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ABSTRACT

To avoid catastrophic forgetting, many replay-based approaches to continual
learning (CL) require, for each learning phase with new data, the replay of samples
representing all of the previously learned knowledge. Since this knowledge grows
over time, such approaches invest linearly growing computational resources just
for re-learning what is already known. In this proof-of-concept study, we propose
a generative replay-based CL strategy that we term adiabatic replay (AR), which
achieves CL in constant time and memory complexity by making use of the (very
common) situation where each new learning phase is adiabatic, i.e., represents
only a small addition to existing knowledge. The employed Gaussian Mixture
Models (GMMs) are capable of selective updating only those parts of their inter-
nal representation affected by the new task. The information that would otherwise
be overwritten by such updates is protected by selective replay of samples that
are similar to newly arriving ones. Thus, the amount of to-be-replayed samples
depends not at all on accumulated, but only on added knowledge, which is small
by construction. Based on the challenging CIFAR, SVHN and Fruits datasets in
combination with pre-trained feature extractors, we confirm AR’s superior scaling
behavior while showing better accuracy than common baselines in the field.

1 INTRODUCTION

This contribution is in the context of continual learning (CL), a recent flavor of machine learning that
investigates learning from data with non-stationary distributions. A common effect in this context
is catastrophic forgetting (CF), an effect where previously acquired knowledge is abruptly lost after
a change in data distributions. In class-incremental CL (see, e.g., Bagus et al. (2022); van de Ven
et al. (2022)), a number of assumptions are made: distribution changes are assumed to be abrupt,
partitioning the data stream into stationary tasks. Then, task onsets are supposed to be known,
instead of inferring them from data. Lastly, tasks are assumed to be disjoint. Together with this
goes the constraint that no, or only a few, samples may be stored. A very promising approach to
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Figure 1: Left: schematics of generative replay. A scholar composed of generator and solver is
trained at every task. The solver performs the task, e.g., classification, whereas the generator serves
as a memory for samples from previous tasks Ti′ , i′ < i. Please note that the amount of generated
data usually far exceeds the amount of new data. Right: schematics of adiabatic replay, red indicates
differences to generative replay. At every task, new data is used to query the generator, therefore
generated data are produced in constant proportion. Furthermore, the generator additionally serves
a feature generator for the solver, thus saving computational resources.

mitigate catastrophic forgetting (CF) in this scenario are replay strategies van de Ven et al. (2020).
Replay aims at preventing CF by using samples from previous tasks to augment the current one.
On the one hand, there are ”true” replay methods which use a small number of stored samples for
augmentation. On the other hand, there are pseudo-replay methods, where the samples to augment
the current task are produced in unlimited number by a generator, which removes the need to store
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samples. A schematics of the training process in generative replay is given in Fig. 1. Replay, in
its original formulation, proposes a principled approach to CL, but it nevertheless presents several
challenges: First of all, if DNNs are employed as solvers and generators, then all classes must be
represented in equal proportion at every task in order to have any kind of performance guarantees.
Thus, for example, in the simple case of a single new class (D samples) per task, the generator
must produce (s − 1)D samples at task Ts in order to always train with D samples per class. This
unbounded linear growth of to-be-replayed samples, and therefore of training time, as a function of
the number of previous tasks s, poses enormous problems for long-term CL. For instance, even very
small additions to a large body of existing knowledge (a common use-case) require a large amount
of samples to be replayed, see, e.g., Dzemidovich & Gepperth (2022). Since replay is always a lossy
process, this imposes severe limits on GR-based CL performance.

1.1 APPROACH: AR

Adiabatic replay (AR) prevents an ever-growing number of replayed samples by applying two main
strategies: selective replay and selective updating, see Fig. 1. Selective replay means that new data
are used to query the generator for similar (potentially conflicting) samples. For achieving selective
replay, we rely on Gaussian Mixture Models (GMMs) trained by SGD as introduced in Gepperth &
Pfülb (2021a). GMMs have limited modeling capacity, but are sufficient here since we are working
with pre-trained feature extractors.

AR is partly inspired by maximally interfered retrieval (MIR), proposed in Aljundi et al. (2019b)
where a fixed replay budget (either for experience replay or generative replay) is composed of the
most conflicted samples, those that would be unlearned most rapidly when training on a new task.
In a similar vein, McClelland et al. (2020) hypothesize that just replaying samples that are similar
to new ones could be sufficient to avoid forgetting. Another inspiration comes from Klasson et al.
(2023), where it is shown that replaying the right data at the right moment is preferable to replaying
everything.

Adiabatic replay is most efficient when each task t, with data x⃗ ∼ p(t), adds only a small amount of
new knowledge. AR models the joint distribution of past tasks as a mixture model with K compo-
nents, p(1...t)(x⃗) =

∑
k πkN (x⃗; µ⃗k,Σk), thus we can formalize this assumption as a requirement

that only a few components in p(1...t) are activated by new data: |{argmaxk πkN (x⃗i; µ⃗k,Σk)∀x⃗i ∼
p(t)}| << K. If this assumption is violated, AR will still work but more components will need to
be updated, requiring more samples. It was demonstrated in Gepperth & Pfülb (2021a) that GMMs
have an intrinsic capacity for selective updating when re-trained with new data. Concretely, only the
components that are similar to, and thus potentially in conflict with, incoming data are adapted. In
contrast, dissimilar components are not adapted, and are thus protected against CF.

1.2 CONTRIBUTIONS

Selective replay: Previous knowledge is not replayed indiscriminately, but only where significant
overlap with new data exists.

Selective updating: Previous knowledge is only modified by new data where an overlap exists.

Near-Constant time complexity: Assuming that each task adds only a small fraction to accumu-
lated knowledge (adiabatic assumption), the number of generated/replayed samples can be small as
well, and in particular does not grow with the number of tasks.

Integration of pre-trained feature extractors: To process visual problems of higher complexity
(SVHN, CIFAR), we incorporate recent advances in latent replay into AR, where we do not replay
raw samples but higher-level representations generated by a frozen feature extractor network.

1.3 RELATED WORK

In recent years, diverging strategies were presented to mitigate CF in CL scenarios, please refer
to De Lange et al. (2021); Masana et al. (2022); Hadsell et al. (2020); Lesort et al. (2020) for an
overview. Broad strategies include regularization, parameter isolation and rehearsal. In this article,
we focus on rehearsal-type CL, and in particular on deep generative replay (DGR).
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Rehearsal/Replay This branch of CL solutions relies on the storage of previously encountered data
instances. In its purest form, past data is held inside a buffer and mixed with data from the cur-
rent task to avoid CF, as shown in Gepperth & Karaoguz (2016); Rebuffi et al. (2017); Rolnick
et al. (2019); De Lange & Tuytelaars (2021). This has drawbacks in practice, since it breaks the
constraints for task-incremental learning Van de Ven & Tolias (2019), has privacy concerns, and
requires significant memory. Partial replay, e.g. Aljundi et al. (2019a), and constraint-based opti-
mization Lopez-Paz & Ranzato (2017); Chaudhry et al. (2018; 2019); Aljundi et al. (2019c), focus
on selecting a subset from previously seen samples, but it appears that the selection of a sufficient
subset is still challenging Prabhu et al. (2020). Comprehensive overviews about current advances in
replay can be found in Hayes et al. (2021); Bagus & Gepperth (2021).

Deep Generative Replay Here, (deep) generative models like GANs Goodfellow et al. (2014) and
VAEs Kingma & Welling (2013) are used for memory consolidation by replaying samples from pre-
vious tasks, see Fig. 1 and Shin et al. (2017). The recent growing interest in GR brought up a variety
of architectures, either being VAE-based Kamra et al. (2017); Lavda et al. (2018); Ramapuram et al.
(2020); Ye & Bors (2020); Caselles-Dupré et al. (2021) or GAN-based Ostapenko et al. (2019);
Wang et al. (2021); Atkinson et al. (2021). Notably, the MerGAN model Wu et al. (2018) uses an
LwF-type knowledge distillation technique to prevent forgetting in generators, which is more effi-
cient than pure replay. Furthermore, PASS Zhu et al. (2021) uses self-supervised learning by sample
augmentation in conjunction with slim class-based prototype storage for improving the performance
replay-based CL. An increasingly employed technique in this respect is latent replay which oper-
ates on and replays latent features generated by a frozen encoder network, see, e.g., van de Ven
et al. (2020); Pellegrini et al. (2020); Kong et al. (2023). Built on this idea are models like RE-
MIND Hayes et al. (2020), which extends latent replay by the aspect of compression, or SIESTA
Harun et al. (2023) which improves computational efficiency by alternating wake and sleep phases
in which different parts of the architecture are adapted.

MIR Conceptually, this is similar to the concept of selective replay, although a key difference is that
our GMM generator/solver is capable of selective updating as well. We will use MIR as one of the
baselines for our experiments.

2 METHODS
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Figure 2: Left: The proposed AR approach, illustrated in an exemplary MNIST setting. The scholar
(GMM) has been trained on MNIST classes 0, 4 and 6 in task T1. At task T2, new data (class 9) is
used to query the scholar for similar samples, resulting in the selective replay of mostly 4’s but no 0’s.
The scholar is re-trained from its current state, so no data concerning class 0 is required. Re-training
results in the insertion of 9’s into the existing components. This mechanism works identically for
higher-level features produced by a pre-trained feature extractor. Right: enlarged GMM prototypes,
query samples and variant generation results.

The main techniques used in the experiments of this article are adiabatic replay (AR), experience
replay (ER), deep generative replay (DGR) and pre-trained feature extractors. We refer to the ap-
pendix for details on the experimental settings concerning ER (Appendix D), DGR (Appendix C)
and the encoding of data by pre-trained models (Appendix A), whereas we will discuss the details
of AR in this section.
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2.1 ADIABATIC REPLAY (AR)

In contrast to conventional replay, where a scholar is composed of a generator and a solver network,
see Fig. 1, AR proposes scholars where a single network acts as a generator as well as a feature
generator for the solver. Assuming a suitable scholar (see below), the high-level logic of AR is
shown in Fig. 2: Each sample from a new task is used to query the scholar, which generates a
similar, known sample. Mixing new and generated samples in a defined, constant proportion creates
the training data for the current task (see Algorithm 1 for pseudocode). A new sample will cause
adaptation of the scholar in a localized region of data space. Variants generated by that sample
will, due to similarity, cause adaptation in the same region. Knowledge in the overlap region will
therefore be adapted to represent both, while dissimilar regions stay unaffected (see Fig. 2 for a
visual impression).

None of these requirements are fulfilled by DNNs, which is why we implement the scholar by a ”flat”
GMM layer (generator/feature encoder) followed by a linear classifier (solver). Both are indepen-
dently trained via SGD according to Gepperth & Pfülb (2021a). Extensions to deep convolutional
GMMs (DCGMMs) Gepperth (2022) for higher sampling capacity can be incorporated as drop-in
replacements for the generator.

Data: AR scholar/gen. Φ, AR solver Θ, real data X t, Y t

for t ∈ 2...T do
for BN ∼ Xt do

// Propagate batch BN though Φ.
σBN ← Φ(BN );
// Query batch of variants from Φ.
BG ← V argen(Φ, σBN ) ;
// Add gen. samples to X t

G.
X t

G ← UpdateData(BG)
end
for BM ∼ (X t ∪ X t

G) do
// Update Φ and Θ
Φ← SGD(BM );
Θ← SGD(Φ(BM ), Yt);

end
end

Algorithm 1: Adiabatic Replay

Selective updating is an intrinsic property of GMMs. They describe data distributions by a set
of K components, consisting of component weights πk, centroids µk and covariance matrices Σk.
A data sample x is assigned a probability p(x) =

∑
k πkN (x;µk,Σk) as a weighted sum of

normal distributions N (x;µk,Σk). Training of GMMs is performed as detailed in Gepperth &
Pfülb (2021a) by adapting centroids, covariance matrices and component weights through the SGD-
based minimization of the negative log-likelihood L =

∑
n log

∑
k πkN (xn;µk,Σk). As shown

in Gepperth & Pfülb (2021a), this expression is strongly dominated by a single GMM component
k∗, and can be approximated as − log(πk∗N (x;µk∗ ,Σk∗)). This implies that the best-matching
GMM component k∗ is the only component that selectively adapted.

Selective replay is a form of sampling from the probability density represented by a trained GMM,
see Gepperth & Pfülb (2021b). It is triggered by a query in the form of a data sample xn, which is
converted into a control signal T defined by the posterior probabilities (or responsibilities):

γk(xn) =
πkN (xn;µk,Σk)∑
j πjN (xn;µj ,Σj)

. (1)

For selective replay, these responsibilities parameterize a multinomial distribution for drawing a
GMM component k∗ to sample from, instead of the component weights πK as usually done in
GMM sampling. To reduce noise, top-S sampling is introduced, where only the S = 3 highest
values of the responsibilities are used for selection.
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Solver functions are performed by feeding GMM responsibilities into a linear regression layer as
o(xn) = Wγ(xn). We use a MSE loss and drop the bias term to reduce the sensitivity to unbal-
anced classes.

GMM training uses the procedure described in Gepperth & Pfülb (2021a) including the recom-
mended values for learning rate and regularization. Details of the training procedure and the general
AR architecture are given in Appendix B.

3 EXPERIMENTS

3.1 EVALUATION DATA AND FEATURE ENCODING

MNIST LeCun et al. (1998) consists of 60.000 28× 28 grayscale images of handwritten digits (0-9).

Fashion-MNIST Xiao et al. (2017) consists of 60.000 images of clothes in 10 categories and is
structured like MNIST.

E-MNIST Cohen et al. (2017) is structured like MNIST and extends it by letters. We use the
balanced split which contains 131.000 samples in 47 classes.

Fruits-360 Mures, an & Oltean (2018) contains 100x100 images showing different types of fruits,
from which we chose the 10 best-represented classes and downsample to 32x32 RGB.

SVHN Netzer et al. (2011) contains 60.000 RGB images of house numbers (0-9, resolution 32× 32).

CIFAR-10 Krizhevsky et al. (2009) contains 60.000 RGB images of natural objects, resolution
32x32, in 10 balanced classes.

We construct the following CIL problems by splitting the datasets as follows: D5-15A (6 tasks,
0-4,5,6,7,8,9), D5-15B (6 tasks, 5-9,0,1,2,3,4), D7-13A (4 tasks, 0-6,7,8,9), D7-15B (4 tasks, 3-
9,0,1,2), D20-15A (6 tasks, 0-19,20,21,22,23,24, EMNIST only) and D2-25 (5 tasks, 0-1,2-3,4-5,6-
7,8-9).

D20-15A for EMNIST represents a CL problem where the amount of already acquired knowledge
is significantly larger than the amount of new data added with each successive task.

No feature encoding is performed for MNIST, Fashion-MNIST, E-MNIST and Fruits-360 due to
their inherent simplicity. The encoding of SVHN and CIFAR is described in Appendix A.

3.2 EVALUATION MEASURES

Similar to Kemker et al. (2018); Mundt et al. (2021), we provide the final (averaged) accuracy
αT , evaluating a scholar ST on a test set TALL after full training on each sub task T for any given
class-incremental learning problem (CIL-P) listed in Sec. 3.1. The values are normalized to a range
of α ∈ [0, 1]. The test set contains previously unseen data samples from all encountered classes. In
addition, we also showcase a baseline measure αbase, highlighting the performance of each scholar
in a non-continual setting, learning all classes jointly.

Furthermore, we demonstrate a forgetting measure F j
i , defined for task i after training S on

j. This shall reflect the loss of knowledge about previous task i and highlights the degradation
compared to the peak performance of S on exactly that task:

F j
i = max

i∈{1,..,t−1}
αi,j − αt,j ∀j < t. (2)

Average forgetting is then defined as: FT = 1
t−1

∑t−1
j=1 F

t
j Ft ∈ [0, 1].

3.3 EXPERIMENTAL SETTING

All experiments are run on a cluster of 30 machines equipped with single RTX3070Ti GPUs. Replay
is investigated in a supervised CIL-scenario, assuming known task-boundaries and disjoint classes.
All of the following details apply to all investigated CL algorithms, namely MIR, MerGAN, AR,
ER and DGR with VAEs.
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The CIL problems used for all experiments are described in Sec. 3.1. Training consists of an (initial)
run on T1, followed by a sequence of independent (replay) runs on Ti, i > 1. We perform ten
randomly initialized runs for each CIL-Problem, and conduct baseline experiments for all datasets to
measure the offline joint-class training performance. We set the training mini-batch size to β = 100
(β = 50 for the Fruits dataset).

For AR, selective replay of Di samples is performed before training on task Ti, i > 1 using the
current scholar Si−1, where Di represents the amount of training samples contained in Ti. For
DGR, replay of Di samples is likewise performed before training on task Ti. This replay strategy
keeps the amount of generated samples constant w.r.t the number of tasks, and thus comes with
modest temporary storage requirements instead of growing linearly with an increasing amount of
incoming tasks.

When replaying, mini-batches of β samples are randomly drawn, in equal proportions, from the real
samples from task Ti and the generated/retained samples representing previous tasks. It is worth
noting that classes will, in general, not be balanced in the merged generated/real data at Ti, and that
it is not required to store the statistics of previously encountered class instances/labels.

3.4 SELECTIVE REPLAY FUNCTIONALITY

First, we demonstrate the ability of a trained GMM to query its internal representation through
data samples and selectively generate artificial data that ”best match” those defining the query. To
illustrate this, we train a GMM layer of K = 25 components on MNIST classes 0, 4 and 6 for 50
epochs using the best-practice rules described in Appendix B. Then, we query the trained GMM
with samples from class 9 uniquely, as described in Sec. 2. The resulting samples are all from class
4, since it is the class that is ”most similar” to the query class. These results are visualized in Fig. 2.
Variant generation results for deep convolutional extensions of GMMs can be found in Gepperth
(2022), emphasizing that the AR approach can be scaled to more complex problems.

3.5 COMPARISON: AR, ER, MIR,DGR-MERGAN AND DGR-VAE

In this main experiment, we evaluate the CL performance of AR w.r.t. measures given in Sec. 3.2,
and compare its performance to MIR (see Appendix E), DGR-MerGAN (see Appendix F, DGR-
VAE (see Appendix C and ER (see Appendix D, since these represent principled approaches to
replay-based CL. Results for AR, Er and DGR-VAE are tabulated in Tab. 1. Results for MIR and
DGR-MerGAN are given in Tab. 4.

Baseline and initial task performance We observe superior joint training (i.e., non-CL) test accu-
racy αbase for DGR and ER on all datasets except Fruits where the results are identical, see Tab. 1
(bottom part). This is especially clear for experiments where the scholar is confronted with ”raw”
input data. A possible reasoning behind this is, that DGR and ER benefit from their internal CNN
structure which is inherently capable of efficiently capturing the distribution of high-dimensional
image data and becomes less prone to invariance. On the other hand, AR relies on a considerably
less complex structure in its current state. Furthermore, it should be noted that DGR and ER use
significantly more trainable parameters, especially when operating on raw input. For DGR, the ratio
is 3.7 when applied to RGB data and 4.125 when applied to latent features. For ER, the ratio is 4.7
for RGB and 0.375 for latent features. The ability to perform well in joint-class training may also
directly translate to a better starting point for CL with DGR and ER due to the initial task T1 being
constituted from a large body of classes in this experimental evaluation. For this reason we find the
Fruits-360 dataset to be a valuable benchmark, since it is high-dimensional yet simple enough to be
solved to high accuracy by AR in the baseline condition. Therefore, comparisons of CL performance
are not biased by any initial difference in classification accuracy. For SVHN and CIFAR, we observe
a similar situation with only minor differences to Fruits-360, as the encoded feature representations
inherently have a higher degree of linear separability.

Constant-time replay is problematic for DGR We observe that DGR, regardless of what generator
is used, performs poorly, see Tab. 1. It appears that, DGR suffers from catastrophic forgetting for
all datasets under investigation. However, forgetting worsens as the number of tasks increases. This
is confirmed by experiments with different task sequence lengths (D5-15, D7-15, D20-15). To a
lesser extent, this is also observed for ER on e.g. FMNIST, E-MNIST. In contrast, AR is specifically
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CIL-P D7-15A D7-15B
measure αT FT αT FT

method AR ER DGR AR ER DGR AR ER DGR AR ER DGR
scenario b. c. w. b. c. w. b. c. w. b. c. w. b. c. w. b. c. w. b. c. w. b. c. w.

D
S

MNIST .81 .90 .93 .96 .75 .93 .06 .13 .08 .02 .16 .03 .87 .92 .95 .97 .82 .97 .01 .05 .03 .02 .08 .02
F-MNIST .75 .79 .78 .79 .69 .75 .06 .16 .16 .08 .16 .07 .73 .71 .72 .72 .66 .76 .05 .23 .25 .17 .08 .16
FRUITS .93 .98 .98 .94 .50 .82 .01 .02 .01 .02 .40 .06 .88 .98 .96 .88 .58 .94 .15 .02 .03 .09 .23 .05
SVHN .92 .73 .78 .31 .33 .34 .01 .16 .11 .39 .39 .37 .93 .81 .81 .23 .25 .28 .01 .18 .14 .45 .46 .45
CIFAR-10 .72 .60 .60 .27 .25 .28 .03 .19 .14 .30 .29 .28 .70 .62 .62 .30 .32 .31 .08 .22 .25 .39 .29 .38

... D5-15A D5-15B
MNIST .70 .75 .93 .93 .63 .83 .07 .15 .12 .05 .25 .08 .80 .89 .95 .96 .70 .95 .02 .10 .07 .04 .15 .06
F-MNIST .70 .75 .75 .78 .63 .68 .16 .31 .27 .28 .71 .27 .71 .71 .70 .61 .56 .63 .17 .36 .38 .37 .42 .33
FRUITS .93 .99 .99 .92 .40 .48 .11 .03 .05 .09 .22 .20 .82 .99 .98 .92 .44 .81 .13 .01 .02 .07 .21 .19
SVHN .92 .69 .73 .29 .32 .38 .09 .19 .21 .85 .79 .78 .92 .76 .77 .34 .37 .43 .02 .22 .25 .83 .82 .82
CIFAR-10 .73 .59 .57 .30 .29 .31 .04 .24 .19 .67 .63 .61 .71 .63 .62 .31 .29 .32 .16 .39 .43 .78 .79 .77

... D2-25A D2-25B
MNIST .83 .88 .88 .94 / .87 .03 .12 .15 .05 / .09 .73 .96 .96 .97 / .97 .02 .14 .10 .06 / .08
F-MNIST .67 .64 .64 .65 / .57 .23 .67 .61 .56 / .51 .69 .81 .81 .80 / .82 .21 .31 .32 .23 / .18
FRUITS .68 .81 .97 .85 / .71 .05 .25 .05 .14 / .23 .87 .95 .96 .93 / .96 .03 .06 .02 .10 / .09
SVHN .92 .64 .65 .20 .23 .25 .01 .25 .27 .88 .91 .88 .92 .89 .89 .63 .61 .62 .04 .29 .32 .91 .93 .92
CIFAR-10 .67 .53 .51 .09 .11 .14 .20 .42 .35 .79 .75 .71 .68 .74 .74 .54 .54 .57 .15 .38 .39 .86 .84 .83

... D20-15A D20-15B
E-MNIST .61 .73 .66 .65 .25 .47 .03 .25 .28 .21 .35 .13 .59 .75 .80 .77 .24 .75 .05 .23 .22 .16 .29 .10

DS MNIST F-MNIST E-MNIST FRUITS SVHN CIFAR-10

m
et

ho
d AR .92 .78 .67 .99 .93 .74

DGR / ER .98 .89 .73 .99 .94 .76

Table 1: Main experimental results. The main table displays the results of all investigated methods
(AR, DGR and ER) for each class-incremental learning problem (CIL-P) under each imposed sce-
nario (b. = balanced, c. = constant-time, w. = weighted sample loss). We present the final test-set
accuracy αT and an average forgetting measure FT for each CIL-P. The relevant baselines αbase

(joint-training) are showcased in the bottom table. All results are averaged across N = 10 runs.
Detailed information about the evaluation process and experimental setup can be found in Sec. 3.2.

designed to work well when the amount of generated samples is kept constant for each task in an
ever-increasing number of tasks. Figure 3 shows the development of generated sample counts over
time for AR and DGR-VAE in a balanced scenario, respectively.

Figure 3: The amount of samples that would be generated per task for the E-MNIST D20-15 problem
by DGR if class balancing were to be achieved, and a comparison to samples generated by AR.

ER –vs– AR Generally, ER shows good results on all datasets and often outperforms AR when
operating on raw inputs (MNIST, FMNIST, Fruits-360 and E-MNIST datasets), although the differ-
ences are not striking, and the performance of DGR is significantly inferior still. Besides the strong
differences in model complexity, a comparison between ER and AR is biased in favor of ER since
AR does not get to see any real samples from past tasks. Rather, ER serves as a baseline of what can
be reasonably expected from AR, and we observe that this baseline is generally quite well egalized.
On the other hand, ER has the disadvantage that training time and memory usage grow slowly but
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linearly with each added task, which is a unrealistic premise in practice. A fixed memory budget
mitigates this problem, but has the negative effect that samples from long-ago sub-tasks will be lost
over time, which will render ER ineffective if the number of tasks is large.

AR –vs– MIR MIr and AR share the concept of selective replay, and they both operate in a constant-
time scenario although MIR has to weight generated and new samples differently in the loss. We see
in general similar performance, although we must stress that MIR is highly sensitive to parameters
like the weights of different terms in the loss, which must be set by cross-validation and are thus
strictly speaking not compatible with CL.

Latent replay/latent AR For latent replay (SVHN, CIFAR), the results in the upper part of Tab. 1
show that DGR universally suffers from catastrophic forgetting although having the same baseline
performance αbase as latent ER and AR. Forgetting for AR seems to only be significant for CIFAR:
D5-15B after task T5, due to a high overlap with classes from initial task T1. Moreover, it is surpris-
ing to see that latent AR is able to achieve generally better results than latent ER. It could be argued
that the budget per class for a more complex dataset like SVHN and CIFAR-10 is rather small, and
it can be assumed that increasing the budget would increase CL performance. However, we reiterate
that this is not trivially applicable in scenarios with a constrained memory budget.

CF and selective replay AR shows promising results in terms of knowledge retention and prevent-
ing CF for sequentially learned classes, as reflected by generally lower average forgetting scores.
In virtually all of the experiments conducted we observed a very moderate loss of knowledge about
the first task T1 after full training, suggesting that AR’s ability to handle small incremental addi-
tions/updates to the internal knowledge base over a sequence of tasks is an intrinsic property, due to
the selective replay mechanism. Moreover, AR demonstrates its intrinsic ability to limit unnecessary
overwrites of past knowledge by performing efficient selective updates, instead of having to replay
the entire accumulated knowledge each time a task is added.

Selective updates As performed by AR training, are mainly characterized by matching GMM com-
ponents with arriving input. Therefore, performance on previous tasks generally decreases only
slightly by the adaptation of selected/similar units, as shown by the low forgetting rates for almost all
CIL-P studied in Tab. 1. This implies that the GMM tends to converge towards a trade-off between
past knowledge and new data. This effect is most notable when there is successive (replay-)training
for two classes with high similarity in the input space, such as with, F-MNIST: D5-15A, where task
T2 (class: ”sandals”) and task T4 (class: ”sneakers”) compete for internal capacity.

4 DISCUSSION

In summary, we can state that our AR approach clearly surpasses VAE-based DGR in the evaluated
CIL-P when constraining replay to a constant-time strategy. This is remarkable because the AR
scholar performs the tasks of both solver and generator, while at the same time having less parame-
ters. The advantage of AR becomes even more pronounced when considering forgetting prevention
instead of simply looking at the classification accuracy results. We may therefore conclude that AR
offers a principled approach to truly long-term CL. In the following text, we will discuss salient
points concerning our evaluation methodology and the conclusions we draw from the results:

Data Some datasets are not considered meaningful benchmarks in non-continual ML due to their
simplicity. Still, many CL studies rely on these two datasets, which is why they are included for
comparison purposes. SVHN and CIFAR-10 in particular are considered challenging for generative
replay methods, see Aljundi et al. (2019b). E-MNIST represents a simple classification benchmark
that is quite hard for CL due to the large number of classes and is well-suited to the targeted AR
scenario where each task adds only a small fraction of knowledge. Finally, the Fruits-360 dataset,
besides being more complex and more high-dimensional, provides a fairer comparison since it can
be solved to equal accuracy by all considered methods in the baseline condition. Any differences
are thus intrinsically due to CL performance.

Pre-trained feature extractors The use of pre-trained models is appealing in CL, since a lot of com-
plexity can be ”outsourced” to these models. As shown in Ostapenko et al. (2022), the effectiveness
of feature extraction from a frozen pre-trained model relies on the relation between downstream and
upstream tasks. There seems to be excellent agreement between the often-used combination of CI-
FAR and ImageNet, but does not extend to, e.g., the SVHN and Fruits datasets without fine-tuning.
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Thus, we chose separate pre-trained models for each dataset that were optimized in a supervised
fashion (SupCon) on similar but not identical data, following van de Ven et al. (2020). In contrast,
self-supervised contrastive learning alleviates the need of a large labeled pre-training dataset but re-
lies on the usage of large mini-batch sizes, as well as complex data augmentation pipelines Dwibedi
et al. (2021); Chen et al. (2020a); Caron et al. (2020). We decided against such methods as they only
show competitive results when combined with supervised fine-tuning on labeled data Chen et al.
(2020b), or significantly increasing the total amount of classes seen in pre-training Gallardo et al.
(2021).

Time complexity of default CL methods Regularization-based approaches like EWC have lin-
ear time complexity w.r.t. tasks, since each task adds another term to the loss function. The dis-
tillation terms in LwF ensure linear time complexity as well. Vanilla experience replay has an
implementation-dependent linear time complexity since the amount of replayed samples depends on
the number of previous tasks. By construction, GEM and A-GEM have linear time complexity since
constraints must be computed using retained samples from all previous tasks.

Issues with constant-time replay Instead of achieving balance between new and recalled/generated
samples by a linear increase of the latter, many recently proposed replay approaches use only a fixed
number S of generated or recalled samples per task. Balance is realized by a higher weight of past
samples in the loss Aljundi et al. (2019b). There are several issues with this: First of all, for a
large number of tasks, each task will be less and less represented in S samples, making eventual
forgetting inevitable, while weights for past samples grow higher and higher. Then, giving past
samples a higher weight effectively increases the learning rate for these samples, which can break
SGD if the weights are too high. Alternatively, the weight for the current samples can be reduced
from its baseline value in some works van de Ven et al. (2020), ultimately leading to low learning
rates and thus long training times. And lastly, the precise weights are generally set post-hoc via
cross-validation Aljundi et al. (2019b); Wu et al. (2018), which is inadmissible for CL because it
amounts to knowing all tasks beforehand. AR can use constant-time replay without weighting past
samples due to selective updating and selective replay. We verified as well that AR, when used in a
balanced scenario that linearly increases the number of samples, shows no meaningful performance
differences to the constant-time case.

Violation of AR assumptions The assumption that new tasks only add a small contribution is not
a hard requirement, just a prerequisite for sample efficiency. Based on the formalization presented
in Sec. 1, its validity is trivial to verify by examining component activations of the GMM generator
when faced with new data. Although we do not implement such a control strategy here, AR would
simply need to replay more samples if contributions should be large. However, the chances of this
happening in practice are virtually zero if the body of existing knowledge is sufficiently large.

Initial annealing radius tuning AR contains a few technical details that require tuning, like the
initial annealing radius parameter r0 when re-training with new task data. We used a single value
for all experiments, but performance is sensitive to this choice, since it represents a trade-off between
new data acquisition and knowledge retention. Therefore, we intend to develop an automated control
strategy for this parameter to facilitate experimentation.

5 CONCLUSION

We firmly believe that continual learning (CL) holds the potential to spark a new machine learning
revolution, since it allows, if it could be made to work in large-scale settings on real-world data,
the training of models over very long times, and thus with enormous amounts of data. To achieve
this important milestone, CL research must, to our mind, imperatively focus on aspects of long-
term feasibility, such as also targeted in domains like life-long learning. A related aspect is energy
efficiency: in order to be accepted and used in practice, training by CL must be comparable to joint
training in terms of training time (and therefore energy consumption). Only in this case can the
considerable advantages of CL be made to have beneficial effects in applications. In this study, we
show a proof-of-concept for CL that makes a step in this direction. Namely, AR operates at a time
complexity that is independent of the amount of previously acquired knowledge, which is something
we also observe in humans. The overall time complexity is thus comparable to joint training. Further
work will focus on the optimization of AR w.r.t. efficiency and ease of use, and the question of how
to train the feature extractors in a continual fashion as well.
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5.1 REPRODUCIBILITY

We will provide a publicly available TensorFlow 2 implementation which will be made publicly
available for the camera-ready version. This repository will contain step-by-step instructions to
conduct the experiments described in this article. Additional details about experimental procedures
and used parameter settings are given in the various sections of the appendix (after the references)
which are referenced in the text.
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A USE OF PRE-TRAINED FEATURE EXTRACTORS

Encoding features using pre-trained networks that transform raw-data into a higher-level and invari-
ant representation to operate on, have shown to be beneficial for CL van de Ven et al. (2020); Hayes
et al. (2020); Pellegrini et al. (2020). A current promising direction of pre-training such models
is contrastive learning, which is performed in a supervised Khosla et al. (2020) (SupCon) or self-
supervised fashion Caron et al. (2020); Chen et al. (2020a); Dwibedi et al. (2021) (SSCL). In this
study, we rely on SupCon to build a robust feature extractor for more complex datasets (SVHN,
CIFAR).

Here, we take a portion of the data from the target domain for pre-training, but exclude these in-
stances from further usage in downstream CL tasks. For SVHN, we pull an amount equal to 0.5
of the total training samples from the ”extra” split. For CIFAR10 we split the training set in half
and use one for pre-training and the other for encoding and later usage in downstream CL. The data
used to pre-train the feature extractor are thus similar but not identical to subsequent training data,
following the approach of van de Ven et al. (2020).

An additional data augmentation module normalizes the input, performs random horizontal flipping
and rotation in the range of −2% ∗ 2π −+2% ∗ 2π for each input image. The encoder backbone is
a ResNet-50 with randomly initialized weights and is trained for 256 epochs using a batch size of
β = 256. No further fine-tuning is performed after pre-training. We use the normalized activations
of the final pooling layer (D = 2048) as the representation vector.

For supervised training, a projection head is attached, consisting of two hidden layers, having a total
of 2048 and 128 projection units, followed by ReLU activation. The multi-class npairs loss Sohn
(2016) uses a temperature of 0.05 and is optimized via ADAM with a learning rate of ϵ = 0.001,
β1 = 0.9 and β2 = 0.999.

After pre-training we push the complete training data through the encoder network and save the
output to disk for later usage. However, it would be perfectly legitimate to use the model on-the-fly
to encode the data mini-batch wise, though this comes at the cost of a worse runtime efficiency.

B AR TRAINING

AR employs a GMM scholar L(G) with K = 225 (MNIST, FMNIST, E-MNIST, Fruits) and K =
400 (SVHN, CIFAR) components and diagonal covariance matrices. The choice of K is subject to
a ”the more the better” principle, and is limited only by available GPU memory.

GMM generator training follows the procedures and best-practice settings presented and justified in
Gepperth & Pfülb (2021a). Training is terminated via early stopping when L(G) reaches a plateau
of stationary loss for the current task Ti. We set the training epochs to 512 as an upper bound. Both,
L(G) and the classification head are independently optimized via vanilla SGD using a fixed learning
rate of ϵ = 0.05. The relative strengths of component weight and covariance matrix adaptation are
set to 0.1.

Annealing controls the GMM component adaptation radius for L(G) via parameter r0. It is set to
rinit0 =

√
0.125K for the first (initial) training on T1, and rreplay0 = 0.1 for subsequent (replay)

tasks Ti, i > 1. GMM sampling parameters S = 3 (top-S) and ρ = 1.0 (normalization) are kept
fixed throughout all experiments.

Other AR hyperparameters are retained to the values showcased in Gepperth & Pfülb (2021a) for all
experiments, since their choice is independent of any particular CL problem at hand.
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Component Layer ...

Encoder C2D(32,5,2)-ReLU Decoder Dense(100)-ReLU Solver Flatten
C2D(64,5,2)-ReLU Dense((H/4)*(W/4)*64)-ReLU Dense(400)-ReLU

Flatten Reshape((H/4),(W/4),64)-ReLU Dense(400)-ReLU
Dense(100)-ReLU C2DTr(32,5,2)-ReLU Dense(400)-ReLU
Dense(25)-ReLU C2DTr(C,5,2)-Sig. Dense(10)-Softmax

Dense(50)
...

LR-Encoder Flatten LR-Decoder Dense(100)-ReLU LR-Solver Flatten
Dense(1024)-ReLU Dense(1024)-ReLU Dense(1024)-ReLU
Dense(100)-ReLU Dense(2048)-ReLU Dense(100)-ReLU
Dense(25)-ReLU Reshape(N,H,W,C) Dense(10)-Softmax

Dense(50)

Table 2: DNN architectures for VAE-based replay. A VAE generator consists of a mirrored encoder-
decoder network. Components from the first row are utilized for MNIST, FMNIST, E-MNIST and
Fruits-360. Second row components are deployed for latent replay on SVHN and CIFAR.

ER-Solver Layers

C2D(32,5,1)-ReLU → MP2D(2)
C2D(64,5,1)-ReLU → MP2D(2)
Flatten → Dense(100)-ReLU → Dense(10)-Softmax

Table 3: DNN architecture for the ER solver used for the MNIST, FashionMNIST, E-MNIST and
Fruits-360 datasets. For latent replay, the LR solver network shown in Tab. 2 (bottom-right) is used.

C DEEP GENERATIVE REPLAY TRAINING

We implement deep generative replay (DGR) using VAEs as generators. The network structure of
the generator and solver is given in Tab. 2. We choose VAEs over GANs or WGANs due to the
experiments conducted in Dzemidovich & Gepperth (2022), which suggest that GANs require ex-
tensive structural tuning, which is by definition excluded in a CL scenario for all tasks but the first.
Similarly, GANs and VAEs were both used in CL research, e.g., in Lesort et al. (2019) with com-
parable performance. The VAE latent dimension is 25, the disentangling factor β = 1.0, and con-
ditional sampling is turned off for MNIST, F-MNIST, E-MNIST and Fruits-360 datasets, whereas
it is turned on for SVHN and CIFAR to enforce that the generator naturally produces samples from
previously seen classes in equal proportions. For these datasets, we also operate on latent features
and use fully-connected DNNs as encoder and decoder, see Tab. 2. The learning rate for VAE gen-
erators and solvers are set to ϵG = 10−4, ϵS = 10−3 using the ADAM optimizer with β1 = 0.9,
β2 = 0.999. Generators and solvers are trained for 100 epochs each. We reinitialize the solver
network for SVHN and CIFAR before each new task, as this has shown a stabilizing effect in our
empirical studies. For MNIST, FashionMNIST, E-MNIST and Fruits-360, the same structures are
maintained throughout the replay training.

D EXPERIENCE REPLAY TRAINING

The solvers for ER are shown in Tab. 3. The ADAM optimizer is used with a learning rate of 10−4,
β1 = 0.9, β2 = 0.999, and the network is trained for 50 epochs on each task. Analogous to the
procedure for DGR, we use replay on latent feature representations, see e.g., Pellegrini et al. (2020)
encoded by a pre-trained feature extractor as described in Appendix A for SVHN and CIFAR.

Similar to Riemer et al. (2018), reservoir sampling is used to select 50 samples of each encountered
class to be stored. For replay, oversampling of the buffer is performed to obtain a number of samples,
equal to the amount of data instances present in the current task Ti.

Thus, we choose an ER implementation that has constant time complexity, although the number of
distinct samples per task will decrease over time. At some point, CL will break down because there
are too few distinct samples per task to protect previously acquired knowledge.
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E MIR TRAINING

We use Gen-MIR with the parameter settings for the SplitMNIST problem as described in Aljundi
et al. (2019b). In order to have a fair comparison w.r.t. AR, we set the ratio of new to generated
samples (n mem) to 1, and the samples per task to 5500. For performing the experiments, we
adapted the software provided by the authors to work with different MNIST splits, as well as the
other datasets.

F DGR-MERGAN TRAINING

Our DGR-MerGAN implementation is analogous to our DGR-VAE implementation, with the excep-
tion that the generator is implemented by MerGAN instances Wu et al. (2018). For the generators,
we used the network topology and the experimental settings from Wu et al. (2018). For every train-
ing mini-batch, we create a ”noise” mini-batch of the same size and use it for generating samples
for the discriminator and the distillation loss term. The solver is trained exactly as for DGR-VAE,
see Appendix C.

G ADDITIONAL BASELINE RESULTS

Here, we present the experimental results for MIR and DGR-MerGAN which were hard to integrate
into the main article.

CIL-P D7-15A D7-15B
measure αT FT αT FT

method AR MIR MerGAN AR MIR MerGAN AR MIR MerGAN AR MIR MerGAN
scenario b. c. w. b. c. w. b. c. w. b. c. w. b. c. w. b. c. w. b. c. w. b. c. w.

D
S

MNIST .81 / .84 / / .89 .06 / .05 / / .03 .87 / .88 / / .95 .01 / .03 / / .11
F-MNIST .75 / 85 / / .73 .06 / .06 / / .07 .73 / .75 / / .73 .05 / .08 / .08 .08
FRUITS .93 / .98 / / .52 .01 / .02 / / .30 .88 / .95 / / .61 .15 / .07 / / .21
SVHN .92 / .78 / / .25 .01 / .03 / / .30 .93 / .91 / / .33 .01 / .14 / / .41
CIFAR-10 .72 / .75 / / .33 .03 / .05 / / .28 .70 .62 .62 .30 .32 .31 .08 / .10 / / .39

... D5-15A D5-15B
MNIST .70 / .81 / / .85 .07 / .08 / / .30 .80 / .95 / / .95 .02 / .05 / / .15
F-MNIST .70 / .71 / / .69 .16 / .19 / / .66 .71 / 75 / / .54 .17 / .19 / / .41
FRUITS .93 .99 .99 .92 .40 .48 .11 .03 .05 .09 .22 .20 .82 .99 .98 .92 .44 .81 .13 .01 .02 .07 .21 .19
SVHN .92 .69 .73 .29 .32 .38 .09 .19 .21 .85 .79 .78 .92 .76 .77 .34 .37 .43 .02 .22 .25 .83 .82 .82
CIFAR-10 .73 .59 .57 .30 .29 .31 .04 .24 .19 .67 .63 .61 .71 .63 .62 .31 .29 .32 .16 .39 .43 .78 .79 .77

... D2-25A D2-25B
MNIST .83 .88 .88 .94 .00 .87 .03 .12 .15 .05 .00 .09 .73 .96 .96 .97 .00 .97 .02 .14 .10 .06 .00 .08
F-MNIST .67 .64 .64 .65 .00 .57 .23 .67 .61 .56 .00 .51 .69 .81 .81 .80 .00 .82 .21 .31 .32 .23 .00 .18
FRUITS .68 .81 .97 .85 .00 .71 .05 .25 .05 .14 .00 .23 .87 .95 .96 .93 .00 .96 .03 .06 .02 .10 .00 .09
SVHN .92 .64 .65 .20 .23 .25 .01 .25 .27 .88 .91 .88 .92 .89 .89 .63 .61 .62 .04 .29 .32 .91 .93 .92
CIFAR-10 .67 .53 .51 .09 .11 .14 .20 .42 .35 .79 .75 .71 .68 .74 .74 .54 .54 .57 .15 .38 .39 .86 .84 .83

... D20-15A D20-15B
E-MNIST .61 .73 .66 .65 .25 .00 .03 .25 .28 .21 .35 .00 .59 .75 .80 .77 .24 .00 .05 .23 .22 .16 .29 .00

Table 4: Additional experimental results for AR, MIR and DGR-MerGAN.
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