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Abstract

We study the problem of sequential prediction with abstentions, where a learner1

faces a stream of i.i.d. data interspersed with adversarial examples, a setting intro-2

duced by [GHMS24]. The learner can abstain, incurring no penalty on adversarial3

points, but is penalized for mistakes and for abstaining on i.i.d. points. Prior4

work left open whether a fundamental gap exists between the known and unknown5

distribution settings, and their positive results for the unknown case were restricted6

to simple classes whose structure they heavily exploited. We resolve both of these7

questions. First, we establish an Ω(
√
T ) lower bound on the error for any learner8

facing a VC-dimension 1 class when the distribution is unknown, proving the exist-9

ing algorithms are optimal and demonstrating a quantitative separation from the10

logarithmic error achievable when the distribution is known. Second, we provide11

the first sublinear error algorithm for a more complex geometric class, achieving12

an Õ(T 2/3) error bound for biased half-spaces in R2.13

1 Introduction14

Sequential prediction models often face a trade-off between robustness to adversarial examples15

and performance on stochastic data. While standard online learning algorithms perform well in16

i.i.d. settings, their guarantees degrade in the presence of an adversary. To address this, [GHMS24]17

recently introduced a framework for sequential prediction that allows a learner to abstain. In their18

model, an adversary can inject out-of-distribution examples into a stream of i.i.d. data. By abstaining,19

the learner can avoid making high-risk predictions on these adversarial inputs. The learner’s error20

is measured as the sum of the number of misclassifications and the number of abstentions on i.i.d.21

examples; abstentions on adversarial examples incur no penalty.22

The work of [GHMS24] established foundational results in this setting for a time horizon T . They23

demonstrated that if the underlying i.i.d. distribution is known, an algorithm can achieve an error24

bound of O(d2 log T ) for concept classes with VC dimension d. When the distribution is unknown,25

they provided algorithms achieving O(
√
dT ) error for VC-dimension 1 classes (d = 1) and for26

axis-aligned rectangles in Rd with a corner at the origin. Both of these algorithms heavily exploit27

the simple combinatorial structure of their respective classes, a property not shared by more general28

classes like half-spaces.29

However, their work leaves two critical questions unanswered: (1) Is the gap between the O(log T )30

error in the known-distribution setting and the
√
T error in the unknown-distribution setting funda-31

mental?, and (2) Can we design efficient algorithms with sublinear loss for more complex and natural32

concept classes in the unknown distribution setting?33

This paper resolves both of these questions. Our main contribution are:34
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1. We establish the first separation between the known and unknown distribution settings by proving35

an Ω(
√
T ) lower bound on the error rate for a VC-dimension 1 concept class. This proves the36

optimality of the existing algorithm for this class and confirms that knowledge of the underlying37

distribution provides a fundamental advantage.38

2. We present the first algorithm for learning the natural concept class of biased half-spaces in R239

in the unknown distribution setting. Specifically, our algorithm achieves a mistake bound of40

Õ(T 2/3), demonstrating that sublinear loss is possible for more complex geometric classes.41

Other Related Work42

PQ Learning Another line of work dealing with learning with a mixture of iid and adversarial samples43

is PQ learning [GSSV24][GKKM20]. This setting differs from the one studied here primarily because44

they assume the learner is given an entirely non-adversarial training set.45

Clean Labeled Data Poisoning [BHQS21] studies the offline learning setting, where an adversary46

adds cleanly labeled adversarial points to the training set. The idea of attackability is used in the47

paper, and is also a crucial component of the abstention error upper bounds in this paper and those48

in [GHMS24]. They also show that half-spaces can not be learned in their setting. The crucial49

difference that allows us to learn half-spaces in our setting is due to the definition of the rate of50

learning. In the lower bounds from [BHQS21] the rate of learning is with respect to the number of51

non-adversarial samples, while we instead use the number of total samples (including adversarial52

samples). Intuitively, we allow the adversary to trick the learner on a sample, so long as the learner53

gets many more samples they predict correctly on.54

For more discussion of other related models, see [GHMS24].55

2 Preliminaries56

We start by formalizing the learning model and introducing relevant concepts from learning theory.57

Notation. Let X be the domain or instance space. A concept class F is a set of functions f : X →58

{−1, 1}. We work in the realizable setting, where labels are generated by an unknown target function59

f∗ ∈ F . Let D be a distribution over X .60

The Learning Model. We consider the sequential prediction model with abstention from [GHMS24].61

The interaction between the learner and the adversary proceeds in rounds for a time horizon of T . At62

the beginning, an adversary chooses a distribution D over X and a target function f∗ ∈ F . In each63

round t = 1, . . . , T :64

1. The adversary decides whether to inject an adversarial example. It chooses qt ∈ {0, 1}. If65

qt = 0, nature draws xt ∼ D. If qt = 1, the adversary chooses an arbitrary xt ∈ X to send66

to the learner.67

2. The learner receives xt and outputs a prediction ŷt ∈ {−1, 1,⊥}, ⊥ denotes abstention.68

3. The learner receives the true label yt = f∗(xt).69

The learner’s goal is to minimize its total error, which is the sum of two quantities: the misclassifica-70

tion error and the abstention error.71

Errmis :=

T∑
t=1

1[ŷt ̸= yt ∧ ŷt ̸=⊥], Errabs :=

T∑
t=1

1[ŷt =⊥ ∧qt = 0]

The total error is the sum of these two terms. Note that the learner is not penalized for abstaining on72

adversarial examples (qt = 1).73

VC Dimension. The complexity of the concept classes we consider will be measured by the Vapnik-74

Chervonenkis (VC) dimension.75

Definition 1 (Shattering and VC Dimension). A concept class F is said to shatter a set of points76

S = {x1, . . . , xk} ⊆ X if for every possible labeling b ∈ {−1, 1}k, there exists a function f ∈ F77

such that (f(x1), . . . , f(xk)) = b. The VC dimension of F , denoted VCDim(F), is the size of the78

largest set shattered by F .79
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3 Lowerbound80

We first define the concept class and adversary strategy used to establish the lower bound.81

Concept Class. Fix B := ⌊
√
T ⌋. The domain X is the set of nodes in a complete B-ary tree of82

depth B. For each leaf θ ∈ [B]B , corresponding to a unique root-to-leaf path, we define a function83

fθ : X → {−1, 1} as:84

fθ(v) =

{
1 if v is a prefix of the path θ,

−1 otherwise.

The concept class is the set of all such functions, F = {fθ : θ ∈ [B]B}. This class has VCdim(F ) =85

1, as any single point can be labeled in two ways, but no two points can be shattered1.86

Adversary. The adversary’s strategy is defined over B blocks, each of B rounds. First, the adversary87

samples a secret path θ ∼ Unif([B]B) and a non-adversarial block index r ∼ Unif([B]).88

• In each block i ∈ [B], the adversary defines a distribution Di as the uniform distribution over the89

B children of the depth-(i− 1) prefix of θ. Under the true concept fθ, exactly one of these points90

is labeled 1 (can think of it as a “singleton”), and the other B − 1 points are labeled −1.91

• For all rounds t within block i, the adversary provides a sample xt ∼ Di. For the remaining92

T −B2 rounds, the adversary can play arbitrarily.93

• The round is non-adversarial (ct = 0) if i = r implying D = Dr, and an adversarial injection94

(ct = 1) otherwise.95

Crucially, the sequence of examples drawn by the adversary is statistically independent of the choice96

of the non-adversarial block r, therefore the learner has no way to learn r.97

Theorem 1. For the adversary above, any learner’s expected total error is lower bounded by:98

E[Errmis] + E[Errabs] ≥
(
(1− e−1)2

2

)
B −O(1) = Ω(

√
T ).

Proof Sketch. Within each block, up until the learner discovers the singleton, for each unique sample99

the learner sees, predicting − is wrong with probability around 1/B, predicting + is wrong with100

probability around 1− 1/B, and abstaining will incur abstention error with probability 1/B. Since101

each block is B and sampling uniformly over B elements, the number of unique samples within the102

block is Ω(B), so the minimum expected error per block incurred is at least Ω(1). Summing over all103

of the blocks gives the desired bound of Ω(B).104

For the full proof, see appendix A.105

4 Upperbound for Half-spaces in R2
106

We will consider learning biased half-spaces in 2 dimensions, VC-dimension 3 classs. Formally,107

X = R2, and F = {f | ∃w, b ∈ R2 st f(x) = (w⊤x+ b > 0) ∨ f(x) = (w⊤x+ b ≥ 0)}. 2108

Learner. Our learner is a generalization of the learner for VC-dimension 1 classes in [GHMS24].109

At a high level, all of the learners for this setting (including the one for axis-aligned rectangles in110

[GHMS24]) guess if being incorrect tells the learner something about the past samples they have111

recieved. For our learner (and the VC-dimension 1 learner), sets of past examples can ‘vote’ for the112

learner to predict x has some label ℓ if being wrong permanently decreases the number of ways that113

set can be labeled conditioned on the labels of the past examples with the label ℓ. It is not too hard to114

show that this algorithm gives a mistake bound for any setting with a finite number of labels, but it is115

more difficult to show that it can simultaneously bound the number of incorrect abstentions. This is116

done in [GHMS24] by exploiting structure inherent to all VC-dimension 1 classes, and we will do it117

by exploiting the geometric structure of half spaces.118

For each label ℓ ∈ {1,−1}, define Φℓ : X ∗ ×X ∗ → N as Φℓ(U, S) =
∣∣{fU | f ∈ F|S→ℓ}

∣∣.119

1Interestingly, any VC dimension 1 class is equivalent to prefixes of some rooted tree [BD15].
2Half-spaces in 1 dimension essentially reduce to thresholds which have been explored in prior work (see

[GHMS24] for discussion).
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Where fU is f with its domain restricted to U , and F|S→ℓ = {f ′ ∈ F | f ′(x) = ℓ ∀x ∈ S}. In120

other words, for any set of samples U , and set of labeled samples S, Φℓ(U, S) counts the number of121

distinct ways to label U while being consistent with labeling all of S as ℓ.122

Define the voting function used by the learner123

ρℓ(x, S, U) =
∑

(a,b)∈S

(Φℓ({a, b}, U)− Φℓ({a, b}, U ∪ {x}))

The learner is defined in algorithm 1.

Algorithm 1: Learner for half-spaces in R2

Set S+ = ∅, S− = ∅, S = ∅
for t = 1, . . . , T do

Receive xt

if S+ = ∅ then predict ŷt = −1
else

if S− = ∅ then predict ŷt = 1
else

if ∃ℓ ∈ {−1, 1} st ŷt = ℓ is inconsistent with S then predict ŷt consistent with S
else

if maxℓ∈{−1,1} ρ−ℓ(x, S
ℓ, S−ℓ) > α then predict

ŷt = argmaxℓ∈{−1,1}ρ−ℓ(x, S
ℓ, S−ℓ)

else predict ŷt = ⊥
Upon receiving label yt, update Syt ← Syt ∪ {xt}, and S ← S ∪ {(xt, yt)}.

124

Theorem 2. If F is biased half-spaces in R2, then algorithm 1 achieves125

E[Errmis] = O(
T 2

α
) E[Errabs] = O(

√
α lnT )

Note that with α = T 4/3, we can bound both types of error by Õ(T 2/3).126

Proof Sketch. The main idea is in two parts, one for the mistake bound, and one of the abstention127

bound, both using α but in inverse ways. each voting pair can only vote incorrectly a small number of128

times, so we can bound the number of mistakes using the voting threshold (α) and the total number129

of voting pairs. For abstention error, we show that for every set of samples of size four, either one of130

them would not be abstained upon by the learner, or one of them is voted for by a pair of the others,131

regardless of the what the adversary does. This allows us to show that good probability (controlled by132

α) the next iid samples will receive sufficient votes to not be abstained upon.133

A higher α reduces the number of mistakes the learner can make, but also increases the likelihood of134

abstaining on iid samples, by choosing the correct value to balance them, we can make both sublinear.135

For the full proof, see appendix B.136

5 Conclusion137

We showed that there exist simple concept classes which can not be learned with error under Ω(
√
T )138

when the iid distribution is unknown, as opposed to being able to learn with error O(lnT ) for finite139

VC-dimension. We also showed that half-spaces in R2 are learnable with error O(T 2/3).140

A promising direction for future work is to extend the algorithm for half-spaces to work in Rn, the141

most simple modification could possibly achieve an error of T 1−1/(n+1). It remains open whether142

half-spaces can be solved with error O(
√
T ).143

Characterizing learnability in the unknown distribution setting remains an open problem. Although144

some finite VC-dimension classes are not learnable with logarithmic error, it is unknown whether all145

are learnable with sublinear error.146
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A Proof of theorem 1160

Proof. Since the within-block streams are i.i.d. from Di regardless of the non-adversarial block index161

r, r is independent of the transcript and162

E[Abstention Error] = E[Ar] =
1

B

B∑
i=1

E[Ai]. (1)

We fix an arbitrary (possibly randomized) learner and then fix its internal randomness (a standard163

application of Yao’s minimax principle), making its behavior deterministic for the analysis.164

Per-block analysis using the "not-seen" state. Fix a block i. Let m ∈ {1, . . . , B} be the number165

of distinct support points that appear among its B draws. We order these distinct points by their166

first encounter, k = 1, . . . ,m. Let τ ∈ {1, . . . ,m,m+ 1} be the first-encounter index at which the167

singleton appears, let τ = m + 1 if the singleton does not appear. Conditional on the unlabeled168

sequence of first encounters and the singleton appearing, τ is uniform on [m]. The singleton appears169

with probability m/B, so with probability 1−m/B, τ = m+ 1.170

For each k ∈ [m], we define the learner’s pre-singleton action a◦k ∈ {+1,−1,⊥} to be the action171

the learner takes at the k-th new point given the history in which the first k − 1 first-encounters all172

had label −1. This action is well-defined and depends only on the unlabeled sequence and the fixed173

internal randomness, not on the true value of τ . On the event {τ ≥ k}, the actual action at the k-th174

first encounter equals a◦k. We only count errors forced by the singleton’s appearance:175

• If a◦k = +1: a mistake is made whenever τ > k, contributing an expected error of176

Pr(τ > k | m) = m
B (m− k)/m+ (1− m

B ) = (B − k)/B.177

• If a◦k = −1: a mistake is made exactly when τ = k, contributing an expected error of178

Pr(τ = k | m) = m
B 1/m = 1/B.179

• If a◦k =⊥: an abstention occurs whenever τ ≥ k. Via (1), this contributes Pr(τ ≥ k |180

m) · (1/B) =
m
B (m−k+1)/m+1−m/B

B = B−k+1
B2 to the total expected error.181

The total expected error, conditioned on m and the pre-singleton actions (a◦k), is the sum of these182

costs over all steps. We can lower-bound the total error by summing these minimum costs at each183

step. Recall that Ai is the abstention error incurred at round i, and Mi is the misclassification error.184
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The total expected error for the block is the expectation over τ of the errors forced by its position:185

E

[
B∑

k=1

Mi +
Ai

B
| m, (a◦k)

]
≥ Eτ

[
τ−1∑
k=1

1{a◦k = +1}+ 1{a◦τ = −1}+ 1

B

τ∑
k=1

1{a◦k =⊥}

]

=

m∑
k=1

(
Pr(τ > k)1{a◦k = +1}+ Pr(τ = k)1{a◦k = −1}+ Pr(τ ≥ k)

B
1{a◦k =⊥}

)

=

m∑
k=1

(
B − k

B
1{a◦k = +1}+ 1

B
1{a◦k = −1}+ B − k + 1

B2
1{a◦k =⊥}

)
.

For any strategy, the cost is at least the sum of the point-wise minimums:186

E
[
Mi +

Ai

B
| m

]
≥

m∑
k=1

min

{
B − k

B
,
1

B
,
B − k + 1

B2

}
. (2)

Let j := B − k + 1 (re-indexing from the last encounter). The term inside the sum becomes187
1
B min{j − 1, 1, j/B}. For j = 1 (i.e., k = B), the minimum is 0. For j ≥ 2 and j ≤ B, we have188

j/B ≤ 1 and j/B ≤ j − 1, so the minimum is j/B. The bound becomes:189

E
[
Mi +

Ai

B
| m

]
≥

m∑
j=2

j

B2
=

m(m+ 1)/2− 1

B2
.

From one block to all blocks. Since E[m(m+ 1)/2− 1] ≥ E[m]2/2− 1 for all m ≥ 0, taking the190

expectation over m yields:191

E[Mi] +
1

B
E[Ai] ≥ E

[
m(m+ 1)/2− 1

B2

]
≥ E[m]2/2− 1

B2
=

E[m]2

2B2
− 1

B2
.

The expected number of distinct points is E[m] = B(1− (1− 1/B)B) ≥ B(1− e−1). Thus,192

E[Mi] +
1

B
E[Ai] ≥

B2(1− e−1)2

2B2
− 1

B2
=

(1− e−1)2

2
− 1

2B2
.

Summing over all B blocks and using (1), we have
∑

i E[Mi] = E[Errmis] and
∑

i E[Ai]/B =193

E[Errabs]. Therefore,194

E[Errmis] + E[Errabs] ≥
B∑
i=1

(
(1− e−1)2

2
− 1

B2

)
= B

(
(1− e−1)2

2

)
− 1.

This gives the desired Ω(
√
T ) bound.195

B Proof of theorem 2196

Proof. Notice that while S+ = ∅ or S− = ∅, the learner can make at most 2 mistakes, and will197

never abstain, so we will consider what happens after that initial phase.198

Misclassification Error. Let t1, . . . tm denote all the times when the learner makes a misclassification199

error. Each time ti must have ρ−yti
(x, S

−yti
ti , S

yti
ti ) ≥ α, since the learner did not abstain, so200

m∑
i=1

ρ−yti
(x, S

−yti
ti , S

yti
ti ) ≥

m∑
i=1

α = αErrmis

Recall that Φ−ℓ({a, b}, S−ℓ
i ), which counts the number of ways a, b can be labeled conditioned on201

S−ℓ
i being labeled −ℓ. notice that Φ−ℓ({a, b}, S−ℓ

i ) ∈ {1, 2, 3, 4} for any valid S−ℓ, and also it can202
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never increase when S−ℓ grows. We can use this to make a complementary bound:203

m∑
i=1

ρ−yti
(x, S

−yti
ti , S

yti
ti ) ≤

T∑
t=1

ρ−yt
(x, S−yt

t , Syt

t )

=

T∑
t=1

∑
(a,b)∈S

−yt
t

(Φyt
({a, b}, Syt

t )− Φyt
({a, b}, Syt

t ∪ {x}))

=

T∑
t=1

∑
(a,b)∈S

−yt
t

(Φyt
({a, b}, Syt

t )− Φyt
({a, b}, Syt

t+1))

=
∑

ℓ∈{−1,+1}

∑
(a,b)∈Sℓ

t

∑
t∈T |yt ̸=ℓ

(Φ−ℓ({a, b}, S−ℓ
t )− Φ−ℓ({a, b}, S−ℓ

t+1))

=
∑

ℓ∈{−1,+1}

∑
(a,b)∈Sℓ

t

(Φ−ℓ({a, b}, S−ℓ
0 )− Φ−ℓ({a, b}, S−ℓ

T ))

≤
∑

ℓ∈{−1,+1}

∑
(a,b)∈Sℓ

t

(4− 1)

= 3

((
|S+|
2

)
+

(
|S−|
2

))
<

3

2
T 2

The second to last step follows since there are at most 4 ways to label the pair a, b, and always at204

least one (when conditioning on realizable labels).3205

Combining these two bounds gives us that the number of misclassifications is at most O(T
2

α ).206

207

Abstention Error. We will first use an attackability argument to bound the probability of the learner208

abstaining on the ith iid sample of label ℓ.209

Definition 2. For any hypothesis f , and history S ⊆ X a sample x ∈ S is attackable if there exists a210

set S′ ⊆ X such that the learner abstains on x when given the history S′ ∪ S \ x labeled by f .211

We will show that any set of samples S has at most 2α attackable samples.212

Let S be partitioned into S+ and S− based on the labels.213

For either ℓ ∈ {+1,−1}, consider any {x0, x1, x2, x3} ∈
(
Sℓ
iid

)4
.214

By Radons theorem there exist a partition of {x0, x1, x2, x3} into disjoint subsets U, T such that215

conv(U) ∩ conv(T ) ̸= ∅. There are two cases, in the first, one of the sets, has only one element,216

then that element is clearly not attackable. In the other case, both U, T have two elements. Say217

without loss of generality that U = {x0, x1} and w⊤x0 ≤ w⊤xi. Then consider any x4 ∈ S−ℓ. If x4218

lies on the line going through x0, x1, then x1 is not attackable (since f(x0) = +1 is not consistent219

with f(x1) = f(x4) = −1). Call the open half-space defined by the line going through x0, x1 that220

contains x4, H . Without loss of generality, let x2 be in H .221

Then, apply Radon’s theorem to x0, x1, x2, x4 to get the subsets U ′, T ′ that have intersecting convex222

hulls. Without loss of generality assume |U ′| ≤ |T ′|. Note that U ̸= {x0}, since conv({x1, x2, x4})\223

{H} = {x1}, and a similar argument shows that U ′ ̸= {x1}. Furthermore since all points in the224

convex hull of x0, x1, x2 are labeled +, U ′ ̸= {x3}. Also, neither U ′ nor T ′ are {x0, x1}, since225

conv({x2, x4}) ⊂ H , and similarly neither can be {x0, x4}, since for any x ∈ conv({x0, x4}),226

either x = x0 (and therefore is not in conv({x1, x2}) (assuming x0 is not attackable), or w⊤x <227

w⊤x0 ≤ minx∈conv({x1,x2}) w
⊤x′ = minx′′∈{x1,x2} w

⊤x′′.228

If the two sets are {x0, x2} and {x1, x4}, then x1 is not attackable, since setting it to− is inconsistent229

with the other labels.230

3In fact, it is not difficult to show that Φ−ℓ({a, b}, S−ℓ
T ) ≥ 3, but this is unnecessary for our purposes and

does not asymptotically improve our bounds.
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This leaves one remaining possibility, U ′ = {x2}. In this case, notice that there exists a concept231

f ′ ∈ F , with f ′(x0) = −1, f ′(x2) = +1, while compatible with any S′−ℓ (that is, any subset of X232

that is labeled −ℓ by f ), is incompatible with f ′(x1) = f ′(x4) = −1, so233

Φ−ℓ({x0, x2}, S−ℓ ∪ S′ ∪ {x1}) < Φ−ℓ({x0, x2}, S−ℓ ∪ S′) (3)

So, for every four samples from S+
iid, either one of them is not attackable, or some triplet of them

act as x0, x1, x2 in eq. (3). Consider any set A ⊆ Sℓ of non-attackable samples. By pigeon hole

principle, for some x ∈ A, for (|A|
4 )

|A| of the elements of A4 have x act as x1 in eq. (3). Notice that
some pair a, b ∈ Sℓ can vote for x in at most |A| − 3 combinations from A4 (once for every choice
of x3), so the number of unique pairs that act as x0, x2 while x acts as x1 in eq. (3) is at least(|A|

4

)
|A|(|A| − 3)

=
1

12

(
|A| − 1

2

)
Then notice that, for any S′ that is labeled −ℓ by f ,234

ρ−ℓ(x, S
ℓ, S−ℓ ∪ S′) =

∑
a,b∈S

(Φℓ({a, b}, S−ℓ ∪ S′)− Φℓ({a, b}, S−ℓ ∪ S′ ∪ {x})) ≥ 1

12

(
|A| − 1

2

)
Since x is not attackable (by the definition of A), this means that 1

12

(|A|−1
2

)
< α, and so, |A| < 48

√
α.235

So, if we sum over both labels, there are at most 96
√
α attackable samples.236

Now notice that since non-adversarial samples are drawn iid, they are exchangeable, so any of the first237

n such samples are equally likely to be the nth, so the probability that the nth iid sample is attackable238

is at most 96
√
α

n . If the nth iid sample is not attackable, then the learner will not abstain on it. So, the239

expected number of abstentions on non-adversarial samples is at most240

T∑
n=1

2α

n
≤ 96

√
α(log T + 1) = O(

√
α log T )

241
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