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Abstract

Multilingual large language models (MLLMs)
demonstrate state-of-the-art capabilities across
diverse cross-lingual and multilingual tasks.
Their complex internal mechanisms, however,
often lack transparency, posing significant chal-
lenges in elucidating their internal processing
of multilingualism, cross-lingual transfer dy-
namics and handling of language-specific fea-
tures. This paper addresses this critical gap
by presenting a survey of current explainabil-
ity and interpretability methods specifically for
MLLMs. To our knowledge, it is the first com-
prehensive review of its kind. Existing liter-
ature is categorised according to the explain-
ability techniques employed, the multilingual
tasks addressed, the languages investigated and
available resources. The survey further iden-
tifies key challenges, distils core findings and
outlines promising avenues for future research
within this rapidly evolving domain.

1 Introduction

Large language models (LLMs) have markedly ad-
vanced the field of natural language processing
(NLP), attaining human-comparable, state-of-the-
art performance across a multitude of tasks, includ-
ing those requiring cross-lingual and multilingual
capabilities (OpenAI et al., 2024). Despite their
impressive capabilities, the opaque “black-box” na-
ture of LLMs presents considerable challenges. En-
suring explainability and interpretability is crucial,
and particularly pressing in the case of multilingual
LLMs (MLLMs). Due to their training on linguis-
tically and culturally diverse data, often including
low-resource languages, MLLMs are particularly
susceptible to generating biased or inaccurate out-
puts across varied linguistic contexts.

While previous surveys have explored explain-
ability methods for various LLMs (Zhao et al.,
2024a; Luo and Specia, 2024), they have not fo-
cussed on the distinct challenges of multilingual-
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Figure 1: Global distribution of research on non-English
language interpretability. Languages are mapped to
countries according to their official, de facto, regional,
minority or national status. For a detailed analysis of
language explainability, refer to Section 4.

ity. These challenges include elucidating how mod-
els internally process multiple languages, the dy-
namics of cross-lingual transfer, the handling of
language-specific features (e.g., scripts, word or-
ders, phonemes), the manifestation of language-
and culture-specific biases and the scarcity of re-
sources for the majority of the world’s languages.
Conversely, existing reviews of MLLMs have
largely overlooked the dimension of interpretabil-
ity (Qin et al., 2024; Xu et al., 2024). Although
Zhu et al. (2024a) touched upon the interpretability
of MLLMs, the discussion lacked comprehensive
scope.

We report a survey of the state-of-the-art in ex-
plainability and interpretability of MLLMs. To
the best of our knowledge, this constitutes the first
survey dedicated exclusively to this intersection,
synthesising research from the dual perspective of
explanation methodologies and multilingual appli-
cations. We structure our review by categorising
existing work according to the explainability meth-
ods employed (Section 2), the specific multilingual
tasks addressed (Section 3), the languages under in-
vestigation and the resources available (Section 4).

Our analysis indicates a tendency for most re-
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search to apply existing explainability methods to
multilingual contexts, frequently without the req-
uisite significant methodological innovations. The
findings reveal, perhaps unsurprisingly, a consid-
erable skew in the literature against low-resource
languages. These languages are often subjected to
simplistic applications of off-the-shelf explainabil-
ity techniques, and impactful, cutting-edge multi-
lingual explainability research for them remains
notably scarce.

We envision promising avenues for future ex-
ploration in the development of novel multilingual
explainability innovations. This includes advanc-
ing work on language-specific features and extra-
language knowledge (e.g., cultural values, regional
variations and factual knowledge), furthering the
understanding of cross-lingual transfer, bridging
the gap between interpretation and explanation and
improving the sophistication of explainability re-
search for low-resource languages by shifting the
focus from NLP applications to core, more founda-
tional NLP tasks.

2 Explainability Methods for
Multilinguality

2.1 Probing
Probing is a common explainability technique that
involves training simple classifiers on a model’s
internal representations to predict its capacity to en-
code specific properties, often within multilingual
contexts (Pires et al., 2019; Vulić et al., 2020). It
is widely applied to analyse how multilingual mod-
els encode linguistic information (Starace et al.,
2023), assess cross-lingual transfer (Vulić et al.,
2023) and detect issues such as multilingual gender
bias (Steinborn et al., 2022). In the cross-lingual
domain, studies probe lexical knowledge in multi-
lingual sentence encoders (Vulić et al., 2023), the
dynamics of how models acquire cross-lingual abil-
ities (Blevins et al., 2022) and knowledge transfer
from artificial languages with implications for mul-
tilingual understanding (Ri and Tsuruoka, 2022).

Linguistic Probing. A substantial body of work
employs probing to investigate the linguistic knowl-
edge within MLLMs. Syntactic understanding is
a key focus with studies on multilingual linguistic
acceptability (Zhang et al., 2024d), syntactic agree-
ment in languages like French (Li et al., 2023a) and
the localisation of syntactic information (Li et al.,
2022). Semantic probing examines the encoding
of predicate-argument structures across languages

(Conia and Navigli, 2022), metaphors across lan-
guages such as Spanish, Russian and Persian (Ag-
hazadeh et al., 2022) and verbal aspect in Russian
in a layer-wise manner (Katinskaia and Yangarber,
2024). Research also explores how models repre-
sent general linguistic categories across languages
and model layers (Starace et al., 2023) and spe-
cific challenges such as Chinese causative-passive
homonymy (Xu and Markert, 2022). Please refer
to Appendix H for a more complete description of
multilingual probing works.

Takeaways. Probing is a straightforward yet po-
tent and widely applicable methodology, frequently
employed to analyse encoded linguistic informa-
tion and assess cross-lingual transfer. A notable
trend in recent studies is the prevalence of layer-
wise probing to localise where specific informa-
tion is represented. Despite its broad applica-
tion, certain multilingual dimensions appear under-
represented, offering fertile ground for future inves-
tigation. These include the probing of cultural and
moral values across diverse languages (Pawar et al.,
2024) and the examination of how models encode
distinctly language-specific information, such as
lexical tone in tonal languages (Shen et al., 2024).

2.2 Latent Space Analysis
Latent space analysis provides a powerful tool for
understanding MLLMs, often focusing on cross-
lingual representations (Chen et al., 2022; Sun
et al., 2024). Wen-Yi and Mimno (2023) report
that multilingual input layer embeddings show sim-
ilarity between token translations, despite no ex-
plicit translation objective during training. Icard
et al. (2025) analyse French writing style effects
on embeddings, while Liang et al. (2020) use in-
terpretable subspaces for multilingual gender bias
removal. A set of work also explores language-
agnostic latent spaces: Zeng et al. (2025) propose
a “Lingua Franca”, Abdullah et al. (2024) examine
language-neutral subspaces in speech translation
and Utpala et al. (2024) identify language-agnostic
components in code representations. Other anal-
yses cover cross-lingual concept alignment (Xu
et al., 2023), training stage effects on multilingual
embeddings (Yan et al., 2024; Thanh et al., 2023),
similarity to perceptual modalities (shape, sound,
colour) (Boldsen et al., 2022) and investigating
pruning (Kurz et al., 2024).

Takeaways. Multilingual LLM representations
are pivotal for understanding their cross-lingual
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capabilities, despite their notable complexity.
Research increasingly focuses on spontaneous
multilingual alignment and identifying language-
agnostic latent spaces. Future research may explore
intrinsic language-agnostic properties, such as
how linguistic information is encoded and evolves
across training and layers. Future work could also
focus on identifying interpretable subspaces for
multilingual attributes beyond bias (e.g., cultural
and regional differences) and further examining
low-resource language embedding structures.

2.3 Attention Analysis

Transformers revolutionised the field of NLP par-
ticularly through the introduction of self-attention
mechanisms. While the explainability of attention
has been debated (Bibal et al., 2022), it has been
widely used to analyse MLLMs, for example, in
multilingual bias detection (Liang et al., 2020) and
linguistic tasks (Kozlova et al., 2024). For instance,
Ma et al. (2021) found that pruning attention heads
generally improves cross-lingual task performance,
while Voita et al. (2019) noted that specialised
heads are last to be pruned in Russian machine
translation. Gopinath and Rodriguez (2024) found
diverse attention heads in self-supervised speech
models irrespective of language, with diagonal
heads being key for cross-lingual phoneme clas-
sification.

Takeaways. Self-attention is considered intuitive
with its visual explanation potential. Research
trends cover analysing attention in diverse mul-
tilingual tasks and specialised head roles. While
the debate on attention’s true explanatory power
for model behaviour persists, attention analysis is
being used to inform model improvements (e.g.,
jailbreak mitigation). For instance, pruning atten-
tion heads improves cross-lingual performance (Ma
et al., 2021). Future work could further explore the
benefits of pruning, investigate other interventions
like attention re-weighting for MLLMs and, cru-
cially, enhance attention explanation faithfulness.

2.4 Neuron Activation

Analysing neuron activation patterns across dif-
ferent languages offers crucial insights into the
cross-lingual capabilities of MLLMs (Wang et al.,
2024c). Studies leveraging neuron activity reveal
similar activation patterns for semantically identi-
cal inputs across languages (Zeng et al., 2025) and
demonstrate the development of consistent cross-

lingual representations (Sun et al., 2024). Further-
more, neuron analysis supports hypotheses such as
knowledge-free reasoning processes sharing sim-
ilar neurons cross-lingually while knowledge is
stored in a more language-specific manner (Hu
et al., 2024). For instance, Mu et al. (2024) found
that providing input in multiple parallel languages
leads to more precise neuron activation, while other
research leverages activation analysis for control-
ling the syntactic form of the output in machine
translation (Patel et al., 2022), guiding model prun-
ing and sparsity techniques (Liu et al., 2024d; Kurz
et al., 2024) and tracing factual knowledge (Zhao
et al., 2024b).

Takeaways. Analysis of neuron activation pat-
terns reveals consistent behaviour towards semanti-
cally identical inputs across languages. Current re-
search trends centre on leveraging such activations
to inform output manipulation, model intervention
and data attribution. Whether these patterns can
also be utilised to mitigate multilingual bias or trace
its sources remains an open question. Furthermore,
future investigations may explore the potential of
neuron activation analysis to enhance low-resource
language performance by capitalising on patterns
observed in high-resource languages.

2.5 Feature Attribution
Feature attribution methods aim to identify parts
of the input, such as important tokens, that most
influence a model’s predictions in multilingual con-
texts. Research explores explanation faithfulness
across different model types (Zhao and Aletras,
2024), analyses feature interactions in multilingual
semantic similarity (Vasileiou and Eberle, 2024)
and attributes key neurons for understanding cross-
lingual transfer (Wang et al., 2024a). Feature
attribution also aids in localising bias via token
sense components in Chinese models (Sun and
Hewitt, 2023), identifying syntactic information
in French (Li et al., 2022) and is supported by
datasets with human rationales like those for Aus-
trian German offensive language (Pachinger et al.,
2024). These techniques, including widely-used
off-the-shelf methods such as LIME, are frequently
applied within specific NLP applications, as com-
prehensively discussed further in Section 3.5. For
conciseness, additional works are detailed in Ap-
pendix I.

Takeaways. Widely and flexibly applied in di-
verse multilingual NLP, including domain-specific
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applications, feature attribution often utilises off-
the-shelf techniques, aided by evaluation resources
like human rationale datasets. However, expla-
nation faithfulness is a critical challenge: cur-
rent accessible token-based attributions frequently
lack insightful interpretability for complex multi-
lingual tasks and nuanced model workings. Fu-
ture research must prioritise more sophisticated,
genuinely interpretable and demonstrably faithful
methods, especially techniques inherently designed
for the multilingual context – such as understanding
cross-lingual transfer – rather than merely adapted.

2.6 Causality and Counterfactuals

Causal and counterfactual analyses interpret
MLLMs by modelling systems causally (Liu et al.,
2021; Li et al., 2023c) or intervening on inputs and
internal states. Such methods investigate linguis-
tic information like Russian verbal aspect (Katin-
skaia and Yangarber, 2024) or French syntactic
processing (Li et al., 2023a, 2022). Counterfactual
input interventions are used to evaluate national-
ity bias in diverse languages including Maori and
Basque (Barriere and Cifuentes, 2024b,a) or for
German retrieval augmented generation (RAG) at-
tribution (Roy et al., 2024). Furthermore Srini-
vasan et al. (2023) counterfactually probe embed-
dings to change language prediction and Mueller
et al. (2022) intervene on neuron activations with
counterfactual perturbations to study multilingual
syntactic agreement.

Takeaways. Causal analysis primarily centres on
input, neuron and representation interventions, of-
ten within linguistic contexts. A key benefit over
other methods is its shift from correlation to cau-
sation, enabling more robust conclusions. A no-
table trend involves using counterfactuals to study
bias, especially in low-resource languages. Future
research could expand such analyses to other multi-
lingual aspects, like cultural biases or cross-lingual
transfer.

2.7 Mechanistic Interpretability

Mechanistic interpretability aims to uncover
MLLM internal workings, frequently via circuit
analysis applied to tasks like Spanish sequence
continuation (Lan et al., 2024), German n-gram
processing (Quirke et al., 2023) or understanding
how shared circuits and language-specific compo-
nents handle syntax across languages like English
and Chinese (Zhang et al., 2024a). For example

Ferrando and Costa-jussà (2024) studied a subject-
verb agreement circuit in English and Spanish, find-
ing a language-agnostic residual stream direction
with causal effects on predictions. Ferrando and
Voita (2024) introduced a more efficient circuit
uncovering method, revealing that important at-
tention heads often specialise for English versus
non-English tasks. Other mechanistic approaches,
using tools like causal intervention or dictionary
learning, examine multilingual alignment perfor-
mance (Zhang et al., 2024b), language bias and
cross-lingual toxicity effects (Hinck et al., 2024; Li
et al., 2024c), Arabic synthetic data effectiveness
(Boughorbel et al., 2024) and internal information
flow in medical LLMs (Zheng et al., 2024).

Takeaways. Circuit analysis offers a promising
approach to concretely revealing the internal work-
ings of MLLMs. Identifying circuits is, however,
computationally and labour-intensive, and many
studies present specific case studies over broadly
generalisable findings. Future research should thus
aim to uncover more general mechanisms of cross-
lingual transfer and further explore the potential
of language-agnostic latent spaces (Ferrando and
Costa-jussà, 2024).

2.8 Natural Language Explanations
Natural language explanations (NLEs) offer inter-
pretable free-text model insights, often generated
by LLMs using Chain-of-Thought (CoT) prompt-
ing (e.g. for explainable machine translation evalu-
ation; Lu et al., 2024) or post-hoc justifications (e.g.
for Persian stance detection or Korean SMS phish-
ing; Lee and Han, 2024; Zarharan et al., 2025).
Prompting strategies are crucial for eliciting NLEs,
for instance in Chinese legal judgement prediction
(Jiang and Yang, 2023) and multilingual, multi-
cultural norm discovery (Fung et al., 2022). The
evaluation of NLEs for metrics like plausibility and
faithfulness is also key, as explored in multilin-
gual text classification (English, Danish, Italian)
(Brandl and Eberle, 2024). For conciseness, refer
to Appendix J for a more complete list of papers.

Takeaways. NLEs are easily obtainable via
model prompting, requiring no additional spe-
cialised techniques, and are highly interpretable
to end-users. Current research, however, predom-
inantly focuses on multilingual applications, with
less emphasis on methodological advancements.
Key areas for improvement therefore include evalu-
ating the cross-lingual consistency of NLEs and en-
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hancing their faithfulness, particularly for post-hoc
generated explanations, potentially through refined
prompting strategies.

2.9 Additional Methods

In addition to the explainability methods presented,
we also discuss uncertainty estimation and visual
explanations (Appendix B and C). Key takeaways
include that most uncertainty and visualisation
methods are adaptations of existing monolingual
techniques to multilingual contexts, and the poten-
tial for multilingual overconfidence mitigation.

2.10 Takeaways from Explainability Methods

The application of diverse explanation methods to
MLLMs reveals several key trends and challenges.
Research on low-resource languages remains under-
represented, counterfactual analysis being a notable
exception. Moreover, studies often apply existing
techniques to multilingual tasks rather than devel-
oping dedicated multilingual explanation method-
ologies, apart from limited work on probing, latent
space and neuron activation analyses. The corre-
lation versus causation debate is crucial: causality
and mechanistic methods aim for causal insights,
unlike feature attribution, attention and probing,
which may offer less robust correlational findings.
A pressing need exists to expand beyond linguistic
case studies and cross-lingual transfer to areas such
as cultural values, regional variations and language
bias, and to generalise mechanistic findings. The
exploration of language-agnostic latent spaces, us-
ing representational and mechanistic approaches
(including non-natural languages), is a promising
trend. Finally, potential lies in integrating diverse
explanation types (e.g., causal-mechanistic, visual-
attention), guiding model improvements especially
for low-resource languages and enhancing multi-
lingual explanation faithfulness.

3 Explainability of Multilingual Tasks

3.1 Cross-lingual Transfer

Cross-lingual transfer, the process of transferring
knowledge between languages, is a key multilin-
gual task. For instance Wang et al. (2024a) use
probing and neuron attribution to demonstrate a
high correlation between cross-lingual neuron over-
lap and transfer performance. Other work inves-
tigates explicit structural concept alignment (Xu
et al., 2023) or uses mechanistic interpretability for
spontaneous multilingual alignment, e.g. with un-

seen languages or question-translated data (Zhang
et al., 2024b).

Probing techniques are widely applied to study
cross-lingual transfer (Pires et al., 2019), examin-
ing aspects such as lexical knowledge in sentence
encoders (Vulić et al., 2023), acquisition timing of
cross-lingual abilities (Blevins et al., 2022), perfor-
mance gaps between language resource levels (Li
et al., 2024a) and reasoning transfer (Chen et al.,
2023). Notably Ri and Tsuruoka (2022) use ar-
tificial language pre-training to probe knowledge
transfer to natural languages, linking it to encoded
contextual information.

Srinivasan et al. (2023) employ causal analysis
to project embeddings, demonstrating a language-
agnostic component allowing embeddings to be
pushed towards another language. This concept
of a language-neutral latent space (see also Sec-
tion 2.2) is explored by other studies too (Zeng
et al., 2025; Abdullah et al., 2024).

Shared multilingual properties are further ex-
plored via neuron activation similarities (Liu et al.,
2024d; Wang et al., 2024c) and representation anal-
yses (Chen et al., 2022): e.g. embedding similarity
of token translations (Wen-Yi and Mimno, 2023),
cross-language consistency (Sun et al., 2024), links
to perceptual modalities (Boldsen et al., 2022) or
how similarity impacts knowledge versus reasoning
transfer (Hu et al., 2024). Transfer is also assessed
with influence functions (Grosse et al., 2023) and
circuit analysis (Ferrando and Voita, 2024), while
uncertainty estimation (Xu et al., 2021) and atten-
tion pruning (Ma et al., 2021) aim to improve per-
formance.

Takeaways. Studies of cross-lingual transfer pri-
marily analyse representation similarity, neuron
activation overlap and linguistic feature probing,
yielding valuable insights and enhancing model
performance. A significant trend is the examina-
tion of language-neutral latent spaces theorised to
facilitate inter-language knowledge sharing. Ar-
tificial languages offer a promising testbed, with
recent work linking transfer efficacy to encoded
contextual information. However, current findings
reveal divergent neuron activation for knowledge-
intensive tasks, indicating scope for refinement.
Future research should further explore temporal
and layer-specific transfer dynamics, alongside the
transference of specific knowledge types (e.g., fac-
tual, common sense, cultural, logical, biases), par-
ticularly within low-resource contexts.
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3.2 Linguistic Analysis

Linguistic analysis explainability aims to clarify
how multilingual LLMs represent linguistic fea-
tures. Beyond the prevalent probing methods (see
Section 2.1) other approaches include mechanistic
interpretability for syntactic circuits (e.g. in Span-
ish or for English and Chinese; Ferrando and Costa-
jussà, 2024; Zhang et al., 2024a), attention analysis
for Russian anaphora resolution (Kozlova et al.,
2024), feature analysis for French text linguistic
features (Rahman et al., 2023) and causal analy-
sis of syntactic agreement (Mueller et al., 2022).
Nonetheless the majority of linguistic studies use
probing to investigate aspects such as multilingual
syntax-related information (Zhang et al., 2024d) or
morphosyntactic features across many languages
(Serikov et al., 2022). A comprehensive discussion
of linguistic probing is available in Section 2.1.

Takeaways. Building on the takeaways in Sec-
tion 2.1, probing, especially layer-wise analysis, is
the predominant method in linguistic analysis, with
mechanistic interpretability emerging as a signifi-
cant trend. Current research often addresses gen-
eral cross-linguistic features, yet language-specific
investigations, particularly in low-resource con-
texts, offer considerable potential. The exploration
of “language-agnostic” features intrinsic to natu-
ral language also presents a promising avenue for
future research.

3.3 Machine Translation

Machine translation (MT) is a key area of multi-
lingual NLP where various explainability methods
enhance system understanding. For instance, ap-
proaches include tracking source and target prefix
attribution (Ferrando et al., 2022), developing MT
methods with intrinsically linked source and target
tokens for greater explainability (Stahlberg et al.,
2018) and applying neuron analysis to understand
how translation models process sentence structure
(Patel et al., 2022).

Interpretable evaluation of MT is a relevant re-
search focus, including human-like evaluation with
NLEs (Lu et al., 2024) and more interpretable met-
rics correlating with human judgements (Shafayat
et al., 2024). For the task of explainable qual-
ity estimation (QE) of MT, works explore inter-
pretable multi-metric frameworks (Park and Padó,
2024), uncertainty quantification fusion (Wang
et al., 2021), CoT prompting for better token align-
ment (Yang et al., 2023a) and token-level rele-

vance, sometimes via dedicated word-level explain-
ers (Tao et al., 2022; Treviso et al., 2021; Kabir
and Carpuat, 2021). Specific Explainable AI (XAI)
techniques also provide insights: integrated gradi-
ents are used for low-resource language MT (e.g.
South Asian, African) (Islam et al., 2024; Malinga
et al., 2024) and methods like SHAP and BERTViz
are employed for language pairs such as Luganda-
English (Kobusingye et al., 2023).

Takeaways. Various explainability methods are
employed to understand MT internal mechanisms
(e.g., neuron, attention analysis) and elucidate
translation outputs (e.g., feature attribution). A
key research gap is the synthesis of these methods
for explanations faithful to model processes, such
as faithful NLEs. Within the growing field of QE,
a distinction is needed: some works develop inher-
ently interpretable metrics, while others apply XAI
tools for evaluation, sometimes causing confusion.
For low-resource languages, studies often utilise
simpler explanation techniques (e.g., SHAP), indi-
cating a need for more profound exploration.

3.4 NLP Tasks

Explainability methods are applied to a range of
core NLP tasks beyond machine translation. In
NER, for instance, approaches include uncertainty
quantification for cross-lingual settings (Hashimoto
et al., 2024) and subword impact analysis on multi-
lingual bias (Calix et al., 2022). For other specific
tasks, Radman et al. (2023) employ feature attri-
bution with gradients for Arabic singular-to-plural
noun conversion, while Lu et al. (2022) develop
interpretable first-order logic rules for multilingual
short-text entity linking. Multilingual explainabil-
ity also extends to mechanistic interpretability of
sequence continuation in Spanish (Lan et al., 2024),
probing internal representations for Chinese NLI
tasks (Xu and Markert, 2022), investigating se-
mantic text similarity through feature interactions
(Vasileiou and Eberle, 2024) and localising knowl-
edge to attribute language-agnostic neurons (Cao
et al., 2024). Furthermore, established techniques
like LIME, SHAP and NLEs are utilised across di-
verse tasks, including Chinese sentence pair match-
ing (Guo et al., 2024), Italian acceptability judge-
ments (Buonaiuto et al., 2024), multilingual text
classification (Brandl and Eberle, 2024) and Por-
tuguese sentence similarity (Rodrigues and Mar-
cacini, 2022).
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Takeaways. Diverse explainability methods are
applied to the understanding of various NLP tasks
(e.g., NER, NLI) in multilingual contexts, includ-
ing language-specific and cross-lingual settings.
These traditional NLP tasks, however, predomi-
nantly focus on high- to mid-resource languages;
applications for low-resource languages are mainly
concentrated in specific domains or proper appli-
cations (see Section 3.5). Future research should
aim to explore core NLP tasks in low-resource lan-
guages to enhance their applicability and perfor-
mance.

3.5 NLP Applications

Explainability methods are widely applied to di-
verse multilingual NLP applications to clarify
model behaviour. These include stance detection
with NLEs in Persian (Zarharan et al., 2025), multi-
lingual fact-checking using referenced explanations
(Zeng et al., 2024) or natural logic justifications
(Strong et al., 2024) and question answering (QA),
such as Japanese multi-hop QA with derivation
triples (Ishii et al., 2024) or mechanistic analyses
of language bias in multimodal QA (Hinck et al.,
2024).

Feature Attribution in NLP Applications. Fea-
ture attribution methods (see Section 2.5) specifi-
cally explain model predictions within NLP appli-
cations. Examples include multilingual QA using
eye-tracking to compare human gaze with human-
annotated rationales (Brandl et al., 2024), sparse
retrieval for Chinese QA (Zhao et al., 2021) and
elucidating hate speech detection models in low-
resource languages like Urdu and Sindhi using
LIME (Siddiqui et al., 2024), For conciseness, refer
to Appendix I for a more detailed discussion.

Takeaways. Multilingual NLP applications are
the subject of numerous studies, demonstrating
methodological diversity in explanations and no-
table trends towards QA, fact-checking and the
development of explainable datasets. Given the
widespread use of feature attribution techniques,
such research often inherits their limitations (see
Section 2.5), including a reliance on off-the-shelf
techniques – prevalent in low-resource language
studies – and challenges in ensuring the faithful-
ness of explanations.

3.5.1 Domain-specific Applications
Explainability enhances various domain-specific
multilingual applications. In law, NLEs support

French legal QA (Louis et al., 2023) and Chinese
legal judgements (Jiang and Yang, 2023). Health
applications include Chinese medical NLE datasets
(Li et al., 2023b) and uncertainty quantification in
Korean mental health diagnosis (Kang et al., 2024),
while finance sees explainable Chinese stock pre-
diction (Wang et al., 2024b). Understanding soci-
etal aspects involves probing multilingual sociode-
mographic knowledge in LLMs (Lauscher et al.,
2022). For conciseness, additional examples in
these and other domains are detailed in Appendix I.

Takeaways. In domain-specific multilingual ap-
plications, particularly high-stakes areas like fi-
nance, law and health, NLEs and accompanying
datasets are frequently employed, likely owing to
their accessibility for end users; feature attribution
techniques are also notably common. While vi-
sual explanations hold significant potential, this
area remains largely underexplored. A key re-
search challenge, especially for non-English con-
texts within these critical domains, is ensuring the
faithfulness of NLEs. Furthermore, probing mul-
tilingual domain-specific knowledge constitutes a
relevant and promising direction for future investi-
gation.

3.6 Additional Tasks

In addition to the multilingual tasks presented, we
also discuss speech processing and bias and toxic-
ity (Appendix D and E). Key takeaways include the
potential for probing of language-specific speech
information and the scarcity of speech data, while
there is a need for bias research in diverse multilin-
gual areas.

3.7 Takeaways from Multilingual Tasks

Building upon prior takeaways (Section 2), multi-
lingual tasks present distinct trends and challenges.
Probing (notably layer-wise analysis) and mecha-
nistic interpretability are prevalent in linguistic con-
texts and speech. Feature attribution is common for
applications and domain-specific tasks, especially
with low-resource languages, while NLEs see in-
creasing adoption in multilingual domain-specific
settings; visual explanations show promise but re-
main underexplored here. Regarding data, NLEs
for applications gain prominence and speech re-
source scarcity persists. Low-resource languages
often feature in application studies over core NLP
tasks, typically addressed with high and mid-
resource languages. Extending core NLP to low-
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resource contexts warrants further research.
A significant need exists to interpret “extra-

language” knowledge (domain-specific, cultural,
moral, factual, common sense, bias) in multilingual
contexts, using probing and cross-lingual transfer;
examining cultural and moral knowledge is crucial
for human-aligned models. Furthermore, bridging
the disparity between MLLM inner-working inter-
pretation versus explanation of model decision is
essential. Improving NLE faithfulness is a promis-
ing avenue here (Section 2.10). Probing language-
specific linguistic features (e.g., dialects, accents)
in speech data also holds considerable potential.

4 Languages and Resources

This section outlines our approach to categorising
and analysing the languages and resources featured
in the surveyed literature. Figure 1 provides an
overview of the languages across the surveyed pa-
pers. A more comprehensive analysis, presented
in Appendix F, categorises languages as high-mid-
resource, low-resource and non-natural. Their find-
ings complement our previous observations on the
tendency to apply existing explainability methods
to multilingual tasks rather than develop proper
multilingual methodologies, especially for low-
resource languages.

Interpretability resources are essential for the de-
velopment and application of explainability meth-
ods in multilingual contexts and are explored in
detail in Appendix G. Our categorisation divides
them into three groups: evaluation resources, tech-
niques and metrics. The discussion highlights
prevalent trends, such as how evaluation resources
often facilitate interpretation extraction over direct
explanation assessment and the common simplis-
tic application of techniques and lack of metrics
explicitly designed for MLLMs.

5 Discussion and Future Directions

This section elaborates on the takeaways identified
in the previous sections and discusses challenges,
core findings and future directions for multilingual
explainability.

Challenges. What are the unique challenges for
multilingual explainability? The challenges extend
beyond the cross-linguality and multilinguality of
the models to encompass the specific languages
and their available resources, including: (i) how
models internally process multilingualism; (ii) the

dynamics of cross-lingual transfer; (iii) the han-
dling of language-specific features (e.g., different
scripts, word orders, phonemes and intonations);
(iv) the manifestation of language- and culture-
specific biases; and (v) the scarcity of resources
(data and models) for low-resource and non-natural
languages. Extra-language multilingual features,
such as cultural knowledge, also introduce distinct
explainability challenges.

Core Findings. Our survey reveals tendency to
apply existing explainability methods – typically
developed for English and/or a handful of high re-
source languages – to multilingual settings, either
off-the-shelf techniques or via simple adaptation.
This is particularly common in NLP applications.
It may result in broad generalisability but can com-
promise the usefulness and, ultimately fairness, for
specific target languages. Furthermore, our find-
ings indicate, albeit not unexpectedly, a signifi-
cant skew in the literature against low-resource lan-
guages which primarily involves simplistic applica-
tions of out-of-the-shelf explainability techniques
(e.g., LIME, SHAP). Impactful, cutting-edge multi-
lingual explainability research for these languages,
particularly African and Asian ones, proved no-
tably scarce.

Future Directions. First, a primary imperative
is the development of multilingual explainability
innovations, rather than merely adapting existing
methods to non-English contexts, by advancing
prior work on language-specific features (e.g., di-
alects, accents, tones) and furthering the under-
standing of cross-lingual transfer – for instance, by
investigating language-agnostic latent spaces. Sec-
ond, bridging the gap between interpreting inner
model behaviour and explaining final model deci-
sions is essential, for example, by enhancing the
faithfulness of multilingual explanations. Interpret-
ing extra-language, external knowledge (e.g., cul-
tural values, regional variations and factual knowl-
edge) also constitutes a promising future direction,
particularly concerning its knowledge transfer and
its role in cultural adaptation of NLP across do-
mains and languages. Lastly, shifting the research
focus to low-resource languages from NLP appli-
cations to core NLP tasks represents another vital
avenue for future work.
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Limitations

This work is presented as a survey rather than
a systematic literature review; consequently, our
methodological choices reflect this specific scope.
For instance, the keyword selection for paper re-
trieval was tailored to provide a representative
overview, which differs from the exhaustive cov-
erage characteristic of a systematic review. Fur-
thermore, inherent limitations and occasional in-
consistencies within large-scale paper repositories,
such as Semantic Scholar, may mean some relevant
publications were not identified. The assessment of
paper relevance, while informed by the authors’ do-
main expertise, naturally incorporates a degree of
subjectivity inherent in a survey format. Similarly,
the categorisation of papers, particularly within
nuanced or overlapping areas like “probing of rep-
resentations” and “latent space analysis”, involves
an element of interpretative judgement. These con-
siderations are consistent with our objective to map
the representative terrain of the field.
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Inez Okulska and Emilia Wiśnios. 2023. Towards Harm-
ful Erotic Content Detection through Coreference-
Driven Contextual Analysis. CRAC.

Hilário Oliveira, Rafael Ferreira Mello, Bruno Alexan-
dre Barreiros Rosa, Mladen Raković, Péricles B. C.
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A Methodology

This section outlines the methodology employed to
identify, review and categorise the literature rele-
vant to this survey on the explainability and inter-
pretability of multilingual LLMs. Our approach is
designed as a literature survey, aiming to capture
key trends, techniques and challenges in the field,
rather than an exhaustive systematic review cover-
ing every publication. The methodology is inspired
by recent work and good practices in the field (Liu
et al., 2024a).

Paper Selection. We initiated the process by
defining a set of search keywords targeting the
three core concepts of our survey: “explainability”
(and its synonyms like “interpretability”), “large
language models” and “multilinguality”. To ensure
broad linguistic coverage within the multilinguality
aspect, our keyword list included terms for every
language reported by LinguaMeta (Ritchie et al.,
2024) as having over one million speakers. This
keyword set, detailed in Appendix K, was inten-
tionally curated to be representative rather than
exhaustive, aligning with our survey’s objective as
previously stated. Using these keywords, we per-
formed searches querying the titles and abstracts of
publications indexed in the ACL Anthology, arXiv
and Semantic Scholar repositories via their respec-
tive APIs (Kinney et al., 2025). The search had a
knowledge cut-off date of February 2025, adher-
ing to the ACL Rolling Review’s 3-month recency
policy1 relevant to our target submission timeline.

1https://aclrollingreview.org/
reviewerguidelines

This initial search yielded 721 candidate papers.

Paper Screening. The retrieved papers under-
went a multi-stage selection process. First, we
performed deduplication based on DOIs and ti-
tles, prioritising versions from the ACL Anthology
where duplicates existed across sources. Second,
the unique papers were subjected to a manual rel-
evance screening conducted by the authors. To
be included at this stage, a paper needed to sub-
stantially address the intersection of explainabil-
ity/interpretability techniques with large language
models in a multilingual context. This screening
phase resulted in a shortlist of 250 relevant pa-
pers (98 from ACL Anthology). During this initial
review, we also extracted pertinent keywords and
annotations from each paper to aid subsequent anal-
ysis and categorisation.

Paper Categorisation. Based on the additional
keywords identified during the initial screening, we
developed the categorisation that structures this sur-
vey. The shortlisted papers then underwent a sec-
ond review phase. The primary goals of this phase
were to assign each paper to one or more relevant
categories concerning explainability methods (Sec-
tion 2), multilingual tasks (Section 3), languages
(Appendix F) and resources (Appendix G), while
also confirming their continued relevance to the
survey’s scope. Specific categories (e.g., feature at-
tribution and NLP applications) have an expressive
number of papers, therefore choosing the works
to discuss in the main text versus the appendix
leveraged paper’s impact and venue. When paper
categories are fuzzy (e.g., probing & latent repre-
sentations, or attention & visualisation), we opted
for the most foundational category. Finally, the
distinction between high-mid- and low-resource
languages was made based on the data ratio in
Common Crawl23, as in previous work (Lai et al.,
2023; Son et al., 2024).

This structured process of search, screening and
categorisation yielded the 225 papers forming the
core basis for this survey.

B Uncertainty Estimation

Uncertainty estimation in LLMs is vital for ex-
plainability due to their potential overconfidence.
Uncertainty is studied in cross-lingual settings
(Hashimoto et al., 2024; Xu et al., 2021), multilin-

2Over 0.1% as high-mid, otherwise low.
3http://commoncrawl.org/
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gual analysis (Ulmer, 2024), machine translation
(MT) quality estimation and out-of-distribution
detection (Wang et al., 2021; Xiao et al., 2020)
and specific domains such as medicine (Kang
et al., 2024; Ben-Atya et al., 2025). Krause et al.
(2023) showed models can exhibit exaggerated
cross-lingual confidence, while Ben-Atya et al.
(2025) improved Hebrew radiology labelling by
filtering uncertain samples. Methods include spe-
cific metrics adapted for cross-lingual transfer
(e.g. LEU, LOU, EVI; Xu et al., 2021), data aug-
mentation (Hashimoto et al., 2024), Monte Carlo
dropout and ensembles (Abreu-Cardenas et al.,
2023), Spectral-normalized Neural Gaussian Pro-
cess (SNGP) (Kang et al., 2024) and using model-
intrinsic signals in MT (Wang et al., 2021; Xiao
et al., 2020).

Takeaways. Uncertainty estimation methods are
applied across a diverse range of multilingual tasks.
Nevertheless, many metrics are adaptations from
monolingual to multilingual contexts, and recent
research indicates that models demonstrate cross-
lingual overconfidence (Krause et al., 2023). Key
open questions include how this overconfidence af-
fects low-resource languages and the development
of effective mitigation strategies.

C Visual Explanations

Visual explanations significantly aid the inter-
pretability of multilingual LLMs particularly
through dimensionality reduction methods like
t-SNE (Maaten and Hinton, 2008) and UMAP
(McInnes et al., 2018). Embedding visualisation
has proven valuable for analysing multilingual
conversational routing (Maksymenko and Turuta,
2024), understanding speech emotion recognition
in German and Romanian (Echim et al., 2024) and
assessing embedding quality within Dialectal Ara-
bic automatic speech recognition systems (Sahy-
oun and Shehata, 2023). This approach also ex-
tends to inspecting embeddings in French (Bogaert
et al., 2023) and legal Italian (Tagarelli and Simeri,
2021) LLMs and for multilingual information ex-
traction from curricula vitae (Vukadin et al., 2021).
Furthermore dedicated visualisation tools, such as
BERTViz (Vig, 2019), are employed to inspect
attention mechanisms for tasks including informa-
tion extraction (Vukadin et al., 2021), multilingual
handwriting recognition (Ramo et al., 2023) and
within legal domain models (Tagarelli and Simeri,
2021).

Takeaways. Embedding and attention visualisa-
tion are the predominant methods for visual expla-
nations, increasingly applied across diverse modal-
ities. Most studies, however, apply these to multi-
lingual tasks rather than designing visualisations
to explore multilinguality itself – e.g., visualising
cross-lingual embedding spaces. Significant po-
tential lies in the visual inspection of multilingual
embeddings, such as to analyse resource levels and
language-agnostic latent spaces, develop interac-
tive visualisation tools and integrate these visual
approaches with other interpretability methods.

D Speech Processing

Understanding model behaviour in complex mul-
tilingual speech processing tasks necessitates di-
verse explainability techniques. For instance Mo-
hebbi et al. (2023) probe Transformers for French
speech homophony information, while other stud-
ies perform layer-wise probing of suprasegmen-
tals and lexical tone in Mandarin (de la Fuente
and Jurafsky, 2024) or investigate lexical tone en-
coding in Mandarin and Vietnamese spoken lan-
guage models (Shen et al., 2024). Further probing
analyses examine aspects like architectural bias
for French in Whisper’s multilingual transcription
(Ballier et al., 2024) and identify key layers for
multilingual speech emotion recognition (Singh
and Gupta, 2023). Beyond probing, research ex-
plores self-attention mechanisms in cross-lingual
self-supervised speech models (Gopinath and Ro-
driguez, 2024), the nature of latent spaces in mul-
tilingual speech translation (Abdullah et al., 2024)
and applies various explainability methods, for in-
stance to speech emotion recognition in German
and Romanian (Echim et al., 2024) and to the study
of speech systems for Egyptian Arabic (Sahyoun
and Shehata, 2023).

Takeaways. While probing, particularly layer-
wise analysis, is a prevalent method for investigat-
ing linguistic information in speech models, there is
also a growing utilisation of other XAI techniques.
Speech data offer a unique source of multilingual
information, such as spoken variations (e.g., di-
alects, accents) typically absent in textual data; this
characteristic presents promising avenues for future
research. Such data also facilitate more language-
specific analyses, encompassing spoken-language-
specific features (e.g., lexical tone, suprasegmen-
tals), with potential for employing mechanistic ap-
proaches and XAI methods tailored to the distinct
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properties of speech. Nevertheless, the scarcity
of high-quality spoken data, especially for low-
resource languages, is evident in current literature
and constitutes a significant research gap.

E Bias and Toxicity

Explainability methods are crucial for addressing
bias and toxicity in multilingual LLMs. Coun-
terfactual analysis, for instance, reveals national-
ity biases in various languages including Maori
and Basque by perturbing inputs (Barriere and Ci-
fuentes, 2024b,a). Mechanistic interpretability also
explains how toxicity mitigation via preference tun-
ing in English can generalise cross-lingually (Li
et al., 2024c). Further explainability efforts in-
clude probing for gender stereotypes in multiple
languages (Steinborn et al., 2022) and architectural
biases for French (Ballier et al., 2024); analysing
interpretable representations or character senses to
address gender bias in languages like Chinese (Sun
and Hewitt, 2023; Liang et al., 2020); developing
bias attribution metrics, for instance within South-
east Asian LLMs (Gamboa and Lee, 2024); and
examining subword impacts on NER bias (Calix
et al., 2022).

Takeaways. A diverse range of explanation meth-
ods are utilised to investigate biases within multilin-
gual LLMs, including those related to gender and
nationality, thereby informing mitigation strategies.
Nevertheless, further research is crucial in three
principal areas: cross-language bias (e.g., towards
English and other high-resource languages), intra-
language bias (e.g., between regions and dialects),
and extra-language bias (e.g., towards cultural and
moral values). The last of these is especially per-
tinent for preference-tuned models, where an un-
derstanding of such biases can shape mitigation
efforts and enhance fairness across diverse cultural
contexts.

F Explainability of Languages

This section analyses the surveyed languages, cat-
egorised as high-mid-resource, low-resource and
non-natural languages. Due to the volume of pa-
pers, discussion is limited to representative works.

F.1 High-mid-resource
Within high and medium resource languages, stud-
ies frequently involve Chinese (30% of such
works), German (16%) and French (10%). These
often serve as testbeds for diverse explainability

techniques, such as explainable stock movement
prediction in Chinese (Wang et al., 2024b), com-
paring human and model attention multilingually
(Brandl et al., 2024) or probing cross-lingual gen-
eralisation (Aghazadeh et al., 2022), commonly
prioritising method or task over language-specific
insights.

Some research, however, targets language-
specific features, like the encoding of tonal infor-
mation in Mandarin (Shen et al., 2024; de la Fuente
and Jurafsky, 2024). Other works use languages as
case studies, for example, analysing French writing
style effects on embeddings (Icard et al., 2025) or
the mechanistic interpretability of Spanish numbers
(Lan et al., 2024; Ferrando and Costa-jussà, 2024).

New datasets with interpretability features are
also developed, e.g. for Persian stance detection
or Japanese QA (Zarharan et al., 2025; Ishii et al.,
2024). Domain-specific analyses with explainabil-
ity are also prevalent, spanning French legal appli-
cations (Louis et al., 2023), Korean mental health
(Kang et al., 2024) and diverse Chinese financial
or medical contexts (Wang et al., 2024b; Li et al.,
2023b; Chen et al., 2024b).

Key Takeaway. High-mid languages are mostly
used as case studies and multilingual test datasets
for any task that is “non-English”. More research
is needed to explore the specificities of languages
regarding explainability.

F.2 Low-resource

Low-resource languages (e.g. Tamil and Basque)
are underrepresented, constituting only 8% of re-
viewed papers. Analytical work includes probing
robustness in Indic languages (Aravapalli et al.,
2024), phonetics in Nordic languages like Faroese
(Agirrezabal et al., 2023) and morphosyntax in lan-
guages such as Marathi and Yoruba (Shapiro et al.,
2021), alongside counterfactual bias detection in
Maori and Basque (Barriere and Cifuentes, 2024b).
Li et al. (2024a) also note a probing performance
gap for these languages compared to high resource
ones, with the latter exhibiting greater representa-
tional similarity among themselves.

Much research applies established feature attri-
bution methods (e.g. LIME and SHAP) to NLP
tasks like hate speech detection in Roman Urdu and
Sindhi (Hashmi et al., 2024b; Sohail et al., 2024;
Siddiqui et al., 2024) or sentiment analysis and ma-
chine translation for African languages (Mabokela
et al., 2024; Malinga et al., 2024; Kobusingye et al.,
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2023). Such work often involves straightforward
applications of existing techniques, particularly for
African and Indic languages, and typically appears
in less impactful venues. Barriere and Cifuentes
(2024b) on Basque offers a notable exception in
methodology and venue.

Key Takeaway. Low-resource languages are un-
derrepresented in the literature, with a focus on sim-
ple applications of existing techniques and less im-
pactful venues. Research needs to be more method-
ologically advanced.

F.3 Non-Natural Languages
Non-natural languages, including sign and pro-
gramming languages, also feature in explainabil-
ity research. For programming languages, Utpala
et al. (2024) analyse code embeddings, identify-
ing language-agnostic and language-specific com-
ponents. Liu et al. (2024c) employ probing to
evaluate fine-tuning strategies for code compre-
hension. In the realm of artificial languages, Ri
and Tsuruoka (2022) design a language mimick-
ing natural linguistic structures – pre-training and
subsequent probing reveal that successful trans-
fer to natural languages correlates with encoded
contextual information. Finally, explainability in
sign language processing is explored using fea-
ture attribution (LIME) for Arabic Sign Language
(Baghdadi et al., 2024), attention analysis for Greek
Sign Language (Bianco et al., 2024) and attention
feature visualisation for American Sign Language
(Ananthanarayana et al., 2021).

Key Takeaway. Artificial languages are a promis-
ing avenue for interpreting cross-lingual transfer,
due to their potential to mimic natural languages
and facilitate probing of desired features.

G Resources for Explainability

Interpretability resources are crucial for the devel-
opment and application of explainability methods,
spanning evaluation, techniques and metrics. Due
to the large number of papers, we focus on the most
relevant resources in each category.

G.1 Evaluation
Evaluation resources encompass benchmarks,
datasets and human studies. Datasets provide sup-
port for NLEs in multilingual applications (e.g.
fact-checking or domain-specific uses; Zeng et al.,
2024; Louis et al., 2023; Li et al., 2023b), multi-
lingual human rationales (Jørgensen et al., 2022;

Pachinger et al., 2024), counterfactuals for bias de-
tection (Barriere and Cifuentes, 2024a,b) and mul-
tilingual probing resources (Zhang et al., 2024d;
Steinborn et al., 2022). Attanasio et al. (2022) pro-
pose a benchmark for hate speech interpretability
approaches in English and Italian, while Park and
Padó (2024) target interpretable MT quality estima-
tion. Importantly, datasets often aid interpretation
extraction rather than evaluating explanations di-
rectly (Attanasio et al., 2022).

Human evaluation explores novel data sources
like webcam gaze for multilingual QA, compara-
ble to human rationales (Brandl et al., 2024), and
contrasts human with neural attention for Russian
anaphora resolution (Kozlova et al., 2024). NLE
quality is often human-judged across languages
(e.g. Persian, Korean, Chinese and Greek; Zarharan
et al., 2025; Lee and Han, 2024; Ye et al., 2024b;
Mylonas et al., 2024). GUI-based systems also sup-
port multilingual linguistic probing (Serikov et al.,
2022).

Key Takeaway. Evaluation resources are diverse,
but most focus on enabling interpretation extraction
rather than evaluating the actual explanation.

G.2 Explainability Techniques

Standard explainability techniques are widely used
to interpret multilingual models. Feature attribution
methods like LIME (Ribeiro et al., 2016), SHAP
(Lundberg and Lee, 2017) and integrated gradients
(Sundararajan et al., 2017) are prevalent in NLP
and domain-specific applications (Section 3.5), for
instance, in multilingual sentiment analysis (Jør-
gensen et al., 2022) or code-mixed text handling
(Mamta et al., 2023). Their faithfulness is com-
pared across multilingual and monolingual mod-
els in Zhao and Aletras’s work (2024). Layer-
wise relevance propagation (Binder et al., 2016)
guides machine translation of low-resource lan-
guages (Tourni and Wijaya, 2023) and explains
text similarity (Vasileiou and Eberle, 2024), while
LIME has seen task-specific adaptations (Guo et al.,
2024; Rodrigues and Marcacini, 2022).

Other approaches include uncertainty quantifi-
cation techniques, for instance using SNGP for
mental disorder detection in Korean (Kang et al.,
2024) or specific methods for multilingual knowl-
edge neuron localisation (Cao et al., 2024). In-
trinsic probing techniques identify linguistic neu-
rons (Wang et al., 2024a) and influence functions
study generalisation (Grosse et al., 2023). Visuali-
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sation tools like t-SNE (Maaten and Hinton, 2008),
UMAP (McInnes et al., 2018) and BERTViz (Vig,
2019) are also employed, for example, in analysing
Italian legal models (Tagarelli and Simeri, 2021) or
Chinese medical systems (Lin et al., 2024).

Key Takeaway. The frequent application of tech-
niques in NLP applications shows their popularity
and effectiveness, but also points out the simplicity
of the analyses.

G.3 Metrics

Metrics are an important resource for evaluating
explanations or measuring other properties in an
interpretable way. Key explanation metrics include
faithfulness (how explanations reflect model be-
haviour), applied when comparing multilingual
models (Zhao and Aletras, 2024) or for Bengali
hate speech (Karim et al., 2020), and plausibility
(human understandability), used for multilingual
sentiment analysis (Jørgensen et al., 2022). Others
are sufficiency, compactness and consistency (Shen
et al., 2022), automatic NLE metrics for Korean or
Chinese (Lee and Han, 2024; Ye et al., 2024b) and
sensitivity (Bogaert et al., 2024).

Beyond direct explanation evaluation, uncer-
tainty quantification metrics are used for cross-
lingual transfer and MT quality estimation (Xu
et al., 2021; Wang et al., 2021). Specific metrics
assess multilingual gender bias via probing (Stein-
born et al., 2022) or token-level bias contributions
(Gamboa and Lee, 2024). Sparsity, indicative of
interpretability in Chinese QA (Zhao et al., 2021),
is also measured. Furthermore, some task-specific
metrics are designed for enhanced interpretabil-
ity, such as for MT quality estimation (Park and
Padó, 2024) or Arabic ASR (Sahyoun and Shehata,
2023).

Key Takeaway. While diverse metrics assess ex-
planations or interpretable properties, they are often
not explicitly designed for multilingual models.

H Additional Probing Papers

Additional probing studies further illuminate the ca-
pabilities of multilingual models and complement
the overview in Section 2.1.

Applications extend across diverse multilingual
areas including speech processing (Mohebbi et al.,
2023), the encoding of multilingual sociodemo-
graphic knowledge across layers (Lauscher et al.,
2022) and multilingual temporal relations (Caselli

et al., 2022). The technique is also adapted for
non-natural languages such as code understanding
in multilingual scenarios (Liu et al., 2024c).

Morphosyntactic knowledge is extensively ana-
lyzed, for instance, by probing for Universal De-
pendency features across many languages (Serikov
et al., 2022) or using multilabel approaches for
diverse languages (Shapiro et al., 2021). Further-
more, phonological information in character em-
beddings with cross-lingual analysis (Boldsen et al.,
2022), character-level encoding across various al-
phabets (Kaushal and Mahowald, 2022) and lexical
knowledge across diverse languages (Vulić et al.,
2020) are frequently probed.

Investigations into speech and phonology in-
clude probing lexical tone encoding in Mandarin
and Vietnamese (Shen et al., 2024), Whisper’s ASR
representations for French, English and Persian
(Ballier et al., 2024), multilingual speech emotion
recognition (Singh and Gupta, 2023), Mandarin
and English suprasegmentals in speech models
(de la Fuente and Jurafsky, 2024) and phonetic
encoding in character-based models for Nordic lan-
guages (Agirrezabal et al., 2023).

Numerous works probe syntactic and morpho-
logical knowledge. For instance, studies exam-
ine Chinese BERT’s syntactic knowledge (Zheng
and Liu, 2023), leverage multilingual morphologi-
cal datasets (Ács et al., 2023) and assess BERT’s
handling of Italian learner errors alongside gen-
eral linguistic knowledge (Miaschi et al., 2023b,a).
Other research probes coreferential relationships
in Dutch BERT (De Langhe et al., 2023), cross-
lingual syntax in English and Mandarin (Chen and
Farrús, 2022) and morphology in Hungarian mod-
els (Ács et al., 2021). Further investigations cover
morphosyntactic content across Indo-European lan-
guages (Mikhailov et al., 2021a), sensitivity to
word order perturbations in English, Swedish and
Russian (Taktasheva et al., 2021), syntactic evalu-
ation using benchmarks for Indic languages (Patil
et al., 2021), mBERT’s syntactic capabilities (Rön-
nqvist et al., 2019) and the link between tokenisa-
tion strategies and morphology in models like mT5
and ByT5 (Dang et al., 2024).

Broader linguistic understanding and cross-
lingual phenomena are also common targets such
as the robustness of models for Indic languages
under perturbation (Aravapalli et al., 2024), form
versus meaning representation in Chinese and Ger-
man from a neurolinguistic perspective (He et al.,
2024), performance disparities across high- and
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low-resource languages in multilingual probing (Li
et al., 2024a), how probing results reflect linguis-
tic classifications (Mysiak and Cyranka, 2023), di-
verse linguistic properties in Russian (Mikhailov
et al., 2021b) and linguistic feature capture in mul-
tilingual neural machine translation (Mareček et al.,
2020).

Finally, probing extends to specific applica-
tions and domains like logical propositions in En-
glish and Spanish contexts (Feng et al., 2024), as-
sessing discourse relation knowledge for Chinese-
English translation (Huang et al., 2023), evaluating
Llama’s multilingual abilities (Chen et al., 2023)
and analysing linguistic knowledge of LLMs in
Italian (Miaschi et al., 2022).

I Additional Feature Attribution and
NLP Applications Papers

There is a substantial body of work on feature at-
tribution and NLP applications, including domain-
specific ones, within multilingual contexts. Many
studies also represent an intersection between these
areas. This section expands upon subsections 2.5
and 3.5 by cataloguing additional relevant papers.

I.1 Feature Attribution

Further studies on feature attribution offer diverse
insights into model interpretability. General evalu-
ations and benchmarks are crucial; for instance,
Brandl and Eberle (2024) compare NLEs with
Layer-wise Relevance Propagation (LRP) for mul-
tilingual text classification in English, Danish and
Italian, while Shen et al. (2022) propose bench-
marks with token-level rationales for English and
Chinese LLMs using methods like attention and In-
tegrated Gradients (IG). Bayesian methods with
LIME adaptation have been developed for dis-
turbed Chinese sentence pair matching (Guo et al.,
2024). The faithfulness of feature importance ex-
planations across monolingual and multilingual
models also remains a key research area, explored
by Zhao and Aletras (2024).

Machine translation (MT) and quality estima-
tion (QE) are common application areas for feature
attribution. In machine translation (MT), for ex-
ample, these methods contribute to interpretable
quality estimation for English-Korean (Park and
Padó, 2024), enable tracking of source and target
token contributions in multilingual MT (Ferrando
et al., 2022) and support the development of self-
explanatory MT for language pairs like Japanese-

English (Stahlberg et al., 2018). IG has been em-
ployed to explain transliteration models for low-
resource Indian languages such as Tamil (Islam
et al., 2024). Explainable QE benefits from meth-
ods generating token-level scores from XLM-R
(Tao et al., 2022) and from ensemble approaches
across various language pairs including Estonian-
English and Russian-German (Kabir and Carpuat,
2021; Treviso et al., 2021). Relevance-guided train-
ing has also been explored for NMT involving
French, Gujarati and Kazakh, particularly in low-
resource settings (Tourni and Wijaya, 2023).

Understanding specific model behaviours, such
as bias or knowledge encoding, is another signif-
icant focus. Metrics for token-level bias attribu-
tion are proposed for multilingual Southeast Asian
LLMs (Gamboa and Lee, 2024). Subword impact
analysis helps explain cross-lingual Named Entity
Recognition (NER) and bias for languages like
Saisiyat (Calix et al., 2022). Methods like MA-
TRICE, using IG, quantify uncertainty in localising
language-agnostic knowledge neurons in Chinese
and other languages (Cao et al., 2024). Influence
functions have been scaled to study LLM gener-
alisation, including cross-lingual aspects (Grosse
et al., 2023).

A variety of specific feature attribution tech-
niques are applied broadly. SHAP aids in interpret-
ing quantum transfer learning for Italian acceptabil-
ity judgements (Buonaiuto et al., 2024) and LRP
is used to study the effects of fine-tuning French
CamemBERT (Bogaert et al., 2023). Gradient-
based attribution helps analyse Arabic singular-to-
plural conversion models (Radman et al., 2023) and
SHAP combined with BERTViz explains Luganda-
English MT (Kobusingye et al., 2023). Linguis-
tic feature analysis provides explainability for age
recommendation systems based on French texts
(Rahman et al., 2023). Perturbation analysis and
Shapley values assist in locating disambiguating
information for multilingual morphosyntactic prob-
ing across numerous languages (Ács et al., 2023).
LIME extensions are developed for Portuguese sen-
tence similarity from meta-embeddings (Rodrigues
and Marcacini, 2022) and multilingual features
are incorporated into interpretable first-order logic
frameworks for entity linking (Lu et al., 2022). Vi-
sual explanation methods like Grad-CAM++ along-
side t-SNE are applied to speech emotion recogni-
tion in German and Romanian (Echim et al., 2024).
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I.2 NLP Applications

Explainability research in general NLP applications
continues to expand. For instance, multilingual jail-
break benchmarks are being developed that include
NLEs (Liu et al., 2024b) and analyses of neuron
activation investigate parallel multilingual learn-
ing within LLMs by translating input to multiple
languages (Mu et al., 2024). Fact-checking in Chi-
nese has been augmented with NLEs generated
via iterative self-revision (Zhang et al., 2024c) and
benchmarks for explainable Chinese grammatical
error correction are also being created (Ye et al.,
2024b).

Research also explores improving multilingual
reasoning via interpretability-inspired contrastive
decoding (Zhu et al., 2024b), tracing sources of
multilingual factual knowledge through neuron ac-
tivation and data attribution (Zhao et al., 2024b)
and understanding internal representations of bilin-
gual models (Yan et al., 2024). Other studies anal-
yse French writing style effects in embeddings
(Icard et al., 2025), use NLEs for multilingual norm
discovery (Fung et al., 2022) and probe multilin-
gual temporal relations (Caselli et al., 2022).

Attention visualisation is a common technique,
used for analysing multilingual jailbreak patterns
to inform mitigation strategies (Li et al., 2024b)
and for interpreting Transformer models in the con-
text of Greek Sign Language translation (Bianco
et al., 2024). Explainable systems are also being
built for Arabic fact-checking with NLE generation
(Althabiti et al., 2024). Interpretable conversation
routing using latent embeddings is being applied
to multilingual datasets (Maksymenko and Turuta,
2024) and language-specific calibration for pruning
multilingual LLMs for monolingual applications is
studied via latent subspaces and neuron activation
patterns (Kurz et al., 2024).

Cross-lingual emotion detection tasks benefit
from NLEs and agentic workflows (Cheng et al.,
2024). Uncertainty estimation methods are ap-
plied to tasks like complex text detection in Span-
ish (Abreu-Cardenas et al., 2023) and for mul-
tilingual question answering across diverse lan-
guages including Amharic (Krause et al., 2023).
Visualisation techniques offer insights into multi-
lingual Transformer models for applications like
online handwriting decoding (Ramo et al., 2023).
Interpretable structured sentiment analysis is ex-
plored using multilingual models such as ERNIE-
M (Jia et al., 2022). Attention matrices are used

to interpret Russian sentiment analysis models
(Pashchenko et al., 2022) and broader explainabil-
ity analyses are conducted for multilingual machine
reading comprehension models (Cui et al., 2021).

I.3 Domain-Specific Applications
In various domain-specific contexts, explainabil-
ity is proving crucial. Medical applications are
prominent, with uncertainty estimation enhancing
Hebrew radiology report labelling through agent-
based models (Ben-Atya et al., 2025) and mecha-
nistic interpretability guiding the development of
efficient medical LLMs for up to 50 languages by
analysing internal information flow (Zheng et al.,
2024). Retrieval-augmented LLMs aid Chinese
health rumour detection by providing NLEs (Chen
et al., 2024a) and Chinese medical LLM responses
are improved with explainable knowledge graphs
(Jiang et al., 2023). Explainable models are also
used for mental health analysis on Chinese so-
cial media, supported by new datasets (Zhai et al.,
2024). Furthermore, attention visualisation helps
interpret the deidentification of Chinese-English
mixed clinical text (Lee et al., 2023) and counter-
factual explanations support pulmonary disease di-
agnosis in Chinese (Li et al., 2023c). Attention pat-
terns have also been analysed in BERT for Italian
medical report classification (Putelli et al., 2022).

Specific content applications include datasets
with rationales for Austrian German offensive lan-
guage in news comments (Pachinger et al., 2024),
explainable Korean SMS phishing detection (Lee
and Han, 2024) and Chinese humor response
datasets with “chain-of-humor” annotations (Chen
et al., 2024b). Educational tools offer explainable
German document retrieval (Wehnert et al., 2021)
and, for programming languages, code analysis
identifies language-specific and -agnostic embed-
ding components (Utpala et al., 2024).

Text classification pipelines with NLE genera-
tion are tested on Greek tweets for sentiment analy-
sis and offensive language identification (Mylonas
et al., 2024). LLMs assist educators in grading stu-
dent answers in German using rubrics as explana-
tions (Metzler et al., 2024). Fine-tuning effects on
contextual embeddings are analysed for legal Trans-
formers (Thanh et al., 2023). Sparse language mod-
els aim to improve the interpretability of Chinese
radiology report summarisation (Zhao et al., 2023).
Multilingual CV information extraction uses atten-
tion and representation visualisation (Vukadin et al.,
2021) and Italian legal BERT models (LamBERTa)

28



are analysed using BERTViz and embedding visu-
alisation (Tagarelli and Simeri, 2021).

For non-natural languages and specialised
tasks, probing explains PEFT efficacy in cross-
lingual code change learning (Liu et al., 2024c).
Interpretable multi-granular BERT, converting
character-level to word-level, is applied to Chinese
IoT text classification improving self-attention in-
terpretability (Xu et al., 2020).

I.4 Feature Attribution in NLP Applications
Many studies directly apply feature attribution tech-
niques to a wide array of general NLP applica-
tions, enhancing their transparency. For instance,
GLIDER serves as an LLM-as-judge evaluator of-
fering multilingual reasoning and explainable span
highlighting (Deshpande et al., 2024). LIME is
frequently used, for example, to understand Trans-
former predictions for hate speech detection in Ro-
man Urdu (Sohail et al., 2024). Interlanguage error
features are designed to improve interpretability in
the automated scoring of Chinese HSK essays (Rao
and He, 2024).

Other applications are AI-generated text detec-
tion in German explained via text regeneration dif-
ferences (Yang et al., 2023b), understanding code-
mixed data handling via SHAP for auditory fea-
tures (Mamta et al., 2023), assessing LIME and
SHAP plausibility for multilingual sentiment anal-
ysis (Jørgensen et al., 2022), employing Integrated
Gradients for sentiment analysis in various African
low-resource contexts (Malinga et al., 2024) and
using LIME for German image schema prediction
from text (Wachowiak and Gromann, 2022).

The application of LIME extends to broad mul-
tilingual hate speech detection efforts covering
languages such as Chinese, Spanish, Urdu, Por-
tuguese, Indonesian, German and Italian (Hashmi
et al., 2024b). Both LIME and SHAP are employed
for interpreting Arabic semantic search models in
the context of Quranic text (Mustafa et al., 2024).
Attention-based attribution methods are utilised
to explain de-anonymization processes in bilin-
gual (Chinese-English) QA sites that use GNNs
and Transformers (Tian et al., 2024). LIME also
helps interpret English and Italian Transformers for
misogyny detection tasks (Hashmi et al., 2024a)
and explains Vision Transformers for Arabic sign
language recognition (Baghdadi et al., 2024).

Knowledge distillation techniques aim to im-
prove the identification of emotion-trigger words
in multilingual models like XLM-R and E5, thus

enhancing interpretability (Wang et al., 2024d).
LIME is further used to study sociolinguistic biases
in Hinglish (Hindi-English code-mixed) emotion
classification (Tatariya et al., 2024). For user identi-
fication in Chinese, hand-crafted features are com-
bined with mBERT to improve interpretability (Ye
et al., 2024a). Comparative studies, for example
between LIME and SHAP, assess methods for AI-
generated text detection in German (Irrgang et al.,
2024). LIME and SHAP are also used to explain
Afrocentric and mainstream LLMs in sentiment
analysis for low-resource South African languages
(Mabokela et al., 2024) and LIME helps generate
adversarial examples for Arabic offensive language
detection systems (Abdelaty and Lazem, 2024).

Counterfactual attribution methods explain RAG
systems for conversational QA over heterogeneous
data, including German content (Roy et al., 2024).
Coreference-driven feature attribution aids in the
detection of harmful erotic content in Polish texts
(Okulska and Wiśnios, 2023). LSTM models
with attention mechanisms provide explanations
for cross-lingual sentiment analysis with Trans-
formers involving Persian (Ghasemi and Momtazi,
2023). Interpretable bounding boxes are provided
for key phrases in multilingual Visual Question An-
swering (VQA) tasks involving languages such as
Bengali, Portuguese and Indonesian (Wang et al.,
2023). SHAP examines explainability in automated
essay cohesion prediction for Portuguese and En-
glish (Oliveira et al., 2023). Unsupervised self-
explainable frameworks using recursive dynamic
gating can provide text explanations for machine
reading comprehension in English and Chinese
(Cui et al., 2022). Integrated gradients interpret
Transformer predictions for lie detection in Polish
(Wawer and Sarzyńska-Wawer, 2022). Token em-
bedding alignment coupled with visualisation tech-
niques explains cross-modal retrieval in Chinese
(Xie et al., 2022). Post-hoc token attribution meth-
ods like Gradient, IG, SHAP and SOC have been
benchmarked for misogyny detection tasks in En-
glish and Italian (Attanasio et al., 2022). LIME and
IG have also been adapted for zero-shot offensive
span identification in code-mixed Tamil (Ravikiran
and Chakravarthi, 2022). Attention feature visuali-
sation explains feature contributions in American
Sign Language translation (Ananthanarayana et al.,
2021). Finally, sensitivity analysis and LRP are
employed to explain hate speech detection in the
Bengali language (Karim et al., 2020).
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I.5 Feature Attribution in Domain-Specific
Applications

Feature attribution is also pervasively used to ex-
plain models in various domain-specific multilin-
gual applications. In the context of social me-
dia analysis for public interest, language-agnostic
multi-task learning frameworks identify binary trig-
ger words for emotion detection in tweets across
multiple languages (Xiong et al., 2024). LIME
explains hybrid Transformer models designed for
classifying asthma-related Arabic social media
posts (Hossain et al., 2024a) and is also applied
to models for general Arabic news classification
(Hossain et al., 2024b).

Medical and health-related NLP frequently em-
ploys feature attribution. SHAP helps investigate
suicidality prediction from German crisis helpline
texts (Thomas et al., 2024) and is used in studies
on explainable satirical news detection in Turk-
ish (Ozturk et al., 2024). LIME aids in the analy-
sis of models for detecting depression in Bengali
social media text (Chowdhury et al., 2024). For
clinical information extraction, SHAP validates
data quality and model selection for German texts
(Richter-Pechanski et al., 2024). Input perturba-
tion techniques interpret a Chinese BERT-based
medical triage system (Lin et al., 2024). SHAP
also helps decode patterns in Italian political news
headlines (Berta et al., 2024). An improved BERT
model using attention mechanisms explains lung
cancer diagnosis from Chinese electronic medical
records (yu Chen et al., 2023). LIME is used to
interpret XLM-R models for depression classifica-
tion based on Thai speech transcriptions (Munthuli
et al., 2023) and methods like LIME, SHAP and
IG are used to compare Dutch medical report clas-
sifiers with domain expert explanations (Rietberg
et al., 2023). LIME also interprets models pre-
dicting COVID-19 symptoms from Brazilian Por-
tuguese tweets (Machado et al., 2022) and tools
like transformers-interpret highlight relevant
words for medical ICD code assignment from Thai
patient records using mBERT (Suvirat et al., 2022).

In other specialised domains, LIME, SHAP and
DeepLIFT explain Transformer models for multi-
lingual cooking recipe classification, with a focus
on low-resource languages (Migea et al., 2024).
Layer-wise Relevance Propagation (LRP) is used
to study the sensitivity of explanations to random
seeds in French journalistic text classification (Bo-
gaert et al., 2024). SHAP also identifies important

keywords for predicting political leanings from
Slovenian parliamentary transcriptions (Evkoski
and Pollak, 2023).

J Additional NLE Papers

Further research into Natural Language Explana-
tions (NLEs) spans various applications and lan-
guages, expanding the insights from Section 2.8.

Advancing NLEs relies on specialised datasets:
for Persian stance detection with extractive expla-
nations (Zarharan et al., 2025); for Chinese applica-
tions like humor responses with “chain-of-humor”
(Chen et al., 2024b), medical explanations (Li et al.,
2023b) and stock prediction using NL “factors”
(Wang et al., 2024b); for multilingual fact-checking
(e.g. Russia-Ukraine conflict; Zeng et al., 2024);
and for French legal question-answering with ratio-
nales rooted in legal provisions (Louis et al., 2023).

Studies include the use of LLMs to assist ed-
ucators with rubrics for grading student answers,
primarily in English and German contexts (Met-
zler et al., 2024), and the development of a jail-
break benchmark featuring multilingual samples
and explanations (Liu et al., 2024b). In machine
translation, NLEs contribute to interpretable met-
rics for evaluating literary translations into Korean
(Shafayat et al., 2024) and enhancing quality esti-
mation through knowledge-prompted CoT (Yang
et al., 2023a). The domain of mental health bene-
fits from NLEs in analysing Chinese social media
content, supported by new datasets and model ex-
planations (Zhai et al., 2024).

Fact-checking systems increasingly incorporate
NLEs, for example in an Arabic system that gen-
erates justifications (Althabiti et al., 2024) and a
framework for complex Chinese fact-checking us-
ing iterative self-revision with LLMs to produce
explanations (Zhang et al., 2024c). NLEs are also
integrated into tools for grammatical error correc-
tion, with benchmarks for Chinese that include edit-
wise explanations (Ye et al., 2024b) and for text
classification in Greek where NLEs are evaluated
via user studies (Mylonas et al., 2024). Other appli-
cations include retrieval-augmented LLMs for Chi-
nese health rumour detection providing referenced
answers (Chen et al., 2024a), NLEs in cross-lingual
emotion detection tasks (Cheng et al., 2024) and
frameworks enhancing medical LLM responses in
Chinese with hypothesis knowledge graphs to im-
prove explainability (Jiang et al., 2023).
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K Search Keywords

The following list contains the keywords used to
search for papers in the repositories. For details
on the search methodology, please refer to Ap-
pendix A.

Explainability Keywords. “explainability”, “ex-
plainable”, “interpretability”, “interpretable”, “fea-
ture importance”, “feature attribution”, “counter-
factual”, “probing”, “neuron activity”, “neuron ac-
tivation”, “mechanistic”, “circuit”, “representation
engineering”, “uncertainty”.

LLM Keywords. “language model”, “llm”,
“transformer”.

Multilinguality Keywords. “multilingual”,
“multilinguality”, “multilingualism”, “cross-
lingual”, “cross-linguality”, “mandarin”, “chi-
nese”, “hindi”, “spanish”, “arabic”, “urdu”,
“bengali”, “portuguese”, “french”, “punjabi”,
“swahili”, “indonesian”, “russian”, “japanese”,
“western panjabi”, “telugu”, “lahnda”, “marathi”,
“german”, “javanese”, “vietnamese”, “wu chinese”,
“persian”, “caribbean javanese”, “tamil”, “yue
chinese”, “egyptian arabic”, “turkish”, “korean”,
“filipino”, “italian”, “jinyu chinese”, “gujarati”,
“thai”, “pashto”, “kannada”, “nigerian pidgin”,
“min nan chinese”, “odia (oriya)”, “oromo”,
“malayalam”, “xiang chinese”, “sindhi”, “polish”,
“fulah”, “sudanese arabic”, “algerian arabic”,
“amharic”, “burmese”, “odia”, “malay”, “bhojpuri”,
“sundanese”, “hakka chinese”, “moroccan arabic”,
“azerbaijani”, “ukrainian”, “hausa”, “yoruba”,
“northern uzbek”, “igbo”, “saraiki”, “uzbek”,
“cebuano”, “awadhi”, “antankarana malagasy”,
“saidi arabic”, “dutch”, “south azerbaijani”,
“malagasy”, “gan chinese”, “north azerbaijani”,
“bagirmi fulfulde”, “marwari”, “romanian”,
“nepali”, “maithili”, “rajasthani”, “serbo-croatian”,
“northeastern thai”, “assamese”, “madurese”,
“mesopotamian arabic”, “rangpuri”, “sinhala”, “ma-
gahi”, “haryanvi”, “zhuang”, “nepali”, “khmer”,
“chhattisgarhi”, “southern pashto”, “nigerian
fulfulde”, “zulu”, “kazakh”, “deccan”, “chichewa”,
“sanaani arabic”, “swedish”, “greek”, “iranian per-
sian”, “shona”, “ta’izzi-adeni arabic”, “hungarian”,
“kurmanji kurdish”, “low german”, “sorani kur-
dish”, “tunisian arabic”, “hijazi arabic”, “wolof”,
“norwegian bokmål”, “tigrinya”, “ilocano”,
“czech”, “nande”, “xhosa”, “north mesopotamian
arabic”, “kinyarwanda”, “luba-lulua”, “kanuri”,
“dhundari”, “dari”, “belarusian”, “min dong

chinese”, “umbundu”, “somali”, “hiligaynon”,
“kikuyu”, “congo swahili”, “bambara”, “haitian
creole”, “tajik”, “hebrew”, “catalan”, “quechua”,
“sichuan yi”, “bavarian”, “mossi”, “kimbundu”,
“sylheti”, “kongo”, “minangkabau”, “serbian”,
“standard moroccan tamazight”, “hmong”,
“uyghur”, “rundi”, “albanian”, “kanauji”, “santali”,
“afrikaans”, “eastern maninkakan”, “northern
pinghua”, “southern pinghua”, “varhadi-nagpuri”,
“bulgarian”, “northern thai”, “central pashto”,
“mongolian”, “sesotho”, “krio”, “swiss german”,
“mewati”, “balochi”, “tswana”, “luyia”, “guarani”,
“luganda”, “libyan arabic”, “betawi”, “danish”,
“southern thai”, “norwegian”, “bemba”, “kash-
miri”, “kituba”, “malvi”, “northeastern dinka”,
“sepedi”, “finnish”, “halh mongolian”, “tok pisin”,
“sukuma”, “hadrami arabic”, “koongo”, “sicilian”,
“ghanaian pidgin english”, “slovak”, “konkani”,
“balinese”, “mainfränkisch”, “paraguayan guaraní”,
“croatian”, “huizhou chinese”, “eastern oromo”,
“buginese”, “tichurong”, “mazanderani”, “southern
uzbek”, “dinka”, “konkani”, “kamba”, “bukit
malay”, “kalenjin”, “gheg albanian”, “banjar”,
“northern hindko”, “borana-arsi-guji oromo”,
“turkmen”, “makhuwa”, “merwari”, “zarma”,
“gilaki”, “bosnian”, “southern balochi”, “sidamo”,
“achinese”, “shekhawati”, “pulaar”, “chuan-
qiandian cluster miao”, “garhwali”, “shan”,
“lombard”, “lambadi”, “galician”, “bangala”,
“central atlas tamazight”, “lingala”, “hmong daw”,
“peripheral mongolian”, “georgian”, “pattani
malay”, “kabyle”, “bikol”, “sankaran maninka”,
“gondi”, “waray”, “central kanuri”, “omani
arabic”, “bundeli”, “musi”, “kenyi”, “tachelhit”,
“southern kurdish”, “ibibio”, “hunsrik”, “sabah
malay”, “godwari”, “armenian”, “zaza”, “efik”,
“pular”, “hassaniyya”, “tonga”, “brahui”, “baoulé”,
“kumaoni”, “sango”, “maay”, “kyrgyz”, “aymara”,
“tibetan”, “eastern egyptian bedawi arabic”, “south
bolivian quechua”, “northern gondi”, “tagwana
senoufo”, “nyankole”, “jamaican creole english”,
“dogri”, “segeju”, “kedah malay”, “gusii”, “sasak”,
“pu-xian chinese”, “bouyei”, “dyula”, “batak
toba”, “west albay bikol”, “beja”, “pampanga”,
“kurukh”, “central bikol”, “tsonga”, “bini”,
“pahari-potwari”, “sadri”, “konkani”, “waddar”,
“luba-katanga”, “bagri”, “chiga”, “lithuanian”,
“soga”, “chadian arabic”, “dogri”, “mobwa
karen”, “min bei chinese”, “hazaragi”, “swati”,
“meru”, “kangri”, “mandinka”, “tulu”, “southern
betsimisaraka malagasy”, “cameroon pidgin”,
“occitan”, “lomwe”, “chuka”, “tatar”, “upper
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saxon”, “yongbei zhuang”, “esperanto”, “wagdi”,
“khandesi”, “powari”, “shahmirzadi”, “makasar”,
“makassar malay”, “ci gbe”, “bodo”, “giryama”,
“nyamwezi”, “kipsigis”, “ahirani”, “defi gbe”,
“wolaytta”, “fanti”, “tumbuka”, “mende”, “lam-
pung api”, “slovenian”, “bashkir”, “northern luri”,
“chuvash”, “eastern balochi”, “tosk albanian”,
“amdo tibetan”, “kalanga”, “lugbara”, “timne”,
“north ndebele”, “central aymara”, “tarifit”,
“nimadi”, “serer”, “alur”, “mandeali”, “teso”,
“dimli”, “southern ma’di”, “central-eastern niger
fulfulde”, “scots”, “western maninkakan”, “malawi
sena”, “lango”, “tsimihety malagasy”, “acoli”,
“central malay”, “igala”, “bhili”, “lampung nyo”,
“pangasinan”, “dombe”, “sonha”, “makhuwa-
shirima”, “qashqa’i”, “liberian english”, “meiteilon
(manipuri)”, “eastern yiddish”, “surgujia”, “north-
ern dong”, “maasina fulfulde”, “afar”, “thur”,
“eastern apurímac quechua”, “southern dong”,
“takwane”, “abron”, “makonde”, “cusco quechua”,
“s’gaw karen”, “gujari”, “tai dam”, “tamashek”,
“western armenian”, “gogo”, “makhuwa-meetto”,
“ngandyera”, “mbalanhu”, “nyakyusa-ngonde”,
“ndonde hamba”, “bukusu”, “norwegian nynorsk”,
“machinga”, “susu”, “anaang”, “sena”, “khams
tibetan”, “macedonian”, “tachawit”, “avaric”,
“northern betsimisaraka malagasy”, “venda”,
“maguindanaon”, “haya”, “mewari”, “bulu”,
“masaaba”, “western balochi”, “marma”, “sakalava
malagasy”, “bhilali”, “napo lowland quechua”,
“eastern hongshuihe zhuang”, “tswa”, “surjapuri”,
“mundari”, “southern pastaza quechua”, “tena low-
land quichua”, “morisyen”, “bakhtiari”, “gurani”,
“soninke”, “northern qiandong miao”, “estonian”,
“vlaams”, “northern khmer”, “batak simalungun”,
“salasaca highland quichua”, “calderón highland
quichua”, “tausug”, “rejang”, “vasavi”, “k’iche”’,
“batak dairi”, “cebaara senoufo”, “anyin”, “irish”,
“tesaka malagasy”, “hadothi”, “tigre”, “muong”,
“dagaari dioula”, “latvian”, “gamo”, “batak
mandailing”, “zande”, “khasi”, “northern dagara”,
“gorontalo”, “sardinian”, “talysh”, “jambi malay”,
“izon”, “lozi”, “pwo eastern karen”, “bena”,
“southern luri”, “najdi arabic”, “farefare”, “newari”,
“rakhine”, “shambala”, “trinidadian creole english”,
“songe”, “campidanese sardinian”, “berom”,
“basque”, “southern dagaare”, “ngbaka”, “ebira”,
“kabiyè”, “ronga”, “chuwabu”, “mahasu pahari”,
“guibian zhuang”, “nupe-nupe-tako”.
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