj(t) = 0

is at least 1/N since there must exist at least one arm that is not pulled in [N ]. As a result, when N̂ = N , since
T1 − T0 =

⌈
N̂ log(2T )

⌉
, the probability for player j to always meet collisions is

P [∀t ∈ {T0 + 1, . . . , T1}, ηj(t) = 0] ≤
(
1− 1

N

)T1−T0

≤ exp

(
−T1 − T0

N

)
≤ 1

2T
. (141)

As a result, when T0 =
⌈
50 log(4T )K2

⌉
and T1 − T0 =

⌈
N̂ log(2T )

⌉
, the probability of a player that follows Algorithm 3

to estimate N accurately and get a different rank with other players is at least (1− 1/(2T ))2 ≤ 1− 1/T . Now the claim
follows by applying the union bound for all players.

D.3.2. PROOF OF THEOREM D.2

Proof. For the first part, let E denote the clean event when all players that follow Algorithm 2 estimate N accurately and
get a different rank j. Let µmax = maxk∈[K] µk and Regee

j (T ) represent the regret in the exploration-exploitation phase
(Algorithm 1). As a result,

E[Regj(T )]
=P[E ]E

[
Regj(T )|E

]
+ P[Ē ]E

[
Regj(T )|Ē

]
≤T1µmax +Regee

j (T ) +
N

T
µmax · T

≤
∑

k ̸∈M∗

(z∗ − µk)(log T + 4 log(log T ))

kl(µk + δ, z∗ − δ)
+ (50K2 +N)µmax log(4T ) + 10N3K(13K + δ−2) +Nµmax.

(142)

For the second part, let NonEquee(T ) represent the rounds of non-equilibrium in the exploration-exploitation phase
(Algorithm 1). Then we have

NonEqu(T )

=P[E ]E [NonEqu(T )|E ] + P[Ē ]E
[
NonEqu(T )|Ē

]
≤T1 +NonEquee(T ) +

N

T
· T

≤N
∑

k ̸∈M∗

log T + 4 log(log T )

kl(µk + δ, z∗ − δ)
+ (50K2 +N) log(4T ) + 10N3K(14K + δ−2).

(143)

For the third part, according to Proposition D.1, the behaviors of the selfish player in the Musical Chairs phase will not
affect the results of other players. In addition, as shown in the proof of Theorem 3.5 in Appendix C.3.4, Algorithm 1 is not
affected by selfish players. As a result, we conclude that the policy profile where all players follow Algorithm 2 is an ϵ-Nash
equilibrium with

ϵ =
∑

k ̸∈M∗

(z∗ − µk)(log T + 4 log(log T ))

kl(µk + δ, z∗ − δ)
+ (50K2 +N)µmax log(4T ) + 10N3K(13K + δ−2) +Nµmax. (144)

Let Rewee
j (T ; s) represents the reward of player j in the exploration-exploitation phase (Algorithm 1 part) under the original

profile s where all players follow Algorithm 2. When a selfish player deviate from s to s′. Let Q be the set of rounds t
that player j deviates from the original algorithm in the exploitation-exploration phase and all other players calculate the
correct Nash equilibrium (i.e., Q3 in the proof of Theorem 3.5 in Appendix C.3.4). The reward of player j and a player i
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that follows Algorithm 2 is given by the following equations.

E[Rewi(T ; s
′, s−j)− Rewi(T ; s)]

=P[E ]E[Rewi(T ; s
′, s−j)− Rewi(T ; s)|E ] + P[Ē ]E[Rewi(T ; s

′, s−j)− Rewi(T ; s)|Ē ]

≥ − T1µmax − E[Rewee
i (T ; s

′, s−j)− Rewee
i (T ; s)|Ē ]−

N

T
· Tµmax

≥ − 10N3K(13K + δ−2)−
∑

k ̸∈M∗

log T + log(log T )

kl(µk + δ, z∗ − δ)
− (50K2 +N)µmax log(4T )−Nµmax − z∗E[|Q|]

= − γ − z∗E[|Q|].

(145)

And

E[Rewj(T ; s
′, s−j)− Rewj(T ; s)]

=P[E ]E[Rewj(T ; s
′, s−j)− Rewj(T ; s)|E ] + P[Ē ]E[Rewj(T ; s

′, s−j)− Rewj(T ; s)|Ē ]

≤T1µmax + E[Rewee
i (T ; s

′, s−j)− Rewee
i (T ; s)|Ē ] +

N

T
· Tµmax

≤ 10N3K(13K + δ−2) +
∑

k ̸∈M∗

(z∗ − µk)(log T + 4 log(log T ))

kl(µk + δ, z∗ − δ)
− δ0E[|Q|] + (50K2 +N)µmax log(4T ) +Nµmax

= ϵ− δ0E[|Q|].
(146)

As a result, for any u ∈ R+, if E[Rewi(T ; s
′, s−j)]− E[Rewi(T ; s)] ≤ −u, we have E[|Q|] ≥ (u− γ)/z∗. Then

E[Rewj(T ; s
′, s−j)]− E[Rewj(T ; s)] ≤ ϵ− δ0

u− γ

z∗
= ϵ+

δ0γ

z∗
− δ0

z∗
u. (147)

Now the claim follows.

E. Auxiliary Lemmas
Lemma E.1 (Lemma 5 in (Combes et al., 2015a)). Let Ft be the σ-algebra generated by {Xk(t),∀k ∈ [K]}ts=1. Let
j ∈ [N ], k ∈ [K] and c > 0. Let H be a random set of rounds such that for all t, I[t ∈ H] ∈ Ft−1. Assume that there
exists {Ct}t∈N, a sequence of independent binary random variables such that for any t ≥ 1, Ct is Ft-measurable and
P[Ct = 1|t ∈ H] ≥ c. Further assume for any t ∈ H , k is selected (πj(t) = k) if Ct = 1. Then∑

t≥1

P[t ∈ H, |µ̂j,k(t)− µk| ≥ δ] ≤ 2c−1
(
2c−1 + δ−2

)
. (148)

Lemma E.2 (Theorem 10 in (Garivier & Cappé, 2011)). Let {Zt}t≥1 be a sequence of independent random variables
bounded in [0, 1] with common expectation µ = E[Zt]. Let F be an increasing sequence of σ-fields such that for each t,
σ(Z1, Z2, . . . , Zt) ⊆ Ft and for s > t, Zs is independent from Ft. Consider a previsible sequence {ϵt}t≥1 of Bernoulli
variables (for all t > 0, ϵt is Ft−1-measurable). Let δ > 0 and for every u ∈ {1, . . . , t} let

S(u) =

u∑
s=1

ϵsXs, N(u) =

u∑
s=1

ϵs, µ̂(u) =
S(u)

N(u)
,

b(t) = sup {q ≥ µ̂(t) : N(t) kl(µ̂(t), q) ≤ δ} .
(149)

Then
P[b(t) < µ] ≤ ⌈δ log t⌉ exp(1− δ). (150)
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