© ® N o 0o~ @ N =

Optimal Lower Bounds and New Upper Bounds for
Sequential Prediction with Abstention

Anonymous Author(s)
Affiliation
Address

email

Abstract

We study the problem of sequential prediction with abstentions, where a learner
faces a stream of i.i.d. data interspersed with adversarial examples, a setting intro-
duced by [GHMS24]|. The learner can abstain, incurring no penalty on adversarial
points, but is penalized for mistakes and for abstaining on i.i.d. points. Prior
work left open whether a fundamental gap exists between the known and unknown
distribution settings, and their positive results for the unknown case were restricted
to simple classes whose structure they heavily exploited. We resolve both of these
questions. First, we establish an ( \/T) lower bound on the error for any learner
facing a VC-dimension 1 class when the distribution is unknown, proving the exist-
ing algorithms are optimal and demonstrating a quantitative separation from the
logarithmic error achievable when the distribution is known. Second, we provide
the first sublinear error algorithm for a more complex geometric class, achieving
an O(T?/3) error bound for biased half-spaces in R2.

1 Introduction

Sequential prediction models often face a trade-off between robustness to adversarial examples
and performance on stochastic data. While standard online learning algorithms perform well in
i.i.d. settings, their guarantees degrade in the presence of an adversary. To address this, [GHMS24|]
recently introduced a framework for sequential prediction that allows a learner to abstain. In their
model, an adversary can inject out-of-distribution examples into a stream of i.i.d. data. By abstaining,
the learner can avoid making high-risk predictions on these adversarial inputs. The learner’s error
is measured as the sum of the number of misclassifications and the number of abstentions on i.i.d.
examples; abstentions on adversarial examples incur no penalty.

The work of [GHMS24] established foundational results in this setting for a time horizon T'. They
demonstrated that if the underlying i.i.d. distribution is known, an algorithm can achieve an error
bound of O(d? log T') for concept classes with VC dimension d. When the distribution is unknown,
they provided algorithms achieving O(+/dT) error for VC-dimension 1 classes (d = 1) and for
axis-aligned rectangles in R? with a corner at the origin. Both of these algorithms heavily exploit
the simple combinatorial structure of their respective classes, a property not shared by more general
classes like half-spaces.

However, their work leaves two critical questions unanswered: (1) Is the gap between the O(logT')

error in the known-distribution setting and the /T error in the unknown-distribution setting funda-
mental?, and (2) Can we design efficient algorithms with sublinear loss for more complex and natural
concept classes in the unknown distribution setting?

This paper resolves both of these questions. Our main contribution are:
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1. We establish the first separation between the known and unknown distribution settings by proving
an Q(v/T) lower bound on the error rate for a VC-dimension 1 concept class. This proves the
optimality of the existing algorithm for this class and confirms that knowledge of the underlying
distribution provides a fundamental advantage.

2. We present the first algorithm for learning the natural concept class of biased half-spaces in R?
in the unknown distribution setting. Specifically, our algorithm achieves a mistake bound of

O(TQ/ 3), demonstrating that sublinear loss is possible for more complex geometric classes.

Other Related Work

PQ Learning Another line of work dealing with learning with a mixture of iid and adversarial samples
is PQ learning [GSSV24][GKKM?20]. This setting differs from the one studied here primarily because
they assume the learner is given an entirely non-adversarial training set.

Clean Labeled Data Poisoning [BHQS21] studies the offline learning setting, where an adversary
adds cleanly labeled adversarial points to the training set. The idea of attackability is used in the
paper, and is also a crucial component of the abstention error upper bounds in this paper and those
in [GHMS24]]. They also show that half-spaces can not be learned in their setting. The crucial
difference that allows us to learn half-spaces in our setting is due to the definition of the rate of
learning. In the lower bounds from [BHQS21] the rate of learning is with respect to the number of
non-adversarial samples, while we instead use the number of total samples (including adversarial
samples). Intuitively, we allow the adversary to trick the learner on a sample, so long as the learner
gets many more samples they predict correctly on.

For more discussion of other related models, see [GHMS24].

2 Preliminaries

We start by formalizing the learning model and introducing relevant concepts from learning theory.

Notation. Let X be the domain or instance space. A concept class F is a set of functions f : X —
{—1,1}. We work in the realizable setting, where labels are generated by an unknown target function
f* € F. Let D be a distribution over X.

The Learning Model. We consider the sequential prediction model with abstention from [GHMS24].
The interaction between the learner and the adversary proceeds in rounds for a time horizon of 7T'. At
the beginning, an adversary chooses a distribution D over X and a target function f* € F. In each
roundt =1,...,T:

1. The adversary decides whether to inject an adversarial example. It chooses ¢; € {0, 1}. If
q¢ = 0, nature draws z; ~ D. If ¢, = 1, the adversary chooses an arbitrary x; € X to send
to the learner.

2. The learner receives x; and outputs a prediction g, € {—1,1, L}, L denotes abstention.

3. The learner receives the true label y; = f* ().

The learner’s goal is to minimize its total error, which is the sum of two quantities: the misclassifica-
tion error and the abstention error.

T T

Brrpis = i # ye A #11, Erraps := > 1§ =L Ag; = 0]
t=1 t=1

The total error is the sum of these two terms. Note that the learner is not penalized for abstaining on
adversarial examples (¢; = 1).

VC Dimension. The complexity of the concept classes we consider will be measured by the Vapnik-
Chervonenkis (VC) dimension.

Definition 1 (Shattering and VC Dimension). A concept class F is said to shatter a set of points
S ={z1,...,x21} C X iffor every possible labeling b € {—1,1}¥, there exists a function f € F
such that (f(x1),..., f(xr)) = b. The VC dimension of F, denoted VCDim(F), is the size of the
largest set shattered by F.
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3 Lowerbound

We first define the concept class and adversary strategy used to establish the lower bound.

Concept Class. Fix B := [/T|]. The domain X is the set of nodes in a complete B-ary tree of
depth B. For each leaf 6 € [B]Z, corresponding to a unique root-to-leaf path, we define a function
fo: X — {-1,1} as:

1 if v is a prefix of the path 6,

—1 otherwise.

fo(v) :{

The concept class is the set of all such functions, F' = {fy : § € [B]?}. This class has VCdim(F) =
1, as any single point can be labeled in two ways, but no two points can be shattere(ﬂ

Adversary. The adversary’s strategy is defined over B blocks, each of B rounds. First, the adversary
samples a secret path 6 ~ Unif ([B]?) and a non-adversarial block index r ~ Unif([B]).

* In each block ¢ € [B], the adversary defines a distribution D; as the uniform distribution over the
B children of the depth-(i — 1) prefix of 8. Under the true concept fy, exactly one of these points
is labeled 1 (can think of it as a “singleton”), and the other B — 1 points are labeled —1.

* For all rounds ¢ within block i, the adversary provides a sample x; ~ D,. For the remaining
T — B? rounds, the adversary can play arbitrarily.

* The round is non-adversarial (c; = 0) if ¢ = r implying D = D,., and an adversarial injection
(¢; = 1) otherwise.

Crucially, the sequence of examples drawn by the adversary is statistically independent of the choice
of the non-adversarial block r, therefore the learner has no way to learn r.

Theorem 1. For the adversary above, any learner’s expected total error is lower bounded by:

]E[Errmis} + ]E[Errabs] Z ((1_261)2> B — O(].) = Q(\/T)

Proof Sketch. Within each block, up until the learner discovers the singleton, for each unique sample
the learner sees, predicting — is wrong with probability around 1/B, predicting + is wrong with
probability around 1 — 1/B, and abstaining will incur abstention error with probability 1/B. Since
each block is B and sampling uniformly over B elements, the number of unique samples within the
block is ©2(B), so the minimum expected error per block incurred is at least £2(1). Summing over all
of the blocks gives the desired bound of Q(B).

For the full proof, see appendix [A]

4 Upperbound for Half-spaces in R>

We will consider learning biased half-spaces in 2 dimensions, VC-dimension 3 classs. Formally,
X=R%and F = {f | Jw,b e R?st f(z) = (w'a+b>0)V f(z) = (w 2z +b>0)}[

Learner. Our learner is a generalization of the learner for VC-dimension 1 classes in [GHMS24].
At a high level, all of the learners for this setting (including the one for axis-aligned rectangles in
[GHMS24])) guess if being incorrect tells the learner something about the past samples they have
recieved. For our learner (and the VC-dimension 1 learner), sets of past examples can ‘vote’ for the
learner to predict = has some label ¢ if being wrong permanently decreases the number of ways that
set can be labeled conditioned on the labels of the past examples with the label £. It is not too hard to
show that this algorithm gives a mistake bound for any setting with a finite number of labels, but it is
more difficult to show that it can simultaneously bound the number of incorrect abstentions. This is
done in [GHMS24] by exploiting structure inherent to all VC-dimension 1 classes, and we will do it
by exploiting the geometric structure of half spaces.

For each label £ € {1, 1}, define @, : X* x X* — Nas ®,(U,5) = [{fv | f € Fis_e}|-

'Interestingly, any VC dimension 1 class is equivalent to prefixes of some rooted tree [BDI3].
Half-spaces in 1 dimension essentially reduce to thresholds which have been explored in prior work (see
[GHMS?24] for discussion).
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Where fy; is f with its domain restricted to U, and Fis_,, = {f' € F | f'(z) = £ Vx € S}. In
other words, for any set of samples U, and set of labeled samples .S, ®,(U, S) counts the number of
distinct ways to label U while being consistent with labeling all of S as ¢.

Define the voting function used by the learner

pﬂ(xv Sv U) = Z ((I)é({a’v b}v U) - (I)é({a’v b}v Uu {x}))

(a,b)es

The learner is defined in algorithm T}

Algorithm 1: Learner for half-spaces in R?

Set St =0,5"=0,S=0
fort=1,...,Tdo

Receive z;

if ST = () then predict §; = —1

else
if S~ = () then predict §; = 1

else
if 3¢ € {—1,1} st g, = £ is inconsistent with S then predict ¢, consistent with S
else

if maxye(_1.1y p—e(x, 5%, S7¢) > « then predict
?Jt = argmaXZE{—l,l}p—f(‘T7 S£7 Sil)
else predict gy = L
Upon receiving label y;, update SYt + SYt U {x:},and S < S U {(z¢, y¢) }-

Theorem 2. If F is biased half-spaces in R?, then algorithm|I|achieves
T2

E[Errm:s) = O(
o

) E[Erres] = O alnT)

Note that with a = T%/3, we can bound both types of error by O(T2/3).

Proof Sketch. The main idea is in two parts, one for the mistake bound, and one of the abstention
bound, both using « but in inverse ways. each voting pair can only vote incorrectly a small number of
times, so we can bound the number of mistakes using the voting threshold («) and the total number
of voting pairs. For abstention error, we show that for every set of samples of size four, either one of
them would not be abstained upon by the learner, or one of them is voted for by a pair of the others,
regardless of the what the adversary does. This allows us to show that good probability (controlled by
«) the next iid samples will receive sufficient votes to not be abstained upon.

A higher « reduces the number of mistakes the learner can make, but also increases the likelihood of
abstaining on iid samples, by choosing the correct value to balance them, we can make both sublinear.

For the full proof, see appendix B

5 Conclusion

We showed that there exist simple concept classes which can not be learned with error under Q(v/7T)
when the iid distribution is unknown, as opposed to being able to learn with error O(In T") for finite
VC-dimension. We also showed that half-spaces in R? are learnable with error O(T%/3).

A promising direction for future work is to extend the algorithm for half-spaces to work in R", the
most simple modification could possibly achieve an error of 71~/("+1) Tt remains open whether
half-spaces can be solved with error O(v/T).

Characterizing learnability in the unknown distribution setting remains an open problem. Although
some finite VC-dimension classes are not learnable with logarithmic error, it is unknown whether all
are learnable with sublinear error.
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A Proof of theorem [

Proof. Since the within-block streams are i.i.d. from D, regardless of the non-adversarial block index
r, r is independent of the transcript and

B
1
E[Abstention Error] = E[A,] = B Z E[A;]. (1)
i=1

We fix an arbitrary (possibly randomized) learner and then fix its internal randomness (a standard
application of Yao’s minimax principle), making its behavior deterministic for the analysis.

Per-block analysis using the ''not-seen'' state. Fix a block . Let m € {1,..., B} be the number
of distinct support points that appear among its B draws. We order these distinct points by their
first encounter, k = 1,...,m. Let 7 € {1,...,m, m + 1} be the first-encounter index at which the
singleton appears, let 7 = m + 1 if the singleton does not appear. Conditional on the unlabeled
sequence of first encounters and the singleton appearing, 7 is uniform on [m]. The singleton appears
with probability m /B, so with probability 1 — m/B, 7 =m + 1.

For each k € [m], we define the learner’s pre-singleton action a5, € {+1,—1, L} to be the action
the learner takes at the k-th new point given the history in which the first £ — 1 first-encounters all
had label —1. This action is well-defined and depends only on the unlabeled sequence and the fixed
internal randomness, not on the true value of 7. On the event {7 > k}, the actual action at the k-th
first encounter equals a;. We only count errors forced by the singleton’s appearance:

e If af = +1: a mistake is made whenever 7 > k, contributing an expected error of
Pr(r > k|m)="5(m—k)/m+(1-"F)=(B—-k)/B.

* If a; = —1: a mistake is made exactly when 7 = £, contributing an expected error of
Pr(r=k|m)="51/m=1/B.

e If af =1: an abstention occurs whenever 7 > k. Via (I, this contributes Pr(7 > k |
Z(m—k+1)/m+1—m/B —
m)-(1/B) = £ A /B — Bkl

to the total expected error.

The total expected error, conditioned on m and the pre-singleton actions (a3, ), is the sum of these
costs over all steps. We can lower-bound the total error by summing these minimum costs at each
step. Recall that A; is the abstention error incurred at round ¢, and M; is the misclassification error.
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The total expected error for the block is the expectation over 7 of the errors forced by its position:

[ZM + 2 m,(ad)| > E, il{ai =+1}+1{a} = 71}+%Zl{az =1}
- k=1 k=1

§

<Pr(7’ > k)1{a; = +1} + Pr(r = k)1{a; = -1} + yl{az :J_}>

k=1

B—k. . 1. . B—k+1
(P57 1kt = 1} + led = -1+ T e =1 ).

I
NE

x~
Il

1

For any strategy, the cost is at least the sum of the point-wise minimums:

A, N . (B-k 1 B—k+1
E[M7;+B|m} Z};mm{ L 72 } 2)
Let j := B — k + 1 (re-indexing from the last encounter). The term inside the sum becomes

% min{j — 1,1,j/B}. For j = 1 (i.e., k = B), the minimum is 0. For j > 2 and j < B, we have
j/B <landj/B < j—1,so the minimum is j/B. The bound becomes:

A; i m(m+1)/2-1

From one block to all blocks. Since E[m(m + 1)/2 — 1] > E[m]?/2 — 1 for all m > 0, taking the
expectation over m yields:

E[M;] + %E[Ai] >E [m(m+ /2~ 1} JEmP/2-1 _ Em? 1

B2 = B2 2B B2
The expected number of distinct points is E[m] = B(1 — (1 — 1/B)?B) > B(1 — e~ !). Thus,

1 B2(1 —e1)2 1 (1—e1)2 1
J+ =EA] >~ 2 2
EIM] + BE[Al] - 2B? B? 2 2B?

Summing over all B blocks and using (I), we have ), E[M;] = E[Err,,;] and >, E[A;]/B =
E[Erraps). Therefore,

E[Errmis] + E[Erraps] > i ( (L—e?)* 312> -B <(1_2€1)2> —1

This gives the desired ©(+/7") bound. O

B Proof of theorem 2]

Proof. Notice that while ST = () or S~ = (), the learner can make at most 2 mistakes, and will
never abstain, so we will consider what happens after that initial phase.

Misclassification Error. Let ¢4, . . . t,, denote all the times when the learner makes a misclassification
error. Each time ¢; must have p_,, (z, S; Yti , Szfi ) > «, since the learner did not abstain, so

m m

—Yt, Yt,;
g Peye, (T, 5,0,y ) > E o= aBErrps
j i=1

Recall that @ ,({a, b}, S;“), which counts the number of ways a, b can be labeled conditioned on
S;* being labeled —¢. notice that ®_({a, b}, S;“) € {1,2,3,4} for any valid S—*, and also it can
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never increase when S—¢ grows. We can use this to make a complementary bound:

P—yf, (Iv S;ytasz:&gt)

N

m
Z P—yti (JZ, Sti,yti ) Sg!:i) S

i=1 t=1

Il
[M]=

Z ((I)yt({a,b},Siyt) _(I)yt({GJb}JSiyt U{l‘}))

=1 (a,b)es, ¥t

Il
N

((I)yf, ({av b}v Styt) - @yt ({(l, b}a S?Jtrl))

o~
Il

1 (a,b) S;yt

Yoo > D (@(fab), Sy — Poe({a b} S15))

e{—=1,+1} (a,b)eSt tE€T |y AL

Z Z ((I)fl({avb}vsae) - (I),Z({a,b}wS;l))

£€{~1,+1} (a,b)eS"

> POCESY!

£€{~1,+1} (a,b)eS?

() (5) <

The second to last step follows since there are at most 4 ways to label the pair a, b, and always at
least one (when conditioning on realizable labels) [’

IN

Combining these two bounds gives us that the number of misclassifications is at most O(%)

Abstention Error. We will first use an attackability argument to bound the probability of the learner
abstaining on the ith iid sample of label /.

Definition 2. For any hypothesis f, and history S C X a sample x € S is attackable if there exists a
set S" C X such that the learner abstains on x when given the history S' U S \ x labeled by f.

We will show that any set of samples .S has at most 2« attackable samples.

Let S be partitioned into S+ and S~ based on the labels.
For either ¢ € {+1, —1}, consider any {zo, 1, T2, 73} € (Sfm)4-

By Radons theorem there exist a partition of {xg,x1, 22, 3} into disjoint subsets U, T" such that
conv(U) N conv(T) # 0. There are two cases, in the first, one of the sets, has only one element,
then that element is clearly not attackable. In the other case, both U, T have two elements. Say
without loss of generality that U = {zo, 71} and w29 < w'z;. Then consider any z* € S=¢. If 24
lies on the line going through ¢, x1, then z; is not attackable (since f(xg) = +1 is not consistent
with f(x1) = f(x4) = —1). Call the open half-space defined by the line going through xg, x; that
contains x4, H. Without loss of generality, let 2 be in H.

Then, apply Radon’s theorem to xq, x1, z2, 24 to get the subsets U’, T” that have intersecting convex
hulls. Without loss of generality assume |U’| < |T”|. Note that U # {x}, since conv({z1, x2,24})\
{H} = {21}, and a similar argument shows that U’ # {x;}. Furthermore since all points in the
convex hull of zg, z1, x5 are labeled +, U’ # {x3}. Also, neither U’ nor T" are {z¢, x;}, since
conv({x2,z4}) C H, and similarly neither can be {x¢, 24}, since for any = € conv({zo, x4}),
either = z (and therefore is not in conv ({1, z2}) (assuming xy is not attackable), or w 'z <
w' o < Miyecony({zr,021) W' & = Migrez, oy w2

If the two sets are {xq, 2} and {x1, x4}, then 1 is not attackable, since setting it to — is inconsistent
with the other labels.

*In fact, it is not difficult to show that ®_,({a, b}, S;Z) > 3, but this is unnecessary for our purposes and
does not asymptotically improve our bounds.



231 This leaves one remaining possibility, U’ = {x5}. In this case, notice that there exists a concept
232 f' e F,with f'(xo) = —1, f'(x2) = +1, while compatible with any 5"~ (that is, any subset of X
233 that is labeled —¢ by f), is incompatible with f/(z1) = f'(z4) = —1, so

(o, 22}, STEUS U{a1}) < @ ({0, 22}, S US) 3)

So, for every four samples from S jl' 4» €ither one of them is not attackable, or some triplet of them

act as g, T1, T2 in eq. . Consider any set A C S* of non-attackable samples. By pigeon hole
14|

principle, for some x € A, for \jll of the elements of A* have x act as r; in eq.

3). Notice that

some pair a, b € S* can vote for z in at most |A| — 3 combinations from A* (once for every choice
of z3), so the number of unique pairs that act as xg, x2 while x acts as z; in eq. is at least

() A -1
AJ(|A] - 3) 12( 2 )

234 Then notice that, for any S’ that is labeled —¢ by f,
Al-1
o, 85,5708 = > (@({a, b}, STUS) = By({a,b}, ST US U{x})) > 5 (' '2 )
a,bes

235  Since z is not attackable (by the definition of A), this means that (‘A‘ 1) < a,andso, |A] < 48y/a.
236 So, if we sum over both labels, there are at most 96/« attackable samples.

237 Now notice that since non-adversarial samples are drawn iid, they are exchangeable, so any of the first
238 n such samples are equally likely to be the n™, so the probability that the n iid sample is attackable

239 1S at most %. If the n™ iid sample is not attackable, then the learner will not abstain on it. So, the
240 expected number of abstentions on non-adversarial samples is at most

Zf Va(logT +1) = O(valogT)
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