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Abstract

Neural machine translation systems estimate
probabilities of target sentences given source
sentences, yet these estimates may not align
with human preferences. This work introduces
QE-fusion, a method that synthesizes transla-
tions using a quality estimation metric (QE),
which correlates better with human judgments.
QE-fusion leverages a pool of candidates sam-
pled from a model, combining spans from dif-
ferent candidates using a QE metric such as
COMETKIWI. We compare QE-fusion against
beam search and recent reranking techniques,
such as Minimum Bayes Risk decoding or
QE-reranking. Our method consistently im-
proves translation quality in terms of COMET
and BLEURT scores when applied to large
language models (LLMs) used for translation
(PolyLM, XGLM, Llama2, Mistral, ALMA
and Tower) and to multilingual translation mod-
els (NLLB), over five language pairs. Notably,
QE-fusion exhibits larger improvements for
LLMs due to their ability to generate diverse
outputs. We demonstrate that our approach
generates novel translations in over half of
the cases and consistently outperforms other
methods across varying numbers of candidates
(5-200). Furthermore, we empirically establish
that QE-fusion scales linearly with the number
of candidates in the pool.

1 Introduction

Neural machine translation (NMT) models are
probability estimators of translations given source
sentences. Therefore, errors in NMT may arise
either due to imperfections in this estimation, or
because the exact maximization of the probabil-
ity is infeasible, and thus approximations such as
beam search are employed. Recent studies have
questioned the alignment of probability estimates
of NMT models with human preferences (Koehn
and Knowles, 2017; Ott et al., 2018; Stahlberg and
Byrne, 2019). In this paper, we propose QE-fusion,

a solution for finding better translations starting
from a pool of translation candidates, through a
novel combination algorithm that uses quality esti-
mation (QE) metrics.

Recent improvements in metrics for MT eval-
uation (Mathur et al., 2020; Freitag et al., 2021,
2022b) have made them more helpful for select-
ing among candidates generated by NMT mod-
els. Reference-based evaluation metrics such as
COMET (Rei et al., 2020) and BLEURT (Sel-
lam et al., 2020) have been employed as utility
functions for Minimum Bayes Risk (MBR) decod-
ing (Fernandes et al., 2022; Freitag et al., 2022a),
to select the candidates with the highest similarity
to all other ones (Kumar and Byrne, 2002, 2004).
QE metrics such as COMET-QE (Rei et al., 2021),
which do not need reference translations, have been
used to select the translation with the highest es-
timated quality by reranking a pool of candidates
(Fernandes et al., 2022; Farinhas et al., 2023). Such
reranking approaches improve translation quality
over standard beam search, particularly when mea-
sured with neural-based MT evaluation metrics.

While reranking approaches significantly en-
hance performance, they are challenged in situ-
ations where candidate translations exhibit comple-
mentary errors, with no candidate clearly improv-
ing over all others. Figure 1 illustrates this issue.
The first candidate, Fire in French chemical plant,
uses in instead of the more idiomatic at. The third
candidate makes a better choice in this case, but
renders the verb as cleared instead of extinguished,
which is incorrect in this context. Making the most
of this pool of candidates is not possible without
combining fragments from several candidates.

To address this limitation, we propose QE-
fusion, an approach that leverages the potential
complementarity of the generated candidates to
synthesize an improved translation, guided by a
QE metric. QE-fusion starts by identifying diver-
gent spans, i.e. spans that exhibit variations within
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Figure 1: Illustration of the QE-fusion pipeline. The method first generates multiple hypotheses by sampling
translations from the model. Then, it computes and sorts the spans that diverge among the candidates. Finally, a QE
metric is used to select a span from each group and these spans are merged to form a new, refined translation.

the pool of model-generated candidates. Then, it
traverses these divergent spans, selecting at each
step the one that contributes to a higher score ac-
cording to the QE metric. The chosen spans are
integrated into the synthesized translation, which
is thus a fusion of multiple candidates.

We demonstrate that QE-fusion is effective over
pools of candidates obtained from high-performing
multilingual NMT models such as NLLB (NLLB
Team et al., 2022), as well as candidates obtained
using in-context learning with large language mod-
els (LLMs), which have recently shown compa-
rable performance to NMT models (Garcia et al.,
2023; Hendy et al., 2023; Zhu et al., 2023). QE-
fusion improves translation for several popular,
open-source LLMs: PolyLM (Wei et al., 2023),
XGLM (Lin et al., 2022), Llama2 (Touvron et al.,
2023), Mistral (Jiang et al., 2023), ALMA (Xu
et al., 2023) and TowerBase!.

Our contributions are the following:

1. We design a novel algorithm called QE-fusion
that generates improved translations from a
pool of candidates using a QE metric.

2. We demonstrate the superior performance of
QE-fusion compared to the recently proposed
QE-reranking and MBR decoding methods,
across various open-source LL.Ms and multi-
lingual NMT models, for five language pairs.

3. We explain the larger improvements of QE-
fusion for LLMs vs. NMT by the larger diver-
sity of candidates from LLMs.

4. We showcase the efficiency of our algorithm
by empirically demonstrating that the runtime
scales linearly with the number of candidates.

"https://unbabel.com/announcing-tower-an-open-
multilingual-1lm-for-translation-related-tasks

2 Related Work

We review in this section several approaches that
aim to incorporate additional knowledge either dur-
ing the decoding process or after it, in order to mit-
igate the misalignment between MT models and
human preferences. We start with a brief reminder
of MT evaluation metrics, which play a crucial role
as a selection criterion.

MT evaluation metrics. Traditional overlap-
based evaluation metrics for MT such as BLEU (Pa-
pineni et al., 2002) and ChrF (Popovié¢, 2015)
are known for their imperfect correlation with hu-
man judgments (Mathur et al., 2020; Kocmi et al.,
2021; Freitag et al., 2021, 2022b). In response,
researchers have shifted their attention towards
metrics that use pretrained neural models to score
translation outputs, such as BERTScore (Zhang
et al., 2020), Prism (Thompson and Post, 2020),
COMET (Rei et al., 2020) and BLEURT (Sellam
et al., 2020). To better emulate human assessment,
these metrics are often fine-tuned to predict hu-
man scores based on annotations such as those
provided by the WMT metrics tasks (Freitag et al.,
2022b). Automatic MT metrics can be broadly cat-
egorized into two groups: reference-based metrics,
which have access to the reference translation, and
reference-free or quality estimation metrics (Zerva
et al., 2022), which solely rely on the source sen-
tence for estimating the quality of a translation.
Recent QE metrics are COMET-QE (Rei et al.,
2021), TransQuest (Ranasinghe et al., 2020) and
COMETKIWI (Rei et al., 2022b).

Reranking candidate translations. One of the
earliest proposals for reranking the outputs of an
NMT system is the adaptation of the noisy channel
model (Brown et al., 1993) to NMT systems (Yee
et al., 2019; Bhosale et al., 2020). This simply
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combines the scores of multiple models, mainly a
forward model, a backward one, and an LM, and
has been shown to improve performance e.g. at
WMT shared tasks (Ng et al., 2019).

An alternative reranking approach uses Mini-
mum Bayes Risk (Kumar and Byrne, 2002; Goel
and Byrne, 2000), which aims to select the candi-
date with the highest utility from a pool of candi-
dates. The utility function employed in MBR mea-
sures the similarity between a hypothesis and a ref-
erence; however, at test time, when references are
unknown, the same set of hypotheses serves both
as the list of candidates and the pseudo-references.
Possible utility functions include overlap-based
(Eikema and Aziz, 2020) or state-of-the-art neural-
based MT metrics (Eikema and Aziz, 2022; Fer-
nandes et al., 2022; Freitag et al., 2022a). MBR
has demonstrated promising results, particularly
when equipped with recent automatic MT metrics.
However, its time complexity scales quadratically
with the size of the candidate pool and depends on
the cost of computation the utility function, which
is considerable for neural metrics such as COMET.

A more direct strategy is the use of reference-
free metrics to rerank generated outputs, known
as best-of-n or QE-reranking. Initial findings sug-
gested that this generates inferior translations com-
pared to beam search (Freitag et al., 2022a; Fernan-
des et al., 2022), in particular, due to the insensitiv-
ity of such metrics to degenerate translations (Guer-
reiro et al., 2023). However, with advancements
in reference-free metrics, QE-reranking has out-
performed beam search (Gulcehre et al., 2023;
Finkelstein et al., 2023). QE-reranking can also
be used during the training phase, where QE scores
are employed for data filtering (Finkelstein et al.,
2023), or for curriculum construction (Gulcehre
et al., 2023), or for assigning quality-related tags to
the outputs (Tomani et al., 2023). QE-reranking is
substantially faster than MBR as its runtime scales
linearly with the number of candidates. While
reranking methods such as MBR decoding and QE-
reranking effectively improve the performance of
MT systems, they are bound by the quality of the
candidates in the pool.

Constructing translation candidates. A wide
variety of scores have been used for building candi-
dates, including the model’s own future scores (Jin-
nai et al., 2023), lookahead heuristics (Lu et al.,
2022), or values predicted by a distinct model using
Monte Carlo tree search (Leblond et al., 2021; Liu

et al., 2023; Chaffin et al., 2022). However, these
approaches require access to the model, which is
not always guaranteed, and entail substantial com-
putational overhead due to the number of candi-
dates stored at each time step.

3 Definition of QE-fusion

QE-fusion leverages the complementary nature of a
pool of translation candidates generated by an LLM
with an appropriate prompt, or an encoder-decoder
NMT model, and combines fragments from them
into an improved output.

3.1 Candidate Generation

There are multiple ways to generate candidates
from a model. Common approaches for LLMs in-
volve nucleus or top-p sampling (Holtzman et al.,
2020), top-k, and sampling with a temperature.
In our experiments, we adopt nucleus sampling
with a temperature. The performance of LLMs can
also be influenced by the number of samples and
the prompt (Bawden and Yvon, 2023; Zhu et al.,
2023). To optimize LLM performance, we follow
the guidelines of Zhu et al. (2023) and use 8 exam-
ples for in-context learning in all our experiments.
For NMT models, beam search, while commonly
used to return the top candidates in the beam, has
been shown to lack diversity (Vijayakumar et al.,
2017). Instead, for the multilingual NMT models,
we employ epsilon sampling (Hewitt et al., 2022),
which sets to zero the probability of tokens below
a threshold, and was recently shown to generate
more diverse candidates (Freitag et al., 2023).

3.2 QE-fusion Algorithm

For each sentence translated by a model, the QE-
fusion algorithm (Algorithm 1) considers the top-
ranked hypothesis by the QE metric as the base
hypothesis, h?*¢, (line 1). The rationale behind
this choice is that this is already a high-quality
translation which may require the fewest modifica-
tions. QE-fusion then identifies divergent spans be-
tween h%@5¢ and other candidates generated by the
model, using an off-the-shelf library? that employs
edit distance to spot the additions, deletions and
replacements required to transform one sequence
into another (line 3).

For each span where disagreements appear be-
tween candidates, the various alternatives are listed.
The algorithm substitutes the initial span of h@¢

Zhttps://docs.python.org/3/library/difflib.html
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Algorithm 1 QE-fusion algorithm

Input: candidate list ), QE metric M, beam size b

hbese « argmax M(y) b select the top-ranked candidate
yey

hyps « {hb**c} > initialize beam
diffs « find_diffs(h®2¢, V) > find divergent spans
for base_span, alter_spans in diffs.items() do
for h in hyps do
for span in alter_spans do
h"¢" « h.replace(base_span, span)
> create new hypothesis
if K" is not in hyps then
| hyps < hyps U {h™*}
end
end
end
scores « M (hyps)
sorted_hyps < sorted(hyps, scores) > sort hyps
hyps < sorted_hyps][: b] > keep top b hyps
end

Output: hyps|0]

with each of the alternative spans (lines 6-11),
which results in alternative hypotheses for the en-
tire translation, {h]““}i=12,... A QE metric is
used to compute scores for each 1" (line 13).
The hypotheses are then sorted based on their
scores, and the top b candidates are retained, form-
ing a beam (lines 14-15). This is repeated for
each span of h%@*¢, resulting in a set of hypothe-
ses within the beam. Finally, the highest-scoring
hypothesis is selected.

While this is a conceptual explanation of the
algorithm, certain modifications are made for effi-
ciency purposes’, such as batching the sentences
and caching computed scores (see Appendix A.2).

4 Experimental Settings

4.1 Datasets and Evaluation Metrics

We assess performance across a spectrum of di-
verse language pairs. The selected languages in-
clude German, which is the most represented non-
English language in most models; Russian, a high-
resource language written in Cyrillic alphabet; Chi-
nese, a high-resource language with a logographic
script; and Icelandic, which is considered a low-
resource language. We consider the translation of
English into the first two languages, and from the
latter two into English. Additionally, we consider
a non-English-centric pair, German to French.

As we experiment with pre-trained models, we
use only test data, which we take from WMT22
(Freitag et al., 2022b), or for is—en from WMT21
(Akhbardeh et al., 2021). We draw the few-shot

3We will release our code upon acceptance of the paper.

examples for LLMs from the test sets of WMT21.
Further details regarding dataset sizes and domains
are presented in the Appendix A.1.

We report results in terms of two neural-based
metrics: COMET-22 (Rei et al., 2022a) and
BLEURT-20 (Sellam et al., 2020). Surface-based
BLEU and ChrF scores are given in Appendix A.4.

4.2 Models and Parameters

We conduct an extensive evaluation using LLMs
and encoder-decoder NMT models of various
sizes. Specifically, we use popular LLMs such as
PolyLM-1.7B (Wei et al., 2023), XGLM-2.9B (Lin
et al., 2022), Mistral-7B (Jiang et al., 2023),
Llama2-7B (Touvron et al., 2023). We additionally
use ALMA-7B (Xu et al., 2023) and TowerBase-
7B, two LLMs based on Llama2-7B that are fine-
tuned for translation using both monolingual and
parallel data. These LLMs have demonstrated im-
pressive performance in MT (Xu et al., 2023), com-
parable to GPT-3.5 and NLLB-54B (NLLB Team
et al., 2022) and represent intermediary stages be-
tween general LLMs and task-specific MT mod-
els. As for NMT systems, we use the multilingual
NLLB-1.3B and 3.3B models (NLLB Team et al.,
2022). Results for the 13B versions of Llama2 and
ALMA are given in Appendix A.5.

For the LLMs, we adopt the hyper-parameters
used by Touvron et al. (2023). We generate can-
didates using nucleus sampling with p = 0.9 and
a temperature of 0.6. As a prompt for in-context
learning, we follow Zhu et al. (2023) and use the
instruction template: < X > = <Y > with 8 ex-
amples randomly sampled from the WMT21 data.
For the NMT models, we follow the suggestions of
Freitag et al. (2023) and use epsilon sampling (He-
witt et al., 2022) with e = 0.02 and a temperature
of 0.5. We study the impact of temperature in Sec-
tion 6.3. We generate 5 candidates both for LLM
and MT models for efficiency purposes, although
we demonstrate in Section 6.1 that our approach
works with larger numbers of candidates too.

4.3 Comparison Terms

We compare QE-fusion with standard decod-
ing algorithms for MT, such as greedy decod-
ing and beam search with a width of 5. We
also compare it with three sampling-based algo-
rithms: QE-reranking (Fernandes et al., 2022) with
COMETKIWI (Rei et al., 2022b) as the QE met-
ric, which is the same used by QE-fusion; MBR
decoding (Eikema and Aziz, 2020), either with



LLM

Method PolyLM-1.7B  XGLM-2.9B Llama2-7B Mistral-7B ALMA-7B Tower-7B
en—de
Greedy 70.24/62.37  74.51/66.43 79.84/67.08 79.75/70.48 81.39/7421 81.50/73.11
Beam 70.84/6531 76.74/69.22 79.56/69.83 80.99/72.34 81.71/74.78 82.49/74.81
"~ Sample 71.84760.71 =~ 70.737/58.36 78.49/65.71 80.73/69.11 83.197/72.90 83.81/72.83
MBR-BLEU 73.54/62.08 77.18/65.77 79.34/66.73 81.72/69.99 84.04/73.73 84.35/73.25
MBR-COMET  78.68/66.36  80.90/68.80 83.26/70.32 84.73/72.78 85.99/75.46 86.17/74.63
QE-reranking 78.02/67.21 80.75/70.00 82.73/71.04 84.30/73.23 85.53/75.53 85.86/75.19
" QE-fusion ~  79.62/68.67 81.62/71.01 83.63/71.96 85.02/74.10 85.93/7593 86.23/75.68
en—ru
Greedy 69.47/59.70  75.71/65.75 77.42/66.94 80.44/71.13 81.36/72.31 82.36/74.24
Beam 71.30/6326 77.56/67.58 79.84/69.49 82.31/73.13 82.45/74.17 83.11/75.07
" Sample 72.99/57770  71.65752.45 80.18/6490 83.55/69.17 84.847/70.81 86.36/73.23
MBR-BLEU 75.19/59.92 79.26/63.24 81.72/66.62 84.50/70.34 85.83/72.28 86.87/74.03
MBR-COMET 80.16/63.88  82.42/65.04 85.15/69.61 87.26/72.82 87.78/73.90 88.60/75.57
QE-reranking 79.59/64.53 83.07/68.07 84.62/70.11 86.81/73.25 87.33/74.32 88.29/75.90
" QE-fusion =~ 81.28/66.32 83.93/69.06 85.60/71.48 87.38/74.05 '87.82/75.11 88.58/76.30
zh—en
Greedy 65.29/5476  48.71/28.76 74.44/64.13 76.63/66.67 76.14/66.20 75.97/65.30
Beam 65.09/57.71 71.62/58.69 76.33/6589 77.60/67.74 76.15/66.46 76.98/65.95
" Sample 67.85/5332  53.777/33.70 76.55/62.69  78.91/65.56 718.197/64.70 77.73/64.03
MBR-BLEU 69.74/54.83  6293/44.64 77.80/64.12 79.69/66.58 79.09/65.81 78.33/64.80
MBR-COMET  72.47/56.49 65.98/46.51 79.30/65.05 80.87/67.31 80.40/66.77 79.79/66.01
QE-reranking 73.12/57.86  71.48/5499 79.38/66.21 80.79/67.90 80.41/67.61 79.86/66.82
" QE-fusion ~  74.27/59.06 72.14/55.80 79.99/66.92 81.15/68.44 '80.86/68.13 80.44/67.46
de—fr
Greedy 61.16/41.88 71.50/5340 76.39/60.46 78.01/63.16 74.08/57.48 79.10/65.86
Beam 63.14/50.45 74.32/57.37 78.57/63.69 79.46/65.50 77.08/60.66 80.49/67.52
" Sample 612773859  67.627/45.94 75.247/57.60 77.12/60.60 72.81753.85 79.55/64.50
MBR-BLEU 64.31/42776  71.96/52.53 76.68/59.88 78.45/62.41 74.65/56.93 80.52/65.87
MBR-COMET  69.30/46.20 75.80/55.72 79.91/62.63 81.06/65.10 78.53/60.56 82.54/67.67
QE-reranking 68.74 /4838  75.51/57.31 79.44/63.67 80.69/6553 77.96/61.18 82.16/68.07
" QE-fusion ~  70.09/4998 ~ 76.64/58.76 80.27/64.56 81.26/66.28 78.87/62.48 82.53/68.44
is—en
Greedy - - 62.47/51.58 70.06/59.80 80.38/75.09 62.08/50.90
Beam - - 63.75/52.52 71.41/60.74 80.90/75.73 63.41/52.24
“Sample - - 65.64/4987 < 72.65/58.47 85.15/74.01 64.87/49.68
MBR-BLEU - - 66.33/5096 73.24/59.22 85.79/74.81 65.74/50.80
MBR-COMET - - 69.32/52.36 75.57/60.81 86.58/75.46 68.77/52.28
QE-reranking - - 69.71/5491 75.71/62.51 86.43/75.62 68.95/54.35
" QE-fusion - - 70.63/56.11 76.81/63.43 86.76/76.02 69.84/55.51

Table 1: Translation performance in terms of COMET-22 / BLEURT-20 scores for various methods, language pairs,
and sizes of LLMs. Dotted lines separate deterministic decoding from existing sampling-based methods and from
our approach. The best scores for each language pair and model are in bold.

the surface-based metric BLEU or with the neural-
based metric COMET-22 as the utility function. As
COMET-22 follows the same training pipeline and
has the same number of parameter as COMETKIWI,
this ensures a fair comparison of the models. Fi-
nally, we consider random sampling from the pool
as a lower performance bound.

5 Results: Translation Performance

5.1 QE-fusion Applied to LLMs

Table 1 presents the results obtained across various
language pairs and LLMs, in terms of COMET
and BLEURT scores. Results with BLEU and
ChrF scores, showing similar trends, are given in
Appendix A.4. As expected, the translation per-

formance of LLMs generally improves with scale,
but also with recency. For instance, the more re-
cent Mistral-7B significantly outperforms Llama?2-
7B, despite their similar sizes (7 billion param-
eters). ALMA-7B and Tower-7B emerge as the
top-performing LL.Ms across all language pairs,
confirming the merits of MT-specific fine-tuning
of LLMs. Tower-7B has better performance than
ALMA-7B in all pairs except is—en, where the
latter dominates.* We do not provide the is—en
scores of smaller LLMs (PolyLM and XGLM) due
to their poor capabilities in the low-resource Ice-

*This is because is—en data was not used in the fine-tuning
stages of Tower, contrary to ALMA, leading to catastrophic
forgetting, as is visible when comparing the scores of Tower
with those of its parent model, Llama2.



Multilingual NMT

Method NLLB-1.3B  NLLB-3.3B
en—de
Greedy 81.56/7439 82.49/7543
Beam 82.76/75.62 83.37/76.44
~ Sample ~ 83.57/73.27 84.66/74.48
MBR-BLEU 84.16/74.03 85.18/75.25
MBR-COMET 85.98/75.38 86.69/76.34
QE-reranking 85.92/75.88 86.25/76.60
~ QE-fusion  ~ 86.25/76.11 86.74/76.81
en—ru
Greedy 81.93/72.81 82.49/73.93
Beam 82.83/74.10 83.36/75.12
“Sample  84.95/71.49 86.07/73.01
MBR-BLEU 85.59/72.37 86.44/73.58
MBR-COMET  87.47/73.97 88.18/75.09
QE-reranking 87.11/74.27 87.96/75.46
" QE-fusion ~ 87.52/74.71 88.31/75.83
de—fr
Greedy 60.87/41.62 67.16/50.21
Beam 64.43/4493  69.95/53.42
“Sample  61.96/39.68 66.62/46.15
MBR-BLEU 63.23/41.57 69.01/49.39
MBR-COMET 67.33/44.57 72.30/52.30
QE-reranking 66.89/46.22  72.18/54.06
" QE-fusion ~ 67.98/47.57 72.97/54.96
is—en
Greedy 58.56/48.18 61.19/50.54
Beam 59.75/49.26  61.84/51.39
“Sample ~ 61.57/47.35 63.39/49.69
MBR-BLEU 62.11/48.46 64.15/50.51
MBR-COMET 65.20/49.77 67.30/52.18
QE-reranking 65.34/51.42  67.73/54.02
~ QE-fusion 66.38/52.81 68.89/55.11

Table 2: Translation performance in terms of COMET-
22 / BLEURT-20 scores for various methods, language
pairs, and multilingual NMT models.

landic language.

Regarding baselines, greedy decoding consis-
tently lags behind beam search across all language
pairs, an observation that contrasts with prior stud-
ies focused on zero-shot scenarios (Farinhas et al.,
2023), emphasizing the role of in-context examples.
Unsurprisingly, random selection from the candi-
date pool emerges as the least effective baseline.

Among the reranking approaches, QE-reranking
outperforms MBR with either BLEU or COMET
as the utility function, particularly in terms of
BLEURT scores. Among the two utility functions
for MBR, COMET is superior while the use of
BLEU often fails to outperform beam search. MBR
with COMET as the utility function occasionally
surpasses QE-reranking in terms of COMET scores.
This may be due to a form of “reward hacking”
(Gulcehre et al., 2023), i.e. employing the same
metric for both candidate selection and evaluation,
since the BLEURT scores are in the reverse order.

Our approach, QE-fusion, consistently outper-

forms all other methods, across all language pairs
and LLMs, with 5 exceptions out of 56 compar-
isons. Two notable ones are where beam search
achieves the best BLEURT scores, though not
COMET ones, for PolyLM-1.7B (de—fr) and
XGLM-2.9B (zh—en). In these cases, it is likely
that the candidate pool lacks high-quality transla-
tions altogether. The other three exceptions are
small COMET differences (0.06, 0.02 and 0.01).

Moreover, QE-fusion also outperforms the other
methods when combined with even larger LLMs, as
confirmed by the results obtained with the Llama2
and ALMA models with 13 billion parameters
present in Appendix A.S5, Tables 6 and 7, with
COMET, BLEURT, BLEU and ChrF scores.

In Appendix A.3, Figure 6, we present a graph-
ical synthesis of these comparisons using radar
charts: the shapes corresponding to QE-fusion are
always the outermost ones, regardless of variations
due to the underlying LLM or language pair. In
particular, our approach always outperforms QE-
reranking, confirming its superiority as a general-
ization of reranking approaches.

5.2 QE-fusion Applied to NMT Models

The COMET and BLEURT scores of our approach
applied to multilingual NMT models, namely
NLLB-1.3B and NLLB-3.3B, are presented in Ta-
ble 2 (BLEU and ChrF scores are in Appendix A.4).
Similar to the results with LLMs, our approach con-
sistently outperforms beam search and reranking
approaches. Compared to LLMs, we observe that
NMT models perform better on the en—x pairs
and worse on the is—en and de—fr pairs.> The
gap between our approach and QE-reranking is
slightly smaller in the case of NMT models, which
we attribute to the lower diversity of the generated
candidates. We test this hypothesis in Section 6.3.

6 Analysis of Results
6.1 Role of the Size of the Candidate Pool

In the above experiments, we generated five can-
didate translations for efficiency reasons. We now
study the influence of the number of candidates
on the scores of QE-fusion vs. those of the other
methods, using XGLM-2.9B for en—de translation.

SWe do not provide results for the zh—en pair as the
NLLB models produce degenerate outputs, probably due to
the presence of English characters in the Chinese sentences
of the WMT?22 test set, a problem also mentioned by other
researchers (see e.g., https://discuss.huggingface.co/t/nllb-3-
3b-poor-translations-from-chinese-to-english/27695).
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Figure 2: BLEURT scores of QE-fusion and other meth-
ods over pools of candidates of increasing sizes from the
XGLM-2.9B LLM. QE-fusion outperforms reranking
approaches and is comparable to the COMET-reranking
oracle for pools of up to 25 candidates.

We progressively sample larger candidate pools,
from 5 to 200 candidates, and present in Figure 2
the BLEURT scores of our approach compared to
QE-reranking using COMETKIWI and to MBR us-
ing COMET as the utility function. Additionally,
we compare with an oracle reranking approach
that has access to the reference translation, using
COMET as the selection criterion. QE-fusion con-
sistently outperforms reranking approaches across
all sizes of candidate pools. Moreover, QE-fusion
even matches the performance of the oracle method
for pool sizes of 5, 10 and 25 candidates.

6.2 Novelty of Outputs from QE-fusion

As the previous experiment may suggest that QE-
fusion has a similar effect as the use of larger can-
didate pools with reranking methods, we examine
here the novelty of the synthesized candidates, by
counting how many times the output of QE-fusion
can be found in a larger pool. For a pool of p can-
didates given to QE-fusion, we measure how fre-
quently an exact match of the output of QE-fusion
can be found in larger pools of size ¢ > p, where p
and ¢ are in {5, 10, 25, 50, 100, 200}.

The results, presented in Figure 3, reveal that
even with a small pool of 5 candidates, more
than 50% of the outputs of QE-fusion would not
have been generated by the LLM, even when sam-
pling 200 candidates (rightmost bar of the leftmost
group). The percentage of identical (or non-novel)
candidates decreases as the pool grows, due to more
varied candidates present in larger pools.

When candidates generated by QE-fusion are

5 candidates
10 candidates
25 candidates
50 candidates
100 candidates
200 candidates

40

30

20

Exact match (%) with other pools

5 10 25 50 100 200
Original candidate pool size

Figure 3: Frequencies at which outputs produced by QE-
fusion appear in larger candidate pools sampled from
XGLM-2.9B. Results show that in at least half of the
cases QE-fusion synthesizes novel candidates that the
LLM would not generate otherwise.

present in the original pool, our method has the
same effect as QE-reranking. The frequency of
these cases is given by the leftmost bar of each
group (pool size) in Figure 3. We observe that our
approach defaults to QE-reranking less than 40%
of the time for a pool of size 5 (leftmost bar) and
this value drops to 20% for a pool of size 200.

6.3 Impact of Candidate Diversity on Quality

By construction, QE-fusion benefits from the diver-
sity of candidates, as this allows for an increased
number of divergent spans. We explore now the
effect of diversity on both QE-fusion and QE-
reranking, for LLMs and NMT models.

To increase the diversity of the pool of candidate
translations, we adjust the temperature parameter
during decoding but keep constant all other genera-
tion parameters. A higher temperature results in to-
ken probability distributions that are more uniform,
thus increasing the stochasticity of sampling and
consequently the diversity of the candidate pool.
Here, we measure this diversity by the number of
unique 4-grams present in the candidate pool, av-
eraged over all test sentences. Figure 4 displays in
its lower part the diversity of the pool as a function
of temperature for XGLM-2.9B and NLLB-1.3B
on en—de translation, and in its upper part the
BLEURT quality scores of these models with ei-
ther QE-reranking or QE-fusion. Additional results
with COMET scores and other diversity measures
are given in Appendix A.6 and show similar trends.

Increasing the temperature leads to an expected
rise in diversity. The rise is higher for XGLM-2.9B
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Figure 4: Effect of temperature on the diversity of the
pool (below) and on translation performance (above) us-
ing an LLM and an NMT model for en—de translation,
with QE-fusion vs. QE-reranking.

than for NLLB-1.3B, illustrating the fact that LLMs
generate more diverse outputs, likely due to their
general-domain language pretraining compared to
the task-specific training of NMT models. Never-
theless, generating too diverse candidates due to
high temperatures results in a noticeable drop in
performance (right side of the upper graph). The
gap between QE-fusion and QE-reranking slightly
widens as diversity increases, indicating the ability
of our approach to leverage alternative spans. The
optimal performance is achieved using a tempera-
ture in the [0.4, 0.6] interval.

6.4 Computation Time

In Section 6.1 we presented the scaling laws of QE-
fusion vs. reranking in terms of performance when
the size of the candidate pool varies. However,
computation time is a crucial factor as the candi-
date pool grows. QE-reranking has the advantage
of linear scaling with the number N of candidates,
while MBR methods require V(N — 1) model calls
for each sentence. In contrast, QE-fusion has vari-
able complexity, depending on the diversity of the
pool and the presence of alternative spans.

To compare empirically the complexity of QE-
fusion with reranking methods, we measured their
runtime for the en—de WMT22 test data with
2,037 sentences. All experiments were executed
on a single Nvidia A40 GPU with 40 GB memory,

MBR-COMET
—e— QE-reranking
10" | —e— QE-fusion

Runtime (s)

Candidate pool size

Figure 5: Runtimes (in seconds) for different pool sizes
for the en—de WMT?22 test set.

using a batch size of 400 samples. Using a loga-
rithmic scale, Figure 5 confirms that QE-reranking
scales linearly with the candidate pool size, while
MBR scales quadratically. Interestingly, QE-fusion
also exhibits linear scaling with the number of can-
didates but with a constant factor of x5 compared
to QE-reranking. For 5 and 10 candidates, QE-
fusion has similar runtimes to MBR.

We have implemented specific optimizations, in-
cluding score caching and input batching, to reduce
runtime (see Appendix A.2). These modifications
were uniformly applied to all methods to ensure a
fair comparison. We leave further optimizations
such as pruning (Cheng and Vlachos, 2023) for
future work.

7 Conclusion

In this paper, we introduce QE-fusion, a novel ap-
proach that leverages the complementary nature of
generated candidates to synthesize improved trans-
lations based on quality estimation metrics. We
evaluated our approach on five language pairs using
both LLMs and NMT models. The results of our ex-
periments demonstrate the consistent superiority of
QE-fusion over traditional methods such as beam
search, as well as established reranking approaches
like Minimum Bayes Risk and QE-reranking.

Our analysis reveals that QE-fusion is partic-
ularly beneficial to LLMs, capitalizing on their
enhanced capability to generate diverse outputs.
Notably, QE-fusion maintains its superiority when
the number of candidates increases, highlighting
its scalability. Additionally, the empirical study of
the time complexity of QE-fusion shows a linear
relationship with the number of candidates.



8 Limitations

Human evaluation. While our work employs
state-of-the-art MT evaluation metrics, we ac-
knowledge the inherent limitations of automatic
metrics. Human evaluation could offer more reli-
able and comprehensive insights. However, due to
the extensive scope of our study involving numer-
ous models and language pairs, conducting human
evaluation was not feasible within the constraints
of this research.

Choice of metrics. The QE metric used by QE-
fusion, COMETKIwI, shares some similarities
with the COMET metric used for evaluation, as
they originate from the same family of models.
Consequently, using COMETKIWI as our criterion
for merging spans might be considered as the rea-
son why we get improvements in COMET scores.
To address this concern, we confirm our findings
with scores using three other metrics: BLEURT,
BLEU and ChrF. Even with these alternate metrics,
our approach consistently outperforms all other
reranking techniques, demonstrating its robustness
and effectiveness.
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A Appendix

A.1 Datasets

Table 3 presents information about the datasets
used in our study, in terms of size and domain.
More information is available in the synthesis ar-
ticles from WMT22 (Freitag et al., 2022b) and
WMT21 (Akhbardeh et al., 2021).

Domain
News
Conversational
e-Commerce
Social
News
Conversational
e-Commerce
Social
News
Conversational
e-Commerce
Social
News
Conversational
e-Commerce
Social
News

Lang. Pair | Source | Sentences

en—de WMT22 2,037

en—ru WMT22 2,037

zh—en WMT22 1,875

de—fr WMT22 1,984

is—en WMT21 1,000

Table 3: Test datasets used for evaluation.

A.2 Implementation Optimizations

While Algorithm 1 outlines the concept of fusing
candidates, we introduce specific modifications to
enhance efficiency. Firstly, to mitigate the computa-
tionally expensive calls to the QE model, we paral-
lelize the exploration of all sentences in the test set,
resembling a batched beam search. By doing so,
we reduce the overall number of calls to the model
(which depends on the number of divergent spans)
by utilizing a larger batch. Additionally, we im-
plement a hash table to track previously generated
candidates, ensuring that we do not compute scores
for the same sentence twice. Lastly, we incorporate
an early exit mechanism, removing sentences for
which no pending pseudo-generation step exists.
These optimizations significantly impact the time
complexity of our algorithm, which we empirically
demonstrate to scale linearly with the number of
candidates in Section 6.4.

A.3 Graphical Comparison of Main Scores

The BLEURT scores of various methods, LLMs
and language pairs from Table 1 are represented as
radar charts in Figure 6. The shapes corresponding
to our proposal, QE-fusion, always extend outside
the others (only beam search, MBR with COMET
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and QE-reranking are plotted, for simplicity), for
any of the four LLMs represented: Llama2-7B,
Mistral-7B, ALMA-7B, and TowerBase-7B. The
latter two models, though fine-tuned for MT, have
large differences for is—en and de—ft.

Figure 6 also shows the BLEURT scores of var-
ious methods for the two NMT models, over the
same language pairs as above, excluding zh—en,
based on scores from Table 2. Again, QE-fusion
extends outside the other shapes for both NMT
models.

A.4 Results with Surface-based Metrics

We provide the results of surface-based metrics,
like BLEU and ChrF, for LLMs in Table 4. The
overall performance trends align with those of
neural-based metrics, indicating that larger models
consistently achieve higher scores. Once again, QE-
fusion consistently surpasses reranking approaches.
However, regarding surface-based metrics, beam
search or greedy decoding frequently emerge as
the top-performing methods, with our approach
securing the second position.

The outputs of beam search often exhibit pre-
dictability, while sampling introduces a layer of
creativity to translations. Unfortunately, surface-
based metrics struggle to account for nuances like
synonyms or significant restructuring, leading to
potential penalties for such translations. This limi-
tation has contributed to a decline in the popularity
of surface-based metrics within the MT community.
Nevertheless, even among traditional MT metrics,
our approach outperforms all other sampling-based
methods.

Table 5 presents BLEU and ChrF scores for the
NMT models (two sizes of NLLB). Firstly, we ob-
serve that the NMT models perform significantly
better than the LLMs in terms of surface-based
metrics. This results is consistent with similar
findings in the literature (Chowdhery et al., 2023;
Hendy et al., 2023; Zhu et al., 2023). The trend
differs slightly compared to LLMs, as methods
like QE-reranking and MBR score higher in terms
of surface-based metrics, particularly for the high-
resource pairs en—de and en—ru. This divergence
can be attributed, once again, to the limited diver-
sity in translations generated by MT models, while
our approach facilitates more creative translations,
potentially penalized by these metrics. Neverthe-
less, for pairs where MT models perform worse,
such as is—en and de—fr, QE-fusion consistently
outperforms reranking approaches and occasion-
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Figure 6: BLEURT scores for four methods combined with four LLMs and two NMT models, on five and four

language pairs respectively.

ally beam search.

A.5 Results using LLMs with 13B Parameters

Tables 6 and 7 present the translation results for the
larger, 13B versions of Llama2 and ALMA. The
overall trend aligns with other LLMs: QE-fusion
significantly outperforms reranking methods.

A.6 Temperature and Diversity

In Figure 7, we present additional results regarding
the impact of temperature on translation perfor-
mance and pool diversity. Specifically, we evaluate
translation quality in terms of COMET, demon-
strating similar results to those in Section 6.3 with
BLEURT. Higher temperatures enhance the results
of both QE-reranking and QE-fusion but exces-
sively high temperature values lead to a drop in
performance.

To measure diversity, we consider here two ad-
ditional metrics: the average number of unique
candidates in the pool and the semantic diversity,
as defined by Farinhas et al. (2023), where u(z, y)
is the utility function, in this case COMET, and y;,
y; represent two different candidates from the pool:
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i

These diversity metrics exhibit similar trends to our
lexical diversity findings, with diversity increasing
as the temperature rises. These results confirm that
LLMs tend to produce more diverse outputs, a fact
that contributes to explaining why QE-fusion is
more effective on LLM outputs than on NT ones.



LLM

Method PolyLM-1.7B  XGLM-2.9B Llama2-7B Mistral-7B ALMA-7B Tower-7B
en—de
Greedy 17.62/46.83 17.95/46.86 22.83/51.84 24.87/53.53 26.74/55.95 30.21/58.89
Beam 12.74/46.06  21.16/49.04 2299/53.57 24.98/54.79 28.82/57.23 29.75/59.80
" Sample 1652745773 = 13.10740.64 20.07/49.92 2230/51.35 23.527/53.62 28.47/57.42
MBR-BLEU 19.11/47.85 18.40/46.88 2226/51.26 23.78/52.84 2597/5521 30.35/58.77
MBR-COMET  18.94/48.22 17.65/46.84 22.37/51.95 24.18/53.40 2591/55.64 30.51/59.03
QE-reranking 19.45/49.07 18.55/47.95 22.38/52.12 23.90/53.32 25.73/55.63 29.77/58.81
" QE-fusion ~  20.40/50.27  19.39/49.11 23.17/5295 2426/54.17 25.94756.02 29.64/58.95
en—ru
Greedy 16.36/41.81 16.68 /4229 19.64/46.11 22.64/49.04 23.14/49.75 28.94/54.76
Beam 12.63/41.46  19.99/44.68 20.52/48.43 23.14/51.26 25.48/51.54 27.81/55.87
" Sample 143273980 ~ 11.187/34.09 17.51/4397 20.14/46.25 20.33/4735 26.45/52.81
MBR-BLEU 17.42/42.31 16.38/41.20 19.51/4585 2227/4824 22.77/49.25 28.76/54.41
MBR-COMET  16.84/42.77 15.31/40.92 19.12/46.09 21.81/48.55 22.07/49.52 28.29/54.52
QE-reranking 17.46/43.54 17.06/43.08 19.38/46.44 21.45/48.51 22.02/49.54 27.76/54.30
" QE-fusion =~ 18.327/44.89  17.347/43.95 20.04/4732 22.06/49.44 224375030 27.94/54.75
zh—en
Greedy 11.22/52.34 44472140 20.37/49.25 2292/51.68 21.61/51.14 22.16/50.20
Beam 8.74 /34.81 13.56/38.59 22.37/51.30 24.14/53.69 22.72/51.68 23.72/51.19
" Sample 9.70/34.07  5.60/24.80 17.89/46.73  20.53/49.64 19.03749.03 20.09/4854
MBR-BLEU 11.20/36.60 8.93/31.87 19.98/49.01 22.39/51.70 20.87/50.79 21.90/50.26
MBR-COMET  10.85/36.23 8.73/32.24 19.17/48.67 21.76/51.43 20.35/50.73 21.56/50.12
QE-reranking 11.38 /37.68 11.09/36.81 19.96/49.81 22.01/52.03 20.62/51.24 21.49/50.41
" QE-fusion =~ 12.46/39.36 11.58/37.64 20.44/50.72 2231/52.63 20.93/51.92 22.06/51.33
de—fr
Greedy 11.60/33.07 17.28/40.98 23.63/48.84 26.57/52.02 20.79/46.09 33.69/56.59
Beam 7.79/33.73 18.92/42.80 23.72/51.25 25.17/53.16 21.12/45.88 32.77/58.07
" Sample 9.66/31.24  13.61/36.76 20.86/46.23  2329/49.17 18.14743.80 31.02/54.71
MBR-BLEU 12.15/34.57 16.45/4093 23.14/48.45 25.54/51.05 20.37/45.83 32.90/56.36
MBR-COMET  11.82/34.52 16.08/41.08 22.81/48.62 25.31/51.46 19.92/4581 32.92/56.62
QE-reranking 12.62/35.40 17.10/42.15 2291/49.08 25.21/51.72 19.65/45.62 32.45/56.58
" QE-fusion =~ 13.18/36.31  18.10/43.24 23.55/50.01 2536/52.26 20.76/46.90 31.97/56.77
is—en
Greedy - - 14.68 /36.57 22.60/44.73 35.72/58.20 14.84/36.76
Beam - - 15.47/37.03 2249/45.64 37.34/59.26 14.48/37.02
“Sample - — " 13770/35.03  20.14/43.08 3220/5548 13.54/35.61
MBR-BLEU - - 1476 /36.43 21.71/4398 34.61/57.36 14.97/36.45
MBR-COMET - - 14.12/36.22 21.29/44.15 34.59/57.71 14.38/36.75
QE-reranking - - 15.00/37.36 21.95/4531 34.37/57.69 15.25/37.56
" QE-fusion - — " 15.80/38.44 22.62/46.13 35.00/58.40 15.67/38.32

Table 4: Translation performance in terms of BLEU / ChrF scores for various methods, language pairs, and sizes of
LLMs. Dotted lines separate deterministic decoding from existing sampling-based methods and from our approach.
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LLM

Method Llama2-13B ALMA-13B
en—de
Greedy 80.53/71.62 81.56/74.08
Multilingual NMT Beam 81.66/73.29 82.61/75.40
Method NLLB-1.3B NLLB-3.3B " Sample ~ ~ 81.48/7020 83.83/73.11
en—de MBR-BLEU 82.36/71.03 84.37/73.77
Greedy 32.04/59.16 33.31/60.49 MBR-COMET 85.08/73.41 86.04/75.40
Beam 33.69/60.92 34.07/61.82 QE-reranking 84.61/73.96 86.03/75.75
" Sample ~ ~ ~ ~ 29.807/57.71 304275851 " QE-fusion =~ 85.17/74.41 86.32/76.09
MBR-BLEU 31.49/58.48 32.19/59.81 en—ru
MBR-COMET 31.19/59.00 32.11/60.18 Greedy 80.36/70.68 82.41/73.67
QE-reranking 31.01/59.26 31.68/60.10 Beam 82.16/72.71 83.52/75.51
" QE-fusion ~ ~ ~ 30.90/59.41 31.59/60.32 " Sample ~ ~ ~ ~ 83.42768.83 85.97/7248
en—ru MBR-BLEU 84.19/69.94 86.80/73.42
Greedy 27.58/53.37 29.12/54.71 MBR-COMET 87.01/72.44 88.54/75.12
Beam 29.14/54.86 30.12/55.96 QE-reranking 86.60/7296 88.17/75.42
" Sample ~ ~ ~ 258675214 272275316 " QE-fusion =~ 87.20/73.60 88.53/76.03
MBR-BLEU 27.34/53.19 28.62/54.36 zh—en
MBR-COMET 27.42/53.51 28.55/54.50 Greedy 76.56/66.27 76.95/67.18
QE-reranking 27.18 /53.55 28.20/54.46 Beam 77.55/67.30 77.63/68.15
" QE-fusion =~ 26.987/53.60 28.18/54.74 ~ " Sample ~ ~ ~ ~ 78.53765.19 ~79.28/66.05
de—fr MBR-BLEU 79.28/166.08 79.83/66.83
Greedy 19.24/42.82 23.79/47.23 MBR-COMET 80.60/66.97 81.20/67.76
Beam 20.73/44.39 25.83/49.66 QE-reranking 80.54/67.60 81.13/68.44
“Sample ~ ~ ~  16.93740.60 19.92/43.49 ~ " QE-fusion =~ 80.94/68.04 81.58/68.96
MBR-BLEU 19.23/43.00 23.10/46.76 de—fr
MBR-COMET 18.79/42.81 22.93/46.91 Greedy 78.13/63.88 77.83/60.69
QE-reranking 19.17/43.28 23.69/47.72 Beam 79.68/65.86 79.75/61.70
" QE-fusion  ~ ~ 19.54743.80 ~24.10/48.35 " Sample ~ ~ ~ ~ 77.88761.84 ~75.53/57.78
is—en MBR-BLEU 78.88/63.42 77.01/59.62
Greedy 14.61/37.02 17.10/40.19 MBR-COMET 81.35/65.73 79.88/62.39
Beam 15.63/37.77 17.15/40.07 QE-reranking 80.99/66.43 79.24/62.52
" Sample ~ 134773599 15.73/39.33 " QE-fusion ~ ~ ~ 81.63767.11 79.73/63.36
MBR-BLEU 14.37/36.84 17.17/40.18 is—en
MBR-COMET 14.43/36.96 17.05/40.33 Greedy 67.28/56.63 80.40/75.18
QE-reranking 14.55/37.43 17.38/40.92 Beam 68.77/58.14  80.69/75.47
" QE-fusion  ~ ~ 15.75738.64 17.97/4153 " Sample ~ ~ ~ ~ 70.63756.02 85.21/74.16
MBR-BLEU 71.18/56.71 85.96/75.04
Table 5: Translation performance in terms of BLEU / MBR-COMET  73.72/58.12  86.67 /75.65

ChrF scores for various methods, language pairs, and . QE-reranking _ 74.00/59.93 86.65/76.04

multilingual NMT models QE-fusion 7490/ 61.17 86.82/76.21

Table 6: Translation performance in terms of COMET /
BLEURT scores of LLMs (13 billion parameters) for
various methods and language pairs.
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LLM

Method Llama2-13B  ALMA-13B
en—de
Greedy 26.40/54.83  28.56/57.35
Beam 26.43/56.22  30.27 /59.04
“Sample 239675294 26.46/55.68
MBR-BLEU 25.39/54.04 28.53/56.88
MBR-COMET 25.27/54.45 28.26/57.10
QE-reranking 25.57/54.81 28.33/57.52
" QE-fusion  ~ 26.08/55.49 28.10/57.66
en—ru
Greedy 23.30/49.84 26.56/52.12
Beam 23.72/51.17 27.86/54.04
“Sample  21.10/47.81 23.55/49.80
MBR-BLEU 22.76/49.14  25.49/51.38
MBR-COMET 22.67/49.59 25.13/51.54
QE-reranking 22.56/49.51 24.75/51.44
" QE-fusion 22.90/50.24 24.92/52.05
zh—en
Greedy 2248 /51.63  24.27/53.92
Beam 24.48 /53.73 26.58 /55.13
“Sample  19.70/4936 21.73/51.81
MBR-BLEU 21.98/51.41 23.46/53.52
MBR-COMET 21.42/51.34 23.05/53.59
QE-reranking 21.51/51.63 23.37/53.93
" QE-fusion 21.70/52.02 23.32/5436
de—fr
Greedy 26.67/51.87 23.11/47.54
Beam 2549/53.13 21.69/45.03
" Sample 243374944 20.46/44.98
MBR-BLEU 26.19/51.31 22.56/46.83
MBR-COMET 25.97/51.68 22.55/47.04
QE-reranking 26.62/52.18 21.82/46.54
" QE-fusion 26.71/5270 22.39/47.35
is—en
Greedy 19.82/41.59 34.75/57.55
Beam 19.92/42.40 35.72/58.00
~Sample ~ 17.48/39.97 31.05/54.90
MBR-BLEU 19.50/41.43 33.52/56.70
MBR-COMET 18.99/41.32 33.33/56.62
QE-reranking 19.53/42.12  34.27/57.74
" QE-fusion ~  20.40/43.14 34.48/58.12

Table 7: Translation performance of LLMs (13 billion
parameters) in terms of BLEU / ChrF scores for various

methods and language pairs.
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Figure 7: Effect of temperature on the diversity of the
pool (below) and its resulting impact on translation per-
formance (above) using LLMs and NMT models for
en—de translation.
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