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Abstract

Physics-informed neural networks (PINN) have achieved notable success in solving
partial differential equations (PDE), yet solving the Navier-Stokes equations (NSE)
with complex boundary conditions remains a challenging task. In this paper, we
introduce a novel Hybrid Boundary PINN (HB-PINN) method that combines a
pretrained network for efficient initialization with a boundary-constrained mecha-
nism. The HB-PINN method features a primary network focused on inner domain
points and a distance metric network that enhances predictions at the boundaries,
ensuring accurate solutions for both boundary and interior regions. Comprehensive
experiments have been conducted on the NSE under complex boundary conditions,
including the 2D cylinder wake flow and the 2D blocked cavity flow with a seg-
mented inlet. The proposed method achieves state-of-the-art (SOTA) performance
on these benchmark scenarios, demonstrating significantly improved accuracy over
existing PINN-based approaches.

1 Introduction

Fluid mechanics is an important field in science and engineering that deals with the study of the
motion of liquids and gases. The NSE are basic partial differential equations that describe the
dynamic behavior of viscous fluids, which are highly nonlinear partial differential equations and
are widely used in aerodynamics, meteorology, oceanography, and industrial process simulations
Munson et al. [[1]. Although CFD methods have achieved considerable maturity, challenges such
as mesh generation persist and can lead to numerical instability and reduced accuracy[2]. In recent
years, PINNs, which integrate physical prior knowledge with deep learning [3]], have emerged as a
notable class of surrogate models for computational fluid dynamics.

PINN represent a deep learning methodology that incorporates physical constraints by embedding the
governing physical equations and boundary conditions into the neural network’s loss function. First
proposed by Raissi et al. in 2019 [4]], PINN eliminate the need for mesh generation, a requirement
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inherent to traditional CFD solvers, while enabling more efficient resolution of inverse problems
through data integration.

However, for fluid models with complex boundary conditions, conventional PINN methods often
struggle to accurately approximate both the boundary conditions and the partial differential equations
[S)]. For conventional PINN, boundary conditions and initial conditions are explicitly embedded into
the loss function, which is trained simultaneously with the PDE loss [4, 6]]. A notable limitation
of this loss formulation lies in its frequent failure to ensure simultaneous minimization of the PDE
residual loss and the boundary condition loss. This issue becomes particularly pronounced when
boundary conditions exhibit high complexity, thereby compromising the accuracy of the resultant
solutions [[7, 8}, 9]].

Here, to address the difficulty in balancing boundary condition losses and equation losses in complex
boundary flow field problems, we propose a composite network approach specifically for complex
boundary issues, named HB-PINN. By independently constructing a solution network that strictly
enforces boundary conditions and a boundary-oriented distance function network, this method
ensures applicability to diverse fluid dynamics problems with geometrically complex boundaries.
To demonstrate the effectiveness of the proposed method, we conducted tests on two-dimensional
incompressible flow fields under different boundary conditions, including steady-state and transient
cases.

The main contributions of this work are as follows:

1. We propose a new PINN approach named HB-PINN that are embedded the boundary
conditions to solve flow fields in regions with irregular obstructing structures.

2. A power function is proposed to refine the distance metric for handling complex boundary
conditions, thereby improving prediction accuracy.

3. Extensive experimental validations on NSE with complex boundary conditions—such
as the 2D cylinder wake problem and the 2D obstructed cavity flow with a segmented
inlet—demonstrate the superior accuracy of the proposed model compared to existing PINN
methods, thereby establishing new benchmarks.

2 Related Works

PINN methods for PDE. PINN were initially proposed by Raissi et al.[4]. The methods have
been extended to diverse domains, including: fluid mechanics|[ 10, [11], medical applications[12} 13]],
heat transfer[14} [15], and materials science[16l [17]. Furthermore, multiple PINN variants have
been developed based on PINN, such as: Modified Fourier Network PINN (MFN-PINN)[18]], hp-
VPINN[19], Conservative PINN (CPINN)[20]. These variants enhance the generalizability and
accuracy of PINN in solving heterogeneous PDE systems.

Loss conflict problems. The PINN framework explicitly embeds boundary and initial conditions into
the loss function, and the resultant loss conflict problem has garnered significant attention from the
research community. A pivotal development by Lu et al. (2021) [21]] proposes a distance-informed
ansatz that provably satisfies boundary conditions through analytically constructed solutions. This
architecture enables exclusive optimization of PDE residuals during training. SA-PINN [22] proposes
a spatially adaptive weight matrix to dynamically mitigate gradient conflicts between region-specific
loss components during optimization. XPINN [23]], as a generalized extension of PINN, introduces
an interface-informed decomposition framework for solving nonlinear PDE on arbitrarily complex
geometries. Although these methods show significant improvements in loss balancing compared
to baseline PINN models, they still suffer from inaccuracies when handling problems with highly
complex boundary conditions.

Complex boundary problems. Botarelli et al. [24] employed a Modified Fourier Network (MFN-
PINN) to solve flow field problems with complex boundaries, demonstrating its superiority through
comparisons with Multi-Layer Perceptron-based PINN (MLP-PINN). Sukumar et al. [25] proposed an
R-function-based distance function construction method for enforcing boundary conditions in PINN,
which significantly improves convenience in first-order derivative-dominated problems. However, the
complex boundary analytical distance functions (ADF) constructed by R-functions are not natural
functions.



To address the loss term conflicts induced by complex boundary conditions, this work decouples
the boundary constraints into two sub-functions: a particular solution function that strictly enforces
boundary conditions while being weakly trained on the governing equations, and a distance function
describing the spatial proximity to boundaries. Furthermore, to ensure global differentiability of the
distance function, we formulate it via a DNN architecture.

3 Methodology

3.1 Incompressible Navier-Stokes Equations

The incompressible Navier-Stokes equations, excluding external body forces, serve as the governing
equations for all flow cases in this study, expressed as:

1
V- -u=0, Z;l—k(u-V)u—i—pr—VVQu:O. (1)

In the equations, u, p, p, and v denote the velocity vector, fluid pressure, density and dynamic viscosity
coefficients, respectively. For incompressible flows, p and v are characteristic fluid parameters that
remain spatially and temporally invariant.

3.2 HB-PINN Approach

The architecture of our proposed method is illustrated in Fig[I] The framework consists of three
subnetworks: Np, Np, and N,. The N'p subnetwork (Particular Solution Network) is trained to
satisfy boundary conditions, while the N'p subnetwork (Distance Metric Network) learns boundary-
condition-aware weights by encoding the distance from interior points to domain boundaries. The N
subnetwork (Primary Network) is dedicated to resolving the governing PDE. During the final training
phase, only the parameters of A, are optimized, whereas Np and Np remain fixed as pre-trained
components. This design effectively addresses challenges involving hybrid interior-exterior boundary
configurations. Therefore, we term this methodology Hybrid Boundary Physics-Informed Neural
Networks.

In our model, the constraints on the variables are formulated as follows:

q(x,t) = Py(x,t) + Dy(x,t) - Hy(x, 1), 2)

here, g(-) denote the physical quantities of interest (e.g., u, v, and p in a 2D flow model); P, represents
an additional solution function that satisfies the boundary conditions; D, is the distance function;
"H, is the output of the primary network. The distance function D, takes a value of 0 at the domain
boundaries and rapidly increases to 1 as it moves away from the boundaries. Functionally, D, acts as
a weight for H,, modulating its influence across the computational domain.

Under this formulation, the distance function D, enforces strict boundary condition compliance
by evaluating to zero at domain boundaries while smoothly transitioning to H,, which satisfies the
governing equations in interior regions. When boundary conditions and geometric configurations
are simple, both P, and D, can be analytically expressed. However, analytical expressions for P,
and D, are generally infeasible for complex geometries. Consequently, we leverage three dedicated
deep neural networks (DNN) , the previously defined Np, Np, and N3 , to parameterize these
components. The composite solution for 2D incompressible flows is thus constructed as:

Ny(z,t) = Np, (z,t) + Np, (x,t) - Ny, (z,1). 3)
Sub-network N p

The subnetwork Ap adopts the same architecture as conventional PINN, with outputs comprising
the velocity components u, v, and pressure p. The loss function for training A'p is formulated by
integrating residuals of the NSE, boundary conditions (BC), and initial conditions (IC), expressed as:

L =X Lppg + A2Lic + A3Lpc, 4
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Figure 1: The architecture of the proposed method.
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Here, \;(i = 1,2, 3) denote the loss weighting coefficients corresponding to each term. Adjusting
these weights allows biasing the network’s training dynamics to enhance solution accuracy. Our
Np subnetwork prioritizes boundary and initial condition enforcement by assigning A2, Az > A1
(e.g., A1 = 1; Ag, A3 = 1000), enabling preliminary PDE training while strictly satisfying boundary
constraints.

By decoupling the training objectives, the subnetwork Np focuses exclusively on enforcing boundary
conditions through loss weight modulation, without imposing strict constraints on governing equation
residuals. This targeted approach circumvents the multi-loss balancing challenges inherent to
conventional PINN, while delegating full PDE resolution to the primary network A/%.

Sub-network N p

The Np subnetwork is a shallow DNN designed to construct distance functions. For each quantity
q of interest, we introduce a distance metric network Np_. To train this network, sampling points
(x,t) are firstly collected from the space-time domain §2 x [0, T]. The network is then supervised to

approximate the signed distance function ﬁq (z,t) between these points and the boundary associated
with g, formulated as:

D, = min(distance to the spatiotemporal boundary of ¢). ®)



In order to ensure the network outputs approach 0 near domain boundaries and rapidly increase to 1 in
regions far from boundaries, while maintaining dominance of the primary network A3, ’s predictions

in interior regions, we employ a power-law function f (ﬁq) derived from the distance metric D, as
the training labels for the subnetwork N'p, . The power-law function f(D,) is defined as follows:

f([)q) =1-(1- ﬁq/max(f)q))a. )

The parameter « is a positive value controlling the growth rate of the function. The curves exhibit
steeper gradients near boundaries and smoother transitions in regions distant from boundaries. Larger
« values enhance the sensitivity of the distance metric network to boundary-proximal points while
diminishing its response to interior points, thereby reducing computational demands. However,
excessively large o values may lead to erroneous predictions of near-boundary points as having
distance values close to 1, which undermines the influence of the specialized solution network in
critical regions. To accommodate varying boundary complexities across models, o can be tuned to
maintain the steepness of the power-law function within a reasonable range. The loss function for the
distance metric network is defined as:

NDq

Lp, = ﬁ S UD =1 (Py) 117 (10)
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Here, D, represents the network’s output, supervised by the training labels f (@q). This approach
ensures robust training of A'p, even under highly complex boundary conditions, while simultaneously
enhancing the accuracy of the primary network’s training outcomes.

Sub-network N 3

The N3 subnetwork also employs a DNN architecture but with a larger scale compared to the Np
and Np subnetworks. Through pre-training of the Np and N'p subnetworks, boundary conditions
are strictly enforced, allowing A/ to focus solely on minimizing the governing equation residuals.
For the 2D incompressible NSE, the loss function of the N3 subnetwork is defined as:

SRR ot 1 2
Ly = V~ﬁ2+H+ﬁ~Vﬁ+VA—1/V2ﬁ . 11
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While this formulation shares the same structure as Eq[7] the variables @1 and p are derived from the
modified outputs of Eq[2] This training strategy enables the N3, subnetwork to focus exclusively
on PDE compliance during optimization, effectively eliminating the conflicting gradients between
equation residuals and boundary condition losses that commonly plague conventional PINN.

4 Experiments

To evaluate the effectiveness of the proposed approach, three two-dimensional incompressible flow
cases are investigated, including two steady-state cases and one transient case, to demonstrate the
general applicability of our method across different flow fields.

The steady-state and transient incompressible Navier-Stokes equations were solved via the finite
element method (FEM), with mesh density ensuring solution accuracy and numerical stability. A
time step size of At = 0.01 was adopted for transient simulations. The CFD results obtained under
these configurations were utilized as ground truth (GT), the proposed HB-PINN is benchmarked
against the conventional soft-constrained PINN (sPINN) [4]], hard-constrained PINN (hPINN) [21]],
modified Fourier Network PINN (MFN-PINN) [18} 24], extended PINN (XPINN) [23]], self-adaptive
PINN (SA-PINN) [22], and PirateNets [26]. Notably, the hPINN, proposed by Lu et al.[21], exhibits
erratic behavior in scenarios with complex boundary conditions, often failing to produce reliable
results for comparative analysis. To ensure comparability of results, the comparative analysis of the
hPINN method in this study selectively relaxes the enforcement of boundary conditions in specific
subdomains, as exemplified by the near-inlet wall regions in Case 2 (0 < < 0.4,y =0& y = 1).
The detailed rationale for relaxing boundary conditions is provided in Appendix D. Additionally, to



assess the impact of our HB-PINN, we conducted three ablation studies on Case 2, the results are
provided in Appendix C.

In this section, the experimental setup is introduced first, followed by three case studies: steady-state
two-dimensional flow around a cylinder, steady-state flow in a segmented inlet with an obstructed
square cavity, and transient flow in a segmented inlet with an obstructed square cavity.

4.1 Experimental Settings

As illustrated in Fig. [T} the proposed HB-PINN takes space-time coordinates as inputs and outputs
velocity components (u, v) and pressure p. In the implementation phase, the training process employs
a distributed architecture: each subnetwork (Mp, Np, and Ny) utilizes three independent DNN
dedicated to variables u, v, and p, resulting in a total of nine distinct DNN. After obtaining separate
predictions for u, v, and p, these outputs are integrated through Eq. [3to reconstruct the composite
solution. For detailed training protocols refer to Appendix B.

In the models discussed in this study, the NSE are non-dimensionalized using characteristic scales.
For the three benchmark cases analyzed in the main text, the Reynolds number is uniformly set
to Re = 100 as the baseline configuration. Comparative studies at higher Reynolds numbers
(Re = 500, 1000, 2000) are systematically documented in Appendix E.

_L _ "
Figure 2: The trained boundary prediction for the Case 1. A'p, represents the result of the particular

solution network for u, while Npu, va, and Npp respectively represent the results of the distance
metric network for u, v, and p.
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Figure 3: Velocity distributions for the flow around a cylinder from different methods.

4.2 Case 1: Two-dimensional flow around a cylinder

The flow past a circular cylinder represents a canonical benchmark in fluid mechanics(see Appendix
A.1 for detailed geometric specifications). The boundary conditions are specified as follows:

u=1 x=0,0<y<1; u-ng, =0, others;
v-ny =0, ond p=0, z=50<y<l

Following Eq[4] the loss function for the A’p subnetwork in the proposed model is formulated as:
Lp =2 (1IV - al* + |19a/0t + (@~ V) @+ 1/pV—

N 2 2
sz Q) + A2 (HU’p - Z’{B”xeaQ =+ ||p’P - pB”xet%Z) .

Here, (2 denotes the interior of the geometric region, while 02 denotes the boundary. The loss weight
A1 for the equation part is set to 1, and the loss weight A, for the boundary part is set to 1000, with
the aim of making the network focus more on the training of boundary conditions.



The outputs of the Np and Np networks are shown in Fig[2] The final modification to the variable
result is as follows:

U = ./\/:pu (l‘,t) +NDU (a?,t)u/\/'Hu (l‘,t),’f} = va (l‘,t)'NHU (l‘,t), andﬁ = NDP (x,t)~NHP (m, t).

Since both v and p are set to O at the boundary, there is no need to configure the boundary results
separately; they are simply constrained by the distance function.

In the case of 2D cylindrical pipe flow model, the qualitative results from sPINN, hPINN, MFN-
PINN, XPINN, SA-PINN, PirateNet, HB-PINN are shown in FigEl The residuals of these methods
compared with CFD results are shown in Figld] More detailed error metrics are summarized in the
”Casel” section of Table[Tl

SPINN hPINN MFN-PINN

{ 125

= 1.00
X-PINN SA-PINN PirateNet
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HB-PINN(ours) 025
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Figure 4: The residuals of sPINN, hPINN, MFN-PINN, XPINN, SA-PINN, PirateNet, and our
HB-PINN compared to the GT in Case 1.

4.3 Case 2: steady-state flow in a segmented inlet with an obstructed square cavity

The model incorporates two rectangular obstructions positioned along the top and bottom walls
of a square cavity, with a segmented inlet configuration (see Appendix A.2 for detailed geometric
specifications). The boundary conditions are configured as follows:

u=0.5, x=0,y€[0,02]U[0.4,0.6]U[0.8,1]; wu =0, others;
v=0,0n09Q; p=0,z=1,y¢€][0.8,1]

The output results of the boundary condition solution function network related to v and the distance
function network for u, v, and p are shown in Fig@

Np, Np, Np,

] |
| | | |

Figure 5: The trained boundary prediction for Case 2. Ap, represents the result of the particular
solution network for u, while ] Dy> N, D, and N, D, respectively represent the results of the distance
metric network for u, v, and p.
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The velocity distributions for case 2 from sPINN, hPINN, MFN-PINN, SA-PINN, XPINN, PirateNet
and our HB-PINN are shown in Fig[6] Compared to existing methods, the HB-PINN framework
demonstrates superior capability in simulating models with complex inflow boundary conditions,
achieving a MSE reduction of an order of magnitude relative to CFD benchmarks. The residuals
of these methods compared with CFD results are shown in Fig. [/} More detailed error metrics are
summarized in the “Case2” section of Table[l

Based on Case 2, we conduct ablation studies on two critical pre-trained sub-networks by evaluating
the outcomes of separately employing the specific solution network and the distance metric network.
Here, “mP” denotes using only the particular solution network, while “mD” refers to using only the
distance metric network.

Under the mP approach, the distance function is normalized solely based on the distance to the
boundary without adjustment using power functions, resulting in lower accuracy within the domain.
Under the mD approach, while internal errors are reduced during training, the enforcement of
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Figure 6: Comparison of velocity distributions for Case 2 across different methods.
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Figure 7: The residuals of sPINN, hPINN, MFN-PINN, XPINN, SA-PINN, PirateNet, and our
HB-PINN compared to the GT in Case 2.

boundary conditions is imprecise, which affects the final results. These tests demonstrate that both
constructive functions in our method contribute positively to the solution process, further validating
the necessity of applying both functions simultaneously. The comparison of residuals is shown in
Fig[8] For a more detailed error analysis, please refer to TableZ]in Appendix C.
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Figure 8: Comparison of velocity results and residuals between the mP and mD methods in Case 2.

4.4 Case 3: transient flow in a segmented inlet with an obstructed square cavity

The difference between this model and case 2 lies in the consideration of the transient situation,
which further increases the complexity of the boundary conditions. The boundary conditions are set



as follows: the inlet normal velocity u
is 0.5, the outlet static pressure is 0, and
the velocity at other boundaries is set to
0, satisfying the no-slip condition. The
initial conditions are set with the veloc-
ity components u, v and the pressure p
all equal to 0. Relative to Case 2, the
addition of initial conditions:

u=0,v=0,p=0, t=0

The network structure parameters cho-
sen for the transient case are the same as
those for case 2. Fig.[9]shows the veloc-
ity results obtained using different meth-
ods at t = 1. In the transient case, due to
the increased complexity of the bound-
ary conditions, the accuracy of the other
methods significantly decreases, while
HB-PINN maintains a high level of ac-
curacy. The velocity results and the error
compared to the CFD method are shown
in Fig.[T0] These results demonstrate the
versatility of HB-PINN in both steady-
state and transient situations.

SPINN hPINN

SA-PINN PirateNet

4.5 Result Discussion

Table 1: Comparative analysis of error metrics across three
Cases.Among the baseline methods, PirateNet achieves the
highest accuracy, while HB-PINN represents our proposed

methodology.
Case Method Error Metrics
MSE({) MAE() Relative L2(})

sPINN 0.52078  0.64216 0.668 05
hPINN 0.58347  0.52729 0.70712
MEN-PINN  0.42373 0.57410 0.21363

Case 1 XPINN 1.11924  0.909 27 0.979 36
SA-PINN 0.05325 0.18967 0.21363
PirateNet 0.00763  0.06689 0.08089
HB-PINN 0.00433  0.02012 0.06093
sPINN 0.00801 0.05173 0.200 36
hPINN 0.04060 0.11242 0.45110
MEFEN-PINN  0.11626 0.21186 0.763 37

Case2 XPINN 0.02149 0.08385 0.32824
SA-PINN 0.00542 0.04580 0.164 95
PirateNet 0.00186  0.02357 0.09679
HB-PINN 0.00088  0.01888 0.06655
sPINN 0.12400 0.21876 0.78819
hPINN 0.15559 0.23951 0.88288
MEN-PINN  0.10543 0.20150 0.726 78

Case3 XPINN 0.04149 0.12028 0.45592
SA-PINN 0.10612  0.196 42 0.72915
PirateNet 0.03202  0.10682 0.40054
HB-PINN 0.00825  0.04870 0.20332

MFN-PINN

HB-PINN(ours)

CFD(GT)

. 0.75
050
025
. 0.00

Figure 9: Comparison of velocity distributions at t = 1 for different methods in Case 3.

=)

The quantitative results of the error metrics between CFD calculation and the predictions from sPINN,
hPINN, MFN-PINN, SA-PINN, XPINN, PirateNet and HB-PINN for the three cases are presented

HB-PINN can accurately solve complex boundary flow problems with interior barriers, while the
traditional soft-constrained PINN (sPINN) method and hard-constrained PINN (hPINN) method
incur significant errors in solving such problems. The training results of SA-PINN and XPINN
show improvements in accuracy; however, significant errors persist in the cases with more complex

boundary conditions.
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Figure 10: The residuals of SPINN, hPINN, MFN-PINN, XPINN, SA-PINN, PirateNet, and our
HB-PINN compared to the GT in Case 3.

5 Limitations

The optimal values of critical parameters in the methodology, such as the o parameter in the distance
metric network and the training iterations of the particular solution network, are currently determined
empirically. Further research is required to systematically identify their optimal configurations.

6 Conclusion

PINN hold great potential as surrogate models for fluid dynamics; however, their application is often
hindered by the complexity of the NSEs and intricate boundary conditions. This paper introduces
a novel method, HB-PINN, which features a primary network focused on inner domain points and
a distance metric network that enhances predictions at the boundaries, ensuring accurate solutions
for both boundary and interior regions. This makes the approach applicable to be adaptable to
more complex fluid dynamics models. Through tests on steady-state two-dimensional flow around a
cylinder, steady-state segmented inlet with obstructed square cavity flow, and transient segmented
inlet with obstructed square cavity flow, our method outperforms typical PINN approaches by a large
margin, establishing itself as a benchmark for solving NSEs with complex boundaries. Additional
analysis is provided in the appendices to further illustrate the effectiveness of our method.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction address the challenges encountered in modeling
complex-boundary systems, systematically analyze their underlying causes, and demonstrate
enhanced predictive accuracy in such scenarios through the proposed methodology.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The conclusion and supplementary materials explicitly address the current
limitations of the proposed methodology.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate ’Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: For all theoretical constructs mentioned, complete assumptions and complete
proofs are provided.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The architecture of the framework is elaborated in Section 3, while compre-
hensive training details are provided in Appendix B.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The source code is not currently open-sourced but will be made publicly
available after further organization in future work.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Detailed training specifications are provided in Appendix B.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The figures and tables in this paper are primarily evaluated using the mean
squared error (MSE) metric, with additional data from alternative error assessment methods
provided.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section 4 documents the machine learning frameworks and hardware configu-
rations utilized in this work.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have strictly followed the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our work provides a positive contribution to the advancement of Physics-
Informed Neural Networks (PINNs), while potential negative societal impacts are deemed
negligible given the fundamental methodological focus and current scope of application.

Guidelines:
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» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: the paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All methodologies are accompanied by proper citations.
Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

17



13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Supplementary Geometric Details

A.1 Casel:Flow around a Cylinder

0 5

Figure 11: Scheme of the two-dimensional flow around a cylinder.

Case 1 corresponds to the canonical flow past a circular cylinder. As schematically depicted in Fig[TT]
Following non-dimensionalization, the computational domain is configured with a length of 5 and
a width of 1. A circular obstruction with diameter D = 0.2 is centered at (z,y) = (0.5,0.5). The
boundary conditions are defined as follows:

* Inlet (Left Boundary): Horizontal inflow velocity u = 1, v = 0.

* Qutlet (Right Boundary): Static pressure fixed at p = 0.

* Top/Bottom Boundaries: No-slip walls (u = v = 0).
This configuration corresponds to a Reynolds number Re = 100, with the dimensionless density

p = 1. The dynamic viscosity v is determined by the Reynolds number formula Re = %, where u
denotes the characteristic velocity and D the characteristic length.

A.2 Case2:Steady-State Flow in a Segmented Inlet with an Obstructed Square Cavity

0 1

Figure 12: Scheme of the Segmented inlet with obstructed square cavity flow.

The model features two rectangular obstructions positioned at the top and bottom walls of a square
cavity with an edge length of 1 unit. As illustrated in Fig[T2] the inlet is divided into three segments,
and the obstructions have a width of 0.2 units and a height of 0.3 units. The boundary conditions are
defined as follows:

¢ Inlet: Normal inflow velocity u = 0.5, v = 0.

* Qutlet: Static pressure set to p = 0.

* Other Boundaries: No-slip conditions (u = v = 0) on all walls and obstruction surfaces.

In Case 3 of the main text, the geometric configuration remains identical to that of Case 2, with the
sole distinction lying in the incorporation of transient flow dynamics.
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B Training Details

The framework is developed on the PyTorch machine learning platform, and training iterations are
accelerated using a high-performance GPU.

B.1 Casel
Subnetwork Np:
* Network architecture: Three separate deep neural networks (DNNs) for variables u, v, and p,
each structured as [2] + 6 x [64] + [1]
* Training epochs: 10,000
¢ Activation function: tanh
e Optimizer: Adam
* Learning rate: 1 x 1073

Subnetwork Np:

* Network architecture: Three separate DNNs for u, v, and p, each structured as [2] +4 x [20] 4 [1]
* Training epochs: 300,000

* Activation function: tanh

* Optimizer: Adam

* Learning rate: Initial learning rate of 1 x 103 with a learning rate annealing strategy
ca=10

Subnetwork N3 :

* Network architecture: Three separate DNNs for u, v, and p, each structured as [2] 46 x [128]+[1]
* Training epochs: 300,000

* Activation function: tanh

e Optimizer: Adam

* Learning rate: Initial learning rate of 1 x 10~2 with a learning rate annealing strategy

B.2 Case2
Subnetwork Np:
» Network architecture: Three separate deep neural networks (DNNs) for variables u, v, and p,
each structured as [2] + 6 x [64] + [1]
* Training epochs: 10,000
¢ Activation function: tanh
e Optimizer: Adam

* Learning rate: 1 x 1073
Subnetwork Np:

* Network architecture: Three separate DNNs for u, v, and p, each structured as [2] +4 x [64] + [1]
* Training epochs: 300,000

* Activation function: tanh

e Optimizer: Adam

* Learning rate: Initial learning rate of 1 x 10~2 with a learning rate annealing strategy

e a=25
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Subnetwork N7 :

* Network architecture: Three separate DNNs for u, v, and p, each structured as [2] 46 x [128]+[1]
¢ Training epochs: 500,000

* Activation function: tanh

e Optimizer: Adam

* Learning rate: Initial learning rate of 1 x 10~2 with a learning rate annealing strategy

B.3 Case3
Subnetwork Np:
* Network architecture: Three separate deep neural networks (DNNs) for variables u, v, and p,
each structured as [3] + 6 x [64] + [1]
* Training epochs: 10,000
¢ Activation function: tanh
¢ Optimizer: Adam

* Learning rate: 1 x 1073
Subnetwork Np:

* Network architecture: Three separate DNNs for w, v, and p, each structured as [3] +4 x [64] +[1]
* Training epochs: 300,000

e Activation function: tanh

* Optimizer: Adam

* Learning rate: Initial learning rate of 1 x 103 with a learning rate annealing strategy

ca=2>5
Subnetwork Ny,:

* Network architecture: Three separate DNNs for u, v, and p, each structured as [3]+6 x [128]+[1]
* Training epochs: 500,000

* Activation function: tanh

* Optimizer: Adam

* Learning rate: Initial learning rate of 1 x 10~2 with a learning rate annealing strategy

B.4 Other PINN methods
* Network architecture: Three separate DNNs for u, v, and p, each structured as [2]46 x [128]+[1]
¢ Training epochs: 500,000
* Activation function: tanh
e Optimizer: Adam
* Learning rate: Initial learning rate of 1 x 10~3 with a learning rate annealing strategy

* Points per epoch: 20,000 (random sampling from domain)

C Ablation studies

The three ablation studies are as follows:
1. Comparative analysis of mP (particular solution network only) and mD (distance metric network

only) against hPINN and HB-PINN, where mP and mD represent experimental configurations
using isolated components of HB-PINN.
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2. Impact assessment of varying pre-training epochs for the particular solution network (Np) on
the final accuracy of the primary network.

3. Sensitivity analysis of the power-law exponent « in the distance metric network (Np), which
governs the transition steepness of the distance function, to evaluate its influence on solution
accuracy.

C.1 mP and mD

In this section, we evaluate the outcomes of separately employing the particular solution network and
the distance metric network, where mP refers to using only the particular solution network and mD
refers to using only the distance metric network. The experimental results are compared with hPINN
and HB-PINN, and velocity predictions are shown in Fig[I3]

CFD(GT) 100

Figure 13: Comparison of velocity results of the mP and mD methods in Case 2.
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Figure 14: The residuals of mP, mD, hPINN,and HB-PINN compared to the GT in Case 2.

Under the mP approach, the distance function is normalized solely based on the distance to the
boundary without adjustment using power functions, resulting in lower accuracy within the domain.
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Under the mD approach, while internal errors are reduced during training, the enforcement of
boundary conditions is imprecise, which affects the final results. These tests demonstrate that both
constructive functions in our method contribute positively to the solution process, further validating
the necessity of applying both functions simultaneously. The comparison of residuals is shown in
Fig[T4]More detailed error metrics are summarized in the "mP and mD” section of Table ??.

C.2 Particular solution network under different training epochs

In the HB-PINN method, the particular solution network (Np) is trained with a shallow deep neural
network (DNN) using a soft constraint approach, aiming to provide a pre-trained solution that satisfies
the boundary conditions, by tuning the weights associated with the loss terms, the network’s output is
rigorously constrained to strictly satisfy the boundary conditions. When the weight of the boundary
condition loss term in the loss function is set to an extremely high value (e.g., 1000), excessive
training iterations may lead to overfitting in local boundary regions, thereby compromising the global
smoothness of the network’s output. To mitigate this issue, a strategy with limited training iterations
is generally adopted. In this section, we supplement our analysis by investigating the impact of
different training iterations (10,000, 30,000, and 50,000) of A/» on the final training results. The
velocity results and their residuals relative to the CFD method are shown in Fig[T3][T6]

10000_epoch

30000_epoch

02 0 o 08
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CFD(GT) 100

Figure 15: Final velocity results for Np trained with 10,000, 30,000, and 50,000 iterations.

10000_epoch 30000_epoch 50000_epoch

Figure 16: Residuals of the final velocity results compared to the CFD method for Np trained with
10,000, 30,000, and 50,000 iterations.

As evidenced by the error metrics in Figure 15 and the “Epoch for A’p” section of Table 2, limiting
the training iterations of the particular solution subnetwork (Np) leads to lower global error within
the computational domain and more rapid convergence of the primary network (N%,). However, this
configuration results in reduced precision in boundary regions compared to cases where A/p undergoes
extended training.Currently, the number of training iterations for Np is determined empirically, and
further research is needed to balance accuracy and convergence speed optimally.
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C.3 Distance metric network under different o

This section evaluates the impact of four critical parameter values (o = 3, 5, 10, 15) in the distance
metric network on the predictive performance of the HB-PINN method. Notably, a = 5 corresponds
to the parameter configuration adopted in Case 2 of the main text. The velocity prediction results, as
illustrated in Fig[T7} demonstrate the sensitivity of model accuracy to variations in cv.
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Figure 17: Comparison of velocity results between HB-PINN and CFD for o = 3, 5, 10, and 15.
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Figure 18: Residuals between HB-PINN and CFD velocity results for a = 3, 5, 10, and 15.

The parameter o governs the steepness of the transition in the distance function near boundaries.
Excessively small o values (e.g., & = 3) result in insufficient sensitivity to boundary constraints,
while overly large « values (e.g., « = 10, 15) lead to excessively thin boundary layers, thereby
amplifying training challenges in boundary regions. The velocity prediction residuals compared to
CFD results and the statistical metrics of the mean squared error (MSE) are shown in Fig[T8 and
the « for NVp section of Tabld2] These results indicate that both undersized and oversized « values
degrade prediction accuracy. However, the selection of « currently remains empirically determined,
and identifying an optimal « value warrants further investigation.

C.4 Error Records

D Supplementary Details on Boundary Condition Relaxation in the hPINN
Method

In the hPINN method, using only boundary conditions to constrain the solution network Ap is
effective when the boundary conditions are simple. However, for complex boundaries, this approach
leads to distorted or discontinuous outputs within the solution domain, especially near junctions
between different boundary types.

Fig[T9] presents the results of the boundary particular solution network A/ from the original hPINN,
the hPINN with partially relaxed boundary constraints, and the HB-PINN. It can be clearly observed
that under the original hPINN framework, the output of the A’p network exhibits irregular solutions
within the domain. Since it is trained solely on boundary conditions, its internal results are uncon-
trollable. This significantly increases the training difficulty of the main network, even hindering
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Table 2: Comparative analysis of error metrics across ablation studies

Category Configuration Error Metrics({)
MSE() MAE() Relative L2(])
hPINN 0.04060 0.11242 0.45110
mP & mD mP 0.00484 0.04589 0.15575
mD 0.00409 0.02269 0.14329
HB-PINN 0.00088 0.01888 0.066 55
10000 0.00088 0.01888 0.066 55
Epoch for N 30000 0.00234 0.01907 0.108 33
50000 0.00248 0.01644 0.11169
3 0.00471 0.02577 0.153 74
o for V. 5 0.00088 0.01888 0.066 55
P 10 0.00177 0.02312 0.094 29
15 0.00140 0.02199 0.084 03

convergence — as we observed in our hPINN experiments: strict constraints on certain boundary
regions had to be relaxed for the main network loss to decrease effectively. The loss records in Table3]
fully demonstrate this point. In Relaxed hPINN, we relaxed the boundary constraints in the regions
0 <z <04,y=0&y =1, which indeed effectively promoted the reduction of loss during main
network training. However, this compromise violates the requirement for full boundary condition
satisfaction, which is unacceptable for solving physical models. This precisely highlights the dilemma
of traditional hard-constraint methods when handling complex boundary problems. Therefore, we
introduced the Np with weak equation constraints as an alternative solution aimed at more robustly
handling complex boundary constraints.
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Figure 19: Comparative Analysis of Particular Solution Network Results across Original hPINN,
Relaxed hPINN, and HB-PINN

Table 3: Loss comparison across different methods at various epochs
Epoch Original hPINN Relaxed hPINN HB-PINN

0 2335810 47.44 7.129
1000 15292 29.82 2.517
2000 1855618 30.75 1.797
3000 5720168 28.45 1.588

E Supplementary details of the transient case (Case 3).

In the main text of Case 3, we present the velocity results at t = 1 for the transient segmented inlet
with obstructed square cavity flow model. Att = 1, the flow can be considered to have developed to a
state approaching steady-state results. Fig[20[2T]22]23] display the velocity results at several time
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steps during the development of the transient model, specifically att =0.1,t=0.3,t=0.5, and t = 0.7,
to demonstrate that our HB-PINN method achieves high accuracy across all time steps when solving
the transient model. The errors in velocity relative to the CFD method are shown in Fig 24|25]26]27]

The velocity results at different time steps and their corresponding mean square errors relative to the
CFD method are quantitatively summarized in Tabled]
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Figure 20: Comparison of velocity distributions at t = 0.1 for different methods in Case 3.
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Figure 21: Comparison of velocity distributions at t = 0.3 for different methods in Case 3.
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Figure 22: Comparison of velocity distributions at t = 0.5 for different methods in Case 3.
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Figure 23: Comparison of velocity distributions at t = 0.7 for different methods in Case 3.
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Figure 24: Comparison of the residuals relative to the ground truth (GT) for sPINN, hPINN, SA-
PINN, XPINN, and our HB-PINN at t = 0.1 in Case 3.
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Figure 25: Comparison of the residuals relative to the ground truth (GT) for sPINN, hPINN, SA-
PINN, XPINN, and our HB-PINN at t = 0.3 in Case 3.
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Figure 26: Comparison of the residuals relative to the ground truth (GT) for sPINN, hPINN, SA-
PINN, XPINN, and our HB-PINN at t = 0.5 in Case 3.
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Figure 27: Comparison of the residuals relative to the ground truth (GT) for sPINN, hPINN, SA-
PINN, XPINN, and our HB-PINN at t = 0.7 in Case 3.

F Cross-sectional profiles and time-history results in high-gradient regions

This section compares the velocity and pressure predictions of sPINN, PirateNet, and HB-PINN in
high-gradient regions. Fig[28]displays the predictive results along the cross-section at y = 0.5 in
Case 2 compared with CFD results, while Fig[29|presents the temporal distribution of predictions
at the center point (0.5, 0.5) in Case 3 against CFD references. Both regions represent areas with
substantial gradients within their respective domains. The results demonstrate that HB-PINN achieves
optimal prediction accuracy for all physical quantities in both test cases.

Figure 28: Comparison of velocity and pressure profiles along the y = 0.5 cross-section in Case 2.
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Table 4: Comparative analysis of error metrics across different methods at multiple time steps

Error Metrics
MSE(]) MAE() Relative L2(])

Time Method

sPINN 0.11193 0.21171 0.78271
hPINN 0.16037 0.258 55 0.936 88
MEN-PINN 0.10544 0.206 14 0.75967
t=0.1 XPINN 0.056466 0.15106 0.546 99

SA-PINN 0.07638 0.17218 0.646 59
PirateNet 0.05228  0.14450 0.53493
HB-PINN 0.00873  0.05070 0.21864

sPINN 0.11906 0.21625 0.78815
hPINN 0.15441 0.24152 0.897 54
t=0.3 MFN-PINN 0.10933 0.20813 0.75523
XPINN 0.04174 0.12288 0.466 66

SA-PINN 0.06736 0.15283 0.592 80
PirateNet 0.01989  0.09057 0.32215
HB-PINN 0.00580 0.04194 0.17405

sPINN 0.12218 0.21831 0.78921
hPINN 0.15547 0.240 54 0.890 26
MEN-PINN 0.11164 0.20994 0.754 41
t=0.5 XPINN 0.04046 0.11980 0.454 16

SA-PINN 0.07700 0.16465 0.626 53
PirateNet 0.02027  0.08035 0.32152
HB-PINN 0.00700  0.04895 0.18901

sPINN 0.12368 0.21927 0.78948
hPINN 0.156 07  0.24033 0.886 85
MEN-PINN 0.11283 0.21061 0.754 05
t=0.7 XPINN 0.04087 0.11990 0.453 83

SA-PINN 0.08956 0.17947 0.67181
PirateNet 0.02522  0.09204 0.35652
HB-PINN 0.00805  0.05228 0.20079

sPINN 0.12400 0.21876 0.78819
hPINN 0.15559 0.23951 0.88288
MEFEN-PINN  0.10543  0.201 50 0.726 78
t=1.0 XPINN 0.04149 0.12028 0.45592

SA-PINN 0.10612 0.19642 0.72915
PirateNet 0.03202  0.10682 0.40054
HB-PINN 0.00825  0.04870 0.20332

Pressure

Figure 29: Comparison of Temporal Distributions of Velocity and Pressure at (0.5, 0.5) in Case 3.

G Steady-state flow in a square cavity with obstructed segmented inlet at
different Reynolds numbers

As an extension of the comparative study on three flow models under the Reynolds number Re =
100 scenario in the main text, this supplementary investigation systematically evaluates model
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performance at elevated Reynolds numbers (Re = 500, 1000, 2000) using the Case 2 configuration,
while strictly maintaining the original geometric structure and boundary conditions.
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Figure 30: Comparison of velocity results under different methods for steady-state flow in a square
cavity with obstructed segmented inlet at Reynolds number Re = 500.
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Figure 31: Comparison of velocity residuals relative to ground truth (GT) for steady-state flow in
a square cavity with obstructed segmented inlet at Re = 500, evaluated under different numerical
methods.
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Figure 32: Comparison of velocity results under different methods for steady-state flow in a square
cavity with obstructed segmented inlet at Reynolds number Re = 1000.
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Figure 33: Comparison of velocity residuals relative to ground truth (GT) for steady-state flow in a
square cavity with obstructed segmented inlet at Re = 1000, evaluated under different numerical
methods.
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Figure 34: Comparison of velocity results under different methods for steady-state flow in a square
cavity with obstructed segmented inlet at Reynolds number Re = 2000.
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Figure 35: Comparison of velocity residuals relative to ground truth (GT) for steady-state flow in a
square cavity with obstructed segmented inlet at Re = 2000, evaluated under different numerical
methods.

Fig[30[32|34] present the velocity predictions of different methods at Re = 500, 1000, and 2000,
respectively, while their residuals relative to high-fidelity CFD results are visualized in Fig[3T|33]35]
As shown in the MSE variation trends across Reynolds numbers (Fig[36)), all methods exhibit rising
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prediction errors with increasing Re. However, the proposed HB-PINN consistently achieves the
lowest MSE values at every Reynolds number.

Quantitative error metrics under multiple evaluation criteria are tabulated in Table[5] Notably,
HB-PINN achieves an order-of-magnitude reduction in MSE compared to conventional methods at
Re = 500 and 1000. Even under the most challenging Re = 2000 condition, HB-PINN demonstrates
a notable accuracy improvement.

Table 5: Comparative analysis of error metrics across different methods under varying Reynolds

numbers (Re).

Error Metrics

Re Method
MSE(l) MAE(]) Relative L2(])
sPINN 0.11463 0.20569 0.74024
hPINN 0.05682 0.13910 0.52116
MEN-PINN 0.12693 0.22163 0.77892
500 XPINN 0.08425 0.17904 0.634 62
SA-PINN 0.01379 0.07827 0.256 81
PirateNet 0.00591  0.05145 0.16819
HB-PINN 0.00071 0.01122 0.05865
sPINN 0.12541 0.21597 0.753 06
hPINN 0.068 73 0.15608 0.55750
MEN-PINN 0.13945 0.23243 0.794 08
1000 XPINN 0.10250 0.19643 0.68079
SA-PINN 0.05881 0.15842 0.51569
PirateNet 0.02666 0.11171 0.34722
HB-PINN 0.00364 0.02857 0.12837
sPINN 0.13326 0.22616 0.755 87
hPINN 0.08026 0.17093 0.586 63
MEN-PINN 0.15202 0.24213 0.807 34
2000 XPINN 0.13156 0.22341 0.75103
SA-PINN 0.07584 0.17681 0.57022
PirateNet 0.04191 0.14184 0.42391
HB-PINN 0.02075 0.06640 0.29832

hPINN
—&— MFN_PINN
—e— SAPINN

Model
—e— SPINN

—o— XPINN
—e8— PirateNet
HB-PINN

Reynolds Number
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Figure 36: MSE Comparison with Reynolds Numbers
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H The more complex obstructed cavity flow model
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Figure 37: Extended schematic of the segmented inlet configuration in an obstructed rectangular
cavity flow.

To validate the capability of our Hybrid Boundary Physics-Informed Neural Network (HB-PINN) in
handling geometrically complex scenarios, we extend Case 2 from the main text to a more intricate
configuration. As illustrated in Fig[37] the computational domain is expanded to a rectangular cavity
of width 2 and height 1. Two types of staggered obstructions are embedded within the cavity:

* Type A Obstructions: Width = 0.2, Height = 0.5
* Type B Obstructions: Width = 0.2, Height = 0.25

The segmented inlet configuration (see Appendix E.1 for geometric specifics) imposes a normal
inflow velocity v = 0.5, while the outlet, positioned at the upper-right corner of the cavity, enforces a
static pressure p = (. All other boundaries adhere to no-slip conditions (v = v = 0).

sPINN error_sPINN

l 1720
. 1505

HB-PINN(ours) error_HB-PINN 1290

1075

0.860

0.645

0.430

0215

0.000

025 050 075 100 125 150 175
X

Figure 38: Velocity predictions and residuals of sPINN versus HB-PINN in the extended obstructed
cavity flow model. Left: Velocity predictions; Right: Absolute errors relative to CFD; Bottom:
CFD-computed results.

Fig[38 compares the velocity prediction results of conventional soft-constrained PINN (sPINN) and
the proposed HB-PINN in the extended obstructed cavity flow model. As the geometric and physical
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complexity of the model increases, traditional PINN methods struggle to resolve conflicts between
competing loss terms (e.g., boundary condition residuals vs. governing equation residuals), leading
to significant performance degradation in velocity field predictions. In contrast, HB-PINN maintains
robust training convergence and achieves consistently accurate results. More detailed error metrics
are summarized in the "Complex Cavity Flow™ section of Table[6]

I Heat equation

To demonstrate the applicability of the HB-PINN method to other PDE systems, we evaluate its
performance on a two-dimensional transient heat conduction problem, governed by the following
equation:
oT o*T  0°T
= el Tl 12
ot a(8x2+8y2)’ (12)

T'(z,y,t) represents the temperature field, where the thermal diffusivity o = ﬁ is defined by the
thermal conductivity k, density p, and specific heat capacity c. The geometric configuration, shown in
Fig[39] features a square domain with edge length 1, containing four square heat sources (edge length
0.1) centered at coordinates (0.3,0.3), (0.3,0.7), (0.7,0.3), and (0.7,0.7). These heat sources are
maintained at a dimensionless temperature of 1, while all external boundaries are fixed at 0.

0 1

Figure 39: Geometric configurations employed in heat conduction problems

J Lid-driven Cavity flow

In this section, we evaluate the performance of HB-PINN in lid-driven cavity (LDC) flow, a classical
benchmark problem in computational fluid dynamics. The LDC flow involves simulating the motion
of an incompressible fluid within a two-dimensional square cavity, where the top lid is assigned a
horizontal velocity of u = 1, while the other walls maintain a no-slip condition. The boundary
conditions are mathematically formulated as follows:

u=1 0<z<1l,y=1; u =0, others;
v=20, ondQ; p=0, (0,0).

The velocity predictions of SPINN and HB-PINN are shown in Fig/d2] Due to the simpler geometric
configuration of the model compared to the cases discussed in the main text, the improvement in
accuracy is less pronounced than that observed in complex-boundary models. However, as evidenced
by the residual results in Fig43] HB-PINN exhibits significantly lower errors near boundaries. This
finding aligns with the conclusions drawn in Appendix G, demonstrating that HB-PINN consistently
achieves higher precision in boundary regions across diverse models. More detailed error metrics are
summarized in the "LDC” section of Table
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Figure 40: Comparison of temperature results at £ = 0.25, 0.5, 0.75, and 1.0 for the heat conduction
problem: (a) sPINN predictions; (b) HB-PINN predictions; (c) ground truth (GT).
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Figure 41: Residuals between predicted temperature and ground truth (GT) at ¢ = 0.25, 0.5, 0.75, and
1.0 for the heat conduction problem: (a) Residuals of sPINN predictions;(b) Residuals of HB-PINN
predictions.
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Figure 42: Comparison of Velocity Predictions Between sPINN, HB-PINN, and CFD in Lid-Driven
Cavity Flow.
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Figure 43: Residuals of Velocity Predictions Between sPINN, HB-PINN, and CFD in Lid-Driven
Cavity Flow

Table 6: Comparative analysis of error metrics across the more complex obstructed cavity flow, heat
equation, and Lid-Driven Cavity (LDC) flow

Error Metrics
MSE(]) MAE() Relative L2(])

sPINN 0.21589  0.25729 0.838 66
HB-PINN  0.01331 0.05637 0.20829

sPINN 0.00276 0.01780 0.10773
HB-PINN  0.00090 0.01071 0.06152

SPINN 0.00023 0.01152 0.05873
HB-PINN  0.00002 0.00377 0.02001

Problem Method

Complex Cavity Flow

Heat equation (t = 1)

LDC

K Training and Inference Times

Table 7: Comparison of Training and Inference Times

Method Training Time (1000 epochs) Inference Time
SPINN 31.1s -
hPINN 48.3s -
MEFEN-PINN 92.5s -
XPINN 101.5s -
SA-PINN 4145 -
PirateNet 106.9s -
HB-PINN 47.8s 0.29s
CFD - 17s
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