
Generalized Linear Integer Numeric Planning

Abstract

Classical planning aims to find a sequence of actions that
guarantees goal achievement from an initial state. The rep-
resentative framework of classical planning is propositional
logic. Due to the weak expressiveness of propositional logic,
many interesting real-world applications cannot be described
as a classical planning problem. Some extensions such as
numeric planning and generalized planning are therefore
proposed. In this paper, we focus on a generalized version of
numeric planning, namely generalized linear integer numeric
planning (GLINP), requiring each numeric variable to be an
integer, and initial states to be formalized as a numeric for-
mula that represents possibly infinitely many states. GLINP
is a more expressive planning formalization than qualitative
numeric planning. In addition, we develop an approach to
synthesize solutions to GLINP problems. This approach
generates a solution which can satisfy all instances of the
domain as long as the set of initial states is representative.
Finally, we evaluate our approach on several benchmarks,
and experimental results demonstrate the effectiveness and
scalability of our proposed approach.

Introduction
Along the AI history, the planning community has focused
on classical planning that identifies a sequence of actions
that guarantees goal achievement from an initial state. The
representative framework of classical planning is proposi-
tional logic. Due to the weak expressiveness of propositional
logic, many interesting real-world applications cannot be
described as a classical planning problem. Therefore,
some extensions to classical planning are proposed. One
extension is numeric planning (Do and Kambhampati
2001; Haslum and Geffner 2001), which involves not
only propositional variables but also numeric variables.
Another extension is generalized planning (Levesque 2005;
Srivastava, Immerman, and Zilberstein 2011), which solves
planning problems for possibly infinitely many initial states
rather than a single state. However the above two extensions
are in general undecidable (Helmert 2002; Levesque 2005).

Srivastava et al. (2011b) proposed a decidable class of
numeric and generalized extensions to classical planning,
namely qualitative numeric planning (QNP). There are,

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

however, two restrictions imposed on numeric planning: (1)
any formula describing the initial states and the goal states
is a Boolean combination of literals of the forms of v > 0 or
v = 0; and (2) the effects of actions decrease or increase the
value of some variables by an unspecified amount. Under
these two restrictions, the state space of a QNP problem can
be compressed into a finite one with size 2|V | where |V | is
the number of numeric variables, and thus QNP is decidable.

However, some integer numeric planning domains still
cannot be modeled by QNP due to its two restrictions.
Consider the following example, which is a modified form
of the sailing problem (Scala, Haslum, and Thiébaux 2016).

Example 1 (Sailing). There are a sailing boat and people
to be rescued on an ocean with an unbounded area. The task
of the sailing boat is to reach the specific area, in which the
people is, so as to rescue them. The positions of the boat and
the people are formalized by their coordinates (x, y) ∈ Z2.
Initially, the boat is in a position (x, y) satisfying x+ y ≥ 1
and the people are in the area where the position satisfies the
linear inequality (x+ y ≥ −2)∧ (x+ y ≤ 0). Each of the 8
possible movements of the boat is formalized in the geomet-
rical space defined by Z2, for example, the action d moves
to the north decreasing the y-coordinate of the boat by 2.

It can be easily observed that (1) the formulas represent-
ing initial states and goal states violate the first restriction,
and (2) the effects of actions are too accurate to comply
with the second restriction. Hence, QNP is not a suitable
formalization for the sailing problem.

In order to address the deficit, we propose a generalized
version of numeric planning, namely generalized linear
integer numeric planning (GLINP). Compared to numeric
planning, GLINP requires that all numeric variables are
integer ones, and the initial states are represented by a linear
numeric formula that is able to capture possibly infinitely
many states. When considering numeric planning with inte-
ger numeric variable, GLINP is a more expressive planning
formalization than QNP in integer numeric planning. To
capture the notion of solutions to GLINP, we introduce a
more general solution, namely planning programs, consist-
ing of an empty plan, primitive actions, sequential, branch
and loop structures. In addition, we develop a generation
approach to synthesize planning programs. The generation
stage firstly infers a skeleton of planning programs, and

then completes the conditions of branch and loop structures.
Finally, we evaluate our approach on several benchmarks,
and experimental results demonstrate the effectiveness and
scalability of the proposed approach.

Preliminaries
In this section, we first introduce the concepts of integer
arithmetic with first-order logic (IAFO), along with its
well-known decidable fragment of linear integer arithmetic
with propositional logic (LIAP) and regular expressions.

Let Z the set of integers, N the set of natural numbers,
Var a set of variable symbols, F a set of function symbols
and Pred a set of predicate symbols. The sets of numeric
terms (Term), atomic formulas (Atom) and formulas (Form)
for IAFO is defined by the following grammar:

e ∈ Term :: c | x | e+ e | e× e | F (e, · · · , e)

α ∈ Atom :: e = e | e < e

φ ∈ Form :: α | ¬φ | φ ∧ φ | ∃xφ
where c ∈ Z , x ∈ Var, v ∈ F .

The formula φ1 ∨ φ2 is the shorthand for ¬(¬φ1 ∧ ¬φ2)
and ∀xφ is the shorthand for ¬∃x(¬φ).

A formula φ or a term e is closed if it contains no free
occurrence of a variable. For an interpretation M of IAFO,
it is required that its domain is the set Z of integers, each
m-ary function symbol is interpreted as an m-ary integer
function f(M) : Zm → Z , and each m-ary predicate sym-
bol is interpreted as an m-ary integer relation p(M) ⊆ Zm.
The addition and multiplication functions, and the ordering
and equality relations are interpreted as usual. The logic
IAFO is a very expressive but highly undecidable framework
for integer arithmetic since it contains predicates and
functions with arbitrary arities together with the addition
and multiplications operators.

Given an interpretation M , we evaluate a closed term e
into an integer eM to which the term simplifies when substi-
tuting every function symbol f with their respective value
fM (eM1 , · · · , eMm). The Boolean value φM of a closed for-
mula φ can be determined in a similar way. An interpretation
M satisfies a formula φ, denoted by M |= φ, if φM = >. A
set Φ of formulas is satisfiable, if there is an interpretation
satisfying all formulas φ ∈ Φ. A set Φ of formulas entails a
formula ψ, denoted by Φ |= φ′, if for all interpretations M
s.t. M |= φ for all formulas φ ∈ Φ, we have M |= ψ.

The validity problems of IAFO is undecidable. We here-
after introduce a decidable fragment LIAP of IAFO, where
two restrictions are imposed: (1) it does not involve the
multiplication operator and quantifier; and (2) all function
and predicate symbols are 0-ary, which we call numeric
variables.

Let V a finite set of numeric variables. The sets of nu-
meric terms (TermP), atomic formulas (AtomP) and formulas
(FormP) for LIAP is defined by the following grammar:

e ∈ TermP :: c | F | e+ e

α ∈ AtomP :: e = e | e < e

φ ∈ FormP :: α | ¬φ | φ ∧ φ

where c ∈ Z and v ∈ V .
For the logic LIAP, its interpretation can be simplified as

a valuation function, namely state, which maps each v ∈ V
into Z .

Throughout this paper, we fix an alphabet ∆. A string
is a finite sequence of characters over ∆. We use |π|
for the length of π and πi for the i-th symbol of π. A
substring of π is πi ◦ πi+1 ◦ · · · ◦ πj , denoted by πji , where
1 ≤ i ≤ j ≤ |π|. The substring πi1 is a prefix of π while π|π|i
is a suffix. A subsequence of π is πi1 ◦ πi2 ◦ · · · ◦ πij where
1 ≤ i1 < i2 < · · · < ij ≤ |π|. We remark that a substring
is a subsequence, but not vice versa. For example, aba is a
subsequence of abbba, but it is not a substring.

The set of regexes (Reg) is recursively defined by

r ∈ Reg :: ε | a | r ◦ r | (r | r) | r∗

where ε denotes the empty string and a ∈ ∆.
The regex r1 ◦ r2 is called a concatenation regex, r | r is

called an alternation regex, and r∗ is called a star regex. We
say r is the generator of a star regex r∗.

The set of strings L(r) represented by r, is recursively
defined as
• L(ε) = {ε} and L(a) = {a};
• L(r1 ◦ r2) = {s1s2 | s1 ∈ L(r1) and s2 ∈ L(r2)};
• L(r1 | r2) = L(r1) ∪ L(r2);

• L(r∗1) = L(ε) ∪
⋃
i≥1 L(ri1) where ri1 =

i︷ ︸︸ ︷
r1 · r1 · · · r1.

A regex r accepts a string π, if π ∈ L(r).

Generalized Linear Integer Numeric Planning
In this section, we introduce concepts on linear integer
numeric planning (LINP) based on LIAP, and then provide
the definition of generalized LINP (GLINP) problems,
and finally give a program-like definitions of solutions to
GLINP problems.
Definition 1. A LINP domain D is a tuple 〈V,A〉 where
• V: a finite set of numeric variables;
• A: a finite set of actions which is defined by a tuple
〈pre, eff〉 where pre ∈ FormP is the precondition and
eff is a finite set of numeric effects.
A numeric effect is a tuple 〈v, e〉 where v ∈ V and e ∈

TermP. Intuitively, it means that the numeric value of v be-
comes es after performing the action; otherwise, it remains
unchanged. An action a is executable in a state s, if s |=
pre(a). The successor state of applying an action a over s is
written as τ(s, a), which results from s by mapping v to es
(i.e. τ(s, a)(v) = es) for all 〈v, e〉 ∈ eff(a). We remark that
τ(s, a) is still well-defined even if a is non-executable in s.

The resulting state of performing a finite sequence
[a1, · · · , an] of actions on s is recursively defined by
τ(s, [a1, · · · , an]) = τ(τ(s, [a1, · · · , an−1]), an) and
τ(s, ε) = s where ε is an empty sequence. A (possibly
infinite) sequence [a1, a2, · · ·] of actions is executable in a
state s, if s |= pre(a1) and τ(s, [a1 · · · ai]) |= pre(ai+1)
for i ≥ 1.

A LINP problem is defined as a tuple 〈D, sI ,G〉 where
D is a LINP domain, sI is an initial state, and G ∈ FormP

denoting a set of goal states. A solution to a LINP problem
with an initial state s, namely sequential plan, is a finite
sequence [a1, · · · , an] of actions s.t. performing these
actions one by one from s leads to a final state satisfying the
goal condition G. More formally, [a1, · · · , an] is executable
in s, and τ(s, [a1, · · · , an]) |= G. We say (s, π) a state-plan
pair where π is a sequential plan for s. Given a set Υ of
state-plan pairs, we use S(Υ) for the set of states and Π(Υ)
for the set of plans.

Generalized LINP (GLINP) problems are an extension
to LINP problems that involve possibly infinite initial states
that represented by a LIAP formula I.
Definition 2. A generalized LINP (GLINP) problem Σ is a
tuple 〈D, I,G〉, where
• D: a LINP domain 〈V,A〉;
• I ∈ FormP: a formula representing a set of initial states.
• G ∈ FormP: a formula representing a set of goal states.

Each LINP problem 〈D, sI ,G〉 is an instance of an
GLINP problem 〈D, I,G〉 for sI |= I. It is easily verified
that the existence of solutions to GLINP is undecidable from
the undecidability result for LINP problems (Helmert 2002).

The solutions to GLINP problems is captured by planning
programs, consisting of an empty plan, primitive actions,
sequential, branch and loop structures.
Definition 3 (Planning programs). The set of planning pro-
grams (Prog) for a linear integer numeric planning domain
D = 〈V,A〉 is recursively defined by
δ∈Prog :: ε | a | δ; δ | if φ then δ else δ fi | while φ do δ od
where a ∈ A and φ ∈ FormP.

We say φ is the condition of the branch structure
if φ then δ1 else δ2 fi. Likewise, φ is the condition of the
loop structure while φ do δ od.

Given a GLINP problem, we are interested in synthe-
sizing a program δ satisfying the following three critical
properties of planning programs: (1) termination: δ will
terminate eventually; (2) reachability: performing δ in an
initial state leads to a goal state; (3) executability: any action
is always executable during the execution of δ.
Definition 4. Let D = 〈V,A〉 be a LINP domain, δ a pro-
gram for D, and s a state. The action sequence of executing
δ in a state s is defined as follows:
• Θ(s, ε) = ε;
• Θ(s, a) = [a] where a ∈ A.
• Θ(s, δ1; δ2) ={

Θ(s, δ1) ◦Θ(τ(s, δ1), δ2), if Θ(s, δ1) is finite;

Θ(s, δ1), otherwise.

• Θ(s, if φ then δ1 else δ2 fi) =

{
Θ(s, δ1), if φ(s) = >;

Θ(s, δ2), otherwise.
• Θ(s,while φ do δ1 od) =

Θ(s, δ1) ◦Θ(τ(s, δ1),while φ do δ1 od),

if φ(s) = > and Θ(s, δ1) is finite;

Θ(s, δ1), if φ(s) = > and Θ(s, δ1) is infinite;

ε, otherwise.

Algorithm 1: SynPlanProg(Σ)

Input: Σ: A GLINP Problem
Output: δ: a planning program that is a solution to Σ

1 Initialize a bound b
2 S ← GenInitStates(Σ, b)
3 (r,Υ)← GenSkeleton(Σ, S)
4 δ ← Complete(r,Υ)
5 return δ

where τ(s, δ) is τ(s,Θ(s, δ)) if Θ(s, δ) is finite and Θ1 ◦
Θ2 is the concatenation of two sequences of actions Θ1 and
Θ2.
Definition 5. Let D = 〈V,A〉 be a LINP domain, δ a pro-
gram for D and s a state. The program δ is
• terminable in s, iff Θ(s, δ) is finite;
• executable in s, iff Θ(s, δ) is executable in s;
• φ-reachable in s, iff δ is terminable and executable in s

only if τ(s, δ) |= φ.
A planning program is a solution to a GLINP problem, if

it satisfies the above three properties for any initial state.
Definition 6. Let Σ = 〈D, I,G〉 be a GLINP problem and δ
a planning program for D. The program δ is a solution to Σ,
if for any state s |= I, we have δ is G-reachable, terminable
and executable in s.

The Main Algorithm
We now present a generation approach to synthesize plan-
ning programs for a given domain Σ shown in Algorithm
1. The main idea of Algorithm 1 is to construct a candidate
planning program δ which can satisfy with all instances of
the initial states set

The notion of regexes is highly related to planning
programs. Suppose that the alphabet ∆ is the set of actions
A of a given domain Σ. A sequence π of actions is a
string over ∆. Each construct of a regex corresponds to
a structure of planning programs. If the condition of the
branch structure if φ then δ1 else δ2 fi is omitted, then
it corresponds to a concatenation of δ1 and δ2. Similarly,
the loop structure while φ do δ od corresponds to the star
regex δ∗ if the condition is left out. Hence, regexes can be
considered as skeletons of planning programs.

Inspired by the intimate connection between regexes and
planning programs, we divide the generation stage into
two steps: (1) synthesize a skeleton of planning program r
expressed in a regex, and generate a set of state-plan pairs
Υ where each pair (s, π) denotes π is a sequential plan for s
(Line 3); (2) obtain a complete planning program δ by filling
the missing conditions in r according to Υ (Line 5). Then
the test stage will check the validity of the planning program
δ (Line 6). If δ is correct, then it returns δ as the solution
(Lines 7 and 8). Otherwise, it returns an initial state s such
that executing δ in s cannot reach the goal. In this case, a
sequential plan π corresponding to s will be computed by a
numeric planner (Line 10). If r does not accept the sequence
of actions π, then we consider the skeleton r is incorrect,
and restart the generation stage with a larger bound b (Lines

Algorithm 2: GenSkeleton(Σ, S)

Input: Σ: the planning problem Σ
S: the finite set of states

Output: r: a skeleton of planning programs
Υ: the set of state-plan pairs

1 Υ← ∅ foreach s ∈ S do
2 π ← Plan(Σ, s)
3 Υ← Υ ∪ {(s, π)}
4 R← ∅ and ∆∗ ← ∅
5 foreach π ∈ Π(Υ) do
6 t← π and ∆← A
7 while true do
8 (t′,∆′)← FoldString(t,∆, 1)
9 if t 6= t′ then

10 ∆← ∆ ∪∆′ and t← t′

11 else
12 break;
13 R← R ∪ {t} and ∆∗ ← ∆∗ ∪∆
14 (ξ1, · · · , ξl)← the sequence of non-extensible common

strings of R over ∆∗

15 Compute each i-th individual components ηi,j of tj s.t.
tj = η1,j ◦ ξ1 ◦ · · · ◦ ηl,j ◦ ξl ◦ ηl+1,j for 1 ≤ i ≤ l + 1
and 1 ≤ j ≤ k

16 ηi ← ηi,1 | · · · | ηi,k for 1 ≤ i ≤ l + 1
17 r ← η1 ◦ ξ1 ◦ η2 ◦ ξ2 ◦ · · · ◦ ηl ◦ ξl ◦ ηl+1

18 Simplify r

11 - 13). Otherwise, some conditions in r is incorrect, and
hence the set of state-plan pairs Υ is enlarged by the pair
(s, π), and complete the conditions occurring in r again.

The main algorithm consists of 3 procedures: GenInit-
States, GenSkeleton, Complete. The three procedures will
be sequentially explained in the following sections.

Generation of Initial States and
Skeletons of Planning Programs

Given a planning domain D, the GenSkeleton procedure
(Algorithm 2) aims to guess a suitable skeleton of planning
programs for D expressed by a regex r. The main insight
behind the procedure is to infer a regex based on a set of
strings (i.e. a set of sequential plans).

In the area of grammatical inference, Kinber (2010) pro-
posed a learning algorithm to infer a regex r with star oper-
ators from one string. To facilitate identifying the star sub-
regex, Kinber (2010) requires the given string s to be repre-
sentative for the regex r, more formally, the generator of any
star subregex of r consecutively occurs in the string s at least
twice. We observe from most planning domains that if the
values of all numeric variables of an initial state s are large
enough, then the corresponding plan is representative. To as-
sist the GenSkeleton procedure, the GenInitState procedure
initializes a set S of initial states where the absolute values
of all numeric variables are at least as large as the bound b.

With the set of initial states in hand, the GenSkeleton
procedure works as follows. It firstly invokes the Plan
procedure to compute the sequential plan for every state
s ∈ S (Lines 1 - 4).

The second step of the GenSkeleton procedure is to fold

each representative plan π ∈ Π into a regex t with star op-
erators (Lines 6 - 16). It starts from the original alphabet
∆ = A (Line 8), and infers a regex t′ over ∆ accepting π
(Line 10). If the current regex t′ is not equal to the previous
one t, it means that new star subregexes are found in this it-
eration. These subregexes are considered as new single char-
acters that are used to enlarge the alphabet ∆. Hence t′ can
be considered as a string over the new alphabet ∆. The above
computations will continue until no new star subregexes are
identified (i.e. the regex remains unchanged, t = t′). The

Algorithm 3: FoldString(∆, π, l)

Input: ∆: the alphabet
π: a string
l: the length of the generator of a star subregex

Output: r: a star regex
∆′: the extended alphabet that contains

the identified star subregex
1 r ← ε and ∆′ ← ∅
2 i, j ← 1
3 while j < |π| do
4 if π[j] · · ·π[j + l] = π[j + l + 1] · · ·π[j + 2l] then
5 π′ ← π[j] · · ·π[j + l]
6 if j − i ≥ 2l + 2 then
7 (r′,∆′l+1)←

FoldString(∆, π[i] · · ·π[j], l + 1)
8 ∆′ ← ∆′ ∪∆′l+1 ∪ {(π′)∗}
9 r ← r · r′ · (π′)∗

10 else
11 r ← r · (π[i] · · ·π[j]) · (π′)∗
12 ∆′ ← ∆′ ∪ {(π′)∗}
13 Let k be the time of occurrences of π′ in the

longest substring (π′)k of π beginning at j (??)
14 i, j ← j + kl + 1
15 if ∃j′ > j, π[j] · · ·π[j′] is accepted by π′ and

∀i′ > j′, π[j] · · ·π[i′] is not accepted by π′ then
16 i, j ← j′

17 else
18 j ← j + 1

19 if |π| − i ≥ 2l + 2 then
20 (r′,∆′l+1)← FoldString(π[i] · · ·π[j],∆, l + 1)
21 ∆′ ← ∆′ ∪∆′l+1

22 r ← r · r′
23 else
24 r ← r · (π[i] · · ·π[j])

25 return r,∆′

FoldString process (Algorithm 3) generates a regex with star
subregexes u∗ according to t. It starts recognizing u∗ where
the length of the generator u is 1, and then continues to han-
dle larger cases by increasing the length of generators. When
the length of generator is more than the half of the length of
t, the recognization process terminates since it is impossible
to find the new star subregexes. The regex t is gathered into
the setR and the alphabet ∆∗ is enlarged by ∆ (Line 15). At
each iteration, it identifies the star subregex u∗ when the sub-
string u over ∆ consecutively occurs in t at least twice, and
then replaces all of the longest substrings u · · ·u in t by u∗.

Finally, the GenSkeleton procedure merges all regexes
of R into a final regex r with the alternation connective
based on the notion of common substrings and common
subsequences (Lines 16 - 20). A string ξ is a common
substring of R, if ξ is a substring of tj ∈ R for 1 ≤ j ≤ k.
Similarly, a string ξ is a common subsequence of R, if ξ
is a subsequence of tj ∈ R for 1 ≤ j ≤ k. The sequence
of non-extensible common strings of R is (ξ1, · · · ξl) s.t.
ξ1 ◦ · · · ◦ ξl is the longest common subsequence of R, and ξi
is a non-extensible common substring of Π (more precisely,
(ξi−1)|ξ| ◦ ξi is not a common substring of R for i > 1, and
ξi ◦ (ξi+1)1 is a not common substring of Π for i < l). Each
tj ∈ R is the concatenation η1,j ◦ ξ1 ◦ · · · ◦ ηl,j ◦ ξl ◦ ηl+1,j

where η1,j and ηl+1,j may be the empty string ε. Each
ηi,j is the i-th individual component of tj while ξi is the
common component of the R for 1 ≤ i ≤ l + 1 and
1 ≤ j ≤ k. We remind that each regex t of R is a string
over ∆∗. The final regex r is obtained as follows. We firstly
generate the sequence of common strings of R is (ξ1, · · · ξl)
and each i-th individual component of tj (Lines 16 and
17). We then obtain the regex ηi via merging all of the i-th
independent component of tj’s via alternation connectives
(i.e. ηi,1 | · · · | ηi,k) for each 1 ≤ i ≤ l + 1 (Line 18). We
concatenate the combination of individual components ηi
and the common component ξi alternatively in an increasing
order (Line 19). In the end, some redundant subregexes in r
are removed (Line 20). For example, u1 | u2 | · · · | uk−1 |
u2 | uk is simplified as u1 | u2 | · · · | uk−1 | uk.
Theorem 1. Let Σ = 〈D, I,G〉 be a GLINP problem and
S a finite set of initial state. Let (r,Υ) be the output of
GenSkeleton(Σ, S) where r is the skeleton of planning
programs and Υ is the set of state-plan pairs. Assume that
the procedure Plan always returns a plan π for every initial
state s ∈ S. Then, S = S(Υ), and r is the regex accepting
each π ∈ Π(Υ).

Proof sketch: The first half of the theorem can be directly
obtained from the assumption that the procedure Plan al-
ways computes a plan π for every initial state s ∈ S, and
each state-plan pair (s, π) is added into the set Υ.

Now we prove the second half of the theorem. For each
πj ∈ Π(Υ), the FoldString process iteratively replaces the
consecutive occurrence of substring u in πj by u∗, and ob-
tain the regex tj . So each tj , which is added into the set R,
accepts πj . Then, each tj is divided into a sequence of sub-
regexes (i.e. , η1,j ◦ ξ1 ◦ · · · ◦ηl,j ◦ ξl ◦ηl+1,j where ηi,j is an
individual component of tj and ξi is a common component
of theR). The final regex r is η1◦ξ1◦η2◦ξ2◦· · ·◦ηl◦ξl◦ηl+1

where ηi = ηi,1 | · · · | ηi,k. Obviously, r accepts every
πi ∈ Π(Υ).

Completion of Planning Programs
Now we are ready to construct a candidate planning
program by completing the branch and loop conditions
occurring in the skeleton r generated in the above section.

We adapt the enumerative algorithm proposed by Udupa
et al. (2013), to infer these conditions. Given a set S+ of
positive states and a set S− of negative states, the main idea
of the enumerative algorithm is to iteratively generates the

Algorithm 4: Complete(r,Υ)

Input: r: a skeleton of planning program
Υ: a set of state-plan pairs

Output: δ: a complete planning program
1 switch r do
2 case r1 | r2 do
3 S+ ← ∅ and S− ← ∅
4 Υ1 ← ∅ and Υ2 ← ∅
5 foreach (s, π) ∈ Υ do
6 if π ∈ L(r1) then
7 S+ ← S+ ∪ {s}
8 Υ1 ← Υ1 ∪ {(s, π)}
9 else /* π ∈ L(r2) */

10 S− ← S− ∪ {s}
11 Υ2 ← Υ2 ∪ {(s, π)}
12 δ1 ← Complete(r1,Υ1)
13 δ2 ← Complete(r2,Υ2)

14 φ← Enumerate(S+, S−)
15 δ ← if φ then δ1 else δ2 fi
16 case r∗1 do
17 S+ ← ∅ and S− ← ∅
18 Υ1 ← ∅
19 foreach (s, π) ∈ Υ do
20 Computes substrings (π1, π2, · · · , πk) s.t.

π1 ◦ π2 ◦ · · · ◦ πk = π and πi ∈ L(r1) for
1 ≤ i ≤ k;

21 for i← 1 to k do
22 S+ ← S+ ∪ {s}
23 Υ1 ← Υ1 ∪ {(s, πi)}
24 s← τ(s, πi)

25 S− ← S− ∪ {s}
26 δ1 ← Complete(r1,Υ1)

27 φ← Enumerate(S+, S−)
28 δ ← while φ do δ1 od
29 case r1 ◦ r2 do
30 Υ1 ← ∅ and Υ2 ← ∅
31 foreach (s, π) ∈ Υ do
32 Computes the prefix πi1 and suffix π|π|i+1 of π

s.t. πi1 ∈ L(r1) and π|π|i+1 ∈ L(r2)

33 Υ1 ← Υ1 ∪ {(s, πi1)}
34 Υ2 ← Υ2 ∪ {(τ(s, πi1), π

|π|
i+1)}

35 δ1 ← Complete(r1,Υ1)
36 δ2 ← Complete(r2,Υ2)
37 δ ← δ1; δ2
38 otherwise do /* r = ε or r = a */
39 δ ← r

candidate formulas by induction on size until it finds an
excepted formula φ that is consistent with the two sets S+

and S−, more formally, s |= φ for s ∈ S+ and s |= ¬φ for
s ∈ S−. For details, please refer to Algorithm 1 proposed
in this paper (Udupa et al. 2013).

It remains to construct the set of positive states and the
set of negative states for each condition of branch structures
and loop structures.

In the following, we illustrate the Complete procedure
which takes a skeleton r, a set of state-plan pairs Υ as
input, and outputs a complete planning program δ. The

Complete procedure works in a recursive way. Suppose that
the original regex is r.

In the case where r = r1 | r2 (Lines 2 - 15). This regex
corresponds to the branch structure if φ then δ1 else δ2 fi
where φ is the condition and the subregexes r1 and r2 cor-
respond to δ1 and δ2, respectively. The set S+ is the set of
positive states for synthesizing φ and S− is that of negative
states. The sets Υ1 and Υ2 are two sets of state-plan pairs
for completing r1 and r2, respectively Initialy, the above
four sets are empty (Lines 3 and 4). For each (s, π) ∈ Υ, if
r1 accepts π, then the execution of π enters the branch ex-
pressed by r1, and hence the state s is the positive state of φ
(i.e. s |= φ). The set S+ is enlarged by s, and the state-plan
pair (s, π) is added into Υ2 (Lines 6 - 8). Otherwise, the
execution of π goes to another branch described by r2. The
state s is the negative state of φ (i.e. s |= ¬φ). Similarly
to the opposite case, the set S− is enlarged by s, and
(s, π) is added into Υ2 (Lines 9 - 11). Then, we obtain the
subprograms δ1 and δ2 by invoking Complete(r1,Υ1) and
Complete(r2,Υ2), respectively, and construct the condition
φ via the Enumerate process (Lines 12 and 13). Finally,
the Complete procedure constructs the condition φ via the
Enumerate process based on the set of positive states S+

and the set of negative states S− (Line 14).
In the case where r = r∗1 (Lines 17 - 28). This regex

corresponds to the loop structure while φ do δ1 od where
φ is the condition and the subregex r1 corresponds to the
program δ1. The meaning of S+, S− and Υ1 are similar
to the above case, and they are initialized as empty (Lines
17 and 18). For each (s, π) ∈ Υ, if the sequential plan π is
not an empty plan, then there is a partition (π1, π2, · · · , πk)
s.t. their concatenation is π and r1 accepts each πi for
1 ≤ i ≤ k (Line 20). In other words, the program expressed
by r1 is executed by k times, where the action sequence of
the i-th execution is πi. It is easily observed that the execu-
tion of the loop structure enters the body δ1 in the following
states: s, τ(s, π1), · · · , τ(s, π1 · · ·πk−1). So the above
states are the positve state of the condition φ and are added
into S+ (Line 22). Meanwhile, the following state-plan
pairs (s, π1), (τ(s, π1), π2), · · · , (τ(s, π1 · · ·πk−1), πk)
is added into Υ1 (Line 23). When the loop is completed,
the execution is out of the loop and terminates in the state
τ(s, π). We consider this state as the negative state of φ
which is added into S− (Line 25). Then, the subprogram δ1
is obtained according to r1 and Υ1 (Line 26). Finally, the
Enumerate procedure synthesizes the condition φ according
to S+ and S− (Line 27).

In the case where r = r1 ◦ r2 (Lines 29 - 37). This
regex corresponds to the sequential structure δ1; δ2 where
the subregexes r1 and r2 correspond to the program δ1 and
δ2, respectively. The meaning of Υ1 and Υ2 are similar
to the branch structure, and they are initialized as empty
(Line 30). For each (s, π) ∈ Υ, there are a prefix πi1 of π
and a suffix π|π|i+1 s.t. r1 accepts the former and r2 accepts
the latter (Line 32). We collect the state-plan pair (s, πi1)

and (τ(s, πi1), π
|π|
i+1) for Υ1 and Υ2, respectively (Lines 33

and 34). Finally, the subprograms δ1 and δ2 are constructed
recursively (Lines 35 and 36).

The last case where r = ε or r = a can be easily handled.
We obtain the soundness for the Complete procedure.

Theorem 2. Let Σ = 〈D, I,G〉. Let r be a skeleton of
a planning program of D and Υ a set of state-plan pairs
where every state s ∈ S(Υ) is an initial state of Σ and r
accepts each plan π where π ∈ Π(Υ). Assume that the pro-
cedure Plan always returns a plan π for every initial state
s ∈ S. Let δ be the output of Complete(r,Υ). Then, δ is ter-
minable, executable and G-reachable in all states s ∈ S(Υ).

Proof. We firstly prove that π = Θ(s, δ) for (s, π) ∈ Υ. We
prove by induction on δ.

• δ = ε or δ = a: Suppose that δ = ε. Since r accepts π,
π = ε, and hence Θ(s, δ) = ε = π. Similarly, Θ(s, a) =
[a] = π when δ = a.

• δ = δ1; δ2: It follows that r = r1◦r2 where ri corresponds
to the program δi for i = 1, 2. Since r accepts π, there is
an index i s.t. r1 accepts πi1 and r2 accepts π|π|i+1. Accord-
ing to the Complete procedure (Algorithm 4), (s, πi1) ∈
Υ1 and (τ(s, πi1), π

|π|
i+1) ∈ Υ2. By the inductive assump-

tion, the Complete procedure synthesizes two programs
δ1 and δ2 s.t. πi1 = Θ(s, δ1) and π|π|i+1 = Θ(τ(s, πi1), δ2).

Hence, π = πi1 ◦ π
|π|
i+1 = Θ(s, δ1) ◦ Θ(τ(s, πi1), δ2) =

Θ(s, δ1; δ2).

• δ = if φ then δ1 else δ2 fi: It follows that r = r1 | r2
where ri corresponds to the program δi for i = 1, 2. Sup-
pose that φs = >. Thus, Θ(s, δ) = Θ(s, δ1). Since the
Enumerate procedure constructs the condition φ consis-
tent with S+ and S− (i.e. s+ |= φ for s+ ∈ S+ and
s− |= ¬φ for s− ∈ S−). So s ∈ S+ and (s, π) ∈ Υ1. By
the inductive assumption, the Complete procedure synthe-
sizes a program δ1 s.t. π = Θ(s, δ1). Hence, π = Θ(s, δ).
The case where φs = ⊥ can be similarly proved.

• δ = while φ do δ1 od: It follows that r = r∗1 where
r1 corresponds to the program δ1. Suppose that π 6= ε.
The case where π = ∅ is easier. Since r accepts π,
there is a sequence of substrings (π1, π2, · · · , πk) s.t.
π1 ◦ π2 ◦ · · · ◦ πk = π and πi ∈ L(r1) for 1 ≤ i ≤ k.
According to the Complete procedure, (s, π1) ∈ Υ1 and
(τ(s, π1 ◦ · · · ◦ πi), πi+1) ∈ Υ1 for 1 ≤ i < k. By
the inductive assumption, the Complete procedure syn-
thesizes a program δ1 s.t. π1 = Θ(s, δ1) and πi+1 =
Θ(τ(s, π1 ◦ · · · ◦ πi), δ1) for 1 ≤ i < k. In addition,
s ∈ S+, τ(s, π1 ◦ πi) ∈ S+, and τ(s, π1 ◦ πk) ∈ S−.
So s+ |= φ for s+ ∈ S+ and s− |= ¬φ for s− ∈ S−.
By Definition 4, we get that Θ(s,while φ do δ1 od) =
Θ(s, δ1) ◦ · · · ◦Θ(τ(s, π1 ◦ · · · ◦ πk−1), δ1). Hence, π =
Θ(s,while φ do δ1 od).

Since π is also a solution to the LINP problem 〈D, s,G〉
for (s, π) ∈ Π, π is finite and executable in s, and τ(s, π) |=
G. This, together with the fact that π = Θ(s, δ), imply δ is a
terminable, executable and G-reachable in s.

Domain Variables Examples Loop Length GenSkeleton (s) Completion (s) Total (s)P N
Chop 0 1 3 1 5 0.037 0.002 0.039

Gripper 3 2 3 1 11 0.089 0.005 0.094
Arith 0 2 3 1 15 0.051 0.097 0.148

Corner-A 0 4 3 1 11 0.062 0.018 0.080
D-Return 4 6 3 1 40 0.187 0.084 0.281
Delivery 3 2 3 1 15 0.073 0.005 0.078

Snow 2 2 3 1 15 0.061 0.008 0.069
Hall-A 4 5 3 1 37 0.143 0.036 0.179
NestVar 0 2 3 2 11 0.049 0.009 0.058
VisitAll 2 5 3 2 21 0.105 0.036 0.141
Sailing 0 2 3 1 7 0.055 0.253 0.308

Table 1: Experimental results: the column “Variables” denotes the number of variables where “P” denotes the number of
propositional variables and “N” denotes the number of numeric variables. The column “Examples” is the total number of
examples, “Loop” denotes the depth of loop in the planning programs, “Length” denotes the length of the planning program.
The column “GenSkeleton” denotes the runtime of generation of skeletons of planning programs, “Completion” denotes the
runtime of completion of planning programs, “Total” denotes the Total runtime.

Experimental Evaluation
We have performed a sets of experiments for synthesizing
the generalized planning programs, corresponding to skelton
generation, completion and verfication. Most domains1 used
in the experiments are the same as in other previous work,
including: Arith (Hu and Levesque 2009), Chop (Levesque
2005), Corner-A, D-Return, Hall-A, Prize-A, Gripper
(Bonet, Palacios, and Geffner 2009), Delivery (Srivastava,
Immerman, and Zilberstein 2011), NestVar, Snow (Srivas-
tava et al. 2011b), and Sailing (Scala, Haslum, and Thiébaux
2016). In Arith, the aim is to make the value of v1 (resp. v2)
to an integer number n (resp. 2n+ 1). In Chop, the aim is to
decrease the height of tree. In Corner-A, the aim is to reach
the top-right corner from any position in grid. In D-Return,
the aim is to is to reach the bottom-right corner, the top-right
corner, and bottom-right corner in order, and finally return to
the starting position. In VistiAll, the aim is to visit all cells
of grid starting at the top-left corner. In Hall-A, the aim is to
visit the four corners of a grid. In Snow, the aim is to sort the
elements of a vector. In Delivery, the aim is to transport all
packages to a company with a truck of capacity one. Finally,
in NestVar, the aim is to make the value of x to 0, where
two values x and y with positive integer numbers initially.
We implemented the proposed approach in a system by us-
ing Python, Z3 (de Moura and Bjørner 2008) and Metric-FF
(Hoffmann 2003). All experiments were conducted on a ma-
chine with an Intel Core i5 2.50 GHz CPU and 8GB RAM
under Ubuntu 16.04. We found that the generated planning
solution can satisfy all the (infinite) instance of the domain
by manual verification. Namely, the generated planning so-
lution is total correct, satisfying with the three critical prop-
erties: reachability, executability and termination.

In each domain, except for Chop, Arith, Cornner-A,
NestVar, Sailing whose domain comprises just the nu-
meric variables, the definition of other domains requires
propositional variables. For these domains, we observe a

1Some domains involves first-order predicates and they are
modified so that it can be formalized in integer numeric planning.

characteristic: their propositional variables actually have
only true and false assignments in the effect of all their
actions. So in essence, it can be regarded as a numerical
variable. When the value of the numerical variable is 1,
the corresponding is true. Otherwise, when it is false, it
corresponds to 0. Therefore, when the propositional variable
conforms to the above rules, the corresponding domain is
also applicable to our approach. Furthermore, we observe
that the above rules of propositional variables satisfies in
many domains of generalized planning synthesis.

Finally, we close this section by summarizing experi-
mental results. The summary of the experimental results is
shown in Table 1, from which we can make some obser-
vations. Firstly, our approach is able to solve all domains
in a reasonable amount of time (< 1s). This justifies the
effectiveness and scalability of our approach. Hence our ap-
proach provides an effective way of constructing solutions
to GLINP. Secondly, most of the domains spend more than
half of time in generating skeletons of planning programs
except the sailing and Arith problems, with most of the time
spent in completing planning programs. This is because
the conditions of planning programs of these two problems
are more complicated than other ones. Therefore, when
infering to the corresponding conditions, it takes a longer
time for enumeration synthesis. Thirdly, for D-Return
and Hall-A problems, the generation procedure is quite
time-consuming. And the main reason is that the length of
the planning programs are relatively large, and hence the
corresponding generating skeletons are significantly longer
than other ones. Moreover, for the generation of the nested
loop planning program, the time required is mainly spent on
the synthesis of the nested skelton.

Related Work
Qualitative numeric planning (QNP), proposed in (Srivas-
tava et al. 2011b), is very close to our work. It is a class of
numeric planning with many initial states with the assump-
tion that all states are fully observable. Two restrictions are
imposed on numeric planning: (1) the formula to be a form

of v > 0 or v = 0; and (2) the effects of actions decrease
or increase the value of some variables by an unspecified
amount. Under these two restrictions, the state space can
be compressed into a finite space. More precisely, the space
contains 2|V| states where |V| is the number of numeric vari-
ables. Hence, the QNP is a decidable fragment of numeric
planning. The solution to a QNP problem is a policy that is a
mapping from states to actions, where loop structures occur
implicitly in a policy. Considering the integer numeric plan-
ning, GLINP is a higher expressive numeric planning frame-
work than QNP. We find that many integer numeric plan-
ning domains, including Arith, Corner-A, D-Return, Hall-A,
Prize-A and Sailing, can be formalized in GLINP, but cannot
do in QNP since these domains require the formula to be in
LIAP and the effect of actions to be accurate. Hence, GLINP
has better applicability and wider scope than QNP.

Planning for possibly infinitely many initial states was
firstly proposed in (Levesque 2005). Levesque (2005) de-
veloped a generation-and-test method to construct a plan-
ning program that solves problems for infinitely many states
with a single numeric variable. This method consists of two
stages: (1) search a plan without loop structure that works
for the case where the value of the variable is less than a
small threshold, and then try to roll the plan into a planning
program; and (2) check if this solution solves all of large
cases where the value is less than a large bound. Levesque
(2005) also prove that for a very restricted domain, namely
simple problems, there is a bound such that if the plan is
valid for the value of the variable less than the bound, then
it also holds for any value. The major shortcoming of the
above method lies in the generation step which separates
searching a plan without loop and rolling a program. In some
cases, the size of plan is very large and hence the searching
process takes prohibitively long time.

To overcome this shortcoming, Hu and Levesque (2009)
used a different form of solutions, that is FSA (finite state
automaton), instead of planning programs, and designed
a method to generate FSA in the same way as Levesque
(2005). The FSA is more general than the program, and
a cycle in FSA can be considered as a loop structure. In
the generation stage, Hu and Levesque (2009) constructs an
FSA plan via constantly expanding new states and merging
equivalent states according to the preconditions and effects
of various actions until the FSA plan is valid for the instance
with small threshold, or there does not exist such an FSA
plan. The experimental results show that the method pro-
posed in (Hu and Levesque 2009) scales better than that in
(Levesque 2005). However, Hu and Levesque (2009) does
not analyze the domains on which their method succeeds
in all of the instances. To answer this question, (Hu and
Levesque 2010) identified a class of generalized planning
problems, namely one-dimensional (1d), that can be reduced
to a planning problem with only one variable which is decre-
mented by some actions. 1d problems are a broader class of
planning problems than simple prolems. Generalized plan-
ning in 1d problems is decidable (Hu and Levesque 2010),
and more precisely, in EXPSPACE (Hu and Giacomo 2011).
The major advantage of our approach over the above meth-
ods is that our approach is able to solve the generalized plan-

ning problem with more than one numeric variable.
Srivastava, Immerman, and Zilberstein (2011) pro-

posed a method to generate an FSA plan based on state
abstraction using 3-valued logic (Sagiv, Reps, and Wil-
helm 2002). It starts from an extended sequential plan
π : [(s0, a0), (s1, a1), · · · , (sn, an), (sn+1)] that is a
sequence of state-action pairs (si, ai) with a final state sn+1

entailing the goal. Then, it generates an abstract sequential
plan π′ : [(S0, a0), (S1, a1), · · · , (Sn, an), (Sn+1)] that is
obtained from the above concrete plan by generalizing each
concrete state si into an abstract state Si that covers a set
of concrete states. Finally, based on the abstract sequential
plan, it creates an FSA plan with cycle. If it detects two pairs
(Sj , aj) and (Sk, ak) of π′ where j < k are identical, then
such repeated pairs means some properties that are true in
Sj after hold again in the successor abstract state Sk. Hence,
a cycle representing the repetition of the sequence of actions
[aj , aj+1, · · · , ak−1] should be created in an FSA plan.
However, the FSA plan generated by the above method has
three drawbacks: (1) it is simple-loop; and (2) it does not
guarantee goal achievement; and (3) the quality is sensitive
to the extended sequential plan. In order to measure the
condition when the plan is guaranteed to terminate and
lead to the goal, namely applicability condition, Srivastava,
Immerman, and Zilberstein (2012) designed an approach
for computing such condition of the FSA plan when the
plan is simple-loop. To extend the applicability condition of
an FSA plan, Srivastava, Immerman, and Zilberstein (2010)
provided a method to merging the sequential plan with an
initial state s′0 into the current FSA plan where the latter is
not a solution for s′0. However, the above works does not
analyze the termination and executability properties of FSA
plans. Later, an incremental approach for generating an FSA
plan, which is terminable, executable and goal-reachable for
all initial states, is developed by Srivastava et al. (2011a).
The main idea of the approach is to iteratively extend a
terminable and executable FSA plan G according to new
sequential plan for a state s to whichG is not goal-reachable
in s until G is a solution goal-reachable for all initial states.
The difference between this approach and ours are as
follows. Firstly, the solution to generalized planning is FSA
plans while our solution is planning programs. Secondly,
one of the advantages of our approach over theirs is that
planning programs we synthesize can contain nested loop
while the generation method proposed by Srivastava et al.
(2011a) does not permit FSA plans with nested loop.

Conclusions and Futrue Work
In this paper, we have introduced a scheme for computing
generalized plan of numeric planning which solves planning
problems for possibly infinitely many initial states rather
than a single state. We summarize our main contributions
as follows: Firstly, we propose a generalized version of
numeric planning (GLINP), which is a more expressive
planning formalization than QNP. Secondly, we propose
a more expressive solution, namely planning programs,
consisting of an empty plan, primitive actions, sequential,
branch and loop structures. Thirdly, we develop a generation
approach to synthesize the generalized plan. The generation

procedure synthesizes a skeleton of planning programs
based on the idea of regex infering, and then completes the
conditions of branch and loop structures by the enumerative
algorithm. In theory, our algorithm (Alg. 2) for synthesizing
skeletons of planning programs is proven to be sound, and
our algorithm for completion of planning program (Alg. 4)
is proven to be sound. Finally, we have implemented our
approach and experimental results show the effectiveness
and scalability of our proposed approach.

Our approach have a limitations, and hence leading to an
avenues for future work. In this paper, the correctness ver-
ification is done manually, and the correctness of the plan-
ning program largely depends on the quality of the set of
initial states. We would like to develop a generation-and-test
approach to synthesize planning programs. The generation
stage firstly infers a skeleton of planning programs, and then
completes the conditions of branch and loop structures. The
test stage verifies if the planning program is valid for a given
GLINP problem. If it is correct, the expected planning pro-
gram is found; otherwise, the generation stage restarts and
constructs a new candidate. The whole process repeats until
it finds a valid solution. To gurantee the correctness of plan-
ning programs, we verify whether programs satisfies follow-
ing three critical properties: reachability, executability and
termination.

References
Bonet, B.; Palacios, H.; and Geffner, H. 2009. Automatic
Derivation of Memoryless Policies and Finite-State Con-
trollers Using Classical Planners. In ICAPS, 34–41.

de Moura, L.; and Bjørner, N. 2008. Z3: An Efficient SMT
Solver. In TACAS, 337–340.

Do, M. B.; and Kambhampati, S. 2001. Sapa: A Domain-
Independent Heuristic Metric Temporal Planner. In ECP,
109–120.

Haslum, P.; and Geffner, H. 2001. Heuristic Planning with
Time and Resources. In ECP, 121–132.

Helmert, M. 2002. Decidability and Undecidability Results
for Planning with Numerical State Variables. In AIPS, 44–
53.

Hoffmann, J. 2003. The Metric-FF Planning System: Trans-
lating “Ignoring Delete Lists” to Numeric State Variables.
Journal of Artificial Intelligence Research 20: 291–341.

Hu, Y.; and Giacomo, G. D. 2011. Generalized Planning:
Synthesizing Plans that Work for Multiple Environments. In
IJCAI, 918–923.

Hu, Y.; and Levesque, H. J. 2009. Planning with Loops:
Some New Results. In ICAPS 2009 Workshop on General-
ized Planning: Macros, Loops, Domain Control, 35–42.

Hu, Y.; and Levesque, H. J. 2010. A Correctness Result for
Reasoning about One-Dimensional Planning Problems. In
KR, 362–371.

Kinber, E. 2010. Learning Regular Expressions from Rep-
resentative Examples and Membership Queries. In ICGI,
94–108.

Levesque, H. J. 2005. Planning with Loops. In IJCAI, 509–
515.
Sagiv, M.; Reps, T.; and Wilhelm, R. 2002. Parametric
Shape Analysis via 3-Valued Logic. ACM Transactions on
Programming Languages and Systems 24(3): 217–298.
Scala, E.; Haslum, P.; and Thiébaux, S. 2016. Heuristics for
Numeric Planning via Subgoaling. In IJCAI, 3228–3234.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2010.
Merging Example Plans into Generalized Plans for Non-
deterministic Environments. In AAMAS, 1341–1348.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2011. A
new representation and associated algorithms for general-
ized planning. Artificial Intelligence 175(2): 615–647.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2012. Ap-
plicability conditions for plans with loops: Computability
results and algorithms. Artificial Intelligence 191: 1–19.
Srivastava, S.; Immerman, N.; Zilberstein, S.; and Zhang, T.
2011a. Directed Search for Generalized Plans Using Classi-
cal Planners. In ICAPS, 226–233.
Srivastava, S.; Zilberstein, S.; Immerman, N.; and Geffner,
H. 2011b. Qualitative Numeric Planning. In AAAI, 1010–
1016.
Udupa, A.; Raghavan, A.; Deshmukh, J. V.; Mador-Haim,
S.; Martin, M. M. K.; and Alur, R. 2013. TRANSIT: Speci-
fying Protocols with Concolic Snippets. In PLDI, 287–296.

