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ABSTRACT

Modern QA systems entail retrieval-augmented generation (RAG) for accurate
and trustworthy responses. However, the inherent gap between user queries and
relevant documents hinders precise matching. Motivated by our conical distribu-
tion hypothesis, which posits that potential queries and documents form a cone-
like structure in the embedding space, we introduce QAEncoder, a training-free
approach to bridge this gap. Specifically, QAEncoder estimates the expectation of
potential queries in the embedding space as a robust surrogate for the document
embedding, and attaches document fingerprints to effectively distinguish these
embeddings. Extensive experiments on fourteen embedding models across six
languages and eight datasets validate QAEncoder’s alignment capability, which
offers a plug-and-play solution that seamlessly integrates with existing RAG ar-
chitectures and training-based methods.

1 INTRODUCTION

“What I cannot create, I do not understand.” — Richard Feynman

Question Answering (QA) systems aim to generate accurate responses to user queries with appli-
cations in customer service (Xu et al., 2024), search engine (Ojokoh & Adebisi, 2018), healthcare
(Guo et al., 2022) and education (Levonian et al., 2023), necessitating proficiencies in informa-
tion retrieval, comprehension, and generation. Modern QA systems leverage large language models
(LLMs) such as ChatGPT (Achiam et al., 2023), supplemented with retrieval-augmented generation
(RAG) to address issues of outdated or hallucinatory information, especially for rapidly evolving
knowledge bases (Lewis et al., 2020; Huang et al., 2023; Gupta et al., 2024). The efficacy of RAG
hinges on its retrieval module for identifying relevant documents from a vast corpus. Dense re-
trievers (Lewis et al., 2020; Hofstätter et al., 2021), contrasted with keyword-matching-based sparse
retrievers (Jones, 1973; Robertson & Zaragoza, 2009), have enabled efficient and precise retrieval
by mapping queries and documents into a shared vector space. Despite advancements, a significant
challenge that persists is bridging the semantic and syntactic gap between user queries and docu-
ments, known as the document-query gap (Zheng et al., 2020). Three main approaches have emerged
to address this challenge: training-based alignment, document-centric alignment, and query-centric
alignment.

Training-based approaches (Dong et al., 2022; Li et al., 2022; W et al., 2023; Zhang et al., 2024a;
Khanna & Subedi, 2024) fine-tune or train embedding models from scratch with dedicated QA
datasets to close the representation of relevant queries and documents, but struggle to fully gener-
alize across new domains (Suprem & Pu, 2022). Furthermore, catastrophic forgetting necessitates
updating embeddings for the previously encoded corpus when new data is learned (Pan et al., 2024),
which is resource-intensive and practically unaffordable. Document-centric approaches (Wang et al.,
2023b; Gao et al., 2023; Kim & Min, 2024) generate pseudo-documents for user queries by LLMs,
which are then used to retrieve relevant information from the corpus, bridging the document-query
gap by LLMs’ zero-shot generalization capabilities. However, pseudo-document generation is both
costly and time-consuming, and increases the risk of hallucinated information (Wang et al., 2023b).
Contrastly, query-centric methods circumvent these problems.

Query-centric methods (Nogueira et al., 2019; Cheriton, 2019; Mallia et al., 2021b) generate and
index document-relevant questions to align the indexed context with user queries. However, existing
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solutions are predominantly based on sparse retrievers and have not fully leveraged the potential of
dense retrievers. Combining query-centric methods with dense retrievers remains heavily under-
explored. The naive solution can be storing all QA pairs into a vector database, but with several
notable challenges:

C1. Expanded Index Size. Storing all QA pairs significantly increase the index size, lead-
ing to substantial expansion in storage requirements, especially problematic for large-scale
corpora.

C2. Prolonged Retrieval Times. The index expansion also results in extended retrieval times.
For dense retrievers, the expanded index size can result in linearly increased search time in
both exhaustive and non-exhaustive search (Douze et al., 2024) and hurt the recall perfor-
mance in non-exhaustive case (Zhao et al., 2023).

C3. Limited Query Handling. Although storing QA pairs individually can address predicted
queries, this approach lacks robustness when confronted with the wide-ranging and diverse
nature of potential queries. Such a method may be unable to effectively handle rephrasing
in linguistic style, sentence structure, or even vocabulary, thereby compromising the overall
reliability and performance of the system (Alting von Geusau & Bloem, 2020).

Motivation Inspired by Feynman’s philosophy of learning (Reyes et al., 2021), we believe that
effective information retrieval for QA systems extends beyond mere information storage and funda-
mentally depends on the active processing, involving the query formulation. This process mirrors
human learning, where a deeper understanding of stored knowledge is achieved through thoughtful
reflection and inquiry. For instance, the well-established 5W1H framework (Who, What, When,
Where, Why, How) (Jinks, 2019) can be employed to systematically deconstruct information, fos-
tering a comprehensive and nuanced understanding. To circumvent and solve the aforementioned
challenges, we continue the research line of query-centric methods and introduce an innovative ap-
proach called QAEncoder. QAEncoder is motivated by a key observation termed conical distribution
hypothesis. Specifically, for a given document, its potential queries are embedded approximately
within a single cluster on some hyperplane in the semantic space, while the document embedding
lies on the perpendicular line intersecting the cluster center. Hence, the projection of the document
embedding onto this hyperplane, i.e. the cluster center, is significantly closer to the potential queries,
and can be utilized to optimize the original document embedding.

As demonstrated in Fig. 1, our method initially generates diversified queries (e.g. 5W1H) and then
estimates the cluster center by the Monte Carlo method. The similarity matrix reveals that, for any
query, the mean-query similarity is significantly higher than both document-query and other query-
query similarities. Hence, we advocate using the cluster center as a surrogate for the document
embedding in QA systems, which bridges the document-query gap robustly without extra index size
and retrieval latency.

Despite these advantages, the basic implementation encounters a critical challenge. While enhanc-
ing similarity with user queries, it simultaneously reduces the distinguishability between document
representations, as they all become query-like. To address this side effect, we further introduce
document fingerprint strategies to infuse unique document identities into representations and enable
state-of-the-art performance.

Contributions The main contributions can be summarized as follows:

• Methodological Innovations. We pioneer to bridge the document-query gap in dense re-
trievers from the query-centric perspective. Our method, QAEncoder, not only avoids extra
index storage, retrieval latency, training cost and hallucination, but also guarantees diver-
sified query handling and robust generalization. We further propose document fingerprint
strategies to address the side effect of distinguishability and achieve state-of-the-art perfor-
mance.

• Theoretical Discovery. We formulate the conical distribution hypothesis, providing a theo-
retical foundation for the alignment of document and query embeddings, which is validated
through extensive empirical analysis and provides deeper insights into semantic space in
QA systems.
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On July 20, 1969, Neil Armstrong landed on the moon to accomplish the  

Apollo 11 mission, achieved by NASA's planning and the Saturn V rocket.

Who was the astronaut landed on the moon as part of the Apollo 11 mission?

  When did Neil Armstrong land on the moon?

  Where did Neil Armstrong land as part of the Apollo 11 mission?

  What did Neil Armstrong achieve during the Apollo 11 mission?

  Why did Neil Armstrong land on the moon?

  How did Neil Armstrong successfully land on the moon?
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Figure 1: Illustration of QAEncoder’s alignment process: Solid lines represent diversified query
generation, while dashed lines indicate Monte Carlo estimation. The heatmap depicts the similarity
scores among the embeddings of the different queries, the document, and the mean estimation.

• Practical Applications. QAEncoder is designed as a truly plug-and-play solution, seam-
lessly integrating with existing RAG architectures and training-based methods. This inte-
gration significantly enhances system performance with minimal modifications required.

2 RELATED WORKS

Retrieval-augmented QA systems. Retrieval-augmented generation significantly improves large
language models in QA systems by incorporating a retrieval module that fetches relevant infor-
mation from external knowledge sources (Févry et al., 2020; Guu et al., 2020; Izacard & Grave,
2021; Zhao et al., 2024). Retrieval models have evolved from early sparse retrievers, such as TF-
IDF (Jones, 1973) and BM25 (Robertson & Zaragoza, 2009), which rely on word statistics and
inverted indices, to dense retrieval strategies (Lewis et al., 2020) that utilize neural representations
for enhanced semantic matching. Advanced methods, such as Self-RAG (Asai et al., 2023) which
determines if additional information is required and evaluates the relevance of retrieved content, and
RAG-end2end (Siriwardhana et al., 2023) that jointly trains the retriever and generator, represent
significant developments in this area. However, these methods still ignore the inherent semantic gap
between queries and documents.

Training-based alignment. Training-based approaches bridge the document-query gap generally
by contrastive learning (Xiong et al.; Qu et al., 2021) or knowledge distillation (Zhang et al., 2024a;
Khanna & Subedi, 2024). For instance, Dong et al. (2022) showed parameter sharing of the query
encoder and the document encoder improves overall performance by projecting queries and docu-
ments into shared space. Dual-Cross-Encoder (Li et al., 2022) and Query-as-context (W et al., 2023)
train embedding models from scratch with paired document-query samples. E5 (Wang et al., 2024a)
and GTE (Zhang et al., 2024b) concatenate different prompts before queries for instruction-tuned
embedding models that enhance downstream task adaptability, especially for QA systems. However,
training-based methods face high cost, generalization difficulty (Suprem & Pu, 2022), and catas-
trophic forgetting issue (Pan et al., 2024). Catastrophic forgetting, where the encoder continually
trained on new data loses previous function, is particularly detrimental as it necessitates the costly
re-encoding of entire corpora. Especially note that, unsupervised domain adaptation methods like
GPL (Wang et al., 2021), CAI (Iida & Okazaki, 2022) and AugTriever (Meng et al., 2022) are also
of great importance due to the annotation-free nature. E.g., GPL and AugTriever use pseudo-queries
as supervision for contrastive learning in new domains. However, they also face multi-domain adap-
tation challenges like task imbalance and catastrophic forgetting (Saunders, 2022).
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Figure 2: Architecture of QAEncoder. Left: Corpus documents are embedded using QAEncoder to
obtain query-aligned representations for indexing. User queries are encoded with a vanilla encoder
and used to retrieve relevant documents. Right: Internal mechanism of QAEncoder. QAEncoder
addresses the document-query gap by generating a diverse set of queries for each document to create
semantically aligned embeddings. Additionally, document fingerprint strategies are employed to
ensure document distinguishability.

Document-centric alignment. Document-centric methods, such as HyDE (Gao et al., 2023) and
Query2doc (Wang et al., 2023b), dynamically transform user queries into pseudo-documents using
LLMs for both sparse and dense retrievers. QA-RAG (Kim & Min, 2024) advances by implementing
a two-way retrieval mechanism that utilizes both user query and pseudo-documents for respective
retrieval. However, their effectiveness is highly dependent on the quality of pseudo-documents gen-
erated, which are susceptible to hallucinations, especially for latest information. Furthermore, in-
voking LLMs for each query imposes substantial computational costs and increases latency, leading
to degraded user experience.

Query-centric alignment. The seminal work, Doc2Query (Nogueira et al., 2019), mainly focuses
on the vocabulary mismatch problem for sparse retrievers by expanding the document with keywords
in predicted queries. The subsequent DocT5Query (Cheriton, 2019) improves by training a T5
model to predict queries. Based on DocT5Query, DeepImpact (Mallia et al., 2021a) further assigns
weights on keywords with neural estimation for more precise sparse representations. Though these
approaches have succeed for sparse retrievers, the integration with dense retrieval systems remains
largely unexplored.

3 METHOD

3.1 PROBLEM FORMULATION

Given a query q and a document corpus D = {d1, d2, ..., di, ..., dN}, our task is to retrieve a subset
of K most relevant documents D+ = {di1 , di2 , ..., dij , ..., diK} through vector search. We define
our embedding model as E(·), which maps each document d and query q from the textual space C to
a vector space Rr. The semantic relevance is quantified by the cosine similarity between the query
q and each document d in the embedding space, defined as:

sim(q, d) =
E(q)TE(d)

∥E(q)∥∥E(d)∥
. (1)

Furthermore, for each document d in our dataset, we invoke the query generator Q(·) multiple times
to generate n predicted queries {qi}ni=1, where the cluster center in embedding space is captured by
E[E(Q(d))] and estimated by Monte Carlo sampling E(Q(d)).
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(a) t-SNE visualization of the embedding space (b) Angular distribution of embeddings (c) Conical distribution in unit sphere 

Figure 3: Conical distribution hypothesis validation. The figure presents three visualizations
supporting the conical distribution hypothesis: (a) t-SNE visualization of queries derived from
various documents in the embedding space, illustrating distinct clustering behavior. (b) Angu-
lar distribution of document and query embeddings, showing the distribution of angles between
vd = E(d) − E[E(Q(d))] and vqi = E(qi) − E[E(Q(d))]. The angles form a bell curve just below
90°, supporting that vd is approximately orthogonal to each vqi and serves as the normal vector. (c)
3D visualization illustrating the conical distribution of the document (black point) and query (col-
ored points) embeddings within a unit sphere. The star indicates the queries’ cluster center.

3.2 CONICAL DISTRIBUTION HYPOTHESIS

In this subsection, we formally define the highly simplified conical distribution hypothesis and vali-
date its reasonableness with empirical analysis.
Hypothesis 1 (Conical Distribution Hypothesis). For any document d, the potential queries approx-
imately form a single cluster on some hyperplane H = {x ∈ Rr | w · x = b} in the semantic space,
where w ∈ Rr is the normal vector and b ∈ R is the bias term. Furthermore, the document embed-
ding E(d) lies on the perpendicular line intersecting the cluster center E[E(Q(d))]. Formally, the
relationship can be represented as:

E(d) ≈ E[E(Q(d))] + λw, λ ∈ R. (2)

Fig. 3 presents the validation approach, and we leave the details in Appendix A.6. Furthermore,
when the stronger hypothesis assuming the cluster follows the Gaussian distribution is adopted,
more quantitative analysis results are derived in the appendix.

3.3 QAENCODER

Building upon the conical distribution hypothesis, we introduce a novel encoding method, QAEbase,
which represents the document by the cluster center E[E(Q(d))] of potential queries, instead of the
document embedding E(d) itself. Formally, the transformation is defined as follows:

QAEbase(d) = E[E(Q(d))] ≈ E(Q(d)) =
1

n

n∑
i=1

E(qi). (3)

However, the ideal embedding model should not only bring related entries closer in the embedding
space but also separate unrelated entries as much as possible. Despite QAEbase enhances document-
query similarity compared to the original document embedding E(d), it poses the distinguishability
issue.

3.3.1 DOCUMENT FINGERPRINT STRATEGIES

The distinguishability issue arises because incorporating too much query semantics into document
representations suppresses their unique characteristics and renders unrelated documents more sim-
ilar. To address this issue, we introduce the document fingerprint strategies, which involve three
variations that enhance the uniqueness of document representations from different perspectives.
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Embedding fingerprint - QAEemb. The QAEemb strategy manipulates within the embedding space
and reintroduces unique identity of the original document, i.e. the document embedding E(d).
Specifically, QAEemb considers both the cluster center, QAEbase, and the document embedding,
E(d), balancing their contributions using a hyperparameter α. The adjusted embedding is formu-
lated as follows:

QAEemb(d) = (1− α) · E(d) + α · QAEbase(d) ≈ (1− α) · E(d) + α · 1
n

n∑
i=1

E(qi). (4)

Due to the linearity of the inner product space, the cosine similarity, i.e. the inner product between
the user query q and QAEemb(d), is mathematically equivalent to the weighted sum of the similarities
between the user query q and both E(d) and QAEbase(d), controlled by the hyperparameter α.

Textual fingerprint - QAEtxt. The QAEtxt strategy focuses on the textual space and injects the doc-
ument identity in a more straightforward manner. Let us define the length of text c in textual space as
|c|. Before embedding, each document d is enriched by concatenating it with predicted queries such
that the ratio of the length of the predicted queries and the length of the original document is about
β. Then, the final embedding is derived as the average representation of these enriched documents.

d∗i = concat(d, {qj}kj=1), s.t. |concat({qj}kj=1)| ≈ β|d|.

QAEtxt(d) =
1

n

n∑
i=1

E(d
∗

i ) =
1

n

n∑
i=1

E(concat(d, {qj}kj=1)).
(5)

For each enriched document d∗i , {qj}kj=1 are randomly and independently sampled from the query
generator Q(·). We point out that the hyperparameter β determines the proportion of the original
document and the potential queries in the concatenated text. When β is low, the concatenated text
degrades to the original document; when β is high, the document information is overwhelmed by
excessive query content, and the resulting length mismatch also hinders semantic matching.

Hybrid fingerprint - QAEhyb. The hybrid approach, QAEhyb, seeks to combine the benefits of both
the embedding and textual fingerprints for more sophisticated and nuanced document representa-
tions. Although QAEemb combines the document embedding E(d) and the cluster center E[E(Q(d))]
through linear interpolation, inherent differences between these embeddings suggest that a simple
linear interpolation should be suboptimal. Therefore, we explore the potential of substituting the
document embedding E(d) in Equation 4 with QAEtxt, which fuses the semantics of both docu-
ments and queries.

QAEhyb(d) = (1− α) · QAEtxt(d) + α · QAEbase(d). (6)

Note that a more straightforward alternative can be QAEhyb’(d) = (1 − α) · E(d) + α · QAEtxt(d),
which replaces QAEbase in Equation 4 with QAEtxt that integrates more document information. How-
ever, this substitution faces insufficient query semantics and limited improvements.

In our implementation, all the calculated embeddings are normalized for standardized cosine similar-
ity measurement. Our experiments confirm QAEemb and QAEhyb outperform QAEbase and QAEtxt.

4 EXPERIMENTS

Datasets and Metrics. To rigorously assess the effectiveness of QAEncoder, we employ six well-
known datasets: Natural Questions (NQ) (Kwiatkowski et al., 2019), SQuAD (Rajpurkar et al.,
2016), ELI5 (Fan et al., 2019), TriviaQA (Joshi et al., 2017), HotPotQA (Yang et al., 2018) and
MSMARCO (Nguyen et al., 2016). These datasets are extensively used for evaluating machine
reading comprehension and QA systems, providing a solid foundation for performance evaluation.
However, due to classical datasets are frequently utilized for pre-training or fine-tuning embedding
models1, they fall short in objectively reflecting the generalized alignment capabilities for queries

1See the fine-tuning data of bge-m3 https://huggingface.co/datasets/Shitao/
bge-m3-data.
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and documents, particularly in rapidly evolving and updated knowledge base. Recognizing this limi-
tation, we further test on two latest news datasets, the Chinese dataset CRUD-RAG (Lyu et al., 2024)
and the multilingual dataset FIGNEWS (Zaghouani et al., 2024) covering English, Arabic, French,
Hindi and Hebrew. Following the previous work (Li et al., 2022), we evaluate on the development
subset; the evaluation metrics include MRR, MAP and NDCG, capturing both the recall and ranking
capabilities. GPT-4o-mini serves as the query generator. We leave the results on MS-MARCO, Triv-
iaQA, HotPotQA, FIGNEWS(French), FIGNEWS(Hindi), FIGNEWS(Hebrew) datasets and MAP
metric in Appendix A.8 for space reason. We also leave implementation details in the appendix.

4.1 MAIN RESULTS

We mainly compare QAEncoder against the vanilla encoders. Query-centric methods for sparse
retrievers are also presented. Our comparison involves the following approaches:

• Sparse retrievers - BM25 (Robertson & Zaragoza, 2009), Doc2Query (Cheriton, 2019)
and DeepImpact (Mallia et al., 2021a).

• Dense retrievers - The state-of-the-art embedding models such as BGE models (Xiao et al.,
2024) by BAAI, E5 models (Wang et al., 2023a) by Microsoft, GTE models (Zhang et al.,
2024b) by Alibaba-NLP, Jina models (Günther et al., 2023) by Jina AI; Other well-known
models like Contriever models (Izacard et al., 2021) by Facebook Research, BCEmbedding
models (NetEase Youdao, 2023) by NetEase Youdao and the popular Text2Vec models (Xu,
2023). These models feature multilingual understanding and task-specific instruction tun-
ing capabilities. DPR (Karpukhin et al., 2020), the seminal dense retriever, is also included.
More detailed description can be found in Appendix A.3. We integrate them with QAEn-
coder to bridge the document-query gap. The search spaces for hyperparameters α and β
are [0.0, 0.15, 0.3, 0.45, 0.6, 0.75, 0.9] and [0.5,0.75,1.0,1.25,1.5] respectively. We adopt
grid search for QAEhyb.

4.1.1 EXPERIMENTS ON CLASSICAL DATASETS

As shown in Table 1, for sparse retrievers, Doc2Query exhibits some improvements over the stan-
dard BM25 method. However, the improvements are not as significant as DeepImpact. Conversely,
the DeepImpact method, which builds on Doc2Query and incorporates BERT for term weight as-
signment, achieves better performance across all metrics and datasets. This not only suggests that
non-neural retrievers have limited alignment capability, but also highlights the importance of weight
adjustment of document and query information.

Dense retrievers generally outperform significantly compared with sparse retrievers. For the state-
of-the-art embedding models such as BGE, E5, and GTE, integrating them with QAEncoder can
result into considerable performance enhancements, particularly for rare or unseen datasets. For
instance, the multilingual-e5-large model witnesses an MRR increase from 39.0 to 46.4 on the ELI5
dataset, due to the ELI5 dataset is heavily down-sampled during the fine-tuning (Wang et al., 2024a);
while the gte-base-en-v1.5 model improves its MRR from 68.1 to 74.8 on the SQuAD dataset, due
to the SQuAD dataset is not included in the fine-tuning data (Zhang et al., 2024b). It suggests that
even state-of-the-art embedding models suffer limited generalization, while QAEncoder provides
robust and generalized alignment. For other well-known models such as Contriever, BCEmbedding,
and Text2Vec, QAEncoder significantly improves them due to their limited generalization caused by
relatively smaller training datasets. E.g., the contriever model and its multilingual version, mcon-
triever, achieve improvements of 10.5 and 15.5 MRR points on the SQuAD dataset respectively.
More data is available in the appendix.

4.1.2 EXPERIMENTS ON LATEST DATASETS

In scenarios such as search engine, financial analysis, and news QA, large volumes of new data
constantly emerge and are indexed into retrieval base for accurate and up-to-date response. Hence,
the alignment capability for previously unseen user queries and relevant documents is crucial for
embedding models in RAG systems. We experiment on the latest news datasets, the multilingual
dataset FIGNEWS and the Chinese dataset CRUD-RAG, to avoid data leakage and mimic the real-
world scenarios.
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Table 1: Retrieval performance on classical datasets NQ, SQuAD and ELI5. Higher is better, with
the best one bolded. Hyperparameters including QAEncoder variants and weight terms α, β are
optimized simultaneously for all classical datasets. ‘-’denotes default or null values.

Model Param
NQ SQuAD ELI5

MRR@8 NDCG@8 MRR@8 NDCG@8 MRR@8 NDCG@8

Sparse
BM25 - 17.9 12.8 46.2 48.2 12.6 11.5

Doc2Query - 18.2 13.6 45.5 48.2 12.6 11.8
DeepImpact - 21.8 15.7 47.8 50.0 12.9 11.9

Dense

bge-large-en-v1.5
- 87.0 68.0 76.2 79.9 57.7 55.8

QAEhyb, α = 0.15, β = 0.5 88.2 69.1 78.2 81.8 59.1 57.3

multilingual-e5-large
- 86.0 66.3 86.2 88.9 39.0 37.6

QAEhyb, α = 0.15, β = 1.5 86.1 66.7 84.9 87.9 46.4 43.3

gte-base-en-v1.5
- 86.2 67.6 68.1 72.4 54.5 51.6

QAEhyb, α = 0.3, β = 0.5 85.5 67.4 74.8 78.7 57.0 55.1

jina-embeddings-v2-small-en
- 82.4 63.3 69.5 73.6 54.3 51.6

QAEhyb, α = 0.15, β = 0.5 83.3 64.1 72.4 76.2 53.8 51.6

contriever
- 78.8 60.8 64.8 69.4 51.3 49.8

QAEemb, α = 0.45 84.0 65.7 74.9 78.9 55.7 54.4

mcontriever
- 52.1 37.6 49.3 54.9 43.0 40.6

QAEhyb, α = 0.45, β = 0.75 61.4 45.9 64.7 69.5 51.0 48.3

bce-embedding-base-v1
- 74.4 55.5 77.2 81.3 47.3 45.0

QAEemb, α = 0.3 76.4 56.8 77.1 81.1 50.1 48.4

text2vec-base-multilingual
- 53.8 36.6 40.9 45.6 38.2 34.7

QAEhyb, α = 0.6, β = 0.5 66.6 47.2 56.2 60.6 43.4 40.8

dpr-multiset-base
- 77.3 60.3 59.3 64.9 59.6 57.3

QAEemb, α = 0.45 82.2 64.2 64.2 69.1 60.1 58.3

dpr-single-nq-base
- 77.6 60.7 60.3 66.1 57.3 55.4

QAEemb, α = 0.45 81.8 63.3 66.4 70.8 58.8 57.2

Table 2: Retrieval performance on the latest datasets FIGNEWS and CRUD-RAG. Higher is better,
with the best one bolded. Hyperparameters including QAEncoder variants and weight terms α, β
are optimized simultaneously for all lastest datasets. ‘-’ denotes default or null values.

Model Param
FIGNEWS(English) FIGNEWS(Arabic) CRUD-RAG(Chinese)

MRR@8 NDCG@8 MRR@8 NDCG@8 MRR@8 NDCG@8

bge-m3
- 74.3 78.2 77.7 80.5 86.8 88.9

QAEtxt, β = 1.5 77.1 80.8 80.0 82.8 89.0 90.8

multilingual-e5-small
- 70.9 74.7 74.0 77.1 81.7 84.2

QAEhyb, α = 0.3, β = 0.5 74.4 78.2 78.8 81.2 87.4 89.2

multilingual-e5-base
- 74.7 77.9 72.2 75.7 86.1 88.1

QAEemb, α = 0.3 77.4 80.7 77.1 80.0 88.5 90.5

multilingual-e5-large
- 73.8 77.5 76.6 79.9 85.7 88.1

QAEhyb, α = 0.15, β = 1.25 77.0 80.4 82.1 84.9 89.1 91.1

gte-multilingual-base
- 65.3 69.9 73.2 76.2 82.9 85.6

QAEhyb, α = 0.15, β = 1.5 75.3 79.0 76.2 79.0 85.5 88.0

mcontriever
- 32.8 36.3 40.1 44.2 71.7 75.8

QAEhyb, α = 0.45, β = 1.25 61.2 65.4 68.2 71.9 88.7 90.5

bce-embedding-base-v1
- 58.9 63.3 - - 76.8 80.3

QAEhyb, α = 0.3, β = 0.5 66.6 70.6 - - 85.9 88.1

text2vec-base-multilingual
- 38.5 43.0 27.7 31.4 12.1 13.7

QAEemb, α = 0.75 55.2 59.3 51.3 54.8 55.3 58.6

As illustrated in Table 2, for the latest datasets, QAEncoder significantly enhances the align-
ment of user queries with relevant documents across both state-of-the-art embedding models and
other well-known models. For instance, the gte-multilingual-base model’s MRR metric on the
FIGNEWS(English) dataset increases from 65.3 to 75.3. Similarly, the mcontriever model’s
MRR on the FIGNEWS(English) dataset improves from 32.8 to 61.2. Besides, the text2vec-base-
multilingual model’s MRR on the CRUD-RAG dataset rises from 12.1 to 55.3. These results con-
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Table 3: Performance comparison of QAEncoder variants on the latest datasets FIGNEWS and
CRUD-RAG. Higher is better, with the best one bolded. Hyperparameters are optimized simultane-
ously for all the latest datasets. n indicates the number of predicted queries in QAnaive.

Model Param
FIGNEWS(English) FIGNEWS(Arabic) CRUD-RAG(Chinese)

MRR@8 NDCG@8 MRR@8 NDCG@8 MRR@8 NDCG@8

bge-m3

QAEemb, α = 0.3 76.2 80.0 80.0 82.6 88.7 90.6
QAEtxt, β = 1.5 77.1 80.8 80.1 82.8 89.0 90.8

QAEhyb, α = 0.15, β = 1.5 77.3 80.7 80.6 83.3 89.4 91.2
QAEnaive, n = 10 76.8 79.5 76.9 79.2 85.9 87.8

multilingual-e5-large

QAEemb, α = 0.45 77.8 81.1 79.7 82.7 89.7 91.4
QAEtxt, β = 1.5 75.6 79.0 80.7 83.7 88.3 90.4

QAEhyb, α = 0.15, β = 1.25 77.0 80.5 82.1 84.9 89.1 91.1
QAEnaive, n = 10 76.8 79.4 76.5 79.2 84.9 86.8

Figure 4: Ablation on α and n hyperparameters for QAEemb and QAEnaive on FIGNEWS(English)
dataset. Left: The graph illustrates the impact of varying α values for QAEemb, where MRR in-
creases initially, peaks at α ≈ 0.45, and subsequently declines as α continues to rise. Right: The
graph depicts the effect of varying the number of predicted queries for QAEnaive, with MRR im-
proving as n increases, approaching stability at n = 10. The curves for different models are mostly
identical as the matching are largely driven by the alignment with the predicted individual queries.

firm QAEncoder’s remarkably generalized alignment capability across various embedding models
and multilingual datasets.

4.2 ANALYSIS AND DISCUSSION

For a more comprehensive assessment, we also report results of various QAEncoder ablations, i.e.
QAEemb, QAEtxt, QAEhyb and QAEnaive which directly stores predicted queries. Finally, we also dis-
cuss the relationship between QAEncoder and training-based as well as document-centric methods.

4.2.1 ABLATION STUDIES

We present the performance comparison of QAEncoder variants on two state-of-the-art multilingual
embedding models in Table 3. Generally, QAEhyb and QAEemb outperform the QAEtxt and QAEnaive
approaches. For instance, for the bge-m3 model, QAEhyb consistently outperforms other variants.
Conversely, the multilingual-e5-large model performs best with QAEemb. However, the best per-
formance differences between QAEemb, QAEtxt, and QAEhyb are not substantial, demonstrating the
robustness of our approach to hyperparameter variations. Regarding QAEnaive, it evidently under-
performs other ablations, despite storing 10 times the number of embedding vectors. This leads
to unacceptable storage management overhead and recall latency in large-scale production systems.
We provide more granular ablation experiments in Fig. 4, and the convergence speed of Monte Carlo
in Fig. 6.
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Table 4: Performance comparison of QAEncoder with training-based and document-centric meth-
ods on the latest datasets FIGNEWS and CRUD-RAG. Higher is better, with the best one bolded.
Hyperparameters are optimized simultaneously for all latest datasets. n denotes the number of
pseudo-documents in HyDE. ‘-’ indicates default parameters.

Model Param
FIGNEWS(English) FIGNEWS(Arabic) CRUD-RAG(Chinese)

MRR@8 NDCG@8 MRR@8 NDCG@8 MRR@8 NDCG@8

mcontriever-msmarco
- 65.9 70.0 70.1 73.5 85.0 87.4

QAEhyb, α = 0.3, β = 0.75 72.1 76.3 77.2 80.2 88.6 90.6

multilingual-e5-large-instruct
- 66.7 70.7 74.9 78.1 79.8 82.5

QAEhyb, α = 0.15, β = 1.5 75.5 79.4 80.7 83.5 88.9 90.6

mcontriever
- 32.8 36.3 40.1 44.2 71.7 75.8

HyDE, n = 8 24.9 27.6 35.1 40.4 70.7 74.2

multilingual-e5-large
- 73.8 77.5 76.6 79.9 85.7 88.2

HyDE, n = 8 63.4 67.7 68.2 73.8 81.5 83.9

4.2.2 TRAINING-BASED AND DOCUMENT-CENTRIC METHODS

Training-based approaches mainly include two categories, fine-tuning on QA datasets and multi-
task instruction datasets. We choose mcontriever-msmarco and multilingual-e5-large-instruct as
representative models respectively. Finally, we consider HyDE (Gao et al., 2023), a well-known
document-centric method for comparison.

Training-based and query-centric methods operate at training time and indexing time, respec-
tively. Therefore, integrating these approaches cloud lead to more improvements. As il-
lustrated in Table 4, both types of fine-tuned models significantly benefit from the QAEn-
coder. For instance, the mcontriever-msmarco model improves MRR from 70.1 to 77.2 on
FIGNEWS(Arabic); the multilingual-e5-large-instruct model’s MRR increases 8.8 and 9.1 MRR
points on the FIGNEWS(English) and CRUD-RAG(Chinese) datasets, respectively.

For document-centric methods, we investigate the widely-reported hallucination phenomenon on
latest datasets (Wang et al., 2023b; Gao et al., 2023; Kim & Min, 2024). Table 4 shows the recall per-
formance heavily decreases for all the latest datasets and both models, attributed to the hallucination
of pseudo-documents. Besides, the LLM invocation for pseudo-documents is both time-consuming
and costly. In our case, the time for single LLM invocation is more than 2000ms while the time
for vector search is less than 10ms. These highlight the irreplaceable importance and practicality of
QAEncoder method.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduce QAEncoder, a training-free approach to bridge the document-query
gap for more advanced QA systems. Based on our conical distribution hypothesis and document
fingerprint strategies, QAEncoder substitutes document embeddings with the expectation of query
embeddings, enriched with document information. Notably, QAEncoder operates with zero addi-
tional index storage, retrieval latency, training costs, or risk of hallucination. Extensive experiments
across multiple datasets, languages and embedding models further confirm its robust generalization,
diversified query handling and compatibility with existing RAG architectures and training-based
methods. Future Work: Despite these benefits, the current single-cluster hypothesis is overly sim-
plistic and limits the performance improvement. The multi-cluster version such as Gaussian mixture
models should be explored. Besides, since the query generator mainly generates simple queries,
out-of-domain issues with complex, multi-hop queries could happen. Various strategies including
data-driven proposal can be further investigated. We leave these research problems in the future
work.
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Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. arXiv
preprint arXiv:2004.04906, 2020.

Sujit Khanna and Shishir Subedi. Tabular embedding model (tem): Finetuning embedding models
for tabular rag applications. arXiv preprint arXiv:2405.01585, 2024.

Jaewoong Kim and Moohong Min. From rag to qa-rag: Integrating generative ai for pharmaceutical
regulatory compliance process. arXiv preprint arXiv:2402.01717, 2024.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

Zachary Levonian, Chenglu Li, Wangda Zhu, Anoushka Gade, Owen Henkel, Millie-Ellen Postle,
and Wanli Xing. Retrieval-augmented generation to improve math question-answering: Trade-
offs between groundedness and human preference. arXiv preprint arXiv:2310.03184, 2023.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Piktus, et al. Retrieval-augmented generation for
knowledge-intensive NLP tasks. In NeurIPS, 2020.

Zehan Li, Nan Yang, Liang Wang, and Furu Wei. Learning diverse document representations with
deep query interactions for dense retrieval. arXiv preprint arXiv:2208.04232, 2022.

Yuanjie Lyu, Zhiyu Li, Simin Niu, et al. CRUD-RAG: A comprehensive chinese benchmark for
retrieval-augmented generation of large language models. arxiv:2401.17043, 2024.

Antonio Mallia, Omar Khattab, Torsten Suel, and Nicola Tonellotto. Learning passage impacts for
inverted indexes. In Proceedings of the 44th International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 1723–1727, 2021a.

Antonio Mallia, Omar Khattab, Torsten Suel, and Nicola Tonellotto. Learning passage impacts for
inverted indexes. In Proceedings of the 44th International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 1723–1727, 2021b.

Kanti V Mardia, John T Kent, and Charles C Taylor. Multivariate analysis, volume 88. John Wiley
& Sons, 2024.

Goeffrey J McLachlan. Mahalanobis distance. Resonance, 4(6):20–26, 1999.

Rui Meng, Ye Liu, Semih Yavuz, Divyansh Agarwal, Lifu Tu, Ning Yu, Jianguo Zhang, Meghana
Bhat, and Yingbo Zhou. Augtriever: Unsupervised dense retrieval by scalable data augmentation.
arXiv preprint arXiv:2212.08841, 2022.

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. In ICLR, 2013. URL https://api.semanticscholar.
org/CorpusID:5959482.

12

http://dx.doi.org/10.1007/978-3-030-28902-7_4
http://dx.doi.org/10.1007/978-3-030-28902-7_4
https://api.semanticscholar.org/CorpusID:5959482
https://api.semanticscholar.org/CorpusID:5959482


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Inc. NetEase Youdao. Bcembedding: Bilingual and crosslingual embedding for rag. https:
//github.com/netease-youdao/BCEmbedding, 2023.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Majumder, and
Li Deng. Ms marco: A human generated machine reading comprehension dataset. choice, 2640:
660, 2016.

Rodrigo Nogueira, Wei Yang, Jimmy Lin, and Kyunghyun Cho. Document expansion by query
prediction. arXiv preprint arXiv:1904.08375, 2019.

Bolanle Ojokoh and Emmanuel Adebisi. A review of question answering systems. Journal of Web
Engineering, 17(8):717–758, 2018.

James Jie Pan, Jianguo Wang, and Guoliang Li. Survey of vector database management systems.
The VLDB Journal, pp. 1–25, 2024.

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Wayne Xin Zhao, Daxiang Dong, Hua
Wu, and Haifeng Wang. Rocketqa: An optimized training approach to dense passage retrieval for
open-domain question answering. In NAACL-HLT. Association for Computational Linguistics,
2021.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguistics, 2016.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In EMNLP, 2019.

Englevert P Reyes, Ron Mhel Francis L Blanco, Defanee Rose L Doroon, Jay Lord B Limana, and
Ana Marie A Torcende. Feynman technique as a heutagogical learning strategy for independent
and remote learning. Recoletos Multidisciplinary Research Journal, 9(2):1–13, 2021.

Stephen E. Robertson and Hugo Zaragoza. The probabilistic relevance framework: BM25 and
beyond. FTIR, 3(4):333–389, 2009.

Danielle Saunders. Domain adaptation and multi-domain adaptation for neural machine translation:
A survey. Journal of Artificial Intelligence Research, 75:351–424, 2022.

Shamane Siriwardhana, Rivindu Weerasekera, Tharindu Kaluarachchi, et al. Improving the domain
adaptation of retrieval augmented generation (RAG) models for open domain question answering.
TACL, 11:1–17, 2023.

Abhijit Suprem and Calton Pu. Evaluating generalizability of fine-tuned models for fake news
detection. arXiv preprint arXiv:2205.07154, 2022.

Yung Liang Tong. The multivariate normal distribution. Springer Science & Business Media, 2012.

Xing W, Guangyuan Ma, Wanhui Qian, Zijia Lin, and Songlin Hu. Query-as-context pre-training
for dense passage retrieval. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 1906–1916,
Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
emnlp-main.118. URL https://aclanthology.org/2023.emnlp-main.118.

Kexin Wang, Nandan Thakur, Nils Reimers, and Iryna Gurevych. Gpl: Generative pseudo labeling
for unsupervised domain adaptation of dense retrieval. arXiv preprint arXiv:2112.07577, 2021.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Improv-
ing text embeddings with large language models. arXiv preprint arXiv:2401.00368, 2023a.

Liang Wang, Nan Yang, and Furu Wei. Query2doc: Query expansion with large language models.
In EMNLP, 2023b.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Multi-
lingual e5 text embeddings: A technical report. arXiv preprint arXiv:2402.05672, 2024a.

13

https://github.com/netease-youdao/BCEmbedding
https://github.com/netease-youdao/BCEmbedding
https://aclanthology.org/2023.emnlp-main.118


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Improv-
ing text embeddings with large language models. In ACL, 2024b.

Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muennighoff, Defu Lian, and Jian-Yun Nie. C-pack:
Packaged resources to advance general chinese embedding, 2024. URL https://arxiv.
org/abs/2309.07597.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N Bennett, Junaid Ahmed,
and Arnold Overwijk. Approximate nearest neighbor negative contrastive learning for dense text
retrieval. In International Conference on Learning Representations.

Ming Xu. Text2vec: Text to vector toolkit. https://github.com/shibing624/
text2vec, 2023.

Zhentao Xu, Mark Jerome Cruz, Matthew Guevara, Tie Wang, Manasi Deshpande, Xiaofeng Wang,
and Zheng Li. Retrieval-augmented generation with knowledge graphs for customer service ques-
tion answering. In Proceedings of the 47th International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 2905–2909, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 2018.

Wajdi Zaghouani, Mustafa Jarrar, Nizar Habash, Houda Bouamor, Imed Zitouni, Mona Diab,
Samhaa R El-Beltagy, and Muhammed AbuOdeh. The fignews shared task on news media nar-
ratives. In Proceedings of The Second Arabic Natural Language Processing Conference, pp.
530–547, 2024.

Mingtian Zhang, Shawn Lan, Peter Hayes, and David Barber. Mafin: Enhancing black-box embed-
dings with model augmented fine-tuning. arXiv preprint arXiv:2402.12177, 2024a.

Xin Zhang, Yanzhao Zhang, Dingkun Long, Wen Xie, Ziqi Dai, Jialong Tang, Huan Lin, Baosong
Yang, Pengjun Xie, Fei Huang, Meishan Zhang, Wenjie Li, and Min Zhang. mgte: Generalized
long-context text representation and reranking models for multilingual text retrieval, 2024b. URL
https://arxiv.org/abs/2407.19669.

Penghao Zhao, Hailin Zhang, Qinhan Yu, Zhengren Wang, Yunteng Geng, Fangcheng Fu, Ling
Yang, Wentao Zhang, and Bin Cui. Retrieval-augmented generation for ai-generated content: A
survey. arXiv preprint arXiv:2402.19473, 2024.

Xi Zhao, Yao Tian, Kai Huang, Bolong Zheng, and Xiaofang Zhou. Towards efficient index con-
struction and approximate nearest neighbor search in high-dimensional spaces. Proceedings of
the VLDB Endowment, 16(8):1979–1991, 2023.

Zhi Zheng, Kai Hui, Ben He, Xianpei Han, Le Sun, and Andrew Yates. Bert-qe: Contextualized
query expansion for document re-ranking. In Findings of the Association for Computational
Linguistics: EMNLP 2020, pp. 4718–4728, 2020.

A APPENDIX

CONTENTS

A.1 Dataset Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

A.2 Metric Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

A.3 Baseline Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

A.4 Prompts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

A.5 Hyperparameter Search and Selection Suggestion . . . . . . . . . . . . . . . . . . 18

14

https://arxiv.org/abs/2309.07597
https://arxiv.org/abs/2309.07597
https://github.com/shibing624/text2vec
https://github.com/shibing624/text2vec
https://arxiv.org/abs/2407.19669


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.6 Proof of the Conical Distribution Hypothesis . . . . . . . . . . . . . . . . . . . . 18

A.7 Strong Conical Distribution Hypothesis . . . . . . . . . . . . . . . . . . . . . . . 19

A.7.1 Main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

A.7.2 Proof of Similarity Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . 20

A.7.3 Normality Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

A.7.4 Some properties of Gaussian distribution . . . . . . . . . . . . . . . . . . 21

A.8 More Figures and Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

A.1 DATASET DETAILS

• MS-MARCO is a large-scale dataset specifically designed for machine reading compre-
hension. It comprises real user queries collected through Bing search, paired with corre-
sponding passages retrieved from a comprehensive web document collection.

• Natural Questions (NQ) is a widely used dataset comprising real user queries submitted to
the Google search engine, paired with relevant Wikipedia pages. Each query is annotated
with a long answer (typically a paragraph) and a short answer (one or more entities). Each
question-answer pair corresponds to a single Wikipedia page, ensuring clarity in evaluating
information retrieval performance.

• TriviaQA is a dataset of question-answer-evidence triples, with over 650K entries, includ-
ing 95K question-answer pairs created by trivia enthusiasts. The evidence documents, typ-
ically sourced from Wikipedia or other web sources, average six per question.

• HotPotQA contains 113K Wikipedia-based question-answer pairs that require multi-hop
reasoning across multiple pages. Each pair includes a set of supporting sentences, which
are treated as evidence documents.

• ELI5 is a question-answering dataset consisting of question-answer-evidence triples, where
the questions are complex and often require detailed, multi-sentence responses. It contains
270K diverse and intricate questions that necessitate explanatory answers. To support each
response, web search results are utilized as evidence documents, enhancing the reliability
of the provided answers.

• SQuAD is a widely used reading comprehension dataset comprising 107K question-answer
pairs derived from 536 Wikipedia articles. Each question are specific text segments from
the relevant articles. In this dataset, the Wikipedia articles function as evidence documents,
supplying the essential context required for accurate response retrieval.

• CRUD-RAG is a benchmark specifically designed for evaluating RAG systems, incorpo-
rating the latest high-quality news data that were not included in the training phase of
the language models. It comprises more than 80K news articles sourced from prominent
Chinese news websites, all published after July 2023. From the set of queries generated
by GPT-4o-mini for each document, we randomly sample one to serve as the test query.
The original news is designated as the evidence documents for recall evaluation, ensuring
queries are associated with exactly relevant documents.2

• FIGNEWS is a multilingual news post dataset designed to examine bias and propaganda
within news articles across different languages. It consists of 15,000 publicly available
news posts collected from verified blue-check accounts between October 7, 2023, and Jan-
uary 31, 2024. The dataset includes posts in five languages—English, Arabic, Hebrew,
French, and Hindi—distributed evenly across 15 batches, each containing 1,000 posts.
Each batch consists of 200 posts for each language. Similar to CRUD-RAG, we randomly
sample one predicted query generated by GPT-4o-mini for each document and use the orig-
inal news as the evidence documents for recall evaluation.

2LlamaIndex adopts the same common practice and provides templated workflow, i.e. gen-
erating queries for recall and rerank evaluation. See https://www.llamaindex.ai/blog/
boosting-rag-picking-the-best-embedding-reranker-models-42d079022e83.
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A.2 METRIC DETAILS

For SQuAD, CRUD-RAG and FIGNEWS benchmarks, MAP metric is equivalent to MRR, as there
is only one related document per query.

• Mean Reciprocal Rank (MRR): Mean Reciprocal Rank: is a statistic measure used to eval-
uate the effectiveness of a retrieval system by calculating the reciprocal of the rank at which
the first relevant result appears. The mathematical formulation is:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki

Where: - |Q| is the number of queries. - ranki is the rank position of the first relevant
document for the i-th query.

• Mean Average Precision (MAP): Mean Average Precision is a measure that combines pre-
cision and recall. It computes the average precision value for a set of queries and then
averages these values. The mathematical formulation is:

MAP =
1

|Q|

|Q|∑
i=1

AP(i),

Where: - |Q| is the number of queries. - AP(i) is the average precision for the i-th query.
The average precision for a single query is given by:

AP =
1

R

n∑
k=1

P (k) · rel(k),

Where: - R is the total number of relevant documents for the query. - n is the number of
retrieved documents. - P (k) is the precision at cut-off k. - rel(k) is an indicator function
equating to 1 if the document at rank k is relevant, otherwise 0.

• Normalized Discounted Cumulative Gain (NDCG): Normalized Discounted Cumulative
Gain is a measure of ranking quality that takes into account the positions of the relevant
documents. It is based on the concept of discounting the relevance of documents based on
their position in the result list. The mathematical formulation is:

NDCG =
DCGp

IDCGp
,

Where: - DCGp is the Discounted Cumulative Gain at position p. - IDCGp is the Ideal
Discounted Cumulative Gain at position p, which is the DCG score of the perfect ranking.
The Discounted Cumulative Gain at position p is given by:

DCGp =

p∑
i=1

2reli − 1

log2(i+ 1)
,

Where: - reli is the relevance score of the document at rank i.
The Ideal Discounted Cumulative Gain IDCGp is computed in the same way as DCGp,
except that the documents are ideally sorted by relevance.

A.3 BASELINE DETAILS

• BM25 (Robertson & Zaragoza, 2009) is the traditional lexical retriever based on term rele-
vance and frequency, regarded as the most popular variation of TF-IDF.

• DocT5Query (Cheriton, 2019) appends generated queries to the document before building
the inverted index of BM25.

• DeepImpact (Mallia et al., 2021a) leverages DocT5Query to enrich the document collection
and estimates the semantic importance of tokens with fine-tuned BERT.
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• BGE models (Xiao et al., 2024)by BAAI, Jina models (Günther et al., 2023) by Jina AI, E5
models (Wang et al., 2023a) by Microsoft, GTE models (Zhang et al., 2024b) by Alibaba-
NLP are the most advanced embedding models, featuring multilingual understanding and
task-specific instruction tuning capabilities. We choose both vanilla encoders and QA-
specific instruction-tuned encoders for test.

• Contriever models (Izacard et al., 2021) are developed by Facebook Research, includ-
ing contriever, mcontriever, contriever-msmacro and mcontriever-msmacro. mcontriever
serves as the multilingual version of contriever. contriever-msmacro and mcontriever-
msmacro are further fine-tuned on the MS-MACRO dataset for bridging the document-
query gap.

• BCEmbedding models (NetEase Youdao, 2023), developed by NetEase Youdao, are bilin-
gual and crosslingual embedding models in English and Chinese. BCEmbedding serves as
the cornerstone of Youdao’s RAG-based QA system, QAnything, an open-source project
widely integrated in commercial products like Youdao Speed Reading and Youdao Trans-
lation. We choose bce-embedding-base for test.

• Text2Vec models (Xu, 2023) is a popular open-source project that implements Word2Vec
(Mikolov et al., 2013), RankBM25, BERT (Devlin et al., 2019), Sentence-BERT (Reimers
& Gurevych, 2019), CoSENT and other text representation models. We test its most promi-
nent model, text2vec-base-multilingual, which supports multiple languages, including Ger-
man, English, Spanish, French, Italian, Dutch, Polish, Portuguese, Russian, and Chinese.

• DPR models (Karpukhin et al., 2020) by Facebook adopt a bi-encoder architecture. DPR
models fine-tuned BERT on pairs of questions and passages without additional pretraining,
achieving superior performance compared to traditional methods like BM25. There are
two main variants, dpr-multiset-base and dpr-single-nq-base. dpr-multiset-base fine-tuned
on Natural Questions (NQ), TriviaQA, WebQuestions (WQ), and CuratedTREC (TREC),
while dpr-single-nq-base fine-tuned on the NQ dataset only.

• Training-based approaches mainly include two categories, fine-tuning on QA datasets or
multi-task instruction datasets. For fine-tuning on QA datasets, we choose mcontriever-
msmarco for test, an enhanced variant of the mcontriever model that has been fine-tuned
on the MS-MARCO. The second category involves fine-tuning models on multi-task in-
struction datasets, where distinct prompt prefixes are appended to the input text, enabling
the model to effectively differentiate between various tasks. In this category, we test the
multilingual-e5-large-instruct (Wang et al., 2024a) developed by Microsoft, which lever-
ages synthetic instruction data (Wang et al., 2024b) for fine-tuning.

• Document-centric methods instruct LLMs to generate a pseudo-document for each query.
The pseudo-document aims to capture relevant information but does not correspond to a
real document and may contain inaccuracies and hallucinations. Subsequently,the pseudo-
document is encoded, and its embedding is utilized to retrieve similar real documents based
on vector similarity. We choose HyDE (Gao et al., 2023) for test, which generates multiple
pseudo-documents and fuses their embeddings by mean pooling for retrieval.

A.4 PROMPTS

We employ specialized prompts to instruct gpt-4o-mini as the question and pseudo-document gen-
erator. Only the English version is presented due to LaTeX compilation issues with non-English
languages.
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Question Generator Prompt

Context information is below.
---------------------
[Document]
---------------------
Given the context information and not prior knowledge, generate

only questions based on the below query.
You are a Teacher/Professor. Your task is to setup [Number of

Questions] questions for an upcoming quiz/examination. The
questions should be diverse in nature across the document.
Restrict the questions to the information provided, and avoid
ambiguous references.

Output Format:
‘‘‘json
[

"1. question",
"2. question",
...

]
‘‘‘

Pseudo-Document Generator Prompt

Please write a passage to answer the question.
Question: [Question]
Output Format:
‘‘‘json
{

"passage": ""
}
‘‘‘

A.5 HYPERPARAMETER SEARCH AND SELECTION SUGGESTION

QAEemb maintains competitive performance with single hyperparameter. Hence, QAEemb is recom-
mended for accelerating HP search.

Firstly, we believe that the optimal hyperparameters are primarily influenced by the inherent char-
acteristics of the embedding model, i.e. the geometric property of embedding space. Therefore, a
one-turn search should be sufficient for a given embedding model. That’s why we optimize hyper-
parameters simultaneously across multiple datasets.

Secondly, the one-turn search can also be accelerated under our framework. Indeed, as Fig. 4
shows, the performance of QAEemb empirically follows a consistent trend across various models
and datasets: it initially rises and then falls as α increases, peaking between 0.3 and 0.6. This
unimodal phenomenon enables ternary search with logarithmic trails rather than brute-force search.

Finally, the property of datasets also slightly influences the optimal hyperparameters. Specifically,
the optimal α for classical datasets is marginally lower than that for latest datasets (refer to Tables 5
and 6 for details). Therefore, selecting the optimal α based on classical datasets represents a cautious
and robust strategy, ensuring consistent improvement across both classical and latest datasets.

A.6 PROOF OF THE CONICAL DISTRIBUTION HYPOTHESIS

This subsection provides the proof of the Conical Distribution Hypothesis, which proposes that
potential queries form a distinct cluster on a hyperplane in semantic space.
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Proof. Our validation is structured from three core aspects:

• Single-cluster sub-hypothesis verification. As illustrated in Fig. 3(a), we validate the
single-cluster sub-hypothesis by visualizing the embedding space using t-SNE dimension-
ality reduction techniques. This visualization displays that the predicted queries for each
document form distinct and cohesive clusters (different colored). And these clusters are
notably distant from the clusters of other documents, thereby supporting the single-cluster
sub-hypothesis.

• Perpendicular sub-hypothesis verification. To further assess the perpendicular sub-
hypothesis, let vd = E(d) − E[E(Q(d))] and vqi = E(qi) − E[E(Q(d))] be the vectors
from the cluster center to the document embedding and the individual query embedding,
respectively. As illustrated in Fig. 3(b), the degree distribution between vector vd and vec-
tor vqi exhibits a bell-shaped curve. The mean value is slightly less than 90 degrees, and
the primary range of distribution lies between 75 and 100 degrees, which confirms that vd
is approximately orthogonal to each vqi and can be regarded as the normal vector to some
hyperplane H.

• Conical distribution in unit sphere demonstration. Finally, we illustrate the highly sim-
plified conical distribution hypothesis within the unit sphere embedding space, as most
embedding models utilize normalized embedding vectors. As depicted in Fig. 3(c), the
embeddings of potential queries form a cluster on the surface of the unit sphere, with each
point color-coded. The center of the cluster is indicated by a star, while the document
embedding is represented by a black point positioned above the cluster. It is evident that
these elements form a distorted cone, aligning with the above hypothesis and the degree
distribution experiment.

A.7 STRONG CONICAL DISTRIBUTION HYPOTHESIS

In this subsection, we further substantiate the original hypothesis that the potential queries adhere to
a Gaussian distribution: For any document d, the potential queries in the embedding space approxi-
mately follow a Gaussian distribution, characterized by a mean µ and covariance matrix Σ. Refer to
Appendix A.7.3 for detailed validation.

A.7.1 MAIN THEOREM

Building on this Gaussian assumption, we derive bounds on the cosine similarity between potential
query embeddings and both the document embedding and the mean vector.

Theorem 1. (Concentration Inequalities for Cosine Similarities in Embedding Spaces) Let q ∼
N (µ,Σ) denote a random vector representing the distribution of potential queries of document d in
the unit sphere embedding space, where µ ∈ Rr is the mean vector and Σ ∈ Rr×r is the covariance
matrix. Let d ∈ Rr be the embedding of document d, and let θ be the angle between µ and d such
that cos(θ) = µ⊤d. Assume that both µ and d are unit vectors. Then, the following properties hold:

1. The concentration inequality for the cosine similarity measure of q with d :

P
(∣∣q⊤d− cos(θ)

∣∣ ≥ t
)
≤ 2 exp

(
− t2

2d⊤Σd

)
. (7)

2. The concentration inequality for the cosine similarity measure of q with µ :

P
(∣∣q⊤µ− 1

∣∣ ≥ t
)
≤ 2 exp

(
− t2

2µ⊤Σµ

)
. (8)

3. Non-Negativity of the Difference in Similarities:

q⊤µ− q⊤d = q⊤µ(1− cos(θ)) > 0. (9)
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Remark 1. The theorem provides a robust theoretical foundation for the QAEncoder’s capabilities
in computing the similarity between documents and queries. These concentration inequalities in
Equation 7 and Equation 8 show that cosine similarities between q, d, and µ are concentrated around
their expected values. Inequality 9 indicates that the similarity between the q and µ is always greater
than between q and d. This confirms that using the mean vector as a projection in QAEncoder better
captures the semantic relationship between queries and documents. This theoretical result aligns
with the experimental findings in Fig. 1, further validating QAEncoder’s effectiveness.

A.7.2 PROOF OF SIMILARITY BOUNDS

Proof. Given the setup where q ∼ N (µ,Σ) is an r-dimensional Gaussian random vector with mean
µ and covariance Σ, and the angle between another unit vector d and µ is θ.

The cosine of the angle between q and d is given by:
cos(ϕqd) = q⊤d.

Since q is Gaussian, based on Lemma 1,the inner product q⊤d is a linear transformation of q and
hence is a normal distribution with mean µ⊤d and variance d⊤Σd. Given that µ and d are unit
vectors and the angle between µ and d is θ, we have:

µ⊤d = cos(θ).

Thus, q⊤d can be approximated as:
q⊤d ∼ N (cos(θ),d⊤Σd).

The concentration inequality for the cosine value between q and d follows from Hoeffding’s in-
equality for zero-mean sub-Gaussian random variables, which can be expressed as:

P
(∣∣q⊤d− cos(θ)

∣∣ ≥ t
)
≤ 2 exp

(
− t2

2d⊤Σd

)
.

Similarly, the cosine of the angle between between q and µ can be expressed as:
cos(ϕqµ) = q⊤µ.

Given that q ∼ N (µ,Σ), based on Lemma 1, the inner product q⊤µ, representing the cosine of the
angle between q and µ is a linear transformation of a Gaussian random vector with mean:

E[q⊤µ] = µ⊤µ = 1,

since µ is a unit vector, and variance:
Var[q⊤µ] = µ⊤Σµ.

Thus, q⊤µ can be approximated as:
q⊤µ ∼ N (1, µ⊤Σµ).

Applying the similar Hoeffding’s inequality, the concentration inequality can be derived similarly:

P
(∣∣q⊤µ− 1

∣∣ ≥ t
)
≤ 2 exp

(
− t2

2µ⊤Σµ

)
.

Notably, we observe that:
q⊤d = (q⊤µ)(µ⊤d) = (q⊤µ) cos(θ).

Therefore, comparing q⊤µ and q⊤d, we find:

q⊤µ− q⊤d = q⊤µ(1− cos(θ)).

Since q ̸= d, it follows that cos(θ) < 1. Moreover, q⊤µ > 0 because q is a Gaussian random
vector centered at µ, which implies that q generally aligns positively with its mean µ. Given that
both 1− cos(θ) > 0 and q⊤µ > 0, we have:

q⊤µ− q⊤d = q⊤µ(1− cos(θ)) > 0.
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Figure 5: Q-Q plot against chi-squared distribution.

A.7.3 NORMALITY TEST

To assess whether potential queries follow a Gaussian distribution in the embedding space,we em-
ploy two statistical tests: the Chi-Squared Q-Q Plot and the Anderson-Darling Test.

Chi-Squared Q-Q Plot Verification We employ the Chi-Squared Q-Q Plot to assess whether the
squared Mahalanobis distances 1 conform to the chi-squared distribution. By leveraging Lemma 2,
We compare the observed D2 values with the theoretical quantiles of the chi-squared distribution
to assess the conformity of the data to a high-dimensional Gaussian model. We conclude that close
alignment of the sample points along the 45-degree reference line indicates support for the original
hypothesis.

Direct applications of high-dimensional normality tests, such as the Henze-Zirkler test, often lead
to Type I errors in our case. E.g., testing on 768-dimensional normal samples revealed that Henze-
Zirkler test demands high ratios of sample size to dimensionality, and it particularly susceptible to
Type I errors when the sample size is not sufficiently large. Hence, we opted to perform uni-variate
normality assessments on marginal distribution instead.

Anderson-Darling Test To further evaluate the normality of marginal distributions, we conduct
the Anderson-Darling test across all dimensions of the embeddings. The specific steps are as fol-
lows:

1. Null Hypothesis:
• H0: Each dimension’s marginal distribution follows a Gaussian distribution.
• H1: At least one dimension’s marginal distribution does not follow a Gaussian distri-

bution.
2. Testing Results:

Following the Anderson-Darling test, the results across all dimensions failed to reject H0.
This suggests that each dimension’s marginal distribution can statistically be considered
Gaussian, thereby supporting our hypothesis that potential queries conform to a high-
dimensional Gaussian distribution.

In summary, through the verification of squared Mahalanobis distances using the Chi-Squared Q-Q
Plot and the evaluation of marginal distributions with the Anderson-Darling test, we validate the
plausibility that potential queries conform to a high-dimensional Gaussian distribution within the
embedding space.

A.7.4 SOME PROPERTIES OF GAUSSIAN DISTRIBUTION

The statement and proof of our main results contain some mathematical concepts. This section intro-
duces these concepts, covering the fundamental lemmas and definitions essential for understanding
our analysis.
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Figure 6: The convergence speed for Monte Carlo estimation of QAEbase, n denotes the number of
prediction queries. For documents with a length greater than 150 words from MSMARCO datasets,
generating 10 queries exhibits a similarity score of 0.96 compared to generating 80 queries. Besides,
the document fingerprint strategies introduces the hyperparameter α to QAEbase, further reducing the
variance.

Lemma 1. (Tong, 2012) Let x follow a multivariate Gaussian distribution:

x ∼ N (µ,Σ),

where µ is the mean vector and Σ is the covariance matrix. For any linear transformation Ax+ b,
the result is also multivariate normal:

y = Ax+ b ∼ N (Aµ+ b, AΣA⊤).

Remark 2. The lemma shows that multivariate Gaussians remain Gaussian under linear transforma-
tions.
Definition 1. (Squared Mahalanobis Distance (McLachlan, 1999)) Assuming x ∼ N (µ,Σ) in a
high-dimensional Gaussian distribution, the squared Mahalanobis distance D2 is defined as:

D2 = (x− µ)TΣ−1(x− µ).

Remark 3. This metric quantifies the distance between the observed value and the mean.
Lemma 2. (Chi-Squared Distribution of Squared Mahalanobis Distance (Mardia et al., 2024) ) If x
is a r-dimensional Gaussian random variable, then the squared Mahalanobis distance D2 follows
a chi-squared distribution:

D2 ∼ χ2
r,

where r denotes the dimensionality of the variable.

Remark 4. The property that the squared Mahalanobis distance follows a chi-squared distribution
can be viewed as a form of dimensionality reduction. By mapping a high-dimensional Gaussian
variable to a scalar that encodes its deviation from the mean, adjusted for the covariance structure,
this transformation reduces the complexity of the multivariate data while preserving key statistical
properties in a single distance metric.

A.8 MORE FIGURES AND TABLES
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Figure 7: Ablation on β hyperparameter for QAEtxt on FIGNEWS(English) dataset.

bge-m3 multilingual-e5-large

Figure 8: Ablation on α and β hyperparameters for QAEhyb on FIGNEWS(English) dataset.
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Table 5: Complete retrieval performance across six classical datasets: NQ, SQuAD, ELI5, Hot-
PotQA, MSMARCO, and TriviaQA. Higher is better, with the best one is bolded. Hyperparameters
including QAEncoder variants and weight terms α, β are optimized simultaneously for six classical
datasets. ‘-’ denotes default or null values.

Model Param
NQ SQuAD ELI5 HotPotQA MSMARCO TriviaQA

MRR@8 MAP@8 NDCG@8 MRR@8 MAP@8 NDCG@8 MRR@8 MAP@8 NDCG@8 MRR@8 MAP@8 NDCG@8 MRR@8 MAP@8 NDCG@8 MRR@8 MAP@8 NDCG@8

Sparse
BM25 - 17.9 10.4 12.8 46.2 46.2 48.2 12.6 9.6 11.5 13.8 9.9 11.1 53.2 53.1 62.1 9.8 6.7 7.8

Doc2Query - 18.2 10.9 13.6 45.5 45.5 48.2 12.6 9.7 11.8 13.3 9.6 10.9 54.4 54.4 64.0 10.1 7.0 8.3
DeepImpact - 21.8 12.9 15.7 47.8 47.9 50.0 12.9 9.9 11.9 14.4 10.4 11.6 64.4 64.1 71.8 11.8 8.2 9.5

Dense

bge-large-en-v1.5
- 87.0 83.2 68.0 76.2 76.2 79.9 57.7 55.8 55.8 93.4 90.1 83.3 75.4 75.4 81.3 78.4 75.0 67.5

QAEhyb, α = 0.15, β = 0.5 88.2 84.2 69.1 78.2 78.2 81.8 59.1 56.7 57.3 94.2 91.0 83.5 73.8 73.8 79.9 80.2 77.5 70.3

multilingual-e5-large
- 86.0 82.3 66.3 86.2 86.2 88.9 39.0 37.8 37.6 95.3 92.8 85.4 73.6 73.6 80 76.8 73.9 66.1

QAEhyb, α = 0.15, β = 1.5 86.1 81.9 66.7 84.9 84.9 87.9 46.4 45.6 43.3 94.3 91.0 83.4 70.1 70.1 77.3 79.3 77.0 68.9

gte-base-en-v1.5
- 86.2 82.5 67.6 68.1 68.1 72.4 54.5 52.5 51.6 93.4 89.7 78.4 76.9 76.9 82.4 77.7 74.8 67.2

QAEhyb, α = 0.3, β = 0.5 85.5 81.6 67.4 74.8 74.8 78.7 57.0 54.8 55.1 92.9 88.9 76.9 76.0 76.0 81.4 78.8 76.1 69.2

jina-embeddings-v2-small-en
- 82.4 79.3 63.3 69.5 69.5 73.6 54.3 52.4 51.6 92.9 88.3 78.1 65.3 65.3 73.3 74.6 72.7 64.4

QAEhyb, α = 0.15, β = 0.5 83.3 79.9 64.1 72.4 72.4 76.2 53.8 52.3 51.6 91.7 87.3 76.6 68.2 68.2 75.7 75.9 73.9 65.5

contriever
- 78.8 75.0 60.8 64.8 64.8 69.4 51.3 49.2 49.8 89.0 84.6 74.1 55.4 55.4 63.6 71.2 68.6 61.4

QAEemb, α = 0.45 84.0 80.2 65.7 74.9 74.9 78.9 55.7 54.0 54.4 89.8 86.2 75.1 67.1 67.1 74.2 76.4 73.9 67.4

mcontriever
- 52.1 48.7 37.6 49.3 49.3 54.9 43.0 41.2 40.6 83.0 78.3 67.9 49.6 49.6 56.7 59.4 56.8 49.7

QAEhyb, α = 0.45, β = 0.75 61.4 58.5 45.9 64.7 64.7 69.5 51.0 49.1 48.3 85.2 80.9 69.5 65.1 65.1 71.8 70.4 67.6 60.4

bce-embedding-base-v1
- 74.4 70.0 55.5 77.2 77.2 81.3 47.3 46.1 45.0 83.0 79.2 67.8 70.9 70.9 77.7 67.8 65.2 57.3

QAEemb, α = 0.3 76.4 72.3 56.8 77.1 77.1 81.1 50.1 48.4 48.4 84.1 79.7 68.0 71.2 71.2 78 69.4 66.5 58.4

text2vec-base-multilingual
- 53.8 51.1 36.6 40.9 40.9 45.6 38.2 37.0 34.7 51.2 49.0 37.8 52.4 52.4 59.8 41.8 40.1 33.3

QAEhyb, α = 0.6, β = 0.5 66.6 63.7 47.2 56.2 56.2 60.6 43.4 42.1 40.8 72.0 69.2 52.7 67.8 67.8 74.2 57.2 55.5 47.1

dpr-multiset-base
- 77.3 72.4 60.3 59.3 59.3 64.9 59.6 57.6 57.3 82.6 77.2 69.7 55.8 55.8 65 70.7 68.1 60.5

QAEemb, α = 0.45 82.2 77.3 64.2 64.2 64.2 69.1 60.1 58 58.3 86.9 81.9 72.1 67.6 67.6 75.1 74.4 71.7 64.8

dpr-single-nq-base
- 77.6 72.8 60.7 60.3 60.3 66.1 57.3 55.2 55.4 75.3 70.8 62.9 61.5 61.5 70.1 65.6 62 56.1

QAEemb, α = 0.45 81.8 76.7 63.3 66.4 66.4 70.8 58.8 56.5 57.2 81.6 77 67.5 68.4 68.4 75.5 70.3 66.7 60.2
Ablation

bge-large-en-v1.5

- 87.0 83.2 68.0 76.2 76.2 79.9 57.7 55.8 55.8 93.4 90.1 83.3 75.4 75.4 81.3 78.4 75.0 67.5
α = 0.3 87.4 83.3 68.2 78.0 78.0 81.6 59.2 56.9 57.0 93.6 90.3 83.1 74.7 74.7 80.5 79.4 76.4 69.4
β = 0.5 88.1 84.3 68.9 77.6 77.6 81.5 58.1 55.9 56.6 94.2 91.0 83.6 73 73 79.5 80.1 77.2 70.0

α = 0.15, β = 0.5 88.2 84.2 69.1 78.2 78.2 81.8 59.1 56.7 57.3 94.2 91.0 83.5 73.8 73.8 79.9 80.2 77.5 70.3

multilingual-e5-large

- 86.0 82.3 66.3 86.2 86.2 88.9 39.0 37.8 37.6 95.3 92.8 85.4 73.6 73.6 80 76.8 73.9 66.1
α = 0.3 87.0 82.9 66.9 85.3 85.3 88.0 44.8 43.5 42.6 94.8 92.2 84.5 69.9 69.9 77.2 78.5 75.7 67.6
β = 1.5 86.1 82.2 66.5 84.5 84.5 87.5 45.2 44.1 42.2 94.9 91.5 84.0 69.7 69.7 77 79.6 77.3 69.0

α = 0.15, β = 1.5 86.1 81.9 66.7 84.9 84.9 87.9 46.4 45.6 43.3 94.3 91.0 83.4 70.1 70.1 77.3 79.3 77.0 68.9

gte-base-en-v1.5

- 86.2 82.5 67.6 68.1 68.1 72.4 54.5 52.5 51.6 93.4 89.7 78.4 76.9 76.9 82.4 77.7 74.8 67.2
α = 0.3 85.9 82.2 67.9 72.4 72.4 76.3 56.7 54.3 54.4 92.6 89.0 77.0 77.2 77.2 82.3 78.6 76.0 68.8
β = 0.5 85.3 81.3 67.0 73.0 73.0 77.2 55.6 53.4 53.4 93.3 90.0 77.7 76.7 76.7 82.3 78.6 75.8 68.7

α = 0.3, β = 0.5 85.5 81.6 67.4 74.8 74.8 78.7 57.0 54.8 55.1 92.9 88.9 76.9 76.0 76.0 81.4 78.8 76.1 69.2

jina-embeddings-v2-small-en

- 82.4 79.3 63.3 69.5 69.5 73.6 54.3 52.4 51.6 92.9 88.3 78.1 65.3 65.3 73.3 74.6 72.7 64.4
α = 0.3 83.0 79.5 63.5 71.2 71.2 75.2 54.6 52.7 52.1 91.5 87.1 76.4 65.3 65.3 73.5 76.2 74.0 65.6
β = 0.5 82.8 79.6 63.8 71.5 71.5 75.3 53.5 51.9 51.1 92.1 87.6 77.3 69.4 69.4 76.6 75.6 73.4 65.2

α = 0.15, β = 0.5 83.3 79.9 64.1 72.4 72.4 76.2 53.8 52.3 51.6 91.7 87.3 76.6 68.2 68.2 75.7 75.9 73.9 65.5

contriever

- 78.8 75.0 60.8 64.8 64.8 69.4 51.3 49.2 49.8 89.0 84.6 74.1 55.4 55.4 63.6 71.2 68.6 61.4
α = 0.45 84.0 80.2 65.7 74.9 74.9 78.9 55.7 54.0 54.4 89.8 86.2 75.1 67.1 67.1 74.2 76.4 73.9 67.4
β = 1.25 79.7 76.5 61.0 64.4 64.4 69.1 50.0 48.4 47.7 91.5 87.0 76.6 64 64 71.7 70.2 67.6 59.3

α = 0.45, β = 0.5 84.0 80.3 65.5 72.5 72.5 77.0 55.1 53.3 53.8 89.7 85.2 75.1 67 67 73.6 75.4 72.6 65.6

mcontriever

- 52.1 48.7 37.6 49.3 49.3 54.9 43.0 41.2 40.6 83.0 78.3 67.9 49.6 49.6 56.7 59.4 56.8 49.7
α = 0.45 62.1 59.3 46.5 63.6 63.6 68.6 49.2 47.5 47.2 85.7 81.5 70.4 64.5 64.5 71.8 70.1 67.1 60.3
β = 0.75 58.3 51.0 38.4 53.8 53.8 58.7 42.1 40.2 39.4 86.2 81.9 70.1 58.3 58.3 66 62.0 59.6 51.9

α = 0.45, β = 0.75 61.4 58.5 45.9 64.7 64.7 69.5 51.0 49.1 48.3 85.2 80.9 69.5 65.1 65.1 71.8 70.4 67.6 60.4

bce-embedding-base-v1

- 74.4 70.0 55.5 77.2 77.2 81.3 47.3 46.1 45.0 83.0 79.2 67.8 70.9 70.9 77.7 67.8 65.2 57.3
α = 0.3 76.4 72.3 56.8 77.1 77.1 81.1 50.1 48.4 48.4 84.1 79.7 68.0 71.2 71.2 78 69.4 66.5 58.4
β = 0.5 75.0 70.5 55.7 72.6 72.6 77.2 49.8 47.6 47.7 82.1 77.5 65.9 72.8 72.8 79.2 68.7 65.7 58.0

α = 0.3, β = 0.5 76.9 72.8 57.2 73.7 73.7 77.9 51.4 49.3 49.4 82.3 77.5 65.7 69.9 69.9 76.9 69.7 66.4 58.7

text2vec-base-multilingual

- 53.8 51.1 36.6 40.9 40.9 45.6 38.2 37.0 34.7 51.2 49.0 37.8 52.4 52.4 59.8 41.8 40.1 33.3
α = 0.75 66.7 63.5 47.4 54.8 54.8 59.3 42.9 41.7 40.7 71.8 69.1 52.8 69.1 69.1 75.4 57.8 56.1 47.6
β = 0.5 56.6 54.1 40.1 46.5 46.5 51.3 39.0 37.9 36.2 61.3 59.2 45.2 57.2 57.2 64.7 47.0 45.5 38.2

α = 0.6, β = 0.5 66.6 63.7 47.2 56.2 56.2 60.6 43.4 42.1 40.8 72.0 69.2 52.7 67.8 67.8 74.2 57.2 55.5 47.1
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Table 6: Comprehensive retrieval performance on the latest datasets FIGNEWS and CRUD-RAG.
Higher is better, with the best one bolded. Hyperparameters including QAEncoder variants and
weight terms α, β are optimized simultaneously for six latest datasets. ‘-’ denotes default or null
values.

Model Param
FIGNEWS(English) FIGNEWS(Arabic) CRUD-RAG(Chinese) FIGNEWS(French) FIGNEWS(Hindi) FIGNEWS(Hebrew)

MRR@8 NDCG@8 MRR@8 NDCG@8 MRR@8 NDCG@8 MRR@8 NDCG@8 MRR@8 NDCG@8 MRR@8 NDCG@8

bge-m3
- 74.3 78.2 77.7 80.5 86.8 88.9 73.4 76.9 58.4 63.8 78.6 81

QAEtxt, β = 1.5 77.1 80.8 80 82.8 89 90.8 76.7 79.9 62.5 67.5 79.8 82.4

multilingual-e5-small
- 70.9 74.7 74.0 77.1 81.7 84.2 72.8 76.1 66.6 70.1 52.3 57.2

QAEhyb, α = 0.3, β = 0.5 74.4 78.2 78.8 81.2 87.4 89.2 74.1 77.6 59.4 64.0 77.4 80.1

multilingual-e5-base
- 74.7 77.9 72.2 75.7 86.1 88.1 70.9 74.3 57.6 62.4 72.6 75.6

QAEemb, α = 0.3 77.4 80.7 77.1 80 88.5 90.5 76.6 79.8 61.3 66 77.7 80.4

multilingual-e5-large
- 73.8 77.5 76.6 79.9 85.7 88.1 70.4 74 52.7 58.4 73.9 77.1

QAEhyb, α = 0.15, β = 1.25 77 80.4 82.1 84.9 89.1 91.1 77.2 80.4 60.3 65 77.6 80.6

gte-multilingual-base
- 65.3 69.9 73.2 76.2 82.9 85.6 62.8 67 52.1 57.8 65.9 69.3

QAEhyb, α = 0.15, β = 1.5 75.3 79 76.2 79 85.5 88 66.6 70.7 55.8 61.4 73.9 77.2

mcontriever
- 32.8 36.3 40.1 44.2 71.7 75.8 34.7 38.6 26.8 31.4 49.2 53.7

QAEhyb, α = 0.45, β = 1.25 61.2 65.4 68.2 71.9 88.7 90.5 64.5 68.5 50.3 55.6 69.8 73

bce-embedding-base-v1
- 58.9 63.3 - - 76.8 80.3 - - - - - -

QAEhyb, α = 0.3, β = 0.5 66.6 70.6 - - 85.9 88.1 - - - - - -

text2vec-base-multilingual
- 38.5 43 27.7 31.4 12.1 13.7 33.2 37.5 15.3 18.9 12.3 14.6

QAEemb, α = 0.75 55.2 59.3 51.3 54.8 55.3 58.6 49.1 53.8 35.9 40.6 46.7 51
Ablation

bge-m3

- 74.3 78.2 77.7 80.5 86.8 88.9 73.4 76.9 58.4 63.8 78.6 81.0
α = 0.3 76.2 80.0 80.0 82.6 88.7 90.6 75.0 78.5 60.9 65.9 78.9 81.7
β = 1.5 77.1 80.8 80.1 82.8 89.0 90.8 76.7 79.9 62.5 67.5 79.8 82.4

α = 0.15, β = 1.5 77.3 80.7 80.6 83.3 89.4 91.2 76.4 79.7 61.5 66.3 79.7 82.4

multilingual-e5-small

- 70.9 74.7 74.0 77.1 81.7 84.2 72.8 76.1 66.6 70.1 52.3 57.2
α = 0.45 74.6 78.3 76.9 79.6 87.8 89.7 73.5 76.9 57.9 62.7 76.9 79.6
β = 1.0 73.1 76.9 79.1 81.6 85.0 87.1 70.4 74.3 58.5 63.3 77.0 79.9

α = 0.3, β = 0.5 74.4 78.2 78.8 81.2 87.4 89.2 74.1 77.6 59.4 64.0 77.4 80.1

multilingual-e5-base

- 74.7 77.9 72.2 75.7 86.1 88.1 70.9 74.3 57.6 62.4 72.6 75.6
α = 0.3 77.4 80.7 77.1 80.0 88.5 90.5 76.6 79.8 61.3 66.0 77.7 80.4
β = 0.75 74.5 78.3 76.2 79.2 87.5 89.6 72.3 76.2 62.3 67.1 77.0 79.7

α = 0.3, β = 0.5 76.5 80.1 77.3 80.3 89.0 90.8 75.3 78.9 62.5 67.1 77.1 79.8

multilingual-e5-large

- 73.8 77.5 76.6 79.9 85.7 88.1 70.4 74.0 52.7 58.4 73.9 77.1
α = 0.45 77.8 81.1 79.7 82.7 89.7 91.4 77.0 79.9 58.2 63.1 78.0 80.9
β = 1.5 75.6 79.0 80.7 83.7 88.3 90.4 76.0 79.3 59.7 64.8 77.0 79.7

α = 0.15, β = 1.25 77.0 80.4 82.1 84.9 89.1 91.1 77.2 80.4 60.3 65.1 77.6 80.6

gte-multilingual-base

- 65.3 69.9 73.2 76.2 82.9 85.6 62.8 67.0 52.1 57.8 65.9 69.3
α = 0.45 69.0 73.1 76.8 79.3 87.3 89.4 66.8 70.4 52.9 58.0 72.3 75.6
β = 1.5 75.5 79.1 75.7 78.5 84.4 87.1 65.9 70.3 56.5 61.8 72.7 76.1

α = 0.15, β = 1.5 75.3 79.0 76.2 79.0 85.5 88.0 66.6 70.7 55.8 61.4 73.9 77.2

mcontriever

- 32.8 36.3 40.1 44.2 71.7 75.8 34.7 38.6 26.8 31.4 49.2 53.7
α = 0.6 58.6 63.2 67.1 71.0 88.3 90.1 62.5 66.2 50.2 55.1 69.4 72.5
β = 1.5 48.7 52.8 59.3 63.3 79.9 83.1 53.7 57.7 44.9 49.6 60.6 64.2

α = 0.45, β = 1.25 61.2 65.4 68.2 71.9 88.7 90.5 64.5 68.5 50.3 55.6 69.8 73.0

bce-embedding-base-v1

- 58.9 63.3 - - 76.8 80.3 - - - - - -
α = 0.45 66.6 70.7 - - 85.2 87.5 - - - - - -
β = 1.5 64.0 68.1 - - 82.3 84.9 - - - - - -

α = 0.3, β = 0.5 66.6 70.6 - - 85.9 88.1 - - - - - -

text2vec-base-multilingual

- 38.5 43.0 27.7 31.4 12.1 13.7 33.2 37.5 15.3 18.9 12.3 14.6
α = 0.75 55.2 59.3 51.3 54.8 55.3 58.6 49.1 53.8 35.9 40.6 46.7 51.0
β = 1.5 46.0 50.3 35.3 38.8 21.1 23.2 42.9 46.8 21.1 24.4 18.5 21.3

α = 0.75, β = 0.5 55.0 59.2 50.2 53.7 57.7 60.4 48.9 53.1 34.2 38.9 47.0 50.9

Table 7: Complete performance comparison of QAEncoder variants on latest datasets FIGNEWS
and CRUD-RAG. Higher is better, with the best one bolded. Hyperparameters are optimized simul-
taneously across the six latest datasets. n indicates the number of predicted queries in QAnaive.

Model Param
FIGNEWS(English) FIGNEWS(Arabic) CRUD-RAG(Chinese) FIGNEWS(French) FIGNEWS(Hindi) FIGNEWS(Hebrew)

MRR@8 NDCG@8 MRR@8 NDCG@8 MRR@8 NDCG@8 MRR@8 NDCG@8 MRR@8 NDCG@8 MRR@8 NDCG@8

bge-m3

QAEemb, α = 0.3 76.2 80.0 80.0 82.6 88.7 90.6 75.0 78.5 60.9 65.9 78.9 81.7
QAEtxt, β = 1.5 77.1 80.8 80.1 82.8 89.0 90.8 76.7 79.9 62.5 67.5 79.8 82.4

QAEhyb, α = 0.15, β = 1.5 77.3 80.7 80.6 83.3 89.4 91.2 76.4 79.7 61.5 66.3 79.7 82.4
n = 10 76.8 79.5 76.9 79.2 85.9 87.8 71.7 73.8 62.2 65.8 68.0 71.3

multilingual-e5-large

QAEemb, α = 0.45 77.8 81.1 79.7 82.7 89.7 91.4 77.0 79.9 58.2 63.1 78.0 80.9
QAEtxt, β = 1.5 75.6 79.0 80.7 83.7 88.3 90.4 76.0 79.3 59.7 64.8 77.0 79.7

QAEhyb, α = 0.15, β = 1.25 77.0 80.5 82.1 84.9 89.1 91.1 77.2 80.4 60.3 65.1 77.6 80.6
n = 10 76.8 79.4 76.5 79.2 84.9 86.8 70.4 73.1 61.5 65.4 69.3 71.8

Table 8: The table illustrates a comprehensive performance comparison of QAEncoder against
training-based and document-centric methods on the latest datasets: FIGNEWS and CRUD-RAG.
Higher is better, with the best one bolded. Hyperparameters α, β are optimized simultaneously
across the six latest datasets. n denotes the number of pseudo-documents in HyDE. ‘-’ indicates
default or null values.

Model Param
FIGNEWS(English) FIGNEWS(Arabic) CRUD-RAG(Chinese) FIGNEWS(French) FIGNEWS(Hindi) FIGNEWS(Hebrew)

MRR@8 NDCG@8 MRR@8 NDCG@8 MRR@8 NDCG@8 MRR@8 NDCG@8 MRR@8 NDCG@8 MRR@8 NDCG@8

mcontriever-msmarco
- 65.9 70.0 70.1 73.5 85.0 87.4 66.3 70.0 48.6 53.5 69.3 72.6

QAEhyb, α = 0.3, β = 0.75 72.1 76.3 77.2 80.2 88.6 90.6 74.2 77.7 58.7 63.5 76.3 79.4

multilingual-e5-large-instruct
- 66.7 70.7 74.9 78.1 79.8 82.5 65.8 70.1 48.0 53.1 69.5 72.8

QAEhyb, α = 0.15, β = 1.5 75.5 79.4 80.7 83.5 88.9 90.6 75.7 79.2 58.9 64.1 79.3 82.1

mcontriever
- 32.8 36.3 40.1 44.2 71.7 75.8 34.7 38.6 26.9 31.4 49.2 53.7

HyDE, n = 8 24.9 27.6 35.1 40.4 70.7 74.2 25.6 28.6 11.6 14.3 41.8 47.0

multilingual-e5-large
- 73.8 77.5 76.6 79.9 85.7 88.2 70.4 74.0 52.7 58.4 73.9 77.1

HyDE, n = 8 63.4 67.7 68.2 73.8 81.5 83.9 58.2 62.6 45.5 51.0 65.3 69.6
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Table 9: Retrieval performance of monolingual and bilingual embedding models on the latest
datasets FIGNEWS(English) and CRUD-RAG(Chinese). Higher is better, with the best one bolded.
‘-’ denotes default or null values.

Model Param
FIGNEWS(English) FIGNEWS(Arabic) CRUD-RAG(Chinese)

MRR@10 NDCG@10 MRR@10 NDCG@10 MRR@10 NDCG@10

e5-large-v2
- 73.2 77.2 - - - -

QAEhyb, α = 0.3, β = 1.0 78.7 82 - - - -

jina-embeddings-v2-small-en
- 65.4 69.9 - - - -

QAEhyb, α = 0.15, β = 1.25 72.6 76.7 - - - -

jina-embeddings-v2-base-zh
- 63.4 67.6 - - 75 78.8

QAEhyb, α = 0.45, β = 1.25 66.7 71.1 - - 86.3 88.4

jina-embeddings-v2-base-en
- 65.3 69.4 - - - -

QAEhyb, α = 0.3, β = 0.5 72.4 76.5 - - - -

gte-base-en-v1.5
- 65.6 70.2 - - - -

QAEhyb, α = 0.15, β = 1.5 71.3 75.6 - - - -

contriever
- 49.6 54.5 - - - -

QAEhyb, α = 0.45, β = 1.25 70.7 74.7 - - - -

bge-large-zh-v1.5
- - - - - 76.8 80

QAEhyb, α = 0.45, β = 1.25 - - - - 89 90.7

bge-large-zh
- - - - - 74.3 77.8

QAEhyb, α = 0.45, β = 1.5 - - - - 88.6 90.4

bge-large-en-v1.5
- 66.4 71 - - - -

QAEhyb, α = 0.15, β = 1.5 74.3 78.2 - - - -

bge-large-en
- 61.9 66.4 - - - -

QAEhyb, α = 0.3, β = 0.75 71.3 75.4 - - - -

bge-base-zh-v1.5
- - - - - 79.4 82.2

QAEhyb, α = 0.6, β = 1.0 - - - - 88.9 90.6

bge-base-zh
- - - - - 73.7 76.7

QAEhyb, α = 0.6, β = 1.5 - - - - 88.8 90.5

bge-base-en-v1.5
- 66.4 70.5 - - - -

QAEtxt, β = 1.0 74.1 77.5 - - - -

bge-base-en
- 64.9 68.9 - - - -

QAEhyb, α = 0.3, β = 1.5 71.7 75.9 - - - -

bce-embedding-base-v1
- 59.1 63.8 - - 76.9 80.5

QAEhyb, α = 0.3, β = 0.5 66.8 71.1 - - 86 88.3
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Table 10: Complete retrieval performance across six classical datasets: NQ, SQuAD, ELI5, Hot-
PotQA, MSMARCO, and TriviaQA (Top-k = 10). Higher is better, with the best one is bolded.
Hyperparameters including QAEncoder variants and weight terms α, β are optimized simultane-
ously for six classical datasets. ‘-’ denotes default or null values.

Model Param
NQ SQuAD ELI5 HotPotQA MSMARCO TriviaQA

MRR@10 MAP@10 NDCG@10 MRR@10 MAP@10 NDCG@10 MRR@10 MAP@10 NDCG@10 MRR@10 MAP@10 NDCG@10 MRR@10 MAP@10 NDCG@10 MRR@10 MAP@10 NDCG@10

Sparse
BM25 - 18.0 10.4 12.9 46.3 46.3 48.4 12.8 9.7 12.0 13.8 9.9 11.2 53.7 53.8 63.9 9.9 6.7 7.9

Doc2Query - 18.2 11.0 13.9 45.6 45.6 48.5 12.8 9.9 12.2 13.3 9.6 11.0 54.9 54.9 65.5 10.1 7.0 8.4
DeepImpact - 21.8 13.0 15.8 47.9 48.0 50.2 12.9 10.0 12.1 14.5 10.4 11.6 64.6 64.3 72.3 11.8 8.3 9.5

Dense

bge-large-en-v1.5
- 87.1 82.9 68.5 76.3 76.3 80.4 58.0 56.0 56.8 93.4 89.7 83.6 75.4 75.4 81.3 78.5 74.6 68.1

QAEhyb, α = 0.15, β = 0.5 88.2 83.8 69.5 78.4 78.4 82.5 59.4 56.8 58.2 94.2 90.7 83.6 73.9 73.9 80.2 80.3 77.2 70.8

multilingual-e5-large
- 86.0 81.4 66.8 86.4 86.4 89.3 39.4 38.0 38.7 95.3 92.2 85.7 73.7 73.7 80.3 76.9 73.6 66.6

QAEhyb, α = 0.15, β = 1.5 86.1 81.4 67.3 85.0 85.0 88.1 46.7 45.6 44.5 94.4 90.6 83.7 70.2 70.2 77.5 79.4 76.8 69.2

gte-base-en-v1.5
- 86.2 81.7 68.2 68.4 68.4 73.2 54.7 52.5 52.3 93.4 89.1 78.6 77.0 77.0 82.7 77.7 74.2 67.6

QAEhyb, α = 0.3, β = 0.5 85.5 81.1 67.8 74.9 74.9 79.1 57.2 54.7 55.9 93.0 88.7 77.1 76.3 76.3 82.3 78.8 75.8 69.7

jian-embeddings-v2-small-en
- 82.4 78.7 63.7 69.7 69.7 74.3 54.5 52.2 52.5 92.9 87.6 78.5 65.5 65.5 73.9 74.7 72.5 64.7

QAEhyb, α = 0.15, β = 0.5 83.3 79.3 64.5 72.7 72.7 76.8 54.1 52.0 52.5 91.7 86.7 77.1 68.4 68.4 76.3 76.0 73.6 66.0

contriever
- 78.8 74.4 61.4 65.1 65.1 70.0 51.5 49.1 50.6 89.0 84.0 74.4 55.8 55.8 64.7 71.3 68.2 61.9

QAEemb, α = 0.45 84.0 79.5 66.2 75.1 75.1 79.5 55.9 53.8 55.3 89.9 85.5 75.5 67.3 67.3 74.8 76.4 73.6 67.9

mcontriever
- 52.4 48.2 38.5 49.6 49.6 55.8 43.1 41.1 41.2 83.1 77.8 68.3 50.0 50.0 57.9 59.7 56.6 50.4

QAEhyb, α = 0.45, β = 0.75 61.6 58.0 46.8 64.9 64.9 70.1 51.2 48.9 49.0 85.3 80.5 69.9 65.6 65.6 73.4 70.6 67.2 61.2

bce-embedding-base-v1
- 74.4 69.2 56.0 77.3 77.3 81.5 47.6 45.5 46.3 83.1 78.2 68.5 71.0 71.0 78.0 67.9 64.6 57.8

QAEemb, α = 0.3 76.5 71.5 57.6 77.3 77.3 81.5 50.3 48.2 49.2 84.2 79.3 68.5 71.4 71.4 78.2 69.5 65.6 59.3

text2vec-base-multilingual
- 54.0 50.9 37.2 41.2 41.2 46.3 38.4 36.8 35.7 51.3 49.1 38.2 52.9 52.9 60.9 42.0 40.0 34.0

QAEhyb, α = 0.6, β = 0.5 66.7 63.1 47.9 56.5 56.5 61.4 43.7 42.1 41.7 72.0 69.0 53.1 68.0 68.0 74.8 57.4 55.3 47.5

dpr-multiset-base
- 77.5 72.5 60.5 59.4 59.4 65 59.7 57.7 57.5 82.7 77.3 69.8 55.9 55.9 65.1 70.8 68.2 60.6

QAEemb, α = 0.45 82.3 77.4 64.5 64.3 64.3 69.3 60.3 58.1 58.4 87.1 82 72.2 67.7 67.7 75.3 74.5 71.8 64.9

dpr-single-nq-base
- 77.7 72.9 60.9 60.4 60.4 66.2 57.4 55.3 55.6 75.5 70.9 63.1 61.6 61.6 70.2 65.7 62.1 56.2

QAEemb, α = 0.45 81.9 76.9 63.4 66.5 66.5 71 59 56.6 57.3 81.7 77.1 67.6 68.5 68.5 75.7 70.4 66.8 60.4
Ablation

bge-large-en-v1.5

- 87.1 82.9 68.5 76.3 76.3 80.4 58.0 56.0 56.8 93.4 89.7 83.6 75.4 75.4 81.3 78.5 74.6 68.1
QAEemb, α = 0.3 87.4 83.1 68.5 78.1 78.1 81.9 59.4 56.9 57.8 93.7 90.0 83.4 74.8 74.8 80.8 79.6 76.2 70.0
QAEtxt, β = 0.5 88.1 83.9 69..2 77.8 77.8 81.9 58.3 55.9 57.2 94.3 90.7 83.9 73.0 73.0 79.5 80.2 76.8 70.5

QAEhyb, α = 0.15, β = 0.5 88.2 83.8 69.5 78.4 78.4 82.5 59.4 56.8 58.2 94.2 90.7 83.6 73.9 73.9 80.2 80.3 77.2 70.8

multilingual-e5-large

- 86.0 81.4 66.8 86.4 86.4 89.3 39.4 38.0 38.7 95.3 92.2 85.7 73.7 73.7 80.3 76.9 73.6 66.6
QAEemb, α = 0.3 87.0 82.0 67.4 85.5 85.5 88.3 45.0 43.4 43.4 94.8 92.0 84.7 70.0 70.0 77.5 78.6 75.1 68.3
QAEtxt, β = 1.5 86.1 81.2 67.2 84.6 84.6 87.8 45.5 44.1 43.1 94.9 91.3 84.2 69.8 69.8 77.3 79.6 77.1 69.3

QAEhyb, α = 0.15, β = 1.5 86.1 81.4 67.3 85.0 85.0 88.1 46.7 45.6 44.5 94.4 90.6 83.7 70.2 70.2 77.5 79.4 76.8 69.2

gte-base-en-v1.5

- 86.2 81.7 68.2 68.4 68.4 73.2 54.7 52.5 52.3 93.4 89.1 78.6 77.0 77.0 82.7 77.7 74.2 67.6
QAEemb, α = 0.3 85.9 81.7 68.4 72.6 72.6 76.9 56.9 54.1 54.9 92.6 88.2 77.5 77.5 77.5 83.2 78.8 75.8 69.3
QAEtxt, β = 0.5 85.4 81.0 67.4 73.1 73.1 77.5 55.7 53.3 54.0 93.3 89.4 78.0 76.8 76.8 82.6 78.7 75.3 69.2

QAEhyb, α = 0.3, β = 0.5 85.5 81.1 67.8 74.9 74.9 79.1 57.2 54.7 55.9 93.0 88.7 77.1 76.3 76.3 82.3 78.8 75.8 69.7

jian-embeddings-v2-small-en

- 82.4 78.7 63.7 69.7 69.7 74.3 54.5 52.2 52.5 92.9 87.6 78.5 65.5 65.5 73.9 74.7 72.5 64.7
QAEemb, α = 0.3 83.0 78.8 64.1 71.5 71.5 76.0 54.8 52.4 53.1 91.6 86.7 76.6 65.4 65.4 73.8 76.3 73.7 66.2
QAEtxt, β = 0.5 82.8 79.0 64.2 71.7 71.7 76.0 53.7 51.8 52.0 92.2 87.0 77.7 69.7 69.7 77.2 75.7 73.1 65.7

QAEhyb, α = 0.15, β = 0.5 83.3 79.3 64.5 72.7 72.7 76.8 54.1 52.0 52.5 91.7 86.7 77.1 68.4 68.4 76.3 76.0 73.6 66.0

contriever

- 78.8 74.4 61.4 65.1 65.1 70.0 51.5 49.1 50.6 89.0 84.0 74.4 55.8 55.8 64.7 71.3 68.2 61.9
QAEemb, α = 0.45 84.0 79.5 66.2 75.1 75.1 79.5 55.9 53.8 55.3 89.9 85.5 75.5 67.3 67.3 74.8 76.4 73.6 67.9
QAEtxt, β = 1.25 79.8 75.6 61.7 64.5 64.5 69.5 50.1 48.1 48.4 91.6 86.5 77.0 60.6 60.6 69.8 70.3 67.1 60.0

QAEhyb, α = 0.45, β = 0.5 84.1 79.5 66.1 72.6 72.6 77.3 55.3 52.9 55.0 89.7 84.6 75.4 66.7 66.7 74.2 75.6 72.1 66.5

mcontriever

- 52.4 48.2 38.5 49.6 49.6 55.8 43.1 41.1 41.2 83.1 77.8 68.3 50.0 50.0 57.9 59.7 56.6 50.4
QAEemb, α = 0.45 62.3 58.8 47.2 63.8 63.8 69.3 49..4 47.4 48.2 85.7 80.9 70.7 65.0 65.0 73.2 70.2 66.4 61.2
QAEtxt, β = 0.75 54.3 50.5 39.0 54.0 54.0 59.2 42.4 40.2 40.2 86.3 80.9 70.8 58.7 58.7 67.1 62.1 58.7 52.6

QAEhyb, α = 0.45, β = 0.75 61.6 58.0 46.8 64.9 64.9 70.1 51.2 48.9 49.0 85.3 80.5 69.9 65.6 65.6 73.4 70.6 67.2 61.2

bce-embedding-base-v1

- 74.4 69.2 56.0 77.3 77.3 81.5 47.6 45.5 46.3 83.1 78.2 68.5 71.0 71.0 78.0 67.9 64.6 57.8
QAEemb, α = 0.3 76.5 71.5 57.6 77.3 77.3 81.5 50.3 48.2 49.2 84.2 79.3 68.5 71.4 71.4 78.2 69.5 65.6 59.3
QAEtxt, β = 0.5 75.1 69.8 56.3 72.8 72.8 77.9 50.1 47.5 48.8 82.2 76.6 66.4 72.8 72.8 79.2 68.7 65.3 58.4

QAEhyb, α = 0.3, β = 0.5 77.0 72.3 57.8 73.9 73.9 78.3 51.6 49.2 50.3 82.3 76.9 66.3 69.9 69.9 76.9 69.8 65.8 59.4

text2vec-base-multilingual

- 54.0 50.9 37.2 41.2 41.2 46.3 38.4 36.8 35.7 51.3 49.1 38.2 52.9 52.9 60.9 42.0 40.0 34.0
QAEemb, α = 0.75 66.7 62.8 47.9 55.0 55.0 60.0 43.2 41.6 41.5 71.9 68.4 53.3 69.2 69.2 75.7 58.0 55.7 48.1
QAEtxt, β = 0.5 56.8 54.0 40.5 46.8 46.8 52.0 39.1 37.9 36.7 61.5 59.0 45.8 57.8 57.8 65.5 47.2 45.2 38.8

QAEhyb, α = 0.6, β = 0.5 66.7 63.1 47.9 56.5 56.5 61.4 43.7 42.1 41.7 72.0 69.0 53.1 68.0 68.0 74.8 57.4 55.3 47.5
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Table 11: Comprehensive retrieval performance on the latest datasets FIGNEWS and CRUD-RAG
(Top-k = 10). Higher is better, with the best one bolded. Hyperparameters including QAEncoder
variants and weight terms α, β are optimized simultaneously for six latest datasets. ‘-’ denotes
default or null values.

Model Param
FIGNEWS(English) FIGNEWS(Arabic) CRUD-RAG(Chinese) FIGNEWS(French) FIGNEWS(Hindi) FIGNEWS(Hebrew)

MRR@10 NDCG@10 MRR@10 NDCG@10 MRR@10 NDCG@10 MRR@10 NDCG@10 MRR@10 NDCG@10 MRR@10 NDCG@10

bge-m3
- 74.4 78.7 77.8 80.9 86.9 89 73.5 77.4 58.6 64.4 78.7 81.4

QAEtxt, β = 1.5 77.2 81 80.2 83.1 89 90.9 76.9 80.3 62.7 67.8 80 82.8

multilingual-e5-small
- 71 75.1 74.1 77.4 81.7 84.2 66.8 70.4 52.5 57.8 72.9 76.5

QAEhyb, α = 0.3, β = 0.5 74.6 78.5 78.9 81.6 87.5 89.3 74.2 77.9 59.6 64.6 77.5 80.4

multilingual-e5-base
- 74.8 78.1 72.3 76 86.1 88.2 71.2 75.1 57.8 62.9 72.6 75.8

QAEemb, α = 0.3 77.6 81.3 77.2 80.3 88.5 90.5 76.7 80 61.5 66.5 77.7 80.5

multilingual-e5-large
- 73.9 77.8 76.7 80.2 85.8 88.3 70.6 74.5 53 59.2 73.9 77.4

QAEhyb, α = 0.15, β = 1.25 77.1 80.6 82.2 85.1 89.1 91.2 77.4 80.9 60.6 65.9 77.7 81

gte-multilingual-base
- 65.5 70.4 73.4 76.8 82.9 85.7 63 67.4 52.4 58.6 66 69.6

QAEhyb, α = 0.15, β = 1.5 75.5 79.5 76.2 79.1 85.5 88.2 66.9 71.6 56 61.9 74 77.6

mcontriever
- 32.9 36.7 40.3 44.7 71.8 76.2 35 39.3 27 31.8 49.5 54.4

QAEhyb, α = 0.45, β = 1.25 61.4 65.9 68.3 72.1 88.7 90.6 64.7 69.1 50.6 56.4 70.1 73.8

bce-embedding-base-v1
- 59.1 63.8 - - 76.9 80.5 - - - - - -

QAEhyb, α = 0.3, β = 0.5 66.8 71.1 - - 86 88.3 - - - - - -

text2vec-base-multilingual
- 38.7 43.6 27.8 31.9 12.2 13.9 33.7 38.6 15.6 19.9 12.6 15.5

QAEemb, α = 0.75 55.4 59.9 51.5 55.4 55.5 59 49.3 54.4 36.2 41.5 47.1 52.1
Ablation

bge-m3

- 74.4 78.7 77.8 80.9 86.9 89 73.5 77.4 58.6 64.4 78.7 81.4
QAEemb, α = 0.3 76.4 80.5 80.1 82.9 88.8 90.7 75 78.5 61 66 79 82
QAEtxt, β = 1.5 77.2 81 80.2 83.1 89 90.9 76.9 80.3 62.7 67.8 80 82.8

QAEhyb, α = 0.15, β = 1.5 77.4 81.1 80.6 83.4 89.4 91.2 76.5 80 61.7 66.8 79.8 82.7

multilingual-e5-small

- 71 75.1 74.1 77.4 81.7 84.2 66.8 70.4 52.5 57.8 72.9 76.5
QAEemb, α = 0.45 74.7 78.5 77 79.8 87.8 89.8 73.6 77.1 58 63.2 77.1 80.1
QAEtxt, β = 1.0 73.2 77.2 79.2 81.9 85 87.3 70.6 74.7 58.7 63.7 77.1 80.2

QAEhyb, α = 0.3, β = 0.5 74.6 78.5 78.9 81.6 87.5 89.3 74.2 77.9 59.6 64.6 77.5 80.4

multilingual-e5-base

- 74.8 78.1 72.3 76 86.1 88.2 71.2 75.1 57.8 62.9 72.6 75.8
QAEemb, α = 0.3 77.6 81.3 77.2 80.3 88.5 90.5 76.7 80 61.5 66.5 77.7 80.5
QAEtxt, β = 0.75 74.7 78.8 76.4 79.7 87.6 89.7 72.3 76.4 62.5 67.8 77 79.9

QAEhyb, α = 0.3, β = 0.5 76.6 80.4 77.4 80.6 89.1 90.9 75.4 79.1 62.7 67.7 77.2 80.2

multilingual-e5-large

- 73.9 77.8 76.7 80.2 85.8 88.3 70.6 74.5 53 59.2 73.9 77.4
QAEemb, α = 0.45 77.9 81.4 79.8 83 89.8 91.5 77 80 58.3 63.5 78.1 81.2
QAEtxt, β = 1.5 75.6 79.2 80.9 84.1 88.3 90.5 76 79.4 60 65.5 77 80.2

QAEhyb, α = 0.15, β = 1.25 77.1 80.6 82.2 85.1 89.1 91.2 77.4 80.9 60.6 65.9 77.7 81

gte-multilingual-base

- 65.5 70.4 73.4 76.8 82.9 85.7 63 67.4 52.4 58.6 66 69.6
QAEemb, α = 0.45 69.1 73.6 76.9 79.6 87.3 89.4 67.1 71.2 53 58.5 72.4 75.8
QAEtxt, β = 1.5 75.7 79.7 75.9 78.9 84.5 87.3 66.1 70.7 56.8 62.5 72.8 76.5

QAEhyb, α = 0.15, β = 1.5 75.5 79.5 76.2 79.1 85.5 88.2 66.9 71.6 56 61.9 74 77.6

mcontriever

- 32.9 36.7 40.3 44.7 71.8 76.2 35 39.3 27 31.8 49.5 54.4
QAEemb, α = 0.6 58.8 64.2 67.2 71.3 88.3 90.2 62.7 66.9 50.4 55.7 69.7 73.2
QAEtxt, β = 1.5 49.2 54.2 59.5 63.9 80 83.3 54.1 58.9 45.1 50.2 60.8 64.6

QAEhyb, α = 0.45, β = 1.25 61.4 65.9 68.3 72.1 88.7 90.6 64.7 69.1 50.6 56.4 70.1 73.8

bce-embedding-base-v1

- 59.1 63.8 - - 76.9 80.5 - - - - - -
QAEemb, α = 0.45 66.8 71.3 - - 85.3 87.6 - - - - - -
QAEtxt, β = 1.5 64.3 68.7 - - 82.3 85.1 - - - - - -

QAEhyb, α = 0.3, β = 0.5 66.8 71.1 - - 86 88.3 - - - - - -

text2vec-base-multilingual

- 38.7 43.6 27.8 31.9 12.2 13.9 33.7 38.6 15.6 19.9 12.6 15.5
QAEemb, α = 0.75 55.4 59.9 51.5 55.4 55.5 59 49.3 54.4 36.2 41.5 47.1 52.1
QAEtxt, β = 1.5 46.2 50.8 35.5 39.4 21.3 23.6 43.3 47.7 21.3 25.2 18.8 22.1

QAEhyb, α = 0.75, β = 0.5 55.1 59.7 50.4 54.4 57.8 60.7 49.1 53.8 34.5 39.6 47.1 51.5

Table 12: Complete performance comparison of QAEncoder variants on latest datasets FIGNEWS
and CRUD-RAG (Top-k = 10). Higher is better, with the best one bolded. Hyperparameters are
optimized simultaneously across the six latest datasets. n indicates the number of predicted queries
in QAnaive.

Model Param
FIGNEWS(English) FIGNEWS(Arabic) CRUD-RAG(Chinese) FIGNEWS(French) FIGNEWS(Hindi) FIGNEWS(Hebrew)

MRR@10 NDCG@10 MRR@10 NDCG@10 MRR@10 NDCG@10 MRR@10 NDCG@10 MRR@10 NDCG@10 MRR@10 NDCG@10

bg3-m3

QAEemb, α = 0.3 76.4 80.5 80.1 82.9 88.8 90.7 75 78.5 61 66 79 82
QAEtxt, β = 1.5 77.2 81 80.2 83.1 89 90.9 76.9 80.3 62.7 67.8 80 82.8

QAEhyb, α = 0.15, β = 1.5 77.4 81.1 80.6 83.4 89.4 91.2 76.5 80 61.7 66.8 79.8 82.7
QAnaive, n=10 76.9 79.9 77.1 79.7 86 88 71.9 74.4 62.3 66.1 68.1 71.7

multilingual-e5-large

QAEemb, α = 0.45 77.9 81.4 79.8 83 89.8 91.5 77 80 58.3 63.5 78.1 81.2
QAEtxt, β = 1.5 75.6 79.2 80.9 84.1 88.3 90.5 76 79.4 60 65.5 77 80.2

QAEhyb, α = 0.15, β = 1.25 77.1 80.6 82.2 85.1 89.1 91.2 77.4 80.9 60.6 65.9 77.7 81
QAnaive, n=10 77.5 80.3 76.5 79.4 85.1 87.3 70.5 73.5 61.5 65.6 69.4 72.2

Table 13: The table illustrates a comprehensive performance comparison of QAEncoder against
training-based and document-centric methods on the latest datasets: FIGNEWS and CRUD-RAG
(Top-k = 10). Higher is better, with the best one bolded. Hyperparameters α, β are optimized
simultaneously across the six latest datasets. n denotes the number of pseudo-documents in HyDE.
‘-’ indicates default or null values.

Model Param
FIGNEWS(English) FIGNEWS(Arabic) CRUD-RAG(Chinese) FIGNEWS(French) FIGNEWS(Hindi) FIGNEWS(Hebrew)

MRR@10 NDCG@10 MRR@10 NDCG@10 MRR@10 NDCG@10 MRR@10 NDCG@10 MRR@10 NDCG@10 MRR@10 NDCG@10

mcontriever-msmarco
- 66.1 70.6 70.2 73.7 85.1 87.5 66.4 70.3 48.7 53.9 69.4 72.9

QAEhyb, α = 0.3, β = 0.75 72.3 76.8 77.3 80.5 88.6 90.7 74.4 78 59 64.1 76.5 79.8

multilingual-e5-large-instruct
- 67 71.4 75 78.2 79.9 82.8 66 70.9 48.2 53.8 69.6 73.3

QAEhyb, α = 0.15, β = 1.5 75.6 79.8 80.8 83.7 88.9 90.6 75.8 79.5 59.3 65 79.4 82.3

mcontriever
- 32.9 36.7 40.3 44.7 71.8 76.2 35 39.3 27 31.8 49.5 54.4

HyDE, n=8 25 27.9 35.7 41.9 70.9 74.7 25.8 28.9 11.8 14.9 42.1 47.8

multilingual-e5-large
- 73.9 77.8 76.7 80.2 85.8 88.3 70.6 74.5 53 59.2 73.9 77.4

HyDE, n=8 63.6 68.3 68.3 74.1 81.6 84.1 58.4 63.2 45.6 51.3 65.3 69.6
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