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Abstract

Neural machine translation systems estimate001
probabilities of target sentences given source002
sentences, yet these estimates may not align003
with human preferences. This work introduces004
QE-fusion, a method that synthesizes transla-005
tions using a quality estimation metric (QE),006
which correlates better with human judgments.007
QE-fusion leverages a pool of candidates sam-008
pled from a model, combining spans from dif-009
ferent candidates using a QE metric such as010
COMETKIWI. We compare QE-fusion against011
beam search and recent reranking techniques,012
such as Minimum Bayes Risk decoding or013
QE-reranking. Our method consistently im-014
proves translation quality in terms of COMET015
and BLEURT scores when applied to large016
language models (LLMs) used for translation017
(PolyLM, XGLM, Llama2, Mistral, ALMA018
and Tower) and to multilingual translation mod-019
els (NLLB), over five language pairs. Notably,020
QE-fusion exhibits larger improvements for021
LLMs due to their ability to generate diverse022
outputs. We demonstrate that our approach023
generates novel translations in over half of024
the cases and consistently outperforms other025
methods across varying numbers of candidates026
(5–200). Furthermore, we empirically establish027
that QE-fusion scales linearly with the number028
of candidates in the pool.029

1 Introduction030

Neural machine translation (NMT) models are031

probability estimators of translations given source032

sentences. Therefore, errors in NMT may arise033

either due to imperfections in this estimation, or034

because the exact maximization of the probabil-035

ity is infeasible, and thus approximations such as036

beam search are employed. Recent studies have037

questioned the alignment of probability estimates038

of NMT models with human preferences (Koehn039

and Knowles, 2017; Ott et al., 2018; Stahlberg and040

Byrne, 2019). In this paper, we propose QE-fusion,041

a solution for finding better translations starting 042

from a pool of translation candidates, through a 043

novel combination algorithm that uses quality esti- 044

mation (QE) metrics. 045

Recent improvements in metrics for MT eval- 046

uation (Mathur et al., 2020; Freitag et al., 2021, 047

2022b) have made them more helpful for select- 048

ing among candidates generated by NMT mod- 049

els. Reference-based evaluation metrics such as 050

COMET (Rei et al., 2020) and BLEURT (Sel- 051

lam et al., 2020) have been employed as utility 052

functions for Minimum Bayes Risk (MBR) decod- 053

ing (Fernandes et al., 2022; Freitag et al., 2022a), 054

to select the candidates with the highest similarity 055

to all other ones (Kumar and Byrne, 2002, 2004). 056

QE metrics such as COMET-QE (Rei et al., 2021), 057

which do not need reference translations, have been 058

used to select the translation with the highest es- 059

timated quality by reranking a pool of candidates 060

(Fernandes et al., 2022; Farinhas et al., 2023). Such 061

reranking approaches improve translation quality 062

over standard beam search, particularly when mea- 063

sured with neural-based MT evaluation metrics. 064

While reranking approaches significantly en- 065

hance performance, they are challenged in situ- 066

ations where candidate translations exhibit comple- 067

mentary errors, with no candidate clearly improv- 068

ing over all others. Figure 1 illustrates this issue. 069

The first candidate, Fire in French chemical plant, 070

uses in instead of the more idiomatic at. The third 071

candidate makes a better choice in this case, but 072

renders the verb as cleared instead of extinguished, 073

which is incorrect in this context. Making the most 074

of this pool of candidates is not possible without 075

combining fragments from several candidates. 076

To address this limitation, we propose QE- 077

fusion, an approach that leverages the potential 078

complementarity of the generated candidates to 079

synthesize an improved translation, guided by a 080

QE metric. QE-fusion starts by identifying diver- 081

gent spans, i.e. spans that exhibit variations within 082
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Brand in französischem Chemiewerk gelöscht

Hypothesis 1

Final output

QE Metric

Source

Fire in French chemical plant extinguished

Fire extinguished on French chemical plant

Fire at French chemical plant cleared

Fire at French chemical plant extinguished

Hypothesis 2

Hypothesis k

Fire French chemical plant

extinguished

cleared

 extinguished

put out

at

in

on

Figure 1: Illustration of the QE-fusion pipeline. The method first generates multiple hypotheses by sampling
translations from the model. Then, it computes and sorts the spans that diverge among the candidates. Finally, a QE
metric is used to select a span from each group and these spans are merged to form a new, refined translation.

the pool of model-generated candidates. Then, it083

traverses these divergent spans, selecting at each084

step the one that contributes to a higher score ac-085

cording to the QE metric. The chosen spans are086

integrated into the synthesized translation, which087

is thus a fusion of multiple candidates.088

We demonstrate that QE-fusion is effective over089

pools of candidates obtained from high-performing090

multilingual NMT models such as NLLB (NLLB091

Team et al., 2022), as well as candidates obtained092

using in-context learning with large language mod-093

els (LLMs), which have recently shown compa-094

rable performance to NMT models (Garcia et al.,095

2023; Hendy et al., 2023; Zhu et al., 2023). QE-096

fusion improves translation for several popular,097

open-source LLMs: PolyLM (Wei et al., 2023),098

XGLM (Lin et al., 2022), Llama2 (Touvron et al.,099

2023), Mistral (Jiang et al., 2023), ALMA (Xu100

et al., 2023) and TowerBase1.101

Our contributions are the following:102

1. We design a novel algorithm called QE-fusion103

that generates improved translations from a104

pool of candidates using a QE metric.105

2. We demonstrate the superior performance of106

QE-fusion compared to the recently proposed107

QE-reranking and MBR decoding methods,108

across various open-source LLMs and multi-109

lingual NMT models, for five language pairs.110

3. We explain the larger improvements of QE-111

fusion for LLMs vs. NMT by the larger diver-112

sity of candidates from LLMs.113

4. We showcase the efficiency of our algorithm114

by empirically demonstrating that the runtime115

scales linearly with the number of candidates.116

1https://unbabel.com/announcing-tower-an-open-
multilingual-llm-for-translation-related-tasks

2 Related Work 117

We review in this section several approaches that 118

aim to incorporate additional knowledge either dur- 119

ing the decoding process or after it, in order to mit- 120

igate the misalignment between MT models and 121

human preferences. We start with a brief reminder 122

of MT evaluation metrics, which play a crucial role 123

as a selection criterion. 124

MT evaluation metrics. Traditional overlap- 125

based evaluation metrics for MT such as BLEU (Pa- 126

pineni et al., 2002) and ChrF (Popović, 2015) 127

are known for their imperfect correlation with hu- 128

man judgments (Mathur et al., 2020; Kocmi et al., 129

2021; Freitag et al., 2021, 2022b). In response, 130

researchers have shifted their attention towards 131

metrics that use pretrained neural models to score 132

translation outputs, such as BERTScore (Zhang 133

et al., 2020), Prism (Thompson and Post, 2020), 134

COMET (Rei et al., 2020) and BLEURT (Sellam 135

et al., 2020). To better emulate human assessment, 136

these metrics are often fine-tuned to predict hu- 137

man scores based on annotations such as those 138

provided by the WMT metrics tasks (Freitag et al., 139

2022b). Automatic MT metrics can be broadly cat- 140

egorized into two groups: reference-based metrics, 141

which have access to the reference translation, and 142

reference-free or quality estimation metrics (Zerva 143

et al., 2022), which solely rely on the source sen- 144

tence for estimating the quality of a translation. 145

Recent QE metrics are COMET-QE (Rei et al., 146

2021), TransQuest (Ranasinghe et al., 2020) and 147

COMETKIWI (Rei et al., 2022b). 148

Reranking candidate translations. One of the 149

earliest proposals for reranking the outputs of an 150

NMT system is the adaptation of the noisy channel 151

model (Brown et al., 1993) to NMT systems (Yee 152

et al., 2019; Bhosale et al., 2020). This simply 153
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combines the scores of multiple models, mainly a154

forward model, a backward one, and an LM, and155

has been shown to improve performance e.g. at156

WMT shared tasks (Ng et al., 2019).157

An alternative reranking approach uses Mini-158

mum Bayes Risk (Kumar and Byrne, 2002; Goel159

and Byrne, 2000), which aims to select the candi-160

date with the highest utility from a pool of candi-161

dates. The utility function employed in MBR mea-162

sures the similarity between a hypothesis and a ref-163

erence; however, at test time, when references are164

unknown, the same set of hypotheses serves both165

as the list of candidates and the pseudo-references.166

Possible utility functions include overlap-based167

(Eikema and Aziz, 2020) or state-of-the-art neural-168

based MT metrics (Eikema and Aziz, 2022; Fer-169

nandes et al., 2022; Freitag et al., 2022a). MBR170

has demonstrated promising results, particularly171

when equipped with recent automatic MT metrics.172

However, its time complexity scales quadratically173

with the size of the candidate pool and depends on174

the cost of computation the utility function, which175

is considerable for neural metrics such as COMET.176

A more direct strategy is the use of reference-177

free metrics to rerank generated outputs, known178

as best-of-n or QE-reranking. Initial findings sug-179

gested that this generates inferior translations com-180

pared to beam search (Freitag et al., 2022a; Fernan-181

des et al., 2022), in particular, due to the insensitiv-182

ity of such metrics to degenerate translations (Guer-183

reiro et al., 2023). However, with advancements184

in reference-free metrics, QE-reranking has out-185

performed beam search (Gulcehre et al., 2023;186

Finkelstein et al., 2023). QE-reranking can also187

be used during the training phase, where QE scores188

are employed for data filtering (Finkelstein et al.,189

2023), or for curriculum construction (Gulcehre190

et al., 2023), or for assigning quality-related tags to191

the outputs (Tomani et al., 2023). QE-reranking is192

substantially faster than MBR as its runtime scales193

linearly with the number of candidates. While194

reranking methods such as MBR decoding and QE-195

reranking effectively improve the performance of196

MT systems, they are bound by the quality of the197

candidates in the pool.198

Constructing translation candidates. A wide199

variety of scores have been used for building candi-200

dates, including the model’s own future scores (Jin-201

nai et al., 2023), lookahead heuristics (Lu et al.,202

2022), or values predicted by a distinct model using203

Monte Carlo tree search (Leblond et al., 2021; Liu204

et al., 2023; Chaffin et al., 2022). However, these 205

approaches require access to the model, which is 206

not always guaranteed, and entail substantial com- 207

putational overhead due to the number of candi- 208

dates stored at each time step. 209

3 Definition of QE-fusion 210

QE-fusion leverages the complementary nature of a 211

pool of translation candidates generated by an LLM 212

with an appropriate prompt, or an encoder-decoder 213

NMT model, and combines fragments from them 214

into an improved output. 215

3.1 Candidate Generation 216

There are multiple ways to generate candidates 217

from a model. Common approaches for LLMs in- 218

volve nucleus or top-p sampling (Holtzman et al., 219

2020), top-k, and sampling with a temperature. 220

In our experiments, we adopt nucleus sampling 221

with a temperature. The performance of LLMs can 222

also be influenced by the number of samples and 223

the prompt (Bawden and Yvon, 2023; Zhu et al., 224

2023). To optimize LLM performance, we follow 225

the guidelines of Zhu et al. (2023) and use 8 exam- 226

ples for in-context learning in all our experiments. 227

For NMT models, beam search, while commonly 228

used to return the top candidates in the beam, has 229

been shown to lack diversity (Vijayakumar et al., 230

2017). Instead, for the multilingual NMT models, 231

we employ epsilon sampling (Hewitt et al., 2022), 232

which sets to zero the probability of tokens below 233

a threshold, and was recently shown to generate 234

more diverse candidates (Freitag et al., 2023). 235

3.2 QE-fusion Algorithm 236

For each sentence translated by a model, the QE- 237

fusion algorithm (Algorithm 1) considers the top- 238

ranked hypothesis by the QE metric as the base 239

hypothesis, hbase, (line 1). The rationale behind 240

this choice is that this is already a high-quality 241

translation which may require the fewest modifica- 242

tions. QE-fusion then identifies divergent spans be- 243

tween hbase and other candidates generated by the 244

model, using an off-the-shelf library2 that employs 245

edit distance to spot the additions, deletions and 246

replacements required to transform one sequence 247

into another (line 3). 248

For each span where disagreements appear be- 249

tween candidates, the various alternatives are listed. 250

The algorithm substitutes the initial span of hbase 251

2https://docs.python.org/3/library/difflib.html
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Algorithm 1 QE-fusion algorithm
Input: candidate list Y , QE metricM, beam size b

1 hbase ← argmax
y∈Y

M(y) ▷ select the top-ranked candidate

2 hyps← {hbase} ▷ initialize beam
3 diffs ← find_diffs(hbase, Y) ▷ find divergent spans
4 for base_span, alter_spans in diffs.items() do
5 for h in hyps do
6 for span in alter_spans do
7 hnew ← h.replace(base_span, span)

▷ create new hypothesis
8 if hnew is not in hyps then
9 hyps← hyps ∪ {hnew}

10 end
11 end
12 end
13 scores←M(hyps)
14 sorted_hyps← sorted(hyps, scores) ▷ sort hyps
15 hyps← sorted_hyps[: b] ▷ keep top b hyps
16 end

Output: hyps[0]

with each of the alternative spans (lines 6-11),252

which results in alternative hypotheses for the en-253

tire translation, {hnewi }i=1,2,.... A QE metric is254

used to compute scores for each hnewi (line 13).255

The hypotheses are then sorted based on their256

scores, and the top b candidates are retained, form-257

ing a beam (lines 14-15). This is repeated for258

each span of hbase, resulting in a set of hypothe-259

ses within the beam. Finally, the highest-scoring260

hypothesis is selected.261

While this is a conceptual explanation of the262

algorithm, certain modifications are made for effi-263

ciency purposes3, such as batching the sentences264

and caching computed scores (see Appendix A.2).265

4 Experimental Settings266

4.1 Datasets and Evaluation Metrics267

We assess performance across a spectrum of di-268

verse language pairs. The selected languages in-269

clude German, which is the most represented non-270

English language in most models; Russian, a high-271

resource language written in Cyrillic alphabet; Chi-272

nese, a high-resource language with a logographic273

script; and Icelandic, which is considered a low-274

resource language. We consider the translation of275

English into the first two languages, and from the276

latter two into English. Additionally, we consider277

a non-English-centric pair, German to French.278

As we experiment with pre-trained models, we279

use only test data, which we take from WMT22280

(Freitag et al., 2022b), or for is→en from WMT21281

(Akhbardeh et al., 2021). We draw the few-shot282

3We will release our code upon acceptance of the paper.

examples for LLMs from the test sets of WMT21. 283

Further details regarding dataset sizes and domains 284

are presented in the Appendix A.1. 285

We report results in terms of two neural-based 286

metrics: COMET-22 (Rei et al., 2022a) and 287

BLEURT-20 (Sellam et al., 2020). Surface-based 288

BLEU and ChrF scores are given in Appendix A.4. 289

4.2 Models and Parameters 290

We conduct an extensive evaluation using LLMs 291

and encoder-decoder NMT models of various 292

sizes. Specifically, we use popular LLMs such as 293

PolyLM-1.7B (Wei et al., 2023), XGLM-2.9B (Lin 294

et al., 2022), Mistral-7B (Jiang et al., 2023), 295

Llama2-7B (Touvron et al., 2023). We additionally 296

use ALMA-7B (Xu et al., 2023) and TowerBase- 297

7B, two LLMs based on Llama2-7B that are fine- 298

tuned for translation using both monolingual and 299

parallel data. These LLMs have demonstrated im- 300

pressive performance in MT (Xu et al., 2023), com- 301

parable to GPT-3.5 and NLLB-54B (NLLB Team 302

et al., 2022) and represent intermediary stages be- 303

tween general LLMs and task-specific MT mod- 304

els. As for NMT systems, we use the multilingual 305

NLLB-1.3B and 3.3B models (NLLB Team et al., 306

2022). Results for the 13B versions of Llama2 and 307

ALMA are given in Appendix A.5. 308

For the LLMs, we adopt the hyper-parameters 309

used by Touvron et al. (2023). We generate can- 310

didates using nucleus sampling with p = 0.9 and 311

a temperature of 0.6. As a prompt for in-context 312

learning, we follow Zhu et al. (2023) and use the 313

instruction template: < X > = < Y > with 8 ex- 314

amples randomly sampled from the WMT21 data. 315

For the NMT models, we follow the suggestions of 316

Freitag et al. (2023) and use epsilon sampling (He- 317

witt et al., 2022) with ϵ = 0.02 and a temperature 318

of 0.5. We study the impact of temperature in Sec- 319

tion 6.3. We generate 5 candidates both for LLM 320

and MT models for efficiency purposes, although 321

we demonstrate in Section 6.1 that our approach 322

works with larger numbers of candidates too. 323

4.3 Comparison Terms 324

We compare QE-fusion with standard decod- 325

ing algorithms for MT, such as greedy decod- 326

ing and beam search with a width of 5. We 327

also compare it with three sampling-based algo- 328

rithms: QE-reranking (Fernandes et al., 2022) with 329

COMETKIWI (Rei et al., 2022b) as the QE met- 330

ric, which is the same used by QE-fusion; MBR 331

decoding (Eikema and Aziz, 2020), either with 332
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LLM
Method PolyLM-1.7B XGLM-2.9B Llama2-7B Mistral-7B ALMA-7B Tower-7B

en→de
Greedy 70.24 / 62.37 74.51 / 66.43 79.84 / 67.08 79.75 / 70.48 81.39 / 74.21 81.50 / 73.11
Beam 70.84 / 65.31 76.74 / 69.22 79.56 / 69.83 80.99 / 72.34 81.71 / 74.78 82.49 / 74.81
Sample 71.84 / 60.71 70.73 / 58.36 78.49 / 65.71 80.73 / 69.11 83.19 / 72.90 83.81 / 72.83
MBR-BLEU 73.54 / 62.08 77.18 / 65.77 79.34 / 66.73 81.72 / 69.99 84.04 / 73.73 84.35 / 73.25
MBR-COMET 78.68 / 66.36 80.90 / 68.80 83.26 / 70.32 84.73 / 72.78 85.99 / 75.46 86.17 / 74.63
QE-reranking 78.02 / 67.21 80.75 / 70.00 82.73 / 71.04 84.30 / 73.23 85.53 / 75.53 85.86 / 75.19
QE-fusion 79.62 / 68.67 81.62 / 71.01 83.63 / 71.96 85.02 / 74.10 85.93 / 75.93 86.23 / 75.68

en→ru
Greedy 69.47 / 59.70 75.71 / 65.75 77.42 / 66.94 80.44 / 71.13 81.36 / 72.31 82.36 / 74.24
Beam 71.30 / 63.26 77.56 / 67.58 79.84 / 69.49 82.31 / 73.13 82.45 / 74.17 83.11 / 75.07
Sample 72.99 / 57.70 71.65 / 52.45 80.18 / 64.90 83.55 / 69.17 84.84 / 70.81 86.36 / 73.23
MBR-BLEU 75.19 / 59.92 79.26 / 63.24 81.72 / 66.62 84.50 / 70.34 85.83 / 72.28 86.87 / 74.03
MBR-COMET 80.16 / 63.88 82.42 / 65.04 85.15 / 69.61 87.26 / 72.82 87.78 / 73.90 88.60 / 75.57
QE-reranking 79.59 / 64.53 83.07 / 68.07 84.62 / 70.11 86.81 / 73.25 87.33 / 74.32 88.29 / 75.90
QE-fusion 81.28 / 66.32 83.93 / 69.06 85.60 / 71.48 87.38 / 74.05 87.82 / 75.11 88.58 / 76.30

zh→en
Greedy 65.29 / 54.76 48.71 / 28.76 74.44 / 64.13 76.63 / 66.67 76.14 / 66.20 75.97 / 65.30
Beam 65.09 / 57.71 71.62 / 58.69 76.33 / 65.89 77.60 / 67.74 76.15 / 66.46 76.98 / 65.95
Sample 67.85 / 53.32 53.77 / 33.70 76.55 / 62.69 78.91 / 65.56 78.19 / 64.70 77.73 / 64.03
MBR-BLEU 69.74 / 54.83 62.93 / 44.64 77.80 / 64.12 79.69 / 66.58 79.09 / 65.81 78.33 / 64.80
MBR-COMET 72.47 / 56.49 65.98 / 46.51 79.30 / 65.05 80.87 / 67.31 80.40 / 66.77 79.79 / 66.01
QE-reranking 73.12 / 57.86 71.48 / 54.99 79.38 / 66.21 80.79 / 67.90 80.41 / 67.61 79.86 / 66.82
QE-fusion 74.27 / 59.06 72.14 / 55.80 79.99 / 66.92 81.15 / 68.44 80.86 / 68.13 80.44 / 67.46

de→fr
Greedy 61.16 / 41.88 71.50 / 53.40 76.39 / 60.46 78.01 / 63.16 74.08 / 57.48 79.10 / 65.86
Beam 63.14 / 50.45 74.32 / 57.37 78.57 / 63.69 79.46 / 65.50 77.08 / 60.66 80.49 / 67.52
Sample 61.27 / 38.59 67.62 / 45.94 75.24 / 57.60 77.12 / 60.60 72.81 / 53.85 79.55 / 64.50
MBR-BLEU 64.31 / 42.76 71.96 / 52.53 76.68 / 59.88 78.45 / 62.41 74.65 / 56.93 80.52 / 65.87
MBR-COMET 69.30 / 46.20 75.80 / 55.72 79.91 / 62.63 81.06 / 65.10 78.53 / 60.56 82.54 / 67.67
QE-reranking 68.74 / 48.38 75.51 / 57.31 79.44 / 63.67 80.69 / 65.53 77.96 / 61.18 82.16 / 68.07
QE-fusion 70.09 / 49.98 76.64 / 58.76 80.27 / 64.56 81.26 / 66.28 78.87 / 62.48 82.53 / 68.44

is→en
Greedy – – 62.47 / 51.58 70.06 / 59.80 80.38 / 75.09 62.08 / 50.90
Beam – – 63.75 / 52.52 71.41 / 60.74 80.90 / 75.73 63.41 / 52.24
Sample – – 65.64 / 49.87 72.65 / 58.47 85.15 / 74.01 64.87 / 49.68
MBR-BLEU – – 66.33 / 50.96 73.24 / 59.22 85.79 / 74.81 65.74 / 50.80
MBR-COMET – – 69.32 / 52.36 75.57 / 60.81 86.58 / 75.46 68.77 / 52.28
QE-reranking – – 69.71 / 54.91 75.71 / 62.51 86.43 / 75.62 68.95 / 54.35
QE-fusion – – 70.63 / 56.11 76.81 / 63.43 86.76 / 76.02 69.84 / 55.51

Table 1: Translation performance in terms of COMET-22 / BLEURT-20 scores for various methods, language pairs,
and sizes of LLMs. Dotted lines separate deterministic decoding from existing sampling-based methods and from
our approach. The best scores for each language pair and model are in bold.

the surface-based metric BLEU or with the neural-333

based metric COMET-22 as the utility function. As334

COMET-22 follows the same training pipeline and335

has the same number of parameter as COMETKIWI,336

this ensures a fair comparison of the models. Fi-337

nally, we consider random sampling from the pool338

as a lower performance bound.339

5 Results: Translation Performance340

5.1 QE-fusion Applied to LLMs341

Table 1 presents the results obtained across various342

language pairs and LLMs, in terms of COMET343

and BLEURT scores. Results with BLEU and344

ChrF scores, showing similar trends, are given in345

Appendix A.4. As expected, the translation per-346

formance of LLMs generally improves with scale, 347

but also with recency. For instance, the more re- 348

cent Mistral-7B significantly outperforms Llama2- 349

7B, despite their similar sizes (7 billion param- 350

eters). ALMA-7B and Tower-7B emerge as the 351

top-performing LLMs across all language pairs, 352

confirming the merits of MT-specific fine-tuning 353

of LLMs. Tower-7B has better performance than 354

ALMA-7B in all pairs except is→en, where the 355

latter dominates.4 We do not provide the is→en 356

scores of smaller LLMs (PolyLM and XGLM) due 357

to their poor capabilities in the low-resource Ice- 358

4This is because is→en data was not used in the fine-tuning
stages of Tower, contrary to ALMA, leading to catastrophic
forgetting, as is visible when comparing the scores of Tower
with those of its parent model, Llama2.

5



Multilingual NMT
Method NLLB-1.3B NLLB-3.3B

en→de
Greedy 81.56 / 74.39 82.49 / 75.43
Beam 82.76 / 75.62 83.37 / 76.44
Sample 83.57 / 73.27 84.66 / 74.48
MBR-BLEU 84.16 / 74.03 85.18 / 75.25
MBR-COMET 85.98 / 75.38 86.69 / 76.34
QE-reranking 85.92 / 75.88 86.25 / 76.60
QE-fusion 86.25 / 76.11 86.74 / 76.81

en→ru
Greedy 81.93 / 72.81 82.49 / 73.93
Beam 82.83 / 74.10 83.36 / 75.12
Sample 84.95 / 71.49 86.07 / 73.01
MBR-BLEU 85.59 / 72.37 86.44 / 73.58
MBR-COMET 87.47 / 73.97 88.18 / 75.09
QE-reranking 87.11 / 74.27 87.96 / 75.46
QE-fusion 87.52 / 74.71 88.31 / 75.83

de→fr
Greedy 60.87 / 41.62 67.16 / 50.21
Beam 64.43 / 44.93 69.95 / 53.42
Sample 61.96 / 39.68 66.62 / 46.15
MBR-BLEU 63.23 / 41.57 69.01 / 49.39
MBR-COMET 67.33 / 44.57 72.30 / 52.30
QE-reranking 66.89 / 46.22 72.18 / 54.06
QE-fusion 67.98 / 47.57 72.97 / 54.96

is→en
Greedy 58.56 / 48.18 61.19 / 50.54
Beam 59.75 / 49.26 61.84 / 51.39
Sample 61.57 / 47.35 63.39 / 49.69
MBR-BLEU 62.11 / 48.46 64.15 / 50.51
MBR-COMET 65.20 / 49.77 67.30 / 52.18
QE-reranking 65.34 / 51.42 67.73 / 54.02
QE-fusion 66.38 / 52.81 68.89 / 55.11

Table 2: Translation performance in terms of COMET-
22 / BLEURT-20 scores for various methods, language
pairs, and multilingual NMT models.

landic language.359

Regarding baselines, greedy decoding consis-360

tently lags behind beam search across all language361

pairs, an observation that contrasts with prior stud-362

ies focused on zero-shot scenarios (Farinhas et al.,363

2023), emphasizing the role of in-context examples.364

Unsurprisingly, random selection from the candi-365

date pool emerges as the least effective baseline.366

Among the reranking approaches, QE-reranking367

outperforms MBR with either BLEU or COMET368

as the utility function, particularly in terms of369

BLEURT scores. Among the two utility functions370

for MBR, COMET is superior while the use of371

BLEU often fails to outperform beam search. MBR372

with COMET as the utility function occasionally373

surpasses QE-reranking in terms of COMET scores.374

This may be due to a form of “reward hacking”375

(Gulcehre et al., 2023), i.e. employing the same376

metric for both candidate selection and evaluation,377

since the BLEURT scores are in the reverse order.378

Our approach, QE-fusion, consistently outper-379

forms all other methods, across all language pairs 380

and LLMs, with 5 exceptions out of 56 compar- 381

isons. Two notable ones are where beam search 382

achieves the best BLEURT scores, though not 383

COMET ones, for PolyLM-1.7B (de→fr) and 384

XGLM-2.9B (zh→en). In these cases, it is likely 385

that the candidate pool lacks high-quality transla- 386

tions altogether. The other three exceptions are 387

small COMET differences (0.06, 0.02 and 0.01). 388

Moreover, QE-fusion also outperforms the other 389

methods when combined with even larger LLMs, as 390

confirmed by the results obtained with the Llama2 391

and ALMA models with 13 billion parameters 392

present in Appendix A.5, Tables 6 and 7, with 393

COMET, BLEURT, BLEU and ChrF scores. 394

In Appendix A.3, Figure 6, we present a graph- 395

ical synthesis of these comparisons using radar 396

charts: the shapes corresponding to QE-fusion are 397

always the outermost ones, regardless of variations 398

due to the underlying LLM or language pair. In 399

particular, our approach always outperforms QE- 400

reranking, confirming its superiority as a general- 401

ization of reranking approaches. 402

5.2 QE-fusion Applied to NMT Models 403

The COMET and BLEURT scores of our approach 404

applied to multilingual NMT models, namely 405

NLLB-1.3B and NLLB-3.3B, are presented in Ta- 406

ble 2 (BLEU and ChrF scores are in Appendix A.4). 407

Similar to the results with LLMs, our approach con- 408

sistently outperforms beam search and reranking 409

approaches. Compared to LLMs, we observe that 410

NMT models perform better on the en→x pairs 411

and worse on the is→en and de→fr pairs.5 The 412

gap between our approach and QE-reranking is 413

slightly smaller in the case of NMT models, which 414

we attribute to the lower diversity of the generated 415

candidates. We test this hypothesis in Section 6.3. 416

6 Analysis of Results 417

6.1 Role of the Size of the Candidate Pool 418

In the above experiments, we generated five can- 419

didate translations for efficiency reasons. We now 420

study the influence of the number of candidates 421

on the scores of QE-fusion vs. those of the other 422

methods, using XGLM-2.9B for en→de translation. 423

5We do not provide results for the zh→en pair as the
NLLB models produce degenerate outputs, probably due to
the presence of English characters in the Chinese sentences
of the WMT22 test set, a problem also mentioned by other
researchers (see e.g., https://discuss.huggingface.co/t/nllb-3-
3b-poor-translations-from-chinese-to-english/27695).
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Figure 2: BLEURT scores of QE-fusion and other meth-
ods over pools of candidates of increasing sizes from the
XGLM-2.9B LLM. QE-fusion outperforms reranking
approaches and is comparable to the COMET-reranking
oracle for pools of up to 25 candidates.

We progressively sample larger candidate pools,424

from 5 to 200 candidates, and present in Figure 2425

the BLEURT scores of our approach compared to426

QE-reranking using COMETKIWI and to MBR us-427

ing COMET as the utility function. Additionally,428

we compare with an oracle reranking approach429

that has access to the reference translation, using430

COMET as the selection criterion. QE-fusion con-431

sistently outperforms reranking approaches across432

all sizes of candidate pools. Moreover, QE-fusion433

even matches the performance of the oracle method434

for pool sizes of 5, 10 and 25 candidates.435

6.2 Novelty of Outputs from QE-fusion436

As the previous experiment may suggest that QE-437

fusion has a similar effect as the use of larger can-438

didate pools with reranking methods, we examine439

here the novelty of the synthesized candidates, by440

counting how many times the output of QE-fusion441

can be found in a larger pool. For a pool of p can-442

didates given to QE-fusion, we measure how fre-443

quently an exact match of the output of QE-fusion444

can be found in larger pools of size q ≥ p, where p445

and q are in {5, 10, 25, 50, 100, 200}.446

The results, presented in Figure 3, reveal that447

even with a small pool of 5 candidates, more448

than 50% of the outputs of QE-fusion would not449

have been generated by the LLM, even when sam-450

pling 200 candidates (rightmost bar of the leftmost451

group). The percentage of identical (or non-novel)452

candidates decreases as the pool grows, due to more453

varied candidates present in larger pools.454

When candidates generated by QE-fusion are455

Figure 3: Frequencies at which outputs produced by QE-
fusion appear in larger candidate pools sampled from
XGLM-2.9B. Results show that in at least half of the
cases QE-fusion synthesizes novel candidates that the
LLM would not generate otherwise.

present in the original pool, our method has the 456

same effect as QE-reranking. The frequency of 457

these cases is given by the leftmost bar of each 458

group (pool size) in Figure 3. We observe that our 459

approach defaults to QE-reranking less than 40% 460

of the time for a pool of size 5 (leftmost bar) and 461

this value drops to 20% for a pool of size 200. 462

6.3 Impact of Candidate Diversity on Quality 463

By construction, QE-fusion benefits from the diver- 464

sity of candidates, as this allows for an increased 465

number of divergent spans. We explore now the 466

effect of diversity on both QE-fusion and QE- 467

reranking, for LLMs and NMT models. 468

To increase the diversity of the pool of candidate 469

translations, we adjust the temperature parameter 470

during decoding but keep constant all other genera- 471

tion parameters. A higher temperature results in to- 472

ken probability distributions that are more uniform, 473

thus increasing the stochasticity of sampling and 474

consequently the diversity of the candidate pool. 475

Here, we measure this diversity by the number of 476

unique 4-grams present in the candidate pool, av- 477

eraged over all test sentences. Figure 4 displays in 478

its lower part the diversity of the pool as a function 479

of temperature for XGLM-2.9B and NLLB-1.3B 480

on en→de translation, and in its upper part the 481

BLEURT quality scores of these models with ei- 482

ther QE-reranking or QE-fusion. Additional results 483

with COMET scores and other diversity measures 484

are given in Appendix A.6 and show similar trends. 485

Increasing the temperature leads to an expected 486

rise in diversity. The rise is higher for XGLM-2.9B 487
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Figure 4: Effect of temperature on the diversity of the
pool (below) and on translation performance (above) us-
ing an LLM and an NMT model for en→de translation,
with QE-fusion vs. QE-reranking.

than for NLLB-1.3B, illustrating the fact that LLMs488

generate more diverse outputs, likely due to their489

general-domain language pretraining compared to490

the task-specific training of NMT models. Never-491

theless, generating too diverse candidates due to492

high temperatures results in a noticeable drop in493

performance (right side of the upper graph). The494

gap between QE-fusion and QE-reranking slightly495

widens as diversity increases, indicating the ability496

of our approach to leverage alternative spans. The497

optimal performance is achieved using a tempera-498

ture in the [0.4, 0.6] interval.499

6.4 Computation Time500

In Section 6.1 we presented the scaling laws of QE-501

fusion vs. reranking in terms of performance when502

the size of the candidate pool varies. However,503

computation time is a crucial factor as the candi-504

date pool grows. QE-reranking has the advantage505

of linear scaling with the number N of candidates,506

while MBR methods require N(N−1) model calls507

for each sentence. In contrast, QE-fusion has vari-508

able complexity, depending on the diversity of the509

pool and the presence of alternative spans.510

To compare empirically the complexity of QE-511

fusion with reranking methods, we measured their512

runtime for the en→de WMT22 test data with513

2,037 sentences. All experiments were executed514

on a single Nvidia A40 GPU with 40 GB memory,515

Figure 5: Runtimes (in seconds) for different pool sizes
for the en→de WMT22 test set.

using a batch size of 400 samples. Using a loga- 516

rithmic scale, Figure 5 confirms that QE-reranking 517

scales linearly with the candidate pool size, while 518

MBR scales quadratically. Interestingly, QE-fusion 519

also exhibits linear scaling with the number of can- 520

didates but with a constant factor of ×5 compared 521

to QE-reranking. For 5 and 10 candidates, QE- 522

fusion has similar runtimes to MBR. 523

We have implemented specific optimizations, in- 524

cluding score caching and input batching, to reduce 525

runtime (see Appendix A.2). These modifications 526

were uniformly applied to all methods to ensure a 527

fair comparison. We leave further optimizations 528

such as pruning (Cheng and Vlachos, 2023) for 529

future work. 530

7 Conclusion 531

In this paper, we introduce QE-fusion, a novel ap- 532

proach that leverages the complementary nature of 533

generated candidates to synthesize improved trans- 534

lations based on quality estimation metrics. We 535

evaluated our approach on five language pairs using 536

both LLMs and NMT models. The results of our ex- 537

periments demonstrate the consistent superiority of 538

QE-fusion over traditional methods such as beam 539

search, as well as established reranking approaches 540

like Minimum Bayes Risk and QE-reranking. 541

Our analysis reveals that QE-fusion is partic- 542

ularly beneficial to LLMs, capitalizing on their 543

enhanced capability to generate diverse outputs. 544

Notably, QE-fusion maintains its superiority when 545

the number of candidates increases, highlighting 546

its scalability. Additionally, the empirical study of 547

the time complexity of QE-fusion shows a linear 548

relationship with the number of candidates. 549
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8 Limitations550

Human evaluation. While our work employs551

state-of-the-art MT evaluation metrics, we ac-552

knowledge the inherent limitations of automatic553

metrics. Human evaluation could offer more reli-554

able and comprehensive insights. However, due to555

the extensive scope of our study involving numer-556

ous models and language pairs, conducting human557

evaluation was not feasible within the constraints558

of this research.559

Choice of metrics. The QE metric used by QE-560

fusion, COMETKIWI, shares some similarities561

with the COMET metric used for evaluation, as562

they originate from the same family of models.563

Consequently, using COMETKIWI as our criterion564

for merging spans might be considered as the rea-565

son why we get improvements in COMET scores.566

To address this concern, we confirm our findings567

with scores using three other metrics: BLEURT,568

BLEU and ChrF. Even with these alternate metrics,569

our approach consistently outperforms all other570

reranking techniques, demonstrating its robustness571

and effectiveness.572
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A Appendix877

A.1 Datasets878

Table 3 presents information about the datasets879

used in our study, in terms of size and domain.880

More information is available in the synthesis ar-881

ticles from WMT22 (Freitag et al., 2022b) and882

WMT21 (Akhbardeh et al., 2021).883

Lang. Pair Source Sentences Domain

en→de WMT22 2,037

News
Conversational
e-Commerce

Social

en→ru WMT22 2,037

News
Conversational
e-Commerce

Social

zh→en WMT22 1,875

News
Conversational
e-Commerce

Social

de→fr WMT22 1,984

News
Conversational
e-Commerce

Social
is→en WMT21 1,000 News

Table 3: Test datasets used for evaluation.

A.2 Implementation Optimizations884

While Algorithm 1 outlines the concept of fusing885

candidates, we introduce specific modifications to886

enhance efficiency. Firstly, to mitigate the computa-887

tionally expensive calls to the QE model, we paral-888

lelize the exploration of all sentences in the test set,889

resembling a batched beam search. By doing so,890

we reduce the overall number of calls to the model891

(which depends on the number of divergent spans)892

by utilizing a larger batch. Additionally, we im-893

plement a hash table to track previously generated894

candidates, ensuring that we do not compute scores895

for the same sentence twice. Lastly, we incorporate896

an early exit mechanism, removing sentences for897

which no pending pseudo-generation step exists.898

These optimizations significantly impact the time899

complexity of our algorithm, which we empirically900

demonstrate to scale linearly with the number of901

candidates in Section 6.4.902

A.3 Graphical Comparison of Main Scores903

The BLEURT scores of various methods, LLMs904

and language pairs from Table 1 are represented as905

radar charts in Figure 6. The shapes corresponding906

to our proposal, QE-fusion, always extend outside907

the others (only beam search, MBR with COMET908

and QE-reranking are plotted, for simplicity), for 909

any of the four LLMs represented: Llama2-7B, 910

Mistral-7B, ALMA-7B, and TowerBase-7B. The 911

latter two models, though fine-tuned for MT, have 912

large differences for is→en and de→fr. 913

Figure 6 also shows the BLEURT scores of var- 914

ious methods for the two NMT models, over the 915

same language pairs as above, excluding zh→en, 916

based on scores from Table 2. Again, QE-fusion 917

extends outside the other shapes for both NMT 918

models. 919

A.4 Results with Surface-based Metrics 920

We provide the results of surface-based metrics, 921

like BLEU and ChrF, for LLMs in Table 4. The 922

overall performance trends align with those of 923

neural-based metrics, indicating that larger models 924

consistently achieve higher scores. Once again, QE- 925

fusion consistently surpasses reranking approaches. 926

However, regarding surface-based metrics, beam 927

search or greedy decoding frequently emerge as 928

the top-performing methods, with our approach 929

securing the second position. 930

The outputs of beam search often exhibit pre- 931

dictability, while sampling introduces a layer of 932

creativity to translations. Unfortunately, surface- 933

based metrics struggle to account for nuances like 934

synonyms or significant restructuring, leading to 935

potential penalties for such translations. This limi- 936

tation has contributed to a decline in the popularity 937

of surface-based metrics within the MT community. 938

Nevertheless, even among traditional MT metrics, 939

our approach outperforms all other sampling-based 940

methods. 941

Table 5 presents BLEU and ChrF scores for the 942

NMT models (two sizes of NLLB). Firstly, we ob- 943

serve that the NMT models perform significantly 944

better than the LLMs in terms of surface-based 945

metrics. This results is consistent with similar 946

findings in the literature (Chowdhery et al., 2023; 947

Hendy et al., 2023; Zhu et al., 2023). The trend 948

differs slightly compared to LLMs, as methods 949

like QE-reranking and MBR score higher in terms 950

of surface-based metrics, particularly for the high- 951

resource pairs en→de and en→ru. This divergence 952

can be attributed, once again, to the limited diver- 953

sity in translations generated by MT models, while 954

our approach facilitates more creative translations, 955

potentially penalized by these metrics. Neverthe- 956

less, for pairs where MT models perform worse, 957

such as is→en and de→fr, QE-fusion consistently 958

outperforms reranking approaches and occasion- 959
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Figure 6: BLEURT scores for four methods combined with four LLMs and two NMT models, on five and four
language pairs respectively.

ally beam search.960

A.5 Results using LLMs with 13B Parameters961

Tables 6 and 7 present the translation results for the962

larger, 13B versions of Llama2 and ALMA. The963

overall trend aligns with other LLMs: QE-fusion964

significantly outperforms reranking methods.965

A.6 Temperature and Diversity966

In Figure 7, we present additional results regarding967

the impact of temperature on translation perfor-968

mance and pool diversity. Specifically, we evaluate969

translation quality in terms of COMET, demon-970

strating similar results to those in Section 6.3 with971

BLEURT. Higher temperatures enhance the results972

of both QE-reranking and QE-fusion but exces-973

sively high temperature values lead to a drop in974

performance.975

To measure diversity, we consider here two ad-976

ditional metrics: the average number of unique977

candidates in the pool and the semantic diversity,978

as defined by Farinhas et al. (2023), where u(x, y)979

is the utility function, in this case COMET, and yj ,980

yi represent two different candidates from the pool:981

1− 1

N(N − 1)

N∑
i,j=1
j ̸=i

u(yj , yi) (1) 982

These diversity metrics exhibit similar trends to our 983

lexical diversity findings, with diversity increasing 984

as the temperature rises. These results confirm that 985

LLMs tend to produce more diverse outputs, a fact 986

that contributes to explaining why QE-fusion is 987

more effective on LLM outputs than on NT ones. 988

13



LLM
Method PolyLM-1.7B XGLM-2.9B Llama2-7B Mistral-7B ALMA-7B Tower-7B

en→de
Greedy 17.62 / 46.83 17.95 / 46.86 22.83 / 51.84 24.87 / 53.53 26.74 / 55.95 30.21 / 58.89
Beam 12.74 / 46.06 21.16 / 49.04 22.99 / 53.57 24.98 / 54.79 28.82 / 57.23 29.75 / 59.80
Sample 16.52 / 45.73 13.10 / 40.64 20.07 / 49.92 22.30 / 51.35 23.52 / 53.62 28.47 / 57.42
MBR-BLEU 19.11 / 47.85 18.40 / 46.88 22.26 / 51.26 23.78 / 52.84 25.97 / 55.21 30.35 / 58.77
MBR-COMET 18.94 / 48.22 17.65 / 46.84 22.37 / 51.95 24.18 / 53.40 25.91 / 55.64 30.51 / 59.03
QE-reranking 19.45 / 49.07 18.55 / 47.95 22.38 / 52.12 23.90 / 53.32 25.73 / 55.63 29.77 / 58.81
QE-fusion 20.40 / 50.27 19.39 / 49.11 23.17 / 52.95 24.26 / 54.17 25.94 / 56.02 29.64 / 58.95

en→ru
Greedy 16.36 / 41.81 16.68 / 42.29 19.64 / 46.11 22.64 / 49.04 23.14 / 49.75 28.94 / 54.76
Beam 12.63 / 41.46 19.99 / 44.68 20.52 / 48.43 23.14 / 51.26 25.48 / 51.54 27.81 / 55.87
Sample 14.32 / 39.80 11.18 / 34.09 17.51 / 43.97 20.14 / 46.25 20.33 / 47.35 26.45 / 52.81
MBR-BLEU 17.42 / 42.31 16.38 / 41.20 19.51 / 45.85 22.27 / 48.24 22.77 / 49.25 28.76 / 54.41
MBR-COMET 16.84 / 42.77 15.31 / 40.92 19.12 / 46.09 21.81 / 48.55 22.07 / 49.52 28.29 / 54.52
QE-reranking 17.46 / 43.54 17.06 / 43.08 19.38 / 46.44 21.45 / 48.51 22.02 / 49.54 27.76 / 54.30
QE-fusion 18.32 / 44.89 17.34 / 43.95 20.04 / 47.32 22.06 / 49.44 22.43 / 50.30 27.94 / 54.75

zh→en
Greedy 11.22 / 52.34 4.44 / 21.40 20.37 / 49.25 22.92 / 51.68 21.61 / 51.14 22.16 / 50.20
Beam 8.74 / 34.81 13.56 / 38.59 22.37 / 51.30 24.14 / 53.69 22.72 / 51.68 23.72 / 51.19
Sample 9.70 / 34.07 5.60 / 24.80 17.89 / 46.73 20.53 / 49.64 19.03 / 49.03 20.09 / 48.54
MBR-BLEU 11.20 / 36.60 8.93 / 31.87 19.98 / 49.01 22.39 / 51.70 20.87 / 50.79 21.90 / 50.26
MBR-COMET 10.85 / 36.23 8.73 / 32.24 19.17 / 48.67 21.76 / 51.43 20.35 / 50.73 21.56 / 50.12
QE-reranking 11.38 / 37.68 11.09 / 36.81 19.96 / 49.81 22.01 / 52.03 20.62 / 51.24 21.49 / 50.41
QE-fusion 12.46 / 39.36 11.58 / 37.64 20.44 / 50.72 22.31 / 52.63 20.93 / 51.92 22.06 / 51.33

de→fr
Greedy 11.60 / 33.07 17.28 / 40.98 23.63 / 48.84 26.57 / 52.02 20.79 / 46.09 33.69 / 56.59
Beam 7.79 / 33.73 18.92 / 42.80 23.72 / 51.25 25.17 / 53.16 21.12 / 45.88 32.77 / 58.07
Sample 9.66 / 31.24 13.61 / 36.76 20.86 / 46.23 23.29 / 49.17 18.14 / 43.80 31.02 / 54.71
MBR-BLEU 12.15 / 34.57 16.45 / 40.93 23.14 / 48.45 25.54 / 51.05 20.37 / 45.83 32.90 / 56.36
MBR-COMET 11.82 / 34.52 16.08 / 41.08 22.81 / 48.62 25.31 / 51.46 19.92 / 45.81 32.92 / 56.62
QE-reranking 12.62 / 35.40 17.10 / 42.15 22.91 / 49.08 25.21 / 51.72 19.65 / 45.62 32.45 / 56.58
QE-fusion 13.18 / 36.31 18.10 / 43.24 23.55 / 50.01 25.36 / 52.26 20.76 / 46.90 31.97 / 56.77

is→en
Greedy – – 14.68 / 36.57 22.60 / 44.73 35.72 / 58.20 14.84 / 36.76
Beam – – 15.47 / 37.03 22.49 / 45.64 37.34 / 59.26 14.48 / 37.02
Sample – – 13.70 / 35.03 20.14 / 43.08 32.20 / 55.48 13.54 / 35.61
MBR-BLEU – – 14.76 / 36.43 21.71 / 43.98 34.61 / 57.36 14.97 / 36.45
MBR-COMET – – 14.12 / 36.22 21.29 / 44.15 34.59 / 57.71 14.38 / 36.75
QE-reranking – – 15.00 / 37.36 21.95 / 45.31 34.37 / 57.69 15.25 / 37.56
QE-fusion – – 15.80 / 38.44 22.62 / 46.13 35.00 / 58.40 15.67 / 38.32

Table 4: Translation performance in terms of BLEU / ChrF scores for various methods, language pairs, and sizes of
LLMs. Dotted lines separate deterministic decoding from existing sampling-based methods and from our approach.
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Multilingual NMT
Method NLLB-1.3B NLLB-3.3B

en→de
Greedy 32.04 / 59.16 33.31 / 60.49
Beam 33.69 / 60.92 34.07 / 61.82
Sample 29.80 / 57.71 30.42 / 58.51
MBR-BLEU 31.49 / 58.48 32.19 / 59.81
MBR-COMET 31.19 / 59.00 32.11 / 60.18
QE-reranking 31.01 / 59.26 31.68 / 60.10
QE-fusion 30.90 / 59.41 31.59 / 60.32

en→ru
Greedy 27.58 / 53.37 29.12 / 54.71
Beam 29.14 / 54.86 30.12 / 55.96
Sample 25.86 / 52.14 27.22 / 53.16
MBR-BLEU 27.34 / 53.19 28.62 / 54.36
MBR-COMET 27.42 / 53.51 28.55 / 54.50
QE-reranking 27.18 / 53.55 28.20 / 54.46
QE-fusion 26.98 / 53.60 28.18 / 54.74

de→fr
Greedy 19.24 / 42.82 23.79 / 47.23
Beam 20.73 / 44.39 25.83 / 49.66
Sample 16.93 / 40.60 19.92 / 43.49
MBR-BLEU 19.23 / 43.00 23.10 / 46.76
MBR-COMET 18.79 / 42.81 22.93 / 46.91
QE-reranking 19.17 / 43.28 23.69 / 47.72
QE-fusion 19.54 / 43.80 24.10 / 48.35

is→en
Greedy 14.61 / 37.02 17.10 / 40.19
Beam 15.63 / 37.77 17.15 / 40.07
Sample 13.47 / 35.99 15.73 / 39.33
MBR-BLEU 14.37 / 36.84 17.17 / 40.18
MBR-COMET 14.43 / 36.96 17.05 / 40.33
QE-reranking 14.55 / 37.43 17.38 / 40.92
QE-fusion 15.75 / 38.64 17.97 / 41.53

Table 5: Translation performance in terms of BLEU /
ChrF scores for various methods, language pairs, and
multilingual NMT models.

LLM
Method Llama2-13B ALMA-13B

en→de
Greedy 80.53 / 71.62 81.56 / 74.08
Beam 81.66 / 73.29 82.61 / 75.40
Sample 81.48 / 70.20 83.83 / 73.11
MBR-BLEU 82.36 / 71.03 84.37 / 73.77
MBR-COMET 85.08 / 73.41 86.04 / 75.40
QE-reranking 84.61 / 73.96 86.03 / 75.75
QE-fusion 85.17 / 74.41 86.32 / 76.09

en→ru
Greedy 80.36 / 70.68 82.41 / 73.67
Beam 82.16 / 72.71 83.52 / 75.51
Sample 83.42 / 68.83 85.97 / 72.48
MBR-BLEU 84.19 / 69.94 86.80 / 73.42
MBR-COMET 87.01 / 72.44 88.54 / 75.12
QE-reranking 86.60 / 72.96 88.17 / 75.42
QE-fusion 87.20 / 73.60 88.53 / 76.03

zh→en
Greedy 76.56 / 66.27 76.95 / 67.18
Beam 77.55 / 67.30 77.63 / 68.15
Sample 78.53 / 65.19 79.28 / 66.05
MBR-BLEU 79.28 / 66.08 79.83 / 66.83
MBR-COMET 80.60 / 66.97 81.20 / 67.76
QE-reranking 80.54 / 67.60 81.13 / 68.44
QE-fusion 80.94 / 68.04 81.58 / 68.96

de→fr
Greedy 78.13 / 63.88 77.83 / 60.69
Beam 79.68 / 65.86 79.75 / 61.70
Sample 77.88 / 61.84 75.53 / 57.78
MBR-BLEU 78.88 / 63.42 77.01 / 59.62
MBR-COMET 81.35 / 65.73 79.88 / 62.39
QE-reranking 80.99 / 66.43 79.24 / 62.52
QE-fusion 81.63 / 67.11 79.73 / 63.36

is→en
Greedy 67.28 / 56.63 80.40 / 75.18
Beam 68.77 / 58.14 80.69 / 75.47
Sample 70.63 / 56.02 85.21 / 74.16
MBR-BLEU 71.18 / 56.71 85.96 / 75.04
MBR-COMET 73.72 / 58.12 86.67 / 75.65
QE-reranking 74.00 / 59.93 86.65 / 76.04
QE-fusion 74.90 / 61.17 86.82 / 76.21

Table 6: Translation performance in terms of COMET /
BLEURT scores of LLMs (13 billion parameters) for
various methods and language pairs.
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LLM
Method Llama2-13B ALMA-13B

en→de
Greedy 26.40 / 54.83 28.56 / 57.35
Beam 26.43 / 56.22 30.27 / 59.04
Sample 23.96 / 52.94 26.46 / 55.68
MBR-BLEU 25.39 / 54.04 28.53 / 56.88
MBR-COMET 25.27 / 54.45 28.26 / 57.10
QE-reranking 25.57 / 54.81 28.33 / 57.52
QE-fusion 26.08 / 55.49 28.10 / 57.66

en→ru
Greedy 23.30 / 49.84 26.56 / 52.12
Beam 23.72 / 51.17 27.86 / 54.04
Sample 21.10 / 47.81 23.55 / 49.80
MBR-BLEU 22.76 / 49.14 25.49 / 51.38
MBR-COMET 22.67 / 49.59 25.13 / 51.54
QE-reranking 22.56 / 49.51 24.75 / 51.44
QE-fusion 22.90 / 50.24 24.92 / 52.05

zh→en
Greedy 22.48 / 51.63 24.27 / 53.92
Beam 24.48 / 53.73 26.58 / 55.13
Sample 19.70 / 49.36 21.73 / 51.81
MBR-BLEU 21.98 / 51.41 23.46 / 53.52
MBR-COMET 21.42 / 51.34 23.05 / 53.59
QE-reranking 21.51 / 51.63 23.37 / 53.93
QE-fusion 21.70 / 52.02 23.32 / 54.36

de→fr
Greedy 26.67 / 51.87 23.11 / 47.54
Beam 25.49 / 53.13 21.69 / 45.03
Sample 24.33 / 49.44 20.46 / 44.98
MBR-BLEU 26.19 / 51.31 22.56 / 46.83
MBR-COMET 25.97 / 51.68 22.55 / 47.04
QE-reranking 26.62 / 52.18 21.82 / 46.54
QE-fusion 26.71 / 52.70 22.39 / 47.35

is→en
Greedy 19.82 / 41.59 34.75 / 57.55
Beam 19.92 / 42.40 35.72 / 58.00
Sample 17.48 / 39.97 31.05 / 54.90
MBR-BLEU 19.50 / 41.43 33.52 / 56.70
MBR-COMET 18.99 / 41.32 33.33 / 56.62
QE-reranking 19.53 / 42.12 34.27 / 57.74
QE-fusion 20.40 / 43.14 34.48 / 58.12

Table 7: Translation performance of LLMs (13 billion
parameters) in terms of BLEU / ChrF scores for various
methods and language pairs.

Figure 7: Effect of temperature on the diversity of the
pool (below) and its resulting impact on translation per-
formance (above) using LLMs and NMT models for
en→de translation.
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