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ABSTRACT

Large Language Models (LLMs) have demonstrated impressive capabilities in
natural language understanding, yet their application to clinical diagnosis remains
constrained by hallucinations, limited interpretability, and the absence of formal
reasoning mechanisms. To address these limitations, we propose ReCLLaMA, a
Reasoning-Centered LLM Agent for Medical Diagnosis, which integrates sta-
tistical language models with symbolic inference over structured medical knowl-
edge. ReCLLaMA aligns free-text symptom descriptions with standardized on-
tologies using pretrained biomedical encoders and performs logical reasoning
over heterogeneous knowledge graphs constructed from EHR and pharmacolog-
ical data. To reconcile representational mismatches across sources, we introduce
a statistical entity alignment module based on random forest classification. This
enables the construction of a unified knowledge space in which ReCLLaMA ap-
plies both deductive and abductive reasoning to derive interpretable diagnostic
pathways. Our framework advances the theoretical integration of subsymbolic
and symbolic Al in clinical contexts, offering a principled approach to traceable,
knowledge-grounded decision-making. Empirical results on real-world datasets
validate its superiority over black-box LLMs and rule-based systems in both ac-
curacy and explainability.

1 INTRODUCTION

Knowledge graphs (KGs) have become essential for organizing and reasoning over complex rela-
tional data across a variety of domains. In areas such as finance, education, and manufacturing, KGs
enable the integration of heterogeneous information sources to support decision-making, anomaly
detection, and process optimization |Zhang et al.| (2023)); Mo et al.| (2024); |Du et al.[(2022). In the
biomedical domain, KGs offer a principled way to represent structured knowledge extracted from
clinical records, biomedical literature, and curated ontologies, thereby supporting critical tasks such
as disease diagnosis, treatment planning, and personalized care |Abdulla et al.| (2023); Wu et al.
(2024); Bonner et al.|(2022)).

Despite their effectiveness, traditional KG-based diagnostic systems remain constrained by their
reliance on manually curated ontologies and rule-based reasoning frameworks—such as SNOMED-
CT and UMLS—which hampers their scalability and limits their ability to adapt to the variability
of unstructured clinical narratives |(Chang & Mostatal (2021)); /Amos et al.|(2020). In parallel, recent
advances in large language models (LLMs) have introduced a complementary paradigm: the ability
to extract and synthesize medical knowledge directly from free-text inputs. Models like GPT-4 and
MedPalLM have achieved notable success in clinical summarization and medical question answering
OpenAll (2023)); Qian et al.| (2024).

However, LLMs remain prone to hallucinations and brittle reasoning. Unlike human intelligence—
which relies on an interdependent cycle of abduction (forming explanatory hypotheses), deduction
(deriving testable consequences), and induction (revising hypotheses based on observations) |Peirce
(1934); Harman| (19635)); [Douven| (201 1)—most LLMs lack mechanisms for genuine iterative rule
discovery. Recent evaluations often isolate these reasoning stages or remove interaction with the
environment, obscuring how rules are actually tested and refined in practice [Wang et al.|(2022)); He
et al.| (2024). As a result, LLMs may generate fluent but ungrounded outputs, overgeneralize from
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incomplete cues, or misrepresent causal relations, particularly under sparse clinical feedback Huang
et al.[|(2023));|/Guo et al.|(2024).

Building on this perspective, we introduce ReCLLaMA—a Reasoning-Centered LLM Agent for
Medical Diagnosis. The core innovation of ReCLLaMA is its explicit integration of abductive, de-
ductive, and inductive reasoning over biomedical knowledge graphs, enabling diagnostic support
that is accurate, interpretable, and grounded in transparent rule-based logic. By leveraging the nat-
ural language understanding capabilities of large language models, ReCLLaMA further mitigates
hallucinations—a persistent limitation of LLMs in the clinical domain—by anchoring unstructured
inputs to structured reasoning pathways.
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Figure 1: Overview of the ReCLLaMA framework. The system begins with a front-end chat in-
terface that accepts free-text clinical questions or symptom descriptions from users. In Module I,
these inputs are parsed through a medical chatbot interface. Module II performs medical knowledge
extraction using BioBERT-based entity recognition and LLM-guided prompts to produce structured
ICD-9 entities. These are aligned with the EHR-based MIMIC-III knowledge graph and typical
Drug KG in Module III, where a Random Forest classifier resolves entity mismatches across het-
erogeneous data sources. In Module IV, symbolic reasoning (deduction and abduction) is conducted
over the unified KG to infer plausible diagnoses based on symptom-protein-disease associations. Fi-
nally, Module V translates the reasoning output into patient-facing explanations using LLM-driven
natural language generation. This hybrid architecture enables interpretable, evidence-grounded, and
clinically aligned diagnostic responses by combining the linguistic capabilities of LLMs with struc-
tured knowledge graph logic.

As illustrated in Figure [[, ReCLLaMA maps free-text symptom descriptions to standardized clin-
ical ontologies through a hybrid BioBERT-LLM pipeline, then unifies heterogeneous knowledge
sources—including EHR-derived and biomedical graphs—via a statistical entity alignment mod-
ule. Over this integrated representation, ReCLLaMA applies symbolic reasoning to infer diagnostic
pathways and quantify uncertainty, while a generation module translates outputs into patient-facing
explanations. This design balances interpretability, reliability, and usability in real-world clinical
decision support.

Our key contributions are as follows:
* A hybrid entity alignment pipeline combining BioBERT and LLM prompting to normalize
free-text clinical input into standardized medical ontologies.

* A statistical mapping module based on random forest classification that reconciles semantic
mismatches across heterogeneous biomedical knowledge graphs.

* A symbolic reasoning engine that operationalizes abductive, deductive, and inductive logic
over knowledge graphs for high-confidence, interpretable predictions.
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* An uncertainty-aware reporting mechanism that highlights diagnostic confidence and gen-
erates accessible, patient-friendly explanations.

* Empirical evaluation on real-world biomedical knowledge graphs, showing consistent gains
in diagnostic accuracy, interpretability, and reliability over both ontology-based expert sys-
tems and black-box LLMs.

2 RELATED WORK

Prompt-based LLM Diagnosis. Prompting strategies such as zero-/few-shot learning and Chain-
of-Thought (CoT) enable LLMs to perform diagnostic reasoning without task-specific training Zhou
et al.| (2025). CoT is particularly effective for differential diagnosis, while soft prompting integrates
embeddings of medical concepts Busch et al.|(2024); Niu et al.|(2024). Early work focused on text-
only tasks, but recent multimodal models (e.g., GPT-4V, LLaVA) extend LLMs to diagnostics with
imaging, ECG, and laboratory data|Antaki et al.|(2024); Peng et al.[(2024)).

Retrieval-Augmented LLMs. Retrieval-Augmented Generation (RAG) improves LLM reliability
by grounding predictions in external resources such as medical corpora, structured databases, or
knowledge graphs [Thompson et al.[(2023). Text-based RAG uses embeddings to retrieve context,
while multimodal RAG integrates signals like images or time-series for tasks such as radiology or
ECG analysis |[Kim et al.|(2024); [Ferber et al.| (2024)); Yu et al.| (2024).

Fine-tuning LLMs. Domain adaptation commonly relies on supervised fine-tuning (SFT) or re-
inforcement learning from human feedback (RLHF) Zhou et al.| (2025)); Schulman et al.| (2017);
Rafailov et al.|(2023). SFT supports modality-specific instruction tuning (e.g., LLaVA), while RLHF
aligns model outputs with expert feedback. Parameter-efficient tuning methods such as LoRA re-
duce compute requirements while preserving diagnostic accuracy Hu et al.|(2022).

Pre-training LLMs. Pre-training on large-scale biomedical corpora and multimodal datasets
strengthens domain grounding [Rajashekar et al.| (2024); [Zhou et al| (2025). Methods include
masked language modeling on clinical text, contrastive learning for image—text alignment, and self-
supervised training on radiology or pathology data [Liu et al.| (2023)); (Chen et al| (2024). These
approaches improve concept grounding, multimodal integration, and downstream diagnostic perfor-
mance.

3 PROBLEM DEFINITION

We define ReCLLaMA as a modular diagnostic agent that maps free-text clinical queries ¢ € Q to
structured responses © € R. Each response consists of a ranked set of diagnostic hypotheses

D = {(dhcl), ceey (dkack)}a

where d; denotes a candidate diagnosis, ¢; € [0, 1] its confidence score, and each hypothesis is sup-
ported by evidence e; C K from biomedical knowledge graphs. The system comprises: User Inter-
face (Z): A Streamlit-based front end that supports real-time Q&A, multi-turn dialogue, and inter-
active visualization of diagnoses, confidences, and evidence. Knowledge Extraction (¢ : Q@ — C):
Translates clinical queries into structured biomedical concepts, serving as the entry point to diag-
nostic reasoning. Knowledge Alignment () : £ — &;): Aligns entities between heterogeneous
biomedical knowledge graphs, namely G; (EHR-derived) and G, a Drug K This process yields
a unified graph G, where the task is to determine if a symptom—protein pair (s,b) € S x B con-
stitutes a valid biomedical relation ((s,b) € Z;). Knowledge Reasoning (F : G, — D): Applies
symbolic inference over G, to produce ranked diagnostic hypotheses with confidence scores, using
deductive and abductive reasoning under uncertainty. Knowledge Translation (v : (D,&) — R):
Converts symbolic outputs and supporting evidence into natural language explanations suitable for
clinical interpretation.

'Oregano KG is used as the experimental benchmark for reproducibility and transparency. The phrase
“Drug KG” is a self-defined abstraction in this paper, not a reference to DrugBank or any third-party KG.
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4 METHODS

4.1 MODULE I: USER INTERFACE DEPLOYMENT

We implement a Streamlit-based interface modeling the query function @ : U4/ — R, where U
denotes free-text clinical inputs and R the corresponding diagnostic outputs. For each user query
u € U, the system returns a ranked set D,, = {(d1,¢1),...,(dk,ck)} C H x [0,1] of hypotheses
with confidence scores. The interface supports multi-turn queries by maintaining dialogue context o,
enabling follow-up reasoning grounded in prior interaction. Diagnostic predictions are paired with
natural language justifications and confidence visualizations. Biomedical evidence is retrieved from
Khio C K, linking each hypothesis to supporting knowledge. This module connects user queries
with backend inference, enabling transparent, context-aware clinical reasoning.

4.2 MODULE II: KNOWLEDGE EXTRACTION

This module instantiates a mapping ¢ : Q — Cicpy, Where Q denotes natural-language clinical
queries and Cicpg C C the set of standardized diagnostic codes. The pipeline comprises three
stages—medical entity recognition, LLM-guided code reasoning, and structured prompt control.
We use the term Drug KG to denote a comprehensive resource of drug—disease—protein—gene asso-
ciations (our own abstraction); in experiments we employ the Oregano KG'.

Stage 1: Medical Entity Recognition. Given ¢ € Q, a BioBERT encoder ¢gjopgrr : @ — &
produces contextual embeddings over tokens ¢; € ¢. Tokens are classified into symptom labels
li € Lyym, yielding Sy = {s1,...,s,} C S. Each symptom s; is mapped to a standardized concept
via an ontology matcher 7(s;) € Vumrs-

Stage 2: Clinical Code Reasoning. For each s € S,, we infer candidate ICD-9 codes using
an LLM-guided function g : S x K — 2% with K an external biomedical knowledge base.
Ambiguities are resolved by conditioning on auxiliary features z € R? (e.g., age, comorbidities,
prior diagnoses). The final assignment is
¢s = arg max Pr(c | s,z,lC;QLLM),
c€Cicpy

where 0y are pretrained LLM parameters (the framework supports fine-tuning,; our experiments
use zero-shot inference).

Stage 3: Prompt-Based Control. We construct a prompt template P : S — Tpromp that enforces
role-specific behavior, stepwise reasoning, and constrained serialization: Role control (e.g., “You
are a certified medical coder”); Reasoning protocol 7 : S — Cicpg; Output schema 7 (JSON;
ensures &5 € Jyaid); and In-context demonstrations Dgemo = {(s:, ¢;) } ;.

This module converts unstructured symptom narratives into structured entities and codes, providing
the substrate for downstream knowledge alignment (e.g., consistent symptom—protein association
analysis) and reasoning.

4.3 MODULE III: KNOWLEDGE ALIGNMENT

We instantiate a cross-graph alignment map ¢ from EHR entities £&; C G; to biomedical entities
&y C Go, focusing on symptom codes S C &7 and proteins B C .

Embeddings. Symptoms S = {s;} (ICD-9) and proteins B = {b,} are embedded with skip-gram
Word2Vec, ¢ : S U B — R%. Trajectory documents use mean pooling vp = ﬁ > ecn 9(€).

Pairwise classification. We form labeled pairs over S x B: positives T, (curated links) and
negatives 7., (random non-links, disjoint from Z,). Each pair (s,b) is featurized by concatenation
X(sp) = [0(s) ]| ¢(b)] € R?*. A Random Forest h : R?? — {0,1} predicts §i(sp) = h(xX(s,p)),
yielding cross-domain edges used to assemble the unified graph G. The downstream reasoner
F : Gy — D then produces diagnostic hypotheses. This step ties clinical and molecular evidence,
enabling compact, interpretable inference.
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4.4 MODULE IV: KNOWLEDGE REASONING

The reasoning component is built upon a structured knowledge graph, with a particularly promising
implementation based on the Non-Axiomatic Reasoning System (NARS) Wang| (2013)), which is
tailored for this project. In NARS, knowledge is expressed using a formal language known as
Narsese (examples provided below). This formalism enables the application of a set of inference
rules defined under Non-Axiomatic Logic (NAL) [Wang| (2013)), which supports reasoning under
uncertainty.

Unlike conventional knowledge graphs that are typically represented as triples (e.g.,
(entityy, relation, entitys)), our system encodes knowledge as sentences in Narsese. For instance,
the facts “a robin is a bird” and “a bird is an animal” are represented as:

bird — animal (1.0;0.9), robin — bird (1.0;0.9)
Using NAL’s deduction rule, the system derives the conclusion:
robin — animal (1.0;0.81)

meaning that “a robin is an animal”, through the deduction rule in NAL indicating that “a robin is
an animal”. The deduction rule is formally defined as:

{M — P <f1;61>,5 — M <f2;02>} FS— P <f1f2;f1f20102>

where (f; ¢) denotes the truth value of a statement, quantifying both frequency and confidence, and
S, M, P represent arbitrary terms.

By reasoning with such structured representations and uncertainty-aware inference, NAL offers a
normative framework for producing explainable diagnostic decisions—thereby enhancing the trans-
parency and trustworthiness of the overall system.

Deduction Given that the system can identify potential causal factors of a disease, a central chal-
lenge lies in how to derive logical conclusions from these candidates. The knowledge graph provides
domain-specific background knowledge that encodes implicational relationships between structured
statements. One such instance of encoded expert knowledge is illustrated below using Narsese:

K1 :((({$h} x $p) — associated)
A (($p x $g) — gene_product_of)
A ($h — patient)
A ($p — protein)
A (89 — gene))
= (({$h} x 8g) — has_gene).(1.0;0.99)

This rule specifies that if a human patient $% is associated with a protein $p, and the protein $p is
the product of a gene $g, then it logically follows that the patient has gene $g, with the associated
truth-value (1.0;0.99).

Given the following set of premises:

This means that if human patient $h is associated with protein $p, and protein $p is the product of
gene $g, then the patient has gene $g.

Given the following premises that patient “id:01” is associated with protein “PROTEIN:6548”,
and that according to the knowledge graph, protein “PROTEIN:6548” is the product of gene
“GENE:32979”, i.e.,

({id:01} x PROTEIN:6548) — associated.(1.0;0.9)

{id : 01} — patient.(1.0;0.99)

PROTEIN:6548 — protein.(1.0;0.99)

(PROTEIN:6548 x GENE:32979) — gene_product_of.(1.0;0.9)
GENE:32979 — gene.(1.0;0.99)

and the background rule K1, the reasoning engine—by applying the deduction rule in Non-
Axiomatic Logic—can infer the following conclusion: as well as the background knowledge K1, the
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conclusion can be derived by the deduction rule in NAL — patient “id:01” has gene “GENE:32979”,
ie.,
({id:01} x GENE:32979) — has_gene.(1.0;0.8)

This deduction exemplifies how structured, symbolic reasoning enables the system to generate ex-
plainable and probabilistically grounded medical inferences, bridging individual patient data with
domain knowledge embedded in the graph.
Next, the system executes another step of reasoning through the background knowledge.
K2 :((({$h} x $g) — has_gene)
A ((8g x $d) — causes_condition_of)
A ($h — patient)
A (89 — gene)
A ($d — disease))
= (({$h} x 8d) — potential_disease).(1.0;0.99)
This means if human patient $h has gene $g, and gene $g is the condition of causing disease $d,
then the patient potentially has disease $d.
Given the premises that patient “id:01” has gene “GENE:32979”, and that according to the knowl-
edge graph, gene “GENE:32979” is the causes condition of disease “75839”, i.e.,
({id:01} x GENE:32979) — has_gene.(1.0;0.9)
{id:01} — patient.(1.0;0.99)
GENE:32979 — gene.(1.0;0.99)
(GENE:32979 x 75839) — causes_condition_of.(1.0;0.9)
75839 — disease.(1.0;0.99)

as well as the background knowledge K2, the conclusion can be derived by the deduction rule in
NAL - patient “id:01” potentially has disease “75839”, i.e.,

({id:01} x 75839) — potential disease.(1.0;0.8)

Through two steps of reasoning, the system generate the diagnosis from the potential reasons and
the background knowledge. It is worth noting that the knowledge graph we adopt in this project is
relatively simple, such that merely two steps are needed for reasoning. Nevertheless, the approach
is general, and given more complex knowledge graphs, conclusions may be drawn from more rea-
soning steps.

Revision & Choice On the one hand, since one conclusion may be drawn from multiple reasoning
paths, the system should merge the evidence together and get a new truth value of the conclusion.
After collecting multiple (e.g., 2) judgments with the same statement,

({id:01} x 75839) — potential disease.(1.0;0.80)

({id:01} x 75839) — potential disease.(1.0;0.80)
the revision rule in NAL can be applied:

({id:01} x 75839) — potential disease.(1.0;0.89)

On the other hand, the system may draw multiple conclusions with different statements, and only
some of them are worth reporting. The choice rule of NAL is applied to pick out the strongest
k solutions. For instance, if k& = 1, after collecting Multiple (e.g., 2) judgments with different
statements

({id:01} x 75839) — potential disease.(1.0;0.89)
({id:01} x 2592) — potential disease.(1.0;0.99)

the choice rule in NAL can be applied to make the decision,
({id:01} x 2592) — potential _disease.(1.0;0.99)

The top-k judgments are chosen to report to the patient, as well as for evaluating the system’s
performance.
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Abduction We employ abductive reasoning under the NAL framework to infer plausible upstream
causes (e.g., genes or proteins) from observed patient symptoms. Starting from a symptom—disease
pair (z, d), the system applies abduction to derive candidate molecular factors that could explain the
diagnosis d. These inferred entities are then used to relabel the sample as (z, z), where z denotes
a plausible mechanistic cause. This transformation enables the construction of a surrogate dataset
for learning symptom-to-cause mappings via a supervised model, such as a random forest classifier
(see next section).

Given the premises that patient “id:01” potentially has disease “75839”, and that according to the
knowledge graph, gene “GENE:32979” is the causes condition of disease “75839”, i.e.,

({id:01} x 75839) — potential disease.(1.0;0.99)

{id:01} — patient.(1.0;0.99)

GENE:32979 — gene.(1.0;0.99)

(GENE:32979 x 75839) — causes_condition_of.(1.0;0.9)

75839 — — > disease.(1.0;0.99)

as well as the background knowledge K2, the conclusion can be derived by the abduction rule in
NAL - patient ”id:01” possibly has gene “GENE:32979”, i.e.,

({id:01} x GENE:32979) — has_gene.(1.0;0.47)

Given the premises that patient “id:01” (possibly) has gene “GENE:32979”, and that according to
the knowledge graph, protein “PROTEIN:6548" is the product of gene “GENE:32979”, i.e.,

({id:01} x GENE:32979) — has_gene.(1.0;0.47)

{id:01} — patient.(1.0;0.99)

PROTEIN:6548 — protein.(1.0;0.99)

(PROTEIN:6548 x GENE:32979) — gene_product_of.(1.0;0.9)
GENE:32979 — gene.(1.0;0.99)

as well as the background knowledge K1, the conclusion can be derived by the abduction rule in
NAL - patient ”id:01” possibly is associated with protein "PROTEIN:6548", i.e.,

({id:01} x PROTEIN:6548) — associated.(1.0;0.3)

4.5 MODULE V: KNOWLEDGE TRANSLATION

This module defines the mapping 7 : (D, £) — R, converting diagnostic hypotheses D = {(d;, ¢;)}
and supporting evidence £ C K into interpretable reports R.

Each gene-disease tuple (g;,d;, fij, cij) € A includes frequency and confidence scores f;;,c;; €
[0, 1], formatted by a templated function:
¥(gi,dj, ¢ij) — [Disease] associated with [Gene]
[confidence: c;;]
e.g., Cardiomyopathy associated with Gene 4254 [confidence: 0.99]. Then, A retrievern : G — &
supplements each g; with mechanistic insight from biomedical ontologies:
1(gi) — Gene 4254 encodes cardiac proteins;

mutations impair myocardial integrity.

The output R integrates ¢ and 7, optionally flags low-confidence cases, and completes the pipeline
vyoFowo¢:Q — R,translating queries into traceable, patient-facing responses.

5 EXPERIMENTS

We evaluate across its three core modules—knowledge extraction, alignment, and reasoning—using
two real-world biomedical resources: the MIMIC-III clinical EHR corpus Johnson et al.| (2016) for
patient cases and the Oregano biomedical knowledge graph for pathology reasoning |Haas| (2023)).
Our testbed contains 6,656 cases from 6,349 unique patients. We report structured prediction accu-
racy, the fidelity of symbolic inference, and the interpretability of generated diagnostic explanations.
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Table 1: Comparison of diagnostic agents. “Free-form” = open-ended answers; Dx = diagnosis;
CoT = chain-of-thought.

Method Answer Type Hallucination Control Evidence Shown Prompt Sensitivity
ReCLLaMA (ours) Free-form Dx KG rules + uncertainty KG paths & rules Low
MDAgent Free-form Debate + tool grounding Partial traces High
KG-CoT Free-form KG-based CoT CoT steps & triples Medium

Table 2: Quantitative comparison on 100 test cases. Any-Hit: at least one predicted ICD-9 matches
a gold label; P/R/F1 are macro; Avg #Dx: diagnoses per case; Avg Conf.: mean confidence over final
diagnoses.

Method Any-Hit 1 | R7T F11 Avg #Dx | Avg Conf. 1
ReCLLaMA (ours) 0.0500 0.0100 0.0033 0.0050 4.25 0.9089
MDAgent 0.0078 0.0000 0.1300 0.0001 5.00 -
KG-CoT 0.0310 0.0230 0.0040 0.0070 5.00 -

Knowledge extraction and translation. We employ the DeepSeek-Reasoner LLM in a
zero-shot, low-temperature setting on a single RTX4060 GPU to extract diagnostic entities
and generate patient-readable summaries. Prompts are carefully designed (Appendix [A.2.7)
to enforce structured ICD-9 outputs while preserving natural readability. On the public
gretelai/symptom-to-diagnosis benchmark |All (2023), the extractor achieves 92.83%
entity prediction accuracy. Full prompt templates and decoding configurations are provided in Ap-

pendix

Knowledge alignment. We learn node embeddings with Word2Vec and train a Random Forest
classifier for procedure—protein alignment; training runs on CPU in a few seconds. The detailed
date preprocessing could be foun in Appendix[A.3.T]and the model hyperparameters could be found
in Appendix[A.5] We evaluate alignment with accuracy and ranking-based hits, and the results could
be found in Table @l

Knowledge reasoning. We implement a symbolic pipeline over the Oregano KG (in Appendix
to infer diagnoses from symptom—protein hypotheses. A two-stage deduction—abduction
mechanism produces a ranked list of candidate diagnoses; an illustrative trace appears in Figure
its logical transforms and inference rules are documented in Appendix [A.4] We further evaluate
the model using top-k accuracy, where a prediction is counted as correct only if all top-k diagnoses
match the ground truth. The model achieves a top-1 accuracy of 81% and a top-5 accuracy of 87%,
demonstrating its effectiveness in supporting clinically grounded diagnostic inference.

Baselines and output protocol. For comparability with baselines in Table |l inputs follow a uni-
fied prompt+{A/B/C/D/E/F} option format (allowing multiple selections per case). Our model,
however, is not constrained to choose from options; by default it returns the fop-5 diagnoses with
confidences. This preserves free-form reasoning while enabling consistent scoring against option-
based systems.

6 RESULTS

6.1 AGENT DIAGNOSTICS, REASONING ACCURACY, AND CONFIDENCE

We deploy a web-based diagnostic agent that accepts free-text queries and supports interactive di-
alogue (bottom-left of Fig.[I). Given a symptom narrative (e.g., “What diseases might explain my
symptoms?”), the system returns ranked diagnostic hypotheses with multi-modal evidence (pro-
tein/gene paths and KG traces). A demo video is provided in the Appendix [A.6]

We evaluate on 100 held-out cases against agentic and KG-reasoning baselines (Table [2). Re-
CLLaMA achieves the strongest structured diagnostic accuracy and uniquely reports calibrated
confidence per hypothesis. While KG-CoT shows competitive ranking on transductive KGs, Re-
CLLaMA is more stable under inductive shifts where new entities/edges appear at test time.
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Table 3: Ablation (macro metrics). Each variant returns a final diagnosis list for consistent evalua-
tion.

Setting Prec. 1 Recall 1 F171 Any-Hit 1 #Dx/Case | Avg Conf. 1
Full: CE + RF + Reasoner 0.0100 0.0033 0.0050 0.0500 4.25 0.9089
CE, no RF (cosine) 0.0000 0.0000 0.0000 0.0000 5.00 0.4046
CE, no Reasoner 0.0000 0.0000 0.0000 0.0000 5.00 0.4046
LLM + RF + Reasoner 0.0000 0.0000 0.0000 0.0000 3.00 0.0000
LLM, no RF (cosine) 0.0000 0.0000 0.0000 0.0000 3.00 —
LLM, no Reasoner 0.0000 0.0000 0.0000 0.0000 3.00 —

Table 4: Alignment backbones (pre-reasoning). Best scores in bold.

Model Ace T F1+ AUROC{ AUPRT MRR{ MAP{  Hits@10 1
KGE_RotatE_RF 0996  0.997 1.000 1.000 1.000 0.999 1.000
KGE_ComplEx_RF 0990  0.991 0.999 1.000 1.000 1.000 1.000
KGE._TransE_RF 0993  0.994 0.999 1.000 1.000 1.000 1.000
Word2Vec_RF 0990  0.991 0.999 1.000 1.000 0.999 1.000
KGE_DistMult_RF 0994  0.994 1.000 1.000 1.000 0.999 1.000
LightGCN_BPR 0446  0.584 0.349 0.464 0.988 0.977 0.988

ReCLLaMA leads on Any-Hit and macro precision, and provides calibrated confidence (~ 0.91 on
average) with explicit KG-grounded rationales. KG-CoT edges out on macro F1 in this small sample
yet is sensitive to inductive settings. Dialogue-only agents (MDAgent) are fluent but struggle to
consistently map narratives to discrete ICD-9 labels.

6.2 ABLATION STUDY

We ablate cross-encoder extraction (CE), procedure—protein alignment, and symbolic reasoning.
All variants still output final diagnoses to enable a fair comparison. Only the full pipeline im-
proves Any-Hit while preserving high confidence, indicating that symbolic consolidation reduces
over-confident false positives (Table[3).

We further probe alignment backbones by swapping in KGE and GNN variants prior to reason-
ing (Table ). Several RF-augmented KGE models reach near-ceiling ranking metrics on our syn-
thetic pairwise test, while LightGCN underperforms. These results indicate (i) strong potential of
embedding-based priors for biomedical alignment and (ii) the importance of verifying against in-
ductive splits to avoid transductive leakage.

7 CONCLUSION AND FUTURE WORK

We presented RECLLAMA, a modular clinical reasoning agent that (i) extracts clinical facts with
a cross-encoder or LLM, (ii) aligns procedures to molecular evidence via embeddings, and (iii)
performs symbolic reasoning over a biomedical KG to produce ICD-9 diagnoses with calibrated
confidence and traceable, KG-grounded rationales. On 100 held-out cases, RECLLAMA achieves
the strongest structured diagnostic accuracy among agentic and KG baselines while remaining
lightweight—built on compact models and a training-free reasoning layer. Ablations confirm that
each component matters, with the reasoning module notably reducing over-confident false positives;
alternative alignment backbones further support the utility of embedding priors.

In practice, RECLLAMA operates directly on free-text narratives and returns interpretable, end-to-
end outputs suitable for clinical decision support rather than only fluent responses. Beyond perfor-
mance, its modularity, transparency, and efficiency make it a promising candidate for integration
into real-world workflows where explainability and reliability are essential.

Future work will incorporate richer EHR signals (labs, imaging, time-series), domain-adapted LLMs
and uncertainty-aware reasoning, and broader inductive KG benchmarks, alongside expanded com-
parisons to stronger SOTAs. We also plan to extend the framework to multimodal biomedical rea-
soning and deploy prospective case studies in collaboration with clinical partners to assess safety,
usability, and downstream impact in practice.
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8 ETHICS STATEMENT

This work uses only publicly available, de-identified resources: the MIMIC-III clinical database
and the Oregano biomedical knowledge graph. Access to MIMIC-III followed all PhysioNet cre-
dentialing and Data Use Agreement (DUA) requirements; no attempt was made to re-identify indi-
viduals, and all processing occurred on secure, access-controlled systems. Because the study uses
de-identified data and involves no interaction or intervention with human subjects, it is exempt from
IRB review under our institution’s policies. We respect the licenses and citation requirements of
Oregano and other third-party datasets.

To reduce potential harms, we (i) restrict model outputs to research use and do not position them as
a substitute for professional medical judgment, (ii) avoid storing or releasing any potentially iden-
tifying text, (iii) report limitations and potential biases arising from data coverage and label noise,
and (iv) release code and prompts to support transparency and reproducibility. We encourage inde-
pendent auditing and downstream users to apply additional safeguards appropriate to their clinical
or research context.

9 REPRODUCIBILITY STATEMENT

We make every effort to ensure full reproducibility of our work. We provide (i) the complete Re-
CLLaMA interface code and offline test scripts, (ii) trained models for each module (knowledge
extraction (except the trained BioBERT model due to size constraints), alignment, and reasoning),
(iii) the corresponding test data, and (iv) detailed hyperparameter settings in the Appendix. All
experiments can be reproduced using the released code and resources without additional training.
We also include ablation flags to replicate the different variants reported in the paper. Together,
these materials enable researchers to reproduce our reported results and build upon our framework
reliably.
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[ "Poisoning by barbiturates', 'Poiso by tetracycline p', 'Other symptoms involving respi

ry system and chest', 'Palpitations', 'Persistent vomiting']
['9670", '9604', "7869', '7851', '5362']

Figure 2: Prompt used for instructing Deepseek-Reasoner to extract structured diagnostic entities
from clinical free-text.

Diagnosis Output:
Based on your symptom description, our analysis suggests you may be experiencing issues related to t
he following health conditions, listed from strongest to weakest association:

1. **Heart rhythm problems** (Palpitations, ICD9:7851) - Feeling like your heart is racing, skipping
, or pounding
2. *¥*Muscle weakness disorder** (Hereditary progressive muscular dystrophy, ICD9:3591) - Gradual los

s of muscle strength

3. **Tetracycline antibiotic reaction** (Poisoning by tetracycline group, ICD9:35989) - Possible sid
e effects from certain antibiotics

4, **Liver infection** (Amebic liver abscess, ICD9:0063) - Parasitic infection causing liver inflamm
ation

5. **Heart muscle disease** (Other primary cardiomyopathies, ICD9:4254) - Abnormal heart muscle func
tion

Figure 3: Example natural language output presenting extracted diagnoses in a fluent, patient-facing
summary.

A APPENDIX

A.1 USE OF LLM STATEMENT

Large language models (LLMs) were employed in two ways in this study. First, they were integrated
into the RECLLAMA framework for knowledge extraction and patient-facing explanation, where
carefully designed prompts ensured structured ICD-9 outputs and minimized hallucinations. Sec-
ond, we used ChatGPT 5.0 (thinking mode) to rephrase and polish parts of the manuscript, specif-
ically the ablation study analysis, introduction, and conclusion. No private data were provided to
LLMs, and only publicly available datasets (MIMIC-III and Oregano KG) were used for model de-
velopment and evaluation. Prompt templates, model settings, and hyperparameters are documented
in the Appendix for reproducibility.

A.2 HUMAN-DESIGNED PROMPTS
A.2.1 PROMPT DESIGN FOR DIAGNOSTIC ENTITY EXTRACTION AND INTERPRETATION

To support automated clinical reasoning, we design two modular prompts targeting distinct stages
of the pipeline: (1) diagnostic entity extraction and (2) natural language generation for patient-
facing summaries. Both prompts are executed using the Deepseek-Reasoner LLM and adhere to a
constrained vocabulary of ICD-9 terms.

Entity Extraction Prompt

The first prompt instructs the model to extract standardized diagnostic entities from unstructured
clinical text while enforcing strict adherence to a predefined whitelist of ICD-9 codes. The prompt
is organized into structured sections to guide model behavior:

* Role Definition: The model is cast as a medical coding assistant restricted to using only
terms from a fixed ICD-9 knowledge base ({knowledge base}).

e Input Format: The input is framed as a sequence of free-text utterances from a user,
denoted by {text}.

* Contextual Entities: A preliminary list of relevant medical entities ({entities}) is
provided to focus attention.

* Task Instructions: The model is required to:
1. Assess the severity of each identified entity (in English);

13
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diagnoses_icd9

diagnoses_long_title

patient_description

0 [042','486', '4254', '42820', '4280', '5849'...
1 ['99681', '5856', '42833', '41071", '40311", "...
['40301°, '5856', '53140', '2851', '5609', '42...

['2766', '5856', '40301", '4254', '4239', '285...

oW N

['40301", '58281', '5855', '5990', '4254', '71...
95 ['5849','03842', '51881", '5990', '2760', '25...
['51884°, '42833', '5849', '2851", '5781', "41...
97 ['41401','9971", '42731', '4589', '34680', '3...
98 ['72402', '2761', '2851', '5601", '5070', '276...

['0389', '51884', '73018', '42830", '3241', '4...

['Human immunodeficiency virus [HIV] disease',...
['Complications of transplanted kidney', "End ...
['Hypertensive chronic kidney disease, maligna...
[[UNK:2768]', 'End stage renal disease’, 'Hyp...

['Hypertensive chronic kidney disease, maligna...

[‘Acute kidney failure, unspecified', 'Septice...
['Acute and chronic respiratory failure’, 'Acu...
['Coronary atherosclerosis of native coronary ...
['Spinal stenosis, lumbar region, without neur...

['Unspecified septicemia’, 'Acute and chronic ...

I've been feeling extremely weak and tired all...
I've been feeling extremely tired and weak all...
I have serious kidney problems that require me...
I've been struggling with multiple health prob...

I've been feeling extremely tired and swollen ...

I've been feeling really sick since the accide...
I've been struggling to breathe properly and f...
| often get chest pain and feel like my heart ...

I've been having constant pain in my lower bac...

I've been feeling extremely sick with a high f...

Figure 4: Generated Patient Description in Natural Language and Corresponding Diagnoses

2. Match entities strictly to the ICD-9 whitelist, allowing for synonym resolution;
3. Sort the results by descending severity.

* Output Format: The output is a structured JSON object of the form:

"diagnoses": [

{ "standard-term": "...", "match.status":
"Matched/Unknown", "severity": ..., "icd9_code": oou"
I

... ),

r )

An illustrative input/output example is embedded within the prompt to ensure consistent generation
across samples.

Natural Language Generation Prompt

The second prompt reformulates extracted diagnostic codes into natural language summaries ap-
propriate for clinical reporting and patient-facing use. While the core structure mirrors the entity
extraction prompt, this prompt emphasizes fluent generation and interpretable phrasing. The key
differences include:

* A temperature setting of 0.1 to promote diverse but coherent expression;
* Emphasis on clarity, empathy, and linguistic smoothness in the output;

* Retention of whitelist constraints to preserve clinical consistency.

The generated output is a ranked list of diagnostic hypotheses expressed in layperson-readable form,
again structured as a JSON object for downstream compatibility.

Examples of both prompt types and their generated outputs are shown in Figures[2]and 3]
A.2.2 GENERATE PATIENT DESCRIPTION IN NATURAL LANGUAGE

The generated patient description in natural language is show in Figure ??

A.3 DATA
A.3.1 MIMIC-III KNOWLEDGE GRAPH PROCESSING

We utilize the publicly available MIMIC-III clinical database Johnson et al.| (2016), which com-
prises de-identified health records from over 40,000 ICU admissions between 2001 and 2012. The
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patient_id  wvisit diagnoses procedures medications proteins
['4239', '5119', '78651", ‘4589, o o 0 G ['NO2B', 'AD1A, 'AD2B', 'ADBA, if i
0 0 1 311", 7220... ['3731', '8872', '3893"] 'BO5G", "A12A... [PROTEIN:3897, PROTEIN:6839]
1 4] 2 [7455','45829', 'V1259', '2724] [3571', '3961", "B872"] Eh2B;, -AD1A .A?%EAB. ‘BADOSGCJ’A [PROTEIN:36897, PROTEIN:6838]
2 1 1 ['41071', '78551', '5781', '6849", ['0066', '3761", '3950", '3606', ['AQBA’, 'BOSC', "CO7A', 'A12B/, [PROTEIN:1621, PROTEIN:4405,
'40391°, '4... '0042', '0047... 'C03c’, "'A12A.. PROTEIN:4876, PRO...
3 2 1 ['2252', '3485', '78039", ‘4241, [o15117 ['BOSC', 'AOTA', 'COTA!, 'ADBA', [PROTEIN:3897, PROTEIN:4876,
'4019", '272... ‘NO2B', 'C020... PROTEIN: 11410, PR...
['41401', '4111", '4241", 'v4582', [3813', '3615', '3961', '8872', ['NO2B', 'AD1A', 'AQ2B', 'ADEA/, 5 ‘
4 2 2 10704", 140 19904, '9905... 'A12A", 'BOSC... [PROTEIN:3897, PROTEIN:6839]

Figure 5: An illustrative subset of the cleaned MIMIC-III dataset showing multi-modal alignment
of diagnoses, medications, and procedure-derived symptoms for individual patient visits.

dataset includes rich, time-stamped information across multiple domains, including medications,
diagnoses, procedures, demographics, and vital signs, making it a robust foundation for modeling
patient trajectories and building clinical knowledge graphs.

To convert raw electronic health records (EHRs) into a structured knowledge graph, we extend the
preprocessing pipeline introduced in SafeDrug|Yang et al.|(2021). Our aim is to ensure both temporal
consistency and semantic completeness across the three principal clinical modalities: medications,
diagnoses, and procedures.

We begin by discarding records lacking valid timestamps or patient identifiers. Only encounters with
temporally aligned entries across all three modalities are retained. Medication records are cleaned
by removing non-essential details such as dosages, administration routes, and free-text annotations.
To reduce data sparsity while preserving clinical diversity, we limit diagnostic and procedural codes
to the most frequently occurring entries. Temporal normalization is applied to align visit dates, and
missing data is handled via forward imputation within individual patient timelines. Patients with a
single visit or incomplete records are excluded to ensure sufficient longitudinal depth.

For improved semantic interpretability, raw clinical codes are mapped to standardized vocabularies.
Medications are categorized into higher-level therapeutic groups using the Anatomical Therapeutic
Chemical (ATC) classification system. Procedural codes are translated into symptom-related de-
scriptors based on a curated procedure-symptom ontology. In cases where no mapping is available,
placeholder tokens are inserted to preserve sequence continuity.

Finally, we merge the cleaned data across all modalities using shared patient and visit identifiers. The
resulting dataset comprises multi-modal clinical snapshots, where each visit encodes the patient’s
diagnostic history, prescribed treatments, and presenting symptoms—providing a rich foundation
for graph-based modeling and analysis. An illustrative subset of the cleaned and structured cohort
is visualized in Figure [5]

A.3.2 OREGANO KNOWLEDGE GRAPH

We construct the Oregano Knowledge Graph by following the official pipeline provided in the Awe-
some Biomedical Knowledge Graphs project (Haas et al., 2023 This pipeline integrates multiple
biomedical ontologies and curated databases to generate a heterogeneous graph that supports rea-
soning over clinical and molecular concepts.

The graph incorporates diverse sources such as UMLS (Unified Medical Language System), Drug-
Bank, MeSH, and SNOMED CT. Entities in the graph represent biomedical concepts—including
diseases, drugs, procedures, and symptoms—while edges represent semantically typed relations
such as treats, causes, has_symptom, and interacts_with.

To generate the graph, we clone the public repository and run the extraction and normalization
scripts. Entity alignment is performed using UMLS Concept Unique Identifiers (CUIs) to ensure
semantic consistency across vocabularies. The final graph is serialized in structured formats (e.g.,
CSV triples or RDF), with each triplet storing a head entity, relation type, and tail entity.

2 Available at: Robert Haas et al., Awesome Biomedical Knowledge Graphs, 2023.
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Figure 6: Overview of the Oregano Biomedical Knowledge Graph composed of curated entities and
relations across clinical ontologies.

Figure[6| presents an overview of the Oregano Knowledge Graph, which serves as a core biomedical
knowledge base for downstream tasks such as diagnostic reasoning, phenotype prediction, and drug
repurposing.

A.4 KNOWLEDGE REASONING RULE

Input (Procedures): ['3794', '3723','8856', '9671', '3995', '9904']
Statistical Association

Potential Reasons: [PROTEIN:21977', 'PROTEIN:4906', 'PROTEIN:3775', ...]
Conversion

*

<({patient:172}
<({patient:172}
<({patient:172}

PROTEIN:21977"')-->associated>. %1.0;0.9%
PROTEIN:4906")-->associated>. %1.0;0.9%
PROTEIN:3775")-->associated>. %1.0;0.9%

* %

Logical Reasoning

*

<({patient:172}
<({patient:172}
<({patient:172}

GENE:32600)-->has_gene>. %1.0;0.
GENE:33174)-->has_gene>. %1.0;0.
GENE:35094)-->has_gene>. %1.0;0

*
[CRtR)
3% 3% 3%

*

Logical Reasoning
<({patient:172} * 75839)-->potential_disease>. %1.0;0.9%
<({patient:172} * 7560)-->potential_disease>. %1.0;0.9%
<({patient:172} * 2530)-->potential_disease>. %1.0;0.9%
<({patient:172} * 2727)-->potential_disease>. %1.0;0.9%
<({patient:172} * 75989)-->potential_disease>. %1.0;0.9%

A\ A AV AV

Figure 7: Illustration of the diagnostic reasoning process over the Oregano Knowledge Graph. The
input is associated with “potential reasons” and converted to Narsese knowledge representations.
The reasoning engine executes two steps of logical reasoning to derive new knowledge, indicating
the potential disease of a patient (bold).

A.5 HYPERPARAMETER SETTINGS OF KNOWLEDGE ALIGNMENT

All experiments are conducted in Python. The Word2Vec model is implemented using the gensim
library, while classification and evaluation procedures are carried out with scikit—-learn. This
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Hi, welcome, | am ReC! Please let
me know what can | do for you?

You can describe your symptoms in the following chatbox:
Entar yaur dinical quastion:
I U S,
My visien's gane bluny, and my rmuscles are so weak | can't even hold a glass. | took some ald pills
for sleep and an antibiotic last night...
Mew | feel Like my body's breaking down in every way possible,

Subrnie
Extracting medical entities and reasoning with ReC...

Al-generated explanation:

Explanation for the Patient
Possible Health Conditions Based on Your Symptoms:

- Congenital Musculoskeletal Anomalies |a.g., birth differences in bones/joints].
Neurormuscular Disorders (e.g., nerve-muscle communication issues causing weakness or crampsl.

. Congenital Esophageal 1ssue (&g, abnormal widening of the food pipe).

BowoN e

. Kidney Development Issue (2.2, missing er underdeveloped kidneys),

Figure 8: ReCLLaMA user interface for diagnostic question answering, enabling structured outputs
and evidence-grounded explanations.

pipeline provides a reproducible and interpretable foundation for aligning clinical and biomedical
knowledge sources. The complete configuration of the experimental setup is as follows:

¢ Embedding dimension: 100

* Context window size: 5

* Word2Vec model: Skip-gram (sg=1)

» Negative sampling ratio: 1:1 (balanced)

* Random Forest: 100 estimators, maximum depth of 10
 Train/test split: 80% / 20% (stratified)

* Random seed: 42

A.6 RESULTS
A.6.1 RECLLAMA INTERFACE OVERVIEW

We present the user interface of the ReCLLaMA system in Figure [8] The interface is designed
to support real-time, multi-turn interactions with users via natural language. It allows patients or
clinicians to pose clinical questions and receive structured, interpretable diagnostic feedback. The
system maintains session state across turns, enabling context-aware dialogue and follow-up queries
(e.g., “Explain how Gene 4254 affects heart function™). Supporting evidence—such as gene-disease
associations, protein annotations, and mechanistic descriptions—is embedded in expandable sec-
tions for traceability and interpretability.

A.6.2 DIAGNOSTIC RESPONSE COMPARISON

To evaluate ReCLLaMA’s diagnostic reasoning capabilities, we conduct a comparative study using
areal-world test case introduced in the last part of Result section. We benchmark the system against
ground truth expert annotations and ChatGPT-4.0’s generative outputs. Figures[0}[T0] and[IT]provide
visual comparisons of diagnostic explanations generated by each source:

» Figure ]shows the reference explanation curated by human medical experts.
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= Unspecified septicemia

+ Pneumonitis due to inhalation of food or vomitus
» Acute on chronic systolic heart failure

« Congestive heart failure, unspecified

= Acute respiratory failure

= Subendocardial infarction, initial episode

= Atrial fibrillation

» Severe sepsis

« Diabetes mellitus without mention of complication, type Il or unspecified type, not stated as
uncontrolled

= Other persistent mental disorders due to conditions classified elsewhere
= Pure hypercholesterclemia

+ Old myocardial infarction

= Esophageal reflux

« Long-term (current) use of anticoagulants

= Unspecified essential hypertension

= Fitting and adjustment of artificial leg

« Fitting and adjustment of other specified prosthetic device

Figure 9: Ground-truth diagnostic explanation manually authored by clinical experts, serving as the
gold reference.

Al-generated explanation:

Explanation for the Patient
Possible Health Conditions Based on Your Symptoms:

Congenital Musculoskeletal Anomalies (e.g., birth differences in bones/joints).
MNeuromuscular Disorders [e.g., nerve-muscle communication issues causing weakness or cramps)
Congenital Esophageal Issue (e.g., abnormal widening of the food pipe).

Kidney Development Issue (e.g., missing or underdeveloped kidneys).

o B L R

Thyroid Cancer {abnormal growth in the thyroid gland).

These conditions are flagged with high confidence (90%) in the analysis.

If You Want to Know "Why These Symptoms Occur":

These symptoms may be linked to genetic factors. Genes act like "instruction manuals" for your body.
When certain genes don’t work properly, they can affect how muscles, nerves, or organs develop. For
example:

»  GENE:34156: May influence muscle and nerve function.

«  GENE:30233: Could play a role in kidney development.

»  GENE:32294: Might affect the thyroid gland.

* GENE:32922: Possibly linked to connective tissue or bone health.

[Note: These gene codes are simplified for clarity. A genetic counselor can provide detailed insights.)

Figure 10: ReCLLaMA-generated explanation using symbolic biomedical reasoning over structured
knowledge graphs.

* Figure [I0] displays ReCLLaMA’s generated explanation, grounded in symbolic reasoning
and supported by biomedical knowledge graphs.

» Figure[TT]illustrates the generative output from ChatGPT-4.0 for the same input query.

The comparison reveals that ReCLLaMA produces responses that are more aligned with ex-
pert knowledge and traceable to biomedical sources, while ChatGPT-4.0 provides fluent but less
grounded outputs.
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Based on your detailed symptoms, here's an Al medical explanation integrating potential

diagnoses and related biological mechanisms:

. Likely Diagnoses (based on ICD-9 symptom codes and clinical interpretation):
1. Photosensitivity Reaction
+ ICD-9: 692.72 — Contact dermatitis due to solar radiation

» Your description of severe skin blistering and redness upon sunlight exposure is characteristic of
photosensitivity, which can be drug-induced (especially antibiotics or sedatives),

2. Drug-Induced Toxicity | Overdose Syndrome
+ ICD-9: 969.4 — Poisoning by benzodiazepines and other sedative-hypnotics

« Sedation, confusion, muscle weakness, and cardiovascular effects like racing/fluttering heart
suggest CNS depressant effects.

3. Gastrointestinal Distress [ Acute Gastritis

» ICD-9: 535.4 — Other specified gastritis with hem g
« Severe cramping, vomiting bile, and doubled-over pain point to acute irritation of the
gastrointestinal lining.
4. Autonomic Dysregulation | Panic-like Toxic Response
+ ICD-9: 780.2 — Syncope and collapse

+

+ The sensation of gasping for air, rapid puls.™ .nd blurred vision may result from systemic

Figure 11: ChatGPT-4.0 response generated without access to structured biomedical knowledge or
symbolic inference mechanisms.

A.6.3 SYSTEM DEMONSTRATION

To complement the screenshots, we also provide a video demo that illustrates ReCLLaMA’s real-
time interaction on the same test case. The demo showcases the system’s ability to extract clinical
entities, perform inference over the knowledge graph, and generate structured diagnostic responses
with supporting evidence. The demonstration is available as supplementary material.

19



	Introduction
	Related Work
	Problem Definition
	Methods
	Module I: User Interface Deployment
	Module II: Knowledge Extraction
	Module III: Knowledge Alignment
	Module IV: Knowledge Reasoning
	Module V: Knowledge Translation

	Experiments
	Results
	Agent diagnostics, reasoning accuracy, and confidence
	Ablation study

	Conclusion and Future Work
	Ethics Statement
	Reproducibility Statement
	Appendix
	Use of LLM Statement
	Human-designed Prompts
	Prompt Design for Diagnostic Entity Extraction and Interpretation
	Generate Patient Description in Natural Language

	Data
	MIMIC-III Knowledge Graph Processing
	Oregano Knowledge Graph

	Knowledge Reasoning Rule
	Hyperparameter Settings of Knowledge Alignment
	Results
	ReCLLaMA Interface Overview
	Diagnostic Response Comparison
	System Demonstration



