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Abstract

Multimodal Large Language Models (MLLMs) have shown
promising capabilities in mathematical reasoning within vi-
sual contexts across various datasets. However, most ex-
isting multimodal math benchmarks are limited to single-
visual contexts, which diverges from the multi-visual sce-
narios commonly encountered in real-world mathematical
applications. To address this gap, we introduce MV-MATH:
a meticulously curated dataset of 2,009 high-quality math-
ematical problems. Each problem integrates multiple im-
ages interleaved with text, derived from authentic K-12 sce-
narios, and enriched with detailed annotations. MV-MATH
includes multiple-choice, free-form, and multi-step ques-
tions, covering 11 subject areas across 3 difficulty levels,
and serves as a comprehensive and rigorous benchmark
for assessing MLLMs’ mathematical reasoning in multi-
visual contexts. Through extensive experimentation, we
observe that MLLMs encounter substantial challenges in
multi-visual math tasks, with a considerable performance
gap relative to human capabilities on MV-MATH. Further-
more, we analyze the performance and error patterns of
various models, providing insights into MLLMs’ mathemat-
ical reasoning capabilities within multi-visual settings. The
data and code: https://eternal8080.github.
io/MV-MATH.github.io/.

1. Introduction
”The more you see, the more you know.” — Leonardo da Vinci

Large Language Models (LLMs) have demonstrated ex-
ceptional performance across a wide range of tasks in-
cluding natural language understanding, question answer-
ing and code generation [5, 29, 31, 38, 47]. Building on
LLMs, MLLMs excel at various multimodal tasks by learn-
ing specialized features from different modalities, demon-
strating a strong ability to understand different modalities,
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and have achieved remarkable results in various visual-
language tasks such as image captioning, visual question
answering, and visual reasoning [4, 8, 15, 43, 52].

As MLLMs advance in various tasks, their mathematical
reasoning abilities have garnered significant attention. Pro-
gressing from early text-based benchmarks like GSM8K [7]
and MATH [14] to more recent multimodal benchmarks
that incorporate visual elements, such as MathVista [28],
MMMU [46], and GeoEval [48], MLLMs have demon-
strated exceptional proficiency in mathematical reasoning,
with the best-performing model on MathVista even surpass-
ing human performance [34]. Most existing multimodal
mathematics evaluation datasets, such as MathVista, Math-
Vision [40], and MathVerse [50], are limited to single-visual
contexts, requiring models to reason based on only a single
image input. This raises an important question: are single-
visual scenarios sufficient to fully capture the reasoning ca-
pabilities of MLLMs? Evidently, they are not.

Several multi-visual datasets in general domains have
been introduced [12, 20, 39, 42, 45], which provide valu-
able resources. However, research specifically focused
on mathematical evaluation within multi-visual scenarios
remains limited. MathVerse-mv [18] extends the origi-
nal MathVerse dataset by adapting problems and manually
adding supplementary images to transform MathVerse into
a multi-visual dataset. However, this approach to data con-
struction limits the diversity of visual information and in-
troduces potential biases. Additionally, MathVerse-mv is
relatively small, containing only 788 samples. Another
dataset, CMM-Math [26], focuses on Chinese contexts and
includes 765 multi-image samples in its test set, but some
images are of suboptimal quality, affecting the clarity of
certain samples. Both MathVerse-mv and CMM-Math lack
fine-grained categorizations and a diverse range of question
types.

To overcome the limitations of existing multi-image
mathematical reasoning datasets, which are constrained in
both quantity and diversity, and to enable a more com-
prehensive evaluation of MLLMs in multi-visual contexts,
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<image_1>

Question: Unfolding the given square as shown in 

<image_1>, which of the following 

could be the flat unfolded pattern?

A.<image_2> B.<image_3>

C.<image_4> D.<image_5>

<image_3><image_2>

<image_4> <image_5>

Question: In an isosceles triangle 𝐴𝐵𝐶 with 𝐴𝐶 = 𝐵𝐶,

point 𝑃 is a point on side 𝐵𝐶. Connect 𝑃𝐴, and rotate

segment 𝑃𝐴 clockwise around point 𝑃 by an angle equal to

∠𝐶, resulting in segment 𝑃𝐷.

(1) As shown in <image_1>, if ∠𝐶 = 90°, measure ∠𝐷𝐵𝐴.

(2) As shown in <image_2>, if ∠𝐶 = 𝛼, measure ∠𝐷𝐵𝐴.

(3) As shown in <image_3>. If ∠𝐶 = 𝛼, tan𝛼 =
5

12
, 𝐴𝐶 =

13, ∠𝐴𝑃𝐶 = 135°. Find the length of 𝐴𝐷.

<image_1> <image_2> <image_3>

Multipile Choice Free-Form:Single-Step Free-Form:Multi-Step

Answer: B      Subject:Solid Geometry

Difficulty: Medium

Image Relevance: Mutually Dependent

Answer: 12     Subject:Combinatorics

Difficulty: Medium

Image Relevance: Mutually Dependent

Answer: (1) 90° (2)∠𝐷𝐵𝐴 = 𝛼 (3) Τ10 13 13
Subject:Analytic Geometry Difficulty: Hard

Image Relevance: Independent

<image_2><image_1>

Question: On a grid composed of squares with side

length 1, each vertex of squares is called a lattice

point. A movement from one lattice point to another

is 5, units away is called a knight's move. In a 3 ×

3 square grid (<image_1>), from point 𝐴, a knight's

move can reach points 𝐵, 𝐶, 𝐷, 𝐸. Given a 25 × 25

square grid (<image_2>), the minimum number of

knight's moves to reach the opposite vertex 𝑁 from

the 𝑀 is ______.
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Figure 1. Sampled MV-MATH examples from each question type. Each sample contains a multi-visual contexts. The specifics of image
relevance are discussed in detail in Sec. 3.1

we present a novel dataset: MV-MATH. This dataset con-
sists of 2,009 high-quality mathematics problems, each pre-
sented in interleaved multi-visual contexts with more than
two images, covering a variety of grade 12 scenarios. Ev-
ery problem has been meticulously curated from authentic
K-12 sources. To ensure the quality and reliability of MV-
MATH, each sample has undergone cross-validation by at
least two annotators, ensuring the accuracy and precision of
the problems, answers, and images. The dataset includes
1,109 multiple-choice questions and 900 free-form ques-
tions, of which 100 are multi-step problems, adding com-
plexity and presenting a greater challenge for the models.
The problems are categorized into three difficulty levels and
span 11 distinct mathematical subjects, each annotated with
image relevance, allowing for finer-grained analysis.

Extensive experiments are conducted on MV-MATH
to comprehensively evaluate model performance in multi-
visual mathematical contexts. On our MV-MATH dataset,
Claude [2] achieves the highest performance with a score
of 33.9%. Notably, the open-source model LLaVA-
OneVision [17] achieves a competitive performance with a
score of 26.2%, surpassing GPT-4v [30] and ranking just
below Qwen-vl-max [3]. Nevertheless, the performance of
all these models remains well below human-level capability.
Through analysis of these results, we offer insights into the
strengths and limitations of open-source models. In conclu-
sion, the contributions of our study are as follows:
• We propose the MV-MATH benchmark, comprising

2,009 interleaved multi-visual mathematics problems de-
rived from real K-12 scenarios, covering multiple-choice,
free-form, and multi-step formats. All problems are clas-
sified across 3 difficulty levels and annotated with 11 fine-
grained subjects.

• We evaluate 25 MLLMs on MV-MATH, revealing a
substantial gap between current model performance and
human-level capabilities in multi-visual mathematical
tasks. Through an in-depth study of LLaVA-OneVision,
we provide insights for enhancing model capabilities in
multi-image mathematical reasoning.

• Our further investigation on MV-MATH reveals that
MLLMs perform less effectively on image-dependent
tasks compared to image-independent ones. Additionally,
sequential image input outperforms the merged approach,
and chain-of-thought (CoT) prompting does not consis-
tently yield improvements.

• With the fine-grained categorization, we perform a com-
prehensive error analysis of current MLLMs, offering in-
depth insights to inform future advancements.

2. Related Work

2.1. Benchmark for Mathematical Reasoning
Pure Text Benchmarks MathQA [1] is a large-scale
benchmark focused on math word problems, designed to
evaluate models’ capabilities in solving complex arithmetic
and algebraic tasks through natural language. GSM8K [7],
developed by OpenAI, assesses LLMs’ mathematical rea-
soning with 8,500 grade-school-level problems requiring 2
to 8 steps, covering arithmetic, fractions, and basic alge-
bra. MATH [14] offers a more challenging dataset of 12,500
high school competition problems, surpassing GSM8K in
difficulty. MathBench [25] includes 3,709 problems, rang-
ing from basic arithmetic to college-level questions and
spanning multiple difficulty levels. SuperCLUE-Math [44],
a Chinese benchmark, evaluates multi-step reasoning with
over 2,000 problems, each requiring multiple steps and ac-
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Figure 2. Performance comparison of six Multimodal Large Language Models(MLLMs) on our proposed MV-MATH dataset across 11
subjects(left) and 3 question types(right). SAR: Step Accuracy Rate, QCR: Question Completeness Rate.

companied by natural language solutions.

Multimodal Benchmarks With the advancement of
MLLMs, several high-quality benchmarks have been de-
veloped to evaluate mathematical problem-solving abili-
ties in visual contexts. MathVista [28] is the first multi-
modal dataset aimed at assessing MLLMs’ mathematical
reasoning, specifically focusing on visual math QA tasks.
MATH-Vision [40] targets multimodal mathematical under-
standing, featuring questions primarily sourced from math-
ematics competitions and requiring deep reasoning. Math-
Verse [50] tests whether current MLLMs can effectively
leverage diagram information in mathematical reasoning
tasks, offering a collection of 2,612 visual diagrams. GeoE-
val [48] focuses on geometry, examining the capabilities of
large models in this field through 2,000 geometric samples.
CMMath [21] primarily evaluates mathematical reasoning
abilities in the context of Chinese K-12 education.

All of the above datasets are restricted to single-visual
contexts, relying on a single image input per problem. In
contrast, our MV-MATH dataset emphasizes multi-visual
mathematical reasoning by incorporating multiple images
per problem. Addressing multi-image problems requires
models to develop a more comprehensive understanding of
relationships between mathematical visual elements, align-
ing more close with real-world mathematical scenarios.

2.2. Multimodal Foundation Models
The progress in visual-language alignment and rapid evolu-
tion of LLMs have endowed these models with visual ca-
pabilities, with notable achievements including CLIP [35]
and BLIP [19]. CLIP aligns image-text pairs via con-
trastive learning, while BLIP combines contrastive and gen-
erative learning to align and generate image-text pairs. In-
spired by these, MiniGPT-4 [53], LLaMA-Adapter [49],

and LLaVA [24] extend text-only models into multi-
modal ones through vision-language alignment and in-
struction tuning. Subsequently, large multimodal mod-
els emerged, such as the closed-source GPT-4V [30],
Gemini [37], Claude [2], GPT-4o [32] and open-source
DeepSeek-VL [27], Qwen-VL [3], InternLMXComposer-
VL [10], LLaVA-NeXT [23], and LLaVA-OneVision [17],
which perform well on benchmarks like MMMU [46]
and MathVista [28]. In mathematics, G-LLaVA [13] and
Math-LLaVA [36] enhance performance on mathematical
tasks using large instruction datasets Geo170K [13] and
MathV360K [36]. MAVIS [51] improves visual percep-
tion with three-stage fine-tuning, while MultiMath [33] re-
fines visual-language alignment through a four-stage train-
ing process.

3. The MV-MATH Benchmark

3.1. Overview

We introduce the MV-MATH benchmark, a meticulously
annotated dataset designed to evaluate the mathematical
reasoning capabilities of MLLMs in multi-visual contexts.
Each sample in MV-MATH consists of interleaved multi-
image and text, closely reflecting the multimodal distribu-
tion found in real-world scenarios. This interleaved format
imposes greater demands on modal fusion and comprehen-
sion in MLLMs, providing a more realistic assessment of
their performance [16, 39]

The MV-MATH dataset comprises 2,009 multi-image
questions, with some questions containing up to 8 images. It
includes three types: multiple-choice, free-form and multi-
step questions. MV-MATH is organized into 11 subjects
over 3 difficulty levels, including Analytic Geometry, Alge-
bra, Metric Geometry, Combinatorics, Transformation Ge-
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Statistics Number

Total Questions 2009
*multiple-choice questions 1109
*Free-form questions 900

-one-step questions 800
-multi-step questions 100

Questions in the testmini set 200

Difficulties (Easy: Medium: Hard) 27%:48%:25%

Total images 6061
* question with 2 images 979 (48.73%)
* question with 3 images 312 (15.53%)
* question with 4 images 453 (22.55%)
* question with 5 images and above 265 (13.39%)

Image Relevance
* Mutually Dependent questions 1412
* Independent questions 597

Minimum question length 14
Maximum question length 383
Average question length 80.17

Table 1. Key statistics of MV-MATH. The unit of question length
is words.

ometry, Logic, Solid Geometry, Arithmetic, Combinatorial
Geometry, Descriptive Geometry and Statistics, covering a
range of scenarios from the K-12 mathematics curriculum.
Based on image relevance, we categorize MV-MATH into
two subsets: a mutually dependent set (MD), where images
are interrelated and understanding one image necessitates
information from another (left and middle of Figure 1); and
an independent set (ID), where images are unrelated and
can be interpreted independently without reference to other
images (right of Figure 1). To facilitate analysis, we provide
a test-mini version of MV-MATH containing 200 samples,
preserving similar distribution of difficulty levels and ques-
tion types as the full MV-MATH dataset. Detailed statistics
and coverage of MV-MATH are presented in Table 1.

3.2. Data Construction
Data collection. We initially collect over 300,000 mathe-
matics problems spanning grade 12 scenarios, comprising
multiple-choice and free-form questions, including plain
text, single-image, and multi-image questions, all stored in
PDF format. Using the Mathpix API1, we extract text con-
tent—such as questions, answers, and analyses—as well as
images, and organized this data in JSON format. Based
on image counts, we identified a preliminary set of 49,538
multi-image problems.
Data filtering. To ensure the high quality of the multi-
image mathematical data, we employ a three-stage data
screening strategy. In the first stage, we verify the align-
ment between text and images within each question, this is

1https://mathpix.com/convert
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Figure 3. Comparison of MV-MATH with other existing bench-
marks. The size of each circle represents the richness of image
distribution per question. The definition and calculation method
of CV are provided in Section 3.3

a crucial step since Mathpix does not always yield the cor-
rect number of images. This initial filtering retains 35,562
samples. In the second stage, we inspect the remaining sam-
ples for missing text fields or semantic inaccuracies, then
categorize them into two subsets: 10,110 multiple-choice
and 8,933 free-form questions for further screening. In the
third stage, we manually filter out samples with low-quality
images (e.g., blurry images or images containing text con-
tent). This process ultimately yields 1,109 multiple-choice
questions, 800 one-step free-form questions, and 100 multi-
step free-form questions. Each step was cross-verified by at
least two graduate students to ensure the reliability of the
screening outcomes.
Data labeling. Using the above samples, we conduct dif-
ficulty grading, subject categorization, and image relevance
classification. For each problem, difficulty is categorized
by analyzing the lengths of the question and analysis fields,
assigning weights of 0.4 and 0.6 respectively. Based on
the weighted lengths, MV-MATH is divided into three lev-
els: easy, medium, and hard. For subject categorization
and image relevance, we apply a majority voting approach,
leveraging classification results from GPT-4o, Claude-3.5-
Sonnet, and Qwen-VL-Max to determine each problem’s
subject and its degree of image dependence. We then manu-
ally validate the assigned difficulty levels, subjects, and im-
age relevance, with two annotators independently reviewing
each problem and making adjustments to correct any mis-
classifications, ensuring the accuracy of the final classifica-
tion.

3.3. Comparison with Existing Benchmarks
Most existing multimodal mathematical reasoning datasets
are limited to single-visual contexts, where the model in-
terprets only a single image without the need for informa-
tion interaction between images. To further distinguish the

4
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Models
Easy Medium Hard Overall
(546) (968) (495) (2009)

Claude-3.5-sonnet [2] 35.7 37.5 26.6 33.9
GPT-4o [32] 40.3 32.7 22.9 32.1
Gemini-1.5-pro [37] 34.1 30.0 20.3 29.0
Qwen-vl-max [3] 32.7 27.7 20.1 26.9
GPT-4V [30] 31.6 24.7 17.1 24.5

LLaVA-OneVision-Chat-72B [17] 34.6 26.0 19.2 26.2
LLaVA-OneVision-Chat-7B [17] 20.6 21.2 14.8 19.0
Qwen2VL-Instruct-7B [41] 18.8 17.1 13.9 16.5
LLaVA-NeXT-Interleave-7B [18] 15.3 16.1 10.9 14.7
Deepseek-VL-Chat-7B [27] 17.1 14.1 12.5 14.5

Table 2. Result decomposition across question difficulty levels.

difference between MV-MATH and other existing ones, we
elaborate the benchmark details in Figure 3. Here, we pri-
marily compare our MV-MATH with MathVerse-mv [18]
and CMM-MATH [28].

Comparing with MathVerse-mv MathVerse-mv [18] is
derived by reformatting original problems in MathVerse
through question rephrasing and image combination, re-
sulting in 788 generated problems. However, all questions
in MathVerse-mv are multiple-choice and primarily focus
on a single task type: ’select the correct paired math dia-
gram from given images.’ This dataset lacks differentiation
in difficulty levels and subject categories. Such artificial
rephrasing and image augmentation introduce distribution
bias, limiting its representation of authentic multi-image
mathematical scenarios. In comparison, our MV-MATH
dataset provides 2,009 high-quality samples from real K-
12 contexts, including both multiple-choice and free-form
questions, each classified by fine-grained difficulty and sub-
ject. Sample lengths in MathVerse-mv range from 62 to
246, with an average of 81.91, whereas MV-MATH samples
range from 14 to 383, with an average of 80.17. To assess
the diversity in sample length distribution, we calculate the
coefficient of variation (CV), with a higher CV indicating
greater distribution richness. The CVs for MathVerse-mv
and MV-MATH are 0.19 and 0.74 respectively, highlighting
the broader distribution diversity of MV-MATH. The CV
calculation is as follows:

CV =
σ

µ
× 100% (1)

where σ denotes the standard deviation of sample lengths,
and µ denotes the mean sample length.

Comparing with CMM-Math CMM-Math [26] is a
dataset designed for Chinese-language scenarios, with the
multi-image portion containing 765 samples. Some images
in CMM-Math are of lower quality, due to Mathpix’s fil-
tering inconsistencies, some images contain excessive text.
In contrast, we performed manual checks on each image
in our samples to ensure that every sample in MV-MATH
is of reliable quality. Additionally, MV-MATH primarily

Models Original CoT CoT &2-shot

Claude-3.5-sonnet [2] 29.2 32.6(+3.4) 33.9(+1.3)

GPT-4o [32] 31.8 30.9(-0.9) 32.1(+1.2)

Gemini-1.5-pro [37] 29.8 28.3(-1.5) 29.1(+0.8)

Qwen-vl-max [3] 28.4 29.1(+0.7) 26.9(-2.2)

GPT-4V [30] 23.4 25.1(+1.7) 24.5(-0.6)

LLaVA-OneVision-Chat-72B [17] 27.3 26.7(-0.6) 26.2(-0.5)

LLaVA-OneVision-Chat-7B [17] 20.5 20.1(-0.4) 19.1(-1.0)

LLaVA-NeXT-Interleave-7B [18] 17.9 16.3(-1.6) 14.7(-1.6)

Qwen2VL-Instruct-7B [41] 19.7 16.7(-2.0) 16.5(-0.2)

Deepseek-VL-Chat-7B [27] 17.2 15.7(-1.5) 14.5(-1.2)

Table 3. Model Performance Evaluation for Original, CoT, and
CoT with 2-shot configurations.

focuses on English-language scenarios. To investigate the
impact of language on multi-image mathematical reasoning
performance, we also provide a translated Chinese version
of MV-MATH.

4. Experiments
We conduct extensive experiments on MV-MATH to evalu-
ate a diverse range of models, including 18 open-source and
7 API-based models, assessing both LMMs and MLLMs.
Our evaluation encompasses three conditions: text-only,
text with image captions, and text with images. Results in-
dicate that models perform better when images are input
sequentially rather than merged, with mutually dependent
image tasks proving more challenging. Experimental out-
comes show that even the top-performing model, Claude
3.5-Connect, falls significantly short of human-level perfor-
mance, underscoring considerable room for improvement in
mathematical multi-visual reasoning capabilities.

Our evaluation is conducted under three settings: origi-
nal answering, Chain of Thought (CoT), and CoT with 2-
shot. To establish a human performance baseline, we use
the testmini set and recruit 50 high school students to in-
dependently complete the questions. For multiple-choice,
single-step, and multi-step free-form questions, we care-
fully design specific prompts to ensure that models gener-
ated responses in the correct format. Answer extraction and
evaluation are performed using the Deepseek API2, with
prompts specifically crafted for each question type to opti-
mize model evaluation accuracy, more detailed information
can be found in the Appendix.

4.1. Main Results
Challenging Nature of MV-MATH: The data presented in
Table 4 illustrates the inherent challenges of MV-MATH.
Notably, the overall accuracy of the leading model, Claude-
3.5-Sonnet, is only 33.9%, which falls significantly short
of the human level accuracy of 76.5%. Among the open-
source models, only LLaVA-OneVision-72B (LLaVA-OV-

2https://www.deepseek.com/
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Model Overall AG Algebra MG Combinatorics TG Logic SG Arithmetic CG DG Statistics

LLMs(Text-only, CoT with 2-shot)

Deepseek-Chat[9] 16.1 14.7 10.1 16.3 18.7 25.3 21.8 18.3 6.2 19.0 8.2 13.2

LLMs(Text + Image Caption, CoT with 2-shot)

Deepseek-Chat[9] 16.9 14.1 8.0 15.3 13.4 13.2 12.7 9.4 14.4 12.8 18.0 17.3

Open-source MLLMs (Text + Image, CoT with 2-shot)

Math-LLaVA-13B[36] 3.0 1.6 6.9 4.7 4.8 2.9 0.0 3.2 18.7 6.6 2.1 5.8
LLaVA-v1.5-13B[24] 5.0 4.8 6.8 4.1 4.8 8.7 9.0 3.5 12.5 5.1 5.0 11.7
LLaVA-v1.5-7B[24] 10.3 9.3 11.7 11.2 9.7 12.8 13.6 10.2 0.0 7.7 23.7 11.7
VILA-13B[22] 12.0 11.5 11.0 11.0 12.1 14.4 18.1 13.2 37.5 10.6 20.8 5.8
InternLM-XComposer2.5-VL-7B[10] 13.1 12.2 12.6 13.2 24.3 20.6 36.3 9.4 18.7 11.1 23.7 17.6
InternVL-Chat-8B[6] 14.4 14.1 20.4 17.5 19.5 19.6 27.2 13.0 31.2 9.9 20.1 23.5
Llama-3.2-Vision-Instruct-11B[11] 14.4 15.0 15.4 16.2 23.1 15.6 18.1 11.9 31.2 14.3 25.1 17.6
Deepseek-VL-7B[27] 14.5 14.8 20.2 10.8 17.0 19.8 9.0 15.1 18.7 10.9 26.6 29.4
LLaVA-NeXT-Interleave-7B[18] 14.7 14.0 15.5 15.2 17.0 18.2 18.1 16.3 6.2 14.1 24.4 23.5
Mantis-Idefics2-8B[16] 15.5 13.3 17.7 19.2 14.6 20.9 22.7 12.3 6.2 16.0 26.6 11.7
Mantis-siglip-8B[16] 15.8 17.9 17.7 17.9 14.6 20.4 22.7 12.1 18.7 10.8 32.3 17.6
Qwen2VL-Instruct-7B[41] 16.5 14.2 18.6 14.8 17.0 21.9 22.7 17.2 31.2 16.1 25.1 23.5
LLaVA-OneVision-SI-7B[17] 17.2 16.1 19.5 13.2 16.0 19.5 12.6 15.0 36.5 13.2 31.3 13.6
LLaVA-OneVision-SFT-7B[17] 18.8 18.2 20.3 22.3 17.3 20.1 9.0 15.8 43.1 15.8 27.3 23.5
LLaVA-OneVision-Chat-7B[17] 19.1 19.6 20.4 21.4 14.6 18.8 4.5 20.4 43.7 16.7 28.9 29.4
LLaVA-OneVision-SI-72B[17] 25.0 24.7 24.3 27.6 27.0 25.3 37.9 24.4 37.1 20.4 31.2 23.5
LLaVA-OneVision-SFT-72B[17] 25.9 24.2 31.3 21.1 23.1 28.9 31.8 32.8 18.7 21.5 39.5 29.4
LLaVA-OneVision-Chat-72B[17] 26.2 25.1 32.4 23.9 35.3 28.1 27.2 31.6 31.2 22.6 35.9 35.2

Closed-source MLLMs (Text + Image, CoT with 2-shot)

Qwen-vl-plus[3] 19.7 17.9 24.1 22.0 16.0 19.9 24.8 15.9 15.2 18.7 31.4 29.4
GPT-4V[30] 24.5 18.7 31.6 32.4 25.6 26.3 36.3 26.8 43.7 19.3 33.8 35.2
Qwen-vl-max[3] 26.9 27.6 32.1 24.7 36.5 29.6 31.8 30.9 37.5 23.7 32.3 23.5
Gemini-1.5-Pro[37] 29.1 29.9 32.9 28.3 28.0 30.5 40.5 33.9 42.7 21.7 30.6 35.2
GPT-4o[32] 32.1 28.7 36.7 34.4 39.4 30.6 29.8 38.2 41.7 20.8 44.3 47.0
Claude-3.5[2] 33.9 32.7 38.1 34.3 46.7 33.3 29.8 36.3 54.2 27.0 38.2 41.1

Human Performance

Human (testmini) 76.5 70.2 74.9 91.2 83.1 67.4 80.2 62.5 83.2 71.7 68.5 85.6

Table 4. Comparison of model performances across various mathematical subjects. AG: Analytic Geometry, MG: Metric Geometry, TG:
Transformation Geometry, SG: Solid Geometry, CG: Combinatorial Geometry, DG: Descriptive Geometry. The first and second highest
accuracy of LMMs are marked in red and blue, respectively.

72B) achieves an accuracy above 20% on MV-MATH,
while all others fall below this threshold. Notably, Math-
LLaVA, a specialized mathematical MLLM, demonstrates
limited performance on the MV-MATH dataset, with an ac-
curacy of only 3.0%. Our analysis suggests that this under-
performance stems from the distribution of its training data.
Specifically, Math-LLaVA trained on the Math360K dataset
do not effectively generalize to the MV-MATH dataset, un-
derscoring a significant limitation in its generalization ca-
pabilities. A more detailed analysis can be found in the Ap-
pendix. This finding underscores a broader challenge for
current mathematical MLLMs: the need to achieve robust
performance on both in-distribution and out-of-distribution
data. Future advancements should prioritize strengthening
generalization capabilities over simply memorizing training
data.
Disparity of Closed-source and Open-source Models:
Most open-source models exhibit a substantial performance
gap compared to closed-source counterparts. Notably,
Claude-3.5-Sonnet achieves the highest accuracy on the
MV-MATH dataset at 33.9%, while LLaVA-OV-Chat-72B

attains a commendable 26.2%, thereby narrowing the per-
formance disparity between open-source and closed-source
models. Models with smaller parameter sizes, such as the
7B and 13B variants, generally attain accuracy levels be-
tween 10% and 20%, with the top-performing LLaVA-OV-
Chat-7B reaching 19.0%.
Comparison among Different Subjects: The dataset en-
compasses 11 distinct mathematical subjects, ranging from
algebra to geometry, each characterized by unique features.
Model performance tends to be weaker in subjects requir-
ing a higher level of image understanding, such as combi-
natorial geometry, where even the most advanced model,
Claude-3.5-Sonnet, achieves an accuracy of only 27.0%.
In contrast, Claude’s accuracy in arithmetic reaches 54.2%.
This disparity indicates that current MLLMs lack the nec-
essary capabilities to effectively process complex images
and comprehend relationships between multiple intricate
images. Significant improvements are still needed in fine-
grained visual tasks, particularly in geometric perception
and understanding.
Failure of CoT/few-shot: As shown in Table 3, we ob-
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(a) Performance Evaluation of Models on ID and MD Sets. (b) Comparison of Accuracy with Merge and Sequence Image Inputs.

Figure 4. Evaluation of Model Performance across Different Image Relevance (ID vs. MD) and Input Methods (Merged vs. Sequential).

serve that CoT and few-shot do not always improve model
performance on MV-MATH. While Claude performs 3.4%
better with CoT and 1.3% better with 2-shot based on CoT,
GPT4o performs best under CoT with 2-shot setting, while
Qwen-vl-max and gpt-4v perform best under CoT setting.
For Gemini-1.5-pro and all open-source models, the origi-
nal versions outperform CoT and CoT with 2-shot prompts.
Notably, for all open-source models, performance declines
steadily with the introduction of CoT and 2-shot prompting.
We conduct further analysis on different types of questions
in Appendix, and we find that original prompts perform bet-
ter for multiple-choice questions, while CoT tends to pro-
duce better results for free-form questions. Adding 2-shot
on top of CoT tends to degrade model performance on MV-
MATH. Similar results are observed in Math-Vision [40].

4.2. Analysis of Question type and Difficulty

Different Question Types. We compare the performance
of various models on three types of questions. As shown
in Figure 2(right), the accuracy of the model on multiple-
choice questions is significantly higher than on free-form
questions. We design two evaluation metrics for multi-step
questions: Step Accuracy Rate (SAR) and Question Com-
pleteness Rate (QCR). SAR refers to the proportion of cor-
rectly answered steps out of the total steps, while QCR is
the proportion of questions for which all steps were an-
swered correctly. The model with the best performance
on the QCR metric is GPT-4o, achieving only 6%, while
its corresponding SAR is 32.6%. This reflects the model’s
insufficient ability to perform complex reasoning on open
and multi-step questions, and also reveals that the multiple-
choice question format may not truly reflect the model’s ac-
tual reasoning and problem-solving ability, as they usually
rely on prompts to identify options.
Different Difficulty Levels. Table 2 compares the per-
formance of selected models across three difficulty lev-
els. GPT-4o demonstrates significantly higher proficiency
with a success rate of 40.3% in the ”Easy” category. For

the ”Medium” category, Claude achieves the best perfor-
mance at 37.5%. The performance disparity further de-
creases in the ”Hard” category, where the leading Claude
model reaches only 26.6% accuracy. As the difficulty level
increases, the performance gap between models becomes
smaller. Of particular note, Claude is the only model whose
performance on medium difficulty exceeds that on low dif-
ficulty, whereas the performance of other models progres-
sively declines as the difficulty level increases.

4.3. Impact of Image Relevance and Input Methods

Image Relevance, Mutually Dependent vs. Independent:
To facilitate a more detailed analysis of MLLMs on mathe-
matical multi-visual tasks, we conduct experiments on mu-
tually dependent sets (MD) and independent sets (ID) (as
detailed in Section 3.1)in MV-MATH. While the ID set in-
cludes multiple images, they are not interrelated. In con-
trast, the MD set comprises mutually dependent images, de-
manding a higher level of cross-image understanding. As
shown in Figure 4a, with the exception of Qwen2VL-7B
and LLaVA-OV-Chat-7B, all models exhibit lower perfor-
mance on the MD set compared to the ID set, with Gemini-
1.5-pro demonstrating the largest performance gap between
the two, reaching 7.8%. This observation suggests that most
models face challenges in effectively handling interdepen-
dent image tasks in mathematical scenarios, highlighting
the potential limitations of handling cross-image interde-
pendencies in mathematical multi-visual contexts.
Input Methods, Merge vs. Sequential: To investigate the
impact of image input methods on model performance, we
apply both merge and sequence input approaches on the
MV-MATH dataset, with results presented in Figure 4b.
The findings consistently demonstrate that the sequence in-
put method outperforms the merge input method across all
tested models, indicating that preserving the positional and
sequential information of images is crucial for effective
multi-image mathematical reasoning. This superior per-
formance of sequence input underscores the importance of
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Figure 5. Error distribution over 100 annotated Claude errors.

structured visual information in enhancing model capabil-
ities for interpreting and processing complex mathemati-
cal scenarios. An interesting observation is that, while the
LLaVA-OV-SI-72B model underperforms compared to the
LLaVA-OV-Chat-72B model on sequence input method, it
outperforms the latter on merge input method. This shift
may be attributed to the initial single-image training of
LLaVA-OV-SI, which enhances its ability to retain distinct
visual features within individual images when processed in
a merged format.

5. Error Analysis and Model Insights

Error Analysis We conduct a detailed error analysis of
the best-performing model, Claude-3.5-Sonnet. We ran-
domly sample 100 errors, examine their distribution in de-
tail, and provide corresponding qualitative examples. Based
on this analysis, we classify the errors into five types, with
the specific categories and their distribution shown in Fig-
ure 5.

Visual perception error is the most common type, ac-
counting for 42%, which is higher than that of most single-
image datasets such as MATH-Vision and MMMU [40, 46].
This suggests that perceiving multi-visual contexts in the
MV-MATH dataset presents a greater challenge compared
to single-visual contexts. An example of a visual percep-
tion error in MV-MATH is shown in Figure 6. Multi-visual
perception requires MLLMs to not only accurately perceive
and understand each image individually but also to compre-
hend the relationships between them. Reasoning errors also
constitute a significant proportion. Even when the model
correctly interprets text and images, it often fails to apply
logical and mathematical reasoning effectively, leading to
incorrect answers due to flaws in reasoning. Knowledge er-
rors, stemming from the model’s lack of relevant expertise,
represent the third most common error type on MV-MATH,

Question: As shown in <image_1>, this is a Rubik's Cube composed of 8 cubes of 

the same size, with a volume of 64. Place the square 𝐴𝐵𝐶𝐷 on the number line, as 

shown in <image_2>, such that point 𝐴 coincides with -2, then the number 

represented by point 𝐷 on the number line is_____.

Visual Perception Error×

Ground Truth: −2 − 2 2

<image_1> <image_2>

Claude-3.5-sonnet:

Step 1: Assuming that the edge length of each

small cube is 𝑎 , the problem gives that the

volume of the entire large cube is 64, so we

have:8𝑎3 = 64 => 𝑎 = 2.
Step 2: From Figure 1, 𝐴𝐵 and 𝐴𝐷 are the edge

lengths of the small cube. So, 𝐴𝐵 = 𝐴𝐷 = 2.

Step 3: Align point 𝐴 with -2. According to

Figure 2, place point 𝐴 at -2 on the number line.

Step 4: Point 𝐷 is located to the left of point 𝐴
and is one edge length away, 𝐴𝐷 = 2. So 𝐷 =
− 2 − 2 = −4.

Point 𝐷 is represented on the number line as -4.

Error Reason: Claude-3.5

mistakenly thinks square 𝐴𝐵𝐶𝐷
is a flat side of the cube, when in

fact it was the interior square

formed by cutting it diagonally.

Figure 6. A basic visual perception error, with the error high-
lighted in red. More examples can be found in the appendix.

accounting for 7% of errors. Calculation errors and reject
errors make up 7% and 2%, respectively. Notably, we ob-
serve that all calculation errors are associated with symbolic
computation rather than numerical computation.

Model Insights We analyze LLaVA-OV, the best-
performing open-source model on MV-MATH, to gain
insights for enhancing model capabilities in multi-visual
mathematical contexts. LLaVA-OV’s strong performance
is attributed to its staged training strategy and innova-
tive architecture, which progressively increase the com-
plexity of visual signals, thereby enhancing generalization
across multi-image and multimodal tasks. As shown in
Table 4, LLaVA-OV-SI consistently underperforms com-
pared to LLaVA-OV-SFT, while LLaVA-OV-Chat achieves
the highest accuracy across both 7B and 72B model sizes.
LLaVA-OV-SI is trained with a single-image stage; LLaVA-
OV-SFT incorporates additional multi-image training to en-
hance image-text comprehension; and LLaVA-OV-Chat,
building on LLaVA-OV-SFT, leverages Direct Preference
Optimization (DPO) and human feedback to further im-
prove generalization and reasoning in multi-visual contexts.
The combination of multi-image training, DPO, and human
feedback significantly advances multi-image mathematical
reasoning, strengthening both generalization and inference
capabilities in multi-visual scenarios.

6. Conclusion

The introduction of the MV-MATH dataset represents a ma-
jor advancement in evaluating MLLMs’ multi-visual math-
ematical reasoning capabilities, addressing a critical gap in
the assessment of multi-image mathematical tasks. MV-
MATH encompasses a diverse and challenging array of
multi-visual mathematical content. Using this dataset, we
conduct a systematic and comprehensive evaluation of nu-
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merous open-source and closed-source models, establishing
an extensive benchmark. This benchmark not only reveals
a substantial performance gap between human capabilities
and current MLLMs in multi-visual mathematical reason-
ing but also highlights the impact of image relavance, image
input methods and question types on multi-visual math per-
formance. Additionally, insights derived from the LLaVA-
OV model offer guidance for enhancing performance in
multi-image mathematical tasks, providing valuable direc-
tion for future advancements in this field.

References
[1] Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Koncel-

Kedziorski, Yejin Choi, and Hannaneh Hajishirzi. Mathqa:
Towards interpretable math word problem solving with
operation-based formalisms. In Proceedings of the 2019
Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages 2357–
2367, 2019. 2

[2] Anthropic. The claude 3 model family: Opus, sonnet,
haiku. https://www.anthropic.com/claude-3-
model-card, 2024. Claude-3 Model Card. 2, 3, 5, 6, 23,
24, 25, 26, 27

[3] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan
Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren
Zhou. Qwen-vl: A versatile vision-language model for un-
derstanding, localization, text reading, and beyond, 2023. 2,
3, 5, 6, 23, 24, 25, 26, 27

[4] Tianyi Bai, Hao Liang, Binwang Wan, Ling Yang, Bozhou
Li, Yifan Wang, Bin Cui, Conghui He, Binhang Yuan,
and Wentao Zhang. A survey of multimodal large lan-
guage model from a data-centric perspective. arXiv preprint
arXiv:2405.16640, 2024. 1

[5] Jiaqi Chen, Jianheng Tang, Jinghui Qin, Xiaodan Liang,
Lingbo Liu, Eric P. Xing, and Liang Lin. Geoqa: A ge-
ometric question answering benchmark towards multimodal
numerical reasoning. In Findings of the Association for Com-
putational Linguistics: ACL/IJCNLP 2021, Online Event,
August 1-6, 2021, pages 513–523. Association for Compu-
tational Linguistics, 2021. 1

[6] Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen,
Sen Xing, Muyan Zhong, Qinglong Zhang, Xizhou Zhu,
Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, and Jifeng
Dai. Internvl: Scaling up vision foundation models and
aligning for generic visual-linguistic tasks. arXiv preprint
arXiv:2312.14238, 2023. 6, 23, 24, 25, 26

[7] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark
Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry
Tworek, Jacob Hilton, Reiichiro Nakano, et al. Train-
ing verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021. 1, 2

[8] Can Cui, Yunsheng Ma, Xu Cao, Wenqian Ye, Yang Zhou,
Kaizhao Liang, Jintai Chen, Juanwu Lu, Zichong Yang,
Kuei-Da Liao, Tianren Gao, Erlong Li, Kun Tang, Zhipeng
Cao, Tong Zhou, Ao Liu, Xinrui Yan, Shuqi Mei, Jianguo

Cao, Ziran Wang, and Chao Zheng. A survey on multimodal
large language models for autonomous driving. In WACV
(Workshops), pages 958–979. IEEE, 2024. 1

[9] DeepSeek-AI. Deepseek-v2: A strong, economical, and ef-
ficient mixture-of-experts language model, 2024. 6, 23, 24,
25, 26

[10] Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, Bin
Wang, Linke Ouyang, Xilin Wei, Songyang Zhang, Haodong
Duan, Maosong Cao, Wenwei Zhang, Yining Li, Hang Yan,
Yang Gao, Xinyue Zhang, Wei Li, Jingwen Li, Kai Chen,
Conghui He, Xingcheng Zhang, Yu Qiao, Dahua Lin, and Ji-
aqi Wang. Internlm-xcomposer2: Mastering free-form text-
image composition and comprehension in vision-language
large model. CoRR, abs/2401.16420, 2024. 3, 6, 23, 24,
25, 26

[11] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Ab-
hishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil
Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The
llama 3 herd of models. arXiv preprint arXiv:2407.21783,
2024. 6, 23, 24, 25, 26

[12] Xingyu Fu, Yushi Hu, Bangzheng Li, Yu Feng, Haoyu Wang,
Xudong Lin, Dan Roth, Noah A. Smith, Wei-Chiu Ma, and
Ranjay Krishna. BLINK: multimodal large language mod-
els can see but not perceive. In Computer Vision - ECCV
2024 - 18th European Conference, Milan, Italy, September
29-October 4, 2024, Proceedings, Part XXIII, pages 148–
166. Springer, 2024. 1

[13] Jiahui Gao, Renjie Pi, Jipeng Zhang, Jiacheng Ye, Wanjun
Zhong, Yufei Wang, Lanqing Hong, Jianhua Han, Hang Xu,
Zhenguo Li, and Lingpeng Kong. G-llava: Solving geomet-
ric problem with multi-modal large language model. CoRR,
abs/2312.11370, 2023. 3

[14] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob
Steinhardt. Measuring mathematical problem solving with
the math dataset. arXiv preprint arXiv:2103.03874, 2021. 1,
2

[15] Yupan Huang, Zaiqiao Meng, Fangyu Liu, Yixuan Su, Nigel
Collier, and Yutong Lu. Sparkles: Unlocking chats across
multiple images for multimodal instruction-following mod-
els. CoRR, abs/2308.16463, 2023. 1

[16] Dongfu Jiang, Xuan He, Huaye Zeng, Cong Wei, Max Ku,
Qian Liu, and Wenhu Chen. MANTIS: interleaved multi-
image instruction tuning. CoRR, abs/2405.01483, 2024. 3,
6, 23, 24, 25, 26

[17] Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng
Li, Hao Zhang, Kaichen Zhang, Yanwei Li, Ziwei Liu, and
Chunyuan Li. Llava-onevision: Easy visual task transfer.
CoRR, abs/2408.03326, 2024. 2, 3, 5, 6, 23, 24, 25, 26, 27

[18] Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang, Bo Li,
Wei Li, Zejun Ma, and Chunyuan Li. Llava-next-interleave:
Tackling multi-image, video, and 3d in large multimodal
models. arXiv preprint arXiv:2407.07895, 2024. 1, 5, 6,
23, 24, 25, 26, 27

[19] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi.
Blip: Bootstrapping language-image pre-training for unified
vision-language understanding and generation. In Interna-

9

https://www.anthropic.com/claude-3-model-card
https://www.anthropic.com/claude-3-model-card


tional conference on machine learning, pages 12888–12900.
PMLR, 2022. 3

[20] Juncheng Li, Kaihang Pan, Zhiqi Ge, Minghe Gao, Wei
Ji, Wenqiao Zhang, Tat-Seng Chua, Siliang Tang, Han-
wang Zhang, and Yueting Zhuang. Fine-tuning multimodal
llms to follow zero-shot demonstrative instructions. In The
Twelfth International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net, 2024. 1

[21] Zhong-Zhi Li, Ming-Liang Zhang, Fei Yin, Zhi-Long Ji, Jin-
Feng Bai, Zhen-Ru Pan, Fan-Hu Zeng, Jian Xu, Jia-Xin
Zhang, and Cheng-Lin Liu. Cmmath: A chinese multi-
modal math skill evaluation benchmark for foundation mod-
els. CoRR, abs/2407.12023, 2024. 3

[22] Ji Lin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Moham-
mad Shoeybi, and Song Han. VILA: on pre-training for vi-
sual language models. In CVPR, pages 26679–26689. IEEE,
2024. 6, 23, 24, 25, 26

[23] Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan
Zhang, Sheng Shen, and Yong Jae Lee. Llava-next: Im-
proved reasoning, ocr, and world knowledge, 2024. 3

[24] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee.
Visual instruction tuning. Advances in neural information
processing systems, 36, 2024. 3, 6, 23, 24, 25, 26

[25] Hongwei Liu, Zilong Zheng, Yuxuan Qiao, Haodong Duan,
Zhiwei Fei, Fengzhe Zhou, Wenwei Zhang, Songyang
Zhang, Dahua Lin, and Kai Chen. Mathbench: Evaluat-
ing the theory and application proficiency of llms with a
hierarchical mathematics benchmark. In ACL (Findings),
pages 6884–6915. Association for Computational Linguis-
tics, 2024. 2

[26] Wentao Liu, Qianjun Pan, Yi Zhang, Zhuo Liu, Ji Wu, Jie
Zhou, Aimin Zhou, Qin Chen, Bo Jiang, and Liang He.
Cmm-math: A chinese multimodal math dataset to evaluate
and enhance the mathematics reasoning of large multimodal
models, 2024. 1, 5

[27] Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai
Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren, Zhuoshu
Li, Yaofeng Sun, Chengqi Deng, Hanwei Xu, Zhenda Xie,
and Chong Ruan. Deepseek-vl: Towards real-world vision-
language understanding, 2024. 3, 5, 6, 23, 24, 25, 26, 27

[28] Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li,
Hannaneh Hajishirzi, Hao Cheng, Kai-Wei Chang, Michel
Galley, and Jianfeng Gao. Mathvista: Evaluating mathemat-
ical reasoning of foundation models in visual contexts. In
ICLR. OpenReview.net, 2024. 1, 3, 5

[29] Shaghayegh Mobasher, Ghazal Zamaninejad, Maryam
Hashemi, Melika Nobakhtian, and Sauleh Eetemadi.
Parsvqa-caps: A benchmark for visual question answering
and image captioning in persian. people, 101:404. 1

[30] OpenAI. GPT-4 technical report. CoRR, abs/2303.08774,
2023. 2, 3, 5, 6, 23, 24, 25, 26, 27

[31] OpenAI. Chatgpt, 2023. 1
[32] OpenAI. Hello gpt-4o, 2024. 3, 5, 6, 23, 24, 25, 26, 27
[33] Shuai Peng, Di Fu, Liangcai Gao, Xiuqin Zhong, Hong-

guang Fu, and Zhi Tang. Multimath: Bridging visual and
mathematical reasoning for large language models. CoRR,
abs/2409.00147, 2024. 3

[34] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. In Proceedings
of the 38th International Conference on Machine Learning,
ICML 2021, 18-24 July 2021, Virtual Event, pages 8748–
8763. PMLR, 2021. 1

[35] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 3

[36] Wenhao Shi, Zhiqiang Hu, Yi Bin, Junhua Liu, Yang Yang,
See-Kiong Ng, Lidong Bing, and Roy Ka-Wei Lee. Math-
llava: Bootstrapping mathematical reasoning for multimodal
large language models. CoRR, abs/2406.17294, 2024. 3, 6,
23, 24, 25, 26

[37] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk,
Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a
family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805, 2023. 3, 5, 6, 23, 24, 25, 26, 27

[38] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al.
Llama: Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971, 2023. 1

[39] Fei Wang, Xingyu Fu, James Y Huang, Zekun Li, Qin Liu,
Xiaogeng Liu, Mingyu Derek Ma, Nan Xu, Wenxuan Zhou,
Kai Zhang, et al. Muirbench: A comprehensive bench-
mark for robust multi-image understanding. arXiv preprint
arXiv:2406.09411, 2024. 1, 3

[40] Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Mingjie
Zhan, and Hongsheng Li. Measuring multimodal math-
ematical reasoning with math-vision dataset. CoRR,
abs/2402.14804, 2024. 1, 3, 7, 8

[41] Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan,
Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin
Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui
Men, Dayiheng Liu, Chang Zhou, Jingren Zhou, and Jun-
yang Lin. Qwen2-vl: Enhancing vision-language model’s
perception of the world at any resolution. arXiv preprint
arXiv:2409.12191, 2024. 5, 6, 23, 24, 25, 26, 27

[42] Xiyao Wang, Yuhang Zhou, Xiaoyu Liu, Hongjin Lu,
Yuancheng Xu, Feihong He, Jaehong Yoon, Taixi Lu, Fux-
iao Liu, Gedas Bertasius, Mohit Bansal, Huaxiu Yao, and
Furong Huang. Mementos: A comprehensive benchmark for
multimodal large language model reasoning over image se-
quences. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long
Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024,
pages 416–442. Association for Computational Linguistics,
2024. 1

[43] Jiayang Wu, Wensheng Gan, Zefeng Chen, Shicheng Wan,
and Philip S. Yu. Multimodal large language models: A sur-
vey. In IEEE Big Data, pages 2247–2256. IEEE, 2023. 1

10



[44] Liang Xu, Hang Xue, Lei Zhu, and Kangkang Zhao.
Superclue-math6: Graded multi-step math reasoning bench-
mark for llms in chinese. CoRR, abs/2401.11819, 2024. 2

[45] Kaining Ying, Fanqing Meng, Jin Wang, Zhiqian Li, Han
Lin, Yue Yang, Hao Zhang, Wenbo Zhang, Yuqi Lin, Shuo
Liu, Jiayi Lei, Quanfeng Lu, Runjian Chen, Peng Xu, Ren-
rui Zhang, Haozhe Zhang, Peng Gao, Yali Wang, Yu Qiao,
Ping Luo, Kaipeng Zhang, and Wenqi Shao. Mmt-bench: A
comprehensive multimodal benchmark for evaluating large
vision-language models towards multitask AGI. In Forty-
first International Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024. OpenReview.net,
2024. 1

[46] Xiang Yue, Yuansheng Ni, Tianyu Zheng, Kai Zhang, Ruoqi
Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang, Weim-
ing Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan,
Renliang Sun, Ming Yin, Boyuan Zheng, Zhenzhu Yang,
Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu
Chen. MMMU: A massive multi-discipline multimodal
understanding and reasoning benchmark for expert AGI.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2024, Seattle, WA, USA, June 16-22,
2024, pages 9556–9567, 2024. 1, 3, 8

[47] Chao Zhang, Qingfeng Xu, Yongrui Yu, Guanghui Zhou,
Keyan Zeng, Fengtian Chang, and Kai Ding. A survey on
potentials, pathways and challenges of large language mod-
els in new-generation intelligent manufacturing. Robotics
Comput. Integr. Manuf., 92:102883, 2025. 1

[48] Jiaxin Zhang, Zhongzhi Li, Ming-Liang Zhang, Fei Yin,
Cheng-Lin Liu, and Yashar Moshfeghi. Geoeval: Bench-
mark for evaluating llms and multi-modal models on geom-
etry problem-solving. In ACL (Findings), pages 1258–1276.
Association for Computational Linguistics, 2024. 1, 3

[49] Renrui Zhang, Jiaming Han, Chris Liu, Aojun Zhou, Pan
Lu, Yu Qiao, Hongsheng Li, and Peng Gao. Llama-adapter:
Efficient fine-tuning of large language models with zero-
initialized attention. In The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024, 2024. 3

[50] Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin,
Ziyu Guo, Pengshuo Qiu, Aojun Zhou, Pan Lu, Kai-Wei
Chang, Peng Gao, and Hongsheng Li. Mathverse: Does
your multi-modal LLM truly see the diagrams in visual math
problems? CoRR, abs/2403.14624, 2024. 1, 3

[51] Renrui Zhang, Xinyu Wei, Dongzhi Jiang, Yichi Zhang,
Ziyu Guo, Chengzhuo Tong, Jiaming Liu, Aojun Zhou,
Bin Wei, Shanghang Zhang, Peng Gao, and Hongsheng
Li. MAVIS: mathematical visual instruction tuning. CoRR,
abs/2407.08739, 2024. 3

[52] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei
Wang, Yupeng Hou, Yingqian Min, Beichen Zhang, Junjie
Zhang, Zican Dong, et al. A survey of large language mod-
els. arXiv preprint arXiv:2303.18223, 2023. 1

[53] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mo-
hamed Elhoseiny. Minigpt-4: Enhancing vision-language
understanding with advanced large language models. In The
Twelfth International Conference on Learning Representa-

tions, ICLR 2024, Vienna, Austria, May 7-11, 2024, 2024.
3

11



MV-MATH: Evaluating Multimodal Math Reasoning in Multi-Visual Contexts

Supplementary Material

Table of Contents in Appendix

A. More Details about MV-MATH 2
A.1. Question Distribution . . . . . . . . . . . . . 2
A.2. Image Distribution . . . . . . . . . . . . . . 2
A.3. Division of Difficulty Levels . . . . . . . . . 2
A.4. Image by Subjects . . . . . . . . . . . . . . 3
A.5. Introduction of Subjects . . . . . . . . . . . 3

B. Evaluation Details 15
B.1. Prompt for Image Caption Generation . . . . 15
B.2. Prompt for Response Generation . . . . . . . 15
B.3. Prompt for Answer Evaluation . . . . . . . . 15
B.4. Model Details . . . . . . . . . . . . . . . . . 15

C. Main Results Across 3 Question Types 21

D. Results of CoT, 2-shot on 3 Question Types 21

E. Image Relevance 21

F. Data Collection and Annotation 21
F.1. Data Collection . . . . . . . . . . . . . . . . 21
F.2. Annotation . . . . . . . . . . . . . . . . . . 21

G. Comparison with Existing Benchmarks 22

H. Case Study 22

1



A. More Details about MV-MATH

In this chapter, we will introduce MV-MATH in more detail.

A.1. Question Distribution
All questions in MV-MATH are presented in English. As
shown in Table 1, the longest question in MV-MATH spans
383 words, while the shortest contains 14 words, with an
average length of 80.17 words. Figure 7 further illustrates
the distribution of text lengths, highlighting the diversity of
MV-MATH.

Figure 7. The distribution of the number of words per question in
MV-MATH.

A.2. Image Distribution
Figure 8 illustrates the distribution of the number of images
associated with each question in the MV-MATH dataset,
highlighting its multimodal diversity. The dataset features
an average of 3.02 images per question, with a median of
3, demonstrating a balanced and realistic allocation of vi-
sual resources. Most questions include 2,3 or 4 images, re-
flecting the dataset’s emphasis on providing sufficient visual
context for reasoning tasks. The presence of questions with
5 or more images showcases the dataset’s capability to han-
dle complex, multi-visual scenarios. This diversity ensures
MV-MATH is suitable for evaluating the ability of models
to integrate and reason across multiple interconnected vi-
sual elements, further enhancing its value as a benchmark
for multimodal mathematical reasoning.

A.3. Division of Difficulty Levels
Since MV-MATH is a meticulously annotated dataset con-
taining both answers and an analysis field, it offers a unique
advantage for difficulty classification based on the lengths
of the question and analysis. The difficulty classification is
conducted in two steps.

Step 1: A weighted average is calculated using the
lengths of the question and analysis fields, assigning a
weight of 0.4 to the question length and 0.6 to the analysis

Figure 8. The distribution of the number of images per question in
MV-MATH.

length. This weighting reflects the assumption that the solu-
tion process (captured in the analysis field) is more indica-
tive of a question’s difficulty. The weighted length distri-
bution is shown in Figure 8. Using the K-means clustering
algorithm, we cluster the weighted lengths into three dif-
ficulty levels: easy (0–150), medium (150–500), and hard
(> 500).

Step 2: Manual verification is performed on the clus-
tering results from Step 1 by two graduate students. This
process adjusts the difficulty classification to account for
cases where the weighted length alone may not fully reflect
complexity. For instance, a question with a short weighted
length but involving intricate formula derivation is reclassi-
fied as harder, while a question with a long weighted length
but straightforward reasoning is reclassified as easier.

The detailed distribution of weighted lengths can be seen
in Figure 9. After the two-step process described above, we
classified the questions into 542 as easy, 964 as medium,
and 503 as hard.

Figure 9. Weighted Length Distribution of Questions and Analysis
for Difficulty Classification in MV-MATH
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A.4. Image by Subjects

This section presents examples of images from various cat-
egories in the MV-MATH dataset. Figures 10 to 20 cor-
respond to images under the categories of Algebra, Arith-
metic, Combinatorial Geometry, Analytic Geometry, Com-
binatorics, Descriptive Geometry, Logic, Metric Geometry,
Solid Geometry, Statistics, and Transformation Geometry,
respectively.

The diversity of images across categories reflects the
wide range of mathematical concepts covered in MV-
MATH. For instance, images in the Statistics category pri-
marily include charts, graphs, and tables, providing rich vi-
sual representations of statistical data. In contrast, images
under Arithmetic, often targeted at younger students, fea-
ture elements with real-world objects or playful designs to
aid comprehension. Similarly, the Combinatorics and Com-
binatorial Geometry categories include diagrams with in-
tricate arrangements, requiring detailed reasoning. On the
other hand, images in Analytic Geometry and Metric Geom-
etry are more abstract and geometric, often involving coor-
dinate systems, vectors, or precise measurements.

This variety of visual styles within and across categories
highlights the versatility of MV-MATH in evaluating mod-
els’ ability to interpret and reason over diverse visual con-
texts, making it a comprehensive benchmark for multi-
visual mathematical reasoning tasks.

A.5. Introduction of Subjects

Analytic Geometry. Analytic Geometry integrates alge-
braic techniques with geometry through the use of a coordi-
nate system. It provides a systematic method to describe ge-
ometric shapes using equations and to interpret these equa-
tions visually. This branch of mathematics enables a de-
tailed study of geometric properties, such as distance, an-
gles, and tangents.

Algebra. Algebra is a fundamental area of mathematics
that explores the use of symbols to represent numbers and
quantities in formulas and equations. It encompasses a wide
range of topics, from solving linear equations to studying
abstract structures such as groups, rings, and fields, playing
a crucial role in generalizing mathematical principles and
solving problems where specific values are unknown.

Metric Geometry. Metric Geometry focuses on the study
of geometric figures based on distances and angles. It exam-
ines properties that remain invariant under transformations
such as rotations, translations, and reflections. Metric Ge-
ometry serves as a foundation for applications in computer
graphics, engineering, and physics.

Combinatorics. Combinatorics is the branch of mathemat-
ics concerned with counting, arrangement, and combination
of objects. It investigates problems related to discrete struc-

tures, such as permutations, combinations, and graph the-
ory. Combinatorics is widely used in areas like cryptogra-
phy, algorithm design, and network theory.

Transformation Geometry. Transformation Geometry
studies geometric transformations, such as translations, ro-
tations, reflections, and dilations, to understand how shapes
change while preserving certain properties. It provides in-
sights into symmetry, congruence and has significant appli-
cations in computer vision.

Logic. Logic in mathematics involves the study of prin-
ciples of reasoning, including the formulation and analy-
sis of valid arguments. It lays the groundwork for proof
techniques and the development of formal systems. Mathe-
matical logic is essential for understanding the structure of
mathematical theories.

Solid Geometry. Solid Geometry is the study of three-
dimensional figures such as spheres, cubes, cones, and
cylinders. It explores their properties, measurements, and
spatial relationships, often involving volume, surface area,
and intersections.

Arithmetic. Arithmetic is the oldest and most fundamen-
tal branch of mathematics, dealing with numbers and ba-
sic operations such as addition, subtraction, multiplication,
and division. It serves as the foundation for other mathe-
matical disciplines and is essential for everyday problem-
solving and quantitative reasoning.

Combinatorial Geometry. Combinatorial Geometry com-
bines concepts from combinatorics and geometry to study
the arrangement and interaction of geometric objects. It ad-
dresses problems involving configurations of points, lines,
and planes, often focusing on optimization and enumera-
tion. This field has applications in graph theory, computa-
tional geometry, and optimization.

Descriptive Geometry. Descriptive Geometry is a method
for representing three-dimensional objects in two dimen-
sions using projections. It involves techniques to visualize
and solve spatial problems through precise drawings. This
field is widely used in engineering and architecture for de-
signing and visualizing complex structures.

Statistics. Statistics is the study of data collection, analy-
sis, interpretation, and presentation. It involves mathemat-
ical techniques to summarize and infer conclusions from
data, often focusing on patterns, variability, and uncer-
tainty. Statistics is indispensable in research, economics,
and decision-making processes across various domains.
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Algebra

Figure 10. Some images from Analytic Algebra.
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Arithmetic

Figure 11. Some images from Arithmetic.
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Combinatorial Geometry

Figure 12. Some images from Combinatorial Geometry.
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Analytic Geometry

Figure 13. Some images from Analytic Geometry.
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Combinatorics

Figure 14. Some images from Combinatorics.
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Descriptive Geometry

Figure 15. Some images from Descriptive Geometry.
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Logic

Figure 16. Some images from Logic.
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Metric Geometry

Figure 17. Some images from Metric Geometry.
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Solid Geometry

Figure 18. Some images from Solid Geometry.
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Statistics

Figure 19. Some images from Statistics.
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Transformation Geometry

Figure 20. Some images from Transformation Geometry.
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B. Evaluation Details
For open-source models, all experiments for 72B-scale
models are conducted on H-800 GPUs, while the remain-
ing models are conducted on A6000 GPUs.

B.1. Prompt for Image Caption Generation
We use Claude-3.5-Sonnet to generate image caption, the
prompt is as follows: You are an expert in image descrip-
tion, here is a diagram of a math problem, you need to con-
vert the image into text description in detail so that your
description can be used to replace the diagram.

B.2. Prompt for Response Generation
To ensure the model provides accurate responses, we de-
sign distinct CoT and 2-shot prompts tailored for multiple-
choice, single-step, and multi-step free-form questions. The
original prompt directly instructs the model to generate the
final answer without intermediate reasoning. Detailed in-
formation can be found in Table Tables 5 to 7.

B.3. Prompt for Answer Evaluation
Our evaluation is conducted using the Deepseek API. For
the evaluation of multiple-choice, single-step, and multi-
step free-form questions, different prompts are designed to
ensure accuracy in answer extraction and assessment. We
first use the Deepseek API to extract the model’s answers
and then it compares the extracted answers with the ground
truth to determine the correctness of the answers. The spe-
cific prompts are shown in Table 8 below.

B.4. Model Details
All experiments are conducted using models configured
with a temperature of 0.2 and a max new token limit of
2048 for text generation. Comprehensive details regarding
the models utilized in the evaluation are presented in Ta-
ble 9.
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Original

You are an assistant for solving math problems. Your input consists of a math question and images,
give your answer directly, without any intermediate steps.

CoT (Chain of Thought)

You are an assistant for solving math problems. Your input consists of a math question and images.
Your task is to output the solution steps and the answer. The output format should be a step-by-step
approach. Each question is multiple choice with one correct answer. Your final answer must be one
of A, B, C, or D, and it should be placed within {}. For example: {A}, {B}, {C}, or {D}.

CoT with 2-shot

Example 1:
Question: If a triangle has two sides of length 3 and 4, what is the length of the hypotenuse?
A.10 B.8 C.5 D.4
Answer:
Step 1 (Mathematical theorem used: Pythagorean theorem): The Pythagorean theorem states that
in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two
sides. The formula is: c2 = a2 + b2, where a and b are the legs, and c is the hypotenuse.
Step 2 (Substitute the known values): Given a = 3 and b = 4. Substituting these values into the
formula: c2 = 32 + 42 = 9 + 16 = 25

Step 3 (Calculate the hypotenuse): Taking the square root gives: c =
√
25 = 5

Answer: {C}
Example 2:
Question: In the right triangle ABC, AB is perpendicular to BC. It is known that AC=5 and AB=4.
Find the area of the right triangle. A.20 B.10 C.5 D.6
Answer:
Step 1 (Mathematical theorem used: Pythagorean theorem): We first use the Pythagorean theorem
to find the length of BC. The formula is: AC2 = AB2 + BC2, where AC is the hypotenuse, and
AB and BC are the legs.
Step 2 (Substitute the known values): Given AC = 5 and AB = 4. Substituting these values:
52 = 42 +BC2 =⇒ 25 = 16 +BC2

Step 3 (Solve for BC): BC2 = 25− 16 = 9 =⇒ BC =
√
9 = 3

Step 4 (Calculate the area): The area of the right triangle is given by 1
2 × AB × BC. Substituting

the known values: Area = 1
2 × 4× 3 = 6

Answer: {D}
Your final answer must be one of A, B, C, or D, and it should be placed within {}

Table 5. The prompts used for choice questions in the evaluation for response generation.
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Original Prompt

You are an assistant for solving math problems. Your input consists of a math question and images.
Give your answer directly, without any intermediate steps.

CoT (Chain of Thought)

You are an assistant for solving math problems. Your input consists of a math question and images.
Your task is to output the solution steps and the answer. The output format should be a step-by-step
approach.

CoT with 2-shot

Example 1:
Question: If a triangle has two sides of length 3 and 4, what is the length of the hypotenuse?
Answer:
Step 1: (Mathematical theorem used: Pythagorean theorem): The Pythagorean theorem states that
in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two
sides. The formula is: c2 = a2 + b2, where a and b are the legs, and c is the hypotenuse.
Step 2: (Substitute the known values): Given a = 3 and b = 4. Substituting these values into the
formula: c2 = 32 + 42 = 9 + 16 = 25.
Step 3: (Calculate the hypotenuse): Taking the square root gives: c =

√
25 = 5.

Answer: 5
Example 2:
Question: In the right triangle ABC, AB is perpendicular to BC. It is known that AC = 5 and
AB = 4. Find the area of the right triangle.
Answer:
Step 1: (Mathematical theorem used: Pythagorean theorem): We first use the Pythagorean theorem
to find the length of BC. The formula is: AC2 = AB2 + BC2, where AC is the hypotenuse, and
AB and BC are the legs.
Step 2: (Substitute the known values): Given AC = 5 and AB = 4. Substituting these values:
52 = 42 +BC2 =⇒ 25 = 16 +BC2.
Step 3: (Solve for BC): BC2 = 25− 16 = 9 =⇒ BC =

√
9 = 3.

Step 4: (Calculate the area): The area of the right triangle is given by 1
2 × AB × BC. Substituting

the known values: Area = 1
2 × 4× 3 = 6.

Answer: 6
Please reason step by step. Each step is placed on a new line, using the following format: Step X
(Mathematical theorem/basis used): Detailed solution steps. Answer: {}

Table 6. Prompts used for single-step free-form questions in the evaluation for response generation.
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Original Prompt

You are an assistant for solving math problems. Your input consists of a math question and images.
Each problem is a multi-step problem. Give your answer directly, without any intermediate steps.

CoT (Chain of Thought)

You are a math problem-solving assistant. Your input is a math problem and a picture of the problem.
Each problem is a multi-step problem. Your task is to output the solution ideas and answers for each
step. The output format is step-by-step.

CoT with 2-shot Examples

Example 1:
Question: If a triangle has two sides of length 3 and 4, (1) what is the length of the hypotenuse? (2)
what is the area of this triangle?
Answer:
(1) Step 1: (Mathematical theorem used: Pythagorean theorem): The Pythagorean theorem states
that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other
two sides. The formula is: c2 = a2 + b2, where a and b are the legs, and c is the hypotenuse.
Step 2: (Substitute the known values): Given a = 3 and b = 4. Substituting these values into the
formula: c2 = 32 + 42 = 9 + 16 = 25.
Step 3: (Calculate the hypotenuse): Taking the square root gives: c =

√
25 = 5.

So the length of the hypotenuse is 5.
(2) Step 1: The area of a right triangle is half the product of its two sides.
Step 2: So the area of this triangle is 3× 4/2 = 6.
So the area of this triangle is 6.
Example 2:
Question: In the right triangle ABC, AB is perpendicular to BC. It is known that AC = 5 and
AB = 4. (1) Find the area of the right triangle. (2) What is the height of the hypotenuse of this right
triangle?
Answer:
(1) Step 1: (Mathematical theorem used: Pythagorean theorem): We first use the Pythagorean theo-
rem to find the length of BC. The formula is: AC2 = AB2 + BC2, where AC is the hypotenuse,
and AB and BC are the legs.
Step 2: (Substitute the known values): Given AC = 5 and AB = 4. Substituting these values:
52 = 42 +BC2 =⇒ 25 = 16 +BC2.
Step 3: (Solve for BC): BC2 = 25− 16 = 9 =⇒ BC =

√
9 = 3.

Step 4: (Calculate the area): The area of the right triangle is given by 1
2 × AB × BC. Substituting

the known values: Area = 1
2 × 4× 3 = 6.

So the area of the right triangle is 6.
(2) Step 1: According to the equal area method, the area of a right triangle is equal to half the
product of the two right-angled sides, which is also equal to half the product of the hypotenuse and
the corresponding height.
Step 2: According to the above principle and the conclusion of the first step, we can get AB ×
BC/2 = AC × h/2.
Step 3: Substituting the values, we get h = 3× 4/5 = 2.4.
So the height of the hypotenuse of this right triangle is 2.4.
Please reason step by step. Each step is placed on a new line, using the following format: Step X
(Mathematical theorem/basis used): Detailed solution steps. Answer:{}

Table 7. Prompts used for multi-step free-form questions in the evaluation for response generation.
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Multiple-Choice Prompt

You are an assistant for evaluating math problems. Your task is to extract the model’s answer to the
given multiple-choice question and compare it with the ground truth.
Steps:
1. Extract the model’s answer. The answer must be one of A, B, C, or D.
2. Compare the extracted answer with the ground truth.
3. Indicate whether the model’s answer is correct or incorrect.
Output format:
- Extracted Answer: {A}, {B}, {C}, or {D}.
- Correctness: [true/false].

Single-Step Free-Form Prompt

You are an assistant for evaluating math problems. Your task is to extract the model’s answer to the
given single-step free-form question and compare it with the ground truth.
Steps:
1. Extract the model’s final answer.
2. Compare the extracted answer with the ground truth.
3. Indicate whether the model’s answer is correct or incorrect.
Output format:
- Extracted Answer: [Final Answer].
- Correctness: [true/false].

Multi-Step Free-Form Prompt

You are an assistant for evaluating math problems. Your task is to extract the model’s answers to
each sub-question of a multi-step free-form problem and compare them with the ground truth.
Steps:
1. Extract the final answers for each sub-question.
2. Compare the extracted answers with the corresponding ground truth.
3. Indicate whether each answer is correct or incorrect.
Output format:
- Sub-Question 1: Extracted Answer: [Answer]. Correctness: [true/false].
- Sub-Question 2: Extracted Answer: [Answer]. Correctness: [true/false].

Table 8. Prompts used for evaluating different types of math problems with the Deepseek API.
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Model Source URL

Deepseek-chat Deepseek-chat https://api-docs.deepseek.com/

Math-LLaVA-13B local checkpoint https://huggingface.co/Zhiqiang007/Math-LLaVA

LLaVA-v1.5-13B local checkpoint https://huggingface.co/liuhaotian/llava-v1.5-
13b

LLaVA-v1.5-7B local checkpoint https://huggingface.co/liuhaotian/llava-v1.5-7b

VILA-13B local checkpoint
https://huggingface.co/Efficient-Large-Model/
VILA-13b

InternLM-XComposer2.5-VL-7B local checkpoint
https : / / huggingface . co / internlm / internlm -
xcomposer2d5-7b

InternVL-Chat-8B local checkpoint https://huggingface.co/OpenGVLab/InternVL2-8B

Llama-3.2-Vision-Instruct-11B local checkpoint
https://huggingface.co/meta- llama/Llama- 3.2-
11B-Vision-Instruct

Deepseek-VL-7B local checkpoint
https://huggingface.co/deepseek-ai/deepseek-vl-
7b-chat

LLaVA-NeXT-Interleave-7B local checkpoint
https : / / huggingface . co / lmms - lab / llava - next -
interleave-qwen-7b

Mantis-Idefics2-8B local checkpoint
https : / / huggingface . co / TIGER - Lab / Mantis - 8B -
Idefics2

Mantis-siglip-8B local checkpoint
https : / / huggingface . co / TIGER - Lab / Mantis - 8B -
siglip-llama3

Qwen2VL-Instruct-7B local checkpoint https : / / huggingface . co / Qwen / Qwen2 - VL - 7B -
Instruct

LLaVA-OneVision-SI-7B local checkpoint
https : / / huggingface . co / lmms - lab / llava -
onevision-qwen2-7b-si

LLaVA-OneVision-SFT-7B local checkpoint
https : / / huggingface . co / lmms - lab / llava -
onevision-qwen2-7b-ov

LLaVA-OneVision-Chat-7B local checkpoint
https : / / huggingface . co / lmms - lab / llava -
onevision-qwen2-7b-ov-chat

LLaVA-OneVision-SI-72B local checkpoint
https : / / huggingface . co / lmms - lab / llava -
onevision-qwen2-72b-si

LLaVA-OneVision-SFT-72B local checkpoint
https : / / huggingface . co / lmms - lab / llava -
onevision-qwen2-72b-ov-sft

LLaVA-OneVision-Chat-72B local checkpoint
https : / / huggingface . co / lmms - lab / llava -
onevision-qwen2-72b-ov-chat

InternLM-XComposer2-VL local checkpoint
https : / / huggingface . co / internlm / internlm -
xcomposer2-vl-7b

Qwen-VL-Plus qwen-vl-plus
https://help.aliyun.com/zh/dashscope/developer-
reference/vl-plus-quick-start

GPT-4V gpt-4-vision-2023-05-15 https://platform.openai.com/

Qwen-VL-Max qwen-vl-max
https://help.aliyun.com/zh/dashscope/developer-
reference/vl-plus-quick-start

Gemini-1.5-Pro gemini-1.5-Pro-2023-05-15 https://ai.google.dev/

GPT-4o gpt-4o-2024-05-14 https://platform.openai.com/

Claude-3.5-Sonnet claude-3.5-sonnet-2024-05-24 https : / / www . anthropic . com / news / claude - 3 - 5 -
sonnet

Table 9. The source of the models used in the evaluation.
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C. Main Results Across 3 Question Types

In this section, we present a detailed analysis of the experi-
mental results across three question types: multiple-choice,
single-step free-form, and multi-step free-form. Each sub-
section highlights the model’s performance on these distinct
question formats, providing insights into the effectiveness
and limitations of the evaluated methods. The results are
compared and discussed to showcase how different models
handle varying levels of complexity and reasoning require-
ments.

The result of choice, single-step and multi-step are
shown in Tables 10 to 13. We observe that there is a per-
formance gap between multiple-choice questions and free-
form question types. Claude-3.5-Sonnet perform the best on
multiple-choice questions with a score of 44.0%, followed
by GPT-4o and LLaVA-OneVision-Chat-72B. On single-
step free-form questions, Claude still leads with an accu-
racy of 24.1%, and the gap between open-source models
and closed-source models has widened. For multi-step free-
form questions, we calculate two metrics: Step Accuracy
Rate (SAR) and Question Completeness Rate (QCR). GPT-
4o achieves the highest scores in both SAR and QCR, with
32.0% and 6.0%, respectively. The models’ performance
on QCR reflects their inability to perform complex multi-
visual mathematical reasoning tasks. The multi-step part of
the overall accuracy in Table 4 is calculated using the QCR
metric.

D. Results of CoT, 2-shot on 3 Question Types

We observe a distinct difference in how prompting strate-
gies affect model performance across different question
types as shown in Table 14. For multiple-choice ques-
tions, the addition of Chain-of-Thought (CoT) and 2-shot
examples tend to decrease performance for most models.
Specifically, out of the ten models we test, eight models per-
form best with the original prompt. This suggests that for
multiple-choice questions, which typically require select-
ing an answer from given options, simpler prompts lead to
better outcomes as they reduce potential confusion or over-
thinking induced by extra information.

In contrast, for free-form question types, CoT and 2-
shot strategies bring about more significant performance
improvements, particularly for multi-step problems. The
complex nature of these questions benefits from the step-
by-step reasoning facilitated by CoT and the illustrative ex-
amples provided by 2-shot prompting. Models like Claude-
3.5-sonnet show a substantial increase in performance on
single-step free-form questions when CoT and 2-shot exam-
ples are used, improving from 19.6% to 25.6%. Similarly,
on multi-step free-form questions, models such as GPT-4o
improved from 25.4% to 32.6% with the addition of these
strategies.

These findings highlight that while CoT and few-shot
prompting strategies may not universally enhance perfor-
mance across all question types, they are particularly ef-
fective for free-form questions that require detailed rea-
soning and problem-solving steps. Incorporating these
strategies can aid models in navigating the complexities
of open-ended mathematical problems, thereby improving
their overall reasoning capabilities.

E. Image Relevance

To the best of our knowledge, this study is the first to ana-
lyze multi-image mathematical tasks from the perspective
of image relevance. Beyond relevance, we also investi-
gate the impact of image quantity on model performance.
However, no clear patterns are observed, suggesting that the
number of images may not be a critical factor in determin-
ing performance. Instead, relevance appears to play a more
significant role, as the interdependence among images de-
mands a model’s ability to perform cross-image understand-
ing, posing a greater challenge to its reasoning capabilities.

F. Data Collection and Annotation

F.1. Data Collection
We have crawled a large number of multimodal math test
questions from ”Zujuan” totaling around 380k multimodal
math questions. To format all questions for use, we pro-
cess them by OCR engine like Mathpix interface. Due to
inherent errors in the OCR engine, we introduce manual
checks to ensure the accuracy of parsing results and to ver-
ify whether the questions belong to multimodal math prob-
lems. Specifically, we use the three-stage strategy outlined
in Section 3 to complete the final filtering of the data, en-
suring not only the high quality of the questions but also the
high quality of the images.

In the 1st stage, text-image alignment refers to ensuring
the number of referenced images matches those returned by
the Mathpix API. For instance, if the question text mentions
’as shown in figure 4’ but the Mathpix returns 3 images, it
is filtered out by our rule-based system. The 2nd stage ap-
plies rule-based filtering to detect missing text fields (e.g.,
missing answers or analysis) and categorize samples into
multiple-choice and free-form subsets for further screening.
The 3rd stage involves manual verification, where we filter
out blurred images or images with text overlays. Our anno-
tation team includes graduate students and a field expert.

F.2. Annotation
For the categorization of subjects and image relevance,
we first obtain preliminary results through majority vot-
ing among three models: GPT-4o, Claude-3.5-Sonnet, and
Qwen-VL-Max. For questions without a consensus from
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the voting, no annotations are initially assigned. Subse-
quently, each question is independently reviewed by two
graduate students specializing in relevant fields, with each
producing an individual annotation result. Finally, ques-
tions with conflicting annotations are adjudicated by do-
main experts to determine the final MV-MATH annotations.

G. Comparison with Existing Benchmarks
We provide a detailed comparison between our MV-MATH
and existing mathematical benchmarks in Table 15.

H. Case Study
In this section, we provide more detailed error examples of
Claude-3.5-Sonnet. We classify Claude’s errors into five
categories: Visual Perception Error, Reasoning Error, Cal-
culation Error, Knowledge Error, and Reject Error. Detailed
examples can be seen in Figures 21 to 30.
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Model Overall AG Algebra MG Combinatorics TG Logic SG Arithmetic CG DG Statistics

LLMs(Text-only, CoT with 2-shot)

Deepseek-Chat[9] 27.0 26.3 32.6 19.4 31.8 28.5 9.0 29.9 27.2 24.8 28.1 13.2

LLMs(Text + Image Caption, CoT with 2-shot)

Deepseek-Chat[9] 27.5 27.7 30.1 18.4 36.8 30.5 10.9 32.9 26.8 26.8 28.7 17.3

Open-source MLLMs (Text + Image, CoT with 2-shot)

Math-LLaVA-13B[36] 3.6 2.3 7.9 3.7 9.0 2.0 0.0 1.7 18.1 5.8 2.3 5.8
LLaVA-v1.5-13B[24] 8.6 7.0 10.8 7.4 9.0 10.0 9.0 5.9 18.1 13.1 5.4 11.7
LLaVA-v1.5-7B[24] 18.0 15.7 18.8 20.3 9.0 18.0 13.6 21.4 0.0 16.7 25.7 11.7
VILA-13B[22] 21.5 20.4 18.1 20.3 22.7 20.0 18.1 23.3 54.5 23.3 22.6 5.8
InternLM-XComposer2.5-VL-7B[10] 23.0 21.0 20.2 24.0 31.8 27.0 36.3 16.7 27.2 24.0 25.0 5.8
InternVL-Chat-8B[6] 25.9 23.9 31.8 25.9 31.8 27.5 27.2 25.1 36.3 22.6 21.8 23.5
Llama-3.2-Vision-Instruct-11B[11] 24.1 23.9 22.4 24.0 31.8 21.5 18.1 19.7 36.3 32.1 27.3 17.6
Deepseek-VL-7B[27] 26.0 26.3 32.6 19.4 31.8 28.5 9.0 29.9 27.2 24.8 28.1 29.4
LLaVA-NeXT-Interleave-7B[18] 26.6 23.9 23.1 26.8 31.8 25.5 18.1 31.7 9.0 30.6 26.5 23.5
Mantis-Idefics2-8B[16] 26.6 22.8 27.5 31.4 27.2 27.0 22.7 23.9 9.0 29.9 28.9 11.7
Mantis-siglip-8B[16] 27.8 29.8 27.5 28.7 22.7 27.0 22.7 26.9 27.2 21.8 35.1 17.6
Qwen2VL-Instruct-7B[41] 27.8 21.0 28.2 24.0 31.8 30.0 22.7 32.3 27.2 32.1 26.5 23.5
LLaVA-OneVision-SI-7B[17] 26.3 23.9 28.2 21.2 22.7 26.5 13.6 27.5 45.4 23.3 34.3 13.6
LLaVA-OneVision-SFT-7B[17] 30.1 30.4 28.6 54.5 26.2 27.2 28.1 9.0 37.9 31.7 30.0 23.5
LLaVA-OneVision-Chat-7B[17] 31.5 32.7 29.7 34.2 22.7 26.0 4.5 37.7 54.5 32.8 32.0 29.4
LLaVA-OneVision-SI-72B[17] 35.8 34.5 34.0 38.8 50.0 36.0 40.9 40.1 45.4 27.0 36.7 23.5
LLaVA-OneVision-SFT-72B[17] 37.0 29.8 42.0 28.7 36.3 37.5 31.8 47.9 18.1 32.8 39.8 29.4
LLaVA-OneVision-Chat-72B[17] 38.0 32.1 42.0 33.3 54.5 37.5 27.2 47.3 36.3 35.0 35.9 35.2

Closed-source MLLMs (Text + Image, CoT with 2-shot)

Qwen-vl-plus[3] 27.7 30.4 25.3 25.0 18.1 29.0 31.8 33.5 45.4 22.6 24.2 29.4
GPT-4V[30] 32.5 21.0 34.7 44.4 36.3 32.5 36.3 31.7 45.4 32.1 33.5 35.2
Qwen-vl-max[3] 37.3 35.0 38.4 29.6 59.0 37.0 31.8 43.7 45.4 37.2 32.8 23.5
Gemini-1.5-Pro[37] 35.8 36.2 36.2 30.5 31.8 39.0 40.9 40.1 54.5 32.8 28.9 35.2
GPT-4o[32] 41.9 36.2 46.3 44.4 50.0 40.0 31.8 47.3 45.4 35.0 45.3 47.0
Claude-3.5[2] 44.0 42.6 49.2 46.3 59.0 43.5 31.8 44.9 72.7 39.4 39.0 41.1

Human Performance

Human (testmini) 80.2 75.2 71.9 95.2 85.1 70.4 80.2 67.5 85.2 76.7 69.8 88.4

Table 10. Comparison of model performances across various mathematical subjects on the choice problem set. The first and second
highest accuracy of LMMs are marked in red and blue, respectively.
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Model Overall AG Algebra MG Combinatorics TG SG Arithmetic CG DG

LLMs(Text-only, CoT with 2-shot)

Deepseek-Chat[9] 3.0 3.1 2.3 4.0 5.5 2.5 3.0 0.0 3.3 10.0

LLMs(Text + Image Caption, CoT with 2-shot)

Deepseek-Chat[9] 4.3 5.2 3.4 5.3 0.0 1.2 3.0 20.0 2.9 20.0

Open-source MLLMs (Text + Image, CoT with 2-shot)

Math-LLaVA-13B[36] 2.5 0.0 5.8 6.6 0.0 3.8 4.5 20.0 7.2 0.0
LLaVA-v1.5-13B[24] 0.6 2.1 1.1 0.0 0.0 6.4 1.5 0.0 0.4 0.0
LLaVA-v1.5-7B[24] 0.3 0.0 2.3 0.0 11.1 1.2 1.0 0.0 2.9 0.0
VILA-13B[22] 0.5 0.0 1.1 0.0 0.0 1.2 5.0 0.0 3.3 0.0
InternLM-XComposer2.5-VL-7B[10] 1.0 1.0 2.3 0.0 16.6 6.4 3.5 0.0 3.8 10.0
InternVL-Chat-8B[6] 0.3 1.0 4.6 8.0 5.5 1.2 3.0 20.0 2.9 0.0
Llama-3.2-Vision-Instruct-11B[11] 2.7 4.2 6.9 8.0 11.1 2.5 5.0 20.0 3.8 0.0
Deepseek-VL-7B[27] 1.5 0.0 2.3 0.0 0.0 0.0 3.0 0.0 3.3 10.0
LLaVA-NeXT-Interleave-7B[18] 2.7 1.0 4.6 1.3 0.0 1.2 3.5 0.0 5.0 0.0
Mantis-Idefics2-8B[16] 2.0 1.0 4.6 5.3 0.0 7.7 3.0 0.0 8.4 0.0
Mantis-siglip-8B[16] 1.1 2.1 3.4 5.3 5.5 5.1 0.0 0.0 4.6 0.0
Qwen2VL-Instruct-7B[41] 2.8 3.1 4.6 4.0 0.0 2.5 4.5 40.0 6.7 10.0
LLaVA-OneVision-SI-7B[17] 6.7 5.2 10.4 5.3 11.1 6.4 7.5 20.0 9.3 10.0
LLaVA-OneVision-SFT-7B[17] 5.5 5.2 8.1 5.3 0.0 6.4 7.5 20.0 6.0 0.0
LLaVA-OneVision-Chat-7B[17] 4.8 1.0 8.1 4.0 5.5 3.8 6.0 20.0 6.7 20.0
LLaVA-OneVision-SI-72B[17] 13.1 9.4 11.6 12.0 0.0 6.4 16.6 20.0 19.9 20.0
LLaVA-OneVision-SFT-72B[17] 13.7 13.6 13.9 12.0 5.5 6.4 20.2 20.0 15.2 40.0
LLaVA-OneVision-Chat-72B[17] 13.1 11.5 17.4 12.0 11.1 5.1 18.1 20.0 15.2 40.0

Closed-source MLLMs (Text + Image, CoT with 2-shot)

Qwen-vl-plus[3] 12.6 8.4 13.9 8.0 16.6 10.3 16.6 20.0 11.8 20.0
GPT-4V[30] 16.4 12.6 27.9 17.3 11.1 11.6 22.2 40.0 11.8 40.0
Qwen-vl-max[3] 15.8 13.6 21.1 18.6 11.1 10.3 20.2 20.0 15.6 30.0
Gemini-1.5-Pro[37] 23.4 16.8 26.7 26.6 22.2 11.6 28.7 20.0 15.2 70.0
GPT-4o[32] 22.5 21.0 25.5 28.0 27.7 14.2 34.3 40.0 15.2 50.0
Claude-3.5[2] 24.1 22.1 27.9 22.6 38.8 14.2 32.8 20.0 22.4 60.0

Human Performance

Human (testmini) 73.2 69.8 72.9 86.2 80.1 65.8 61.7 85.9 70.6 71.3

Table 11. Comparison of model performances across various mathematical subjects on the single-step problem set. The first and second
highest accuracy of MLLMs are marked in red and blue, respectively.
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Model Overall AG Algebra MG Combinatorics TG SG Arithmetic CG

LLMs(Text-only, CoT with 2-shot)

Deepseek-Chat[9] 8.7 11.4 8.8 3.1 0.0 3.3 9.5 0.0 18.7

LLMs(Text + Image Caption, CoT with 2-shot)

Deepseek-Chat[9] 9.1 11.6 7.7 5.2 0.0 6.6 19.0 0.0 19.4

Open-source MLLMs (Text + Image, CoT with 2-shot)

Math-LLaVA-13B[36] 4.1 2.6 4.4 3.1 0.0 15.0 0.0 0.0 4.1
LLaVA-v1.5-13B[24] 2.5 1.7 2.2 2.0 0.0 0.0 4.7 0.0 6.9
LLaVA-v1.5-7B[24] 1.6 3.5 0.0 2.0 0.0 0.0 0.0 0.0 0.0
VILA-13B[22] 2.0 0.0 2.2 0.0 0.0 3.3 4.7 0.0 9.0
InternLM-XComposer2.5-VL-7B[10] 2.1 0.8 2.2 2.0 0.0 3.3 0.0 0.0 6.9
InternVL-Chat-8B[6] 4.0 3.0 5.5 5.2 0.0 3.3 9.5 0.0 2.0
Llama-3.2-Vision-Instruct-11B[11] 5.0 1.7 0.0 2.0 50.0 0.0 19.0 0.0 18.7
Deepseek-VL-7B[27] 2.3 0.0 8.8 3.1 0.0 0.0 4.7 0.0 0.0
LLaVA-NeXT-Interleave-7B[18] 5.1 7.1 7.7 2.0 0.0 3.3 9.5 0.0 4.8
Mantis-Idefics2-8B[16] 1.8 1.3 2.2 1.5 0.0 0.0 0.0 0.0 6.2
Mantis-siglip-8B[16] 5.5 3.9 10.0 4.1 0.0 6.6 4.7 0.0 6.9
Qwen2VL-Instruct-7B[41] 10.8 11.6 11.1 3.1 0.0 10.0 16.6 0.0 19.4
LLaVA-OneVision-SI-7B[17] 16.0 11.4 23.3 8.3 0.0 10.0 35.7 0.0 28.4
LLaVA-OneVision-SFT-7B[17] 17.8 14.9 22.2 16.6 0.0 18.3 14.2 0.0 27.7
LLaVA-OneVision-Chat-7B[17] 18.3 14.9 22.2 16.6 0.0 18.3 14.2 0.0 27.7
LLaVA-OneVision-SI-72B[17] 24.0 26.7 23.3 25.5 50.0 15.0 28.5 0.0 19.4
LLaVA-OneVision-SFT-72B[17] 25.9 25.4 33.3 13.0 50.0 30.0 33.3 0.0 27.7
LLaVA-OneVision-Chat-72B[17] 26.2 27.1 30.0 16.6 50.0 18.3 36.9 0.0 27.7

Closed-source MLLMs (Text + Image, CoT with 2-shot)

Qwen-vl-plus[3] 24.2 26.7 23.3 16.6 50.0 18.3 28.5 0.0 19.4
GPT-4V[30] 23.8 23.4 24.8 22.3 50.0 15.0 40.4 100.0 20.1
Qwen-vl-max[3] 29.5 29.1 36.6 19.7 0.0 30.0 28.5 0.0 29.1
Gemini-1.5-Pro[37] 31.7 34.4 38.8 21.8 50.0 36.6 30.9 0.0 24.3
GPT-4o[32] 32.6 30.2 43.3 21.3 100.0 28.3 38.0 0.0 34.0
Claude-3.5[2] 32.3 30.7 26.6 32.8 0.0 35.0 38.0 0.0 38.8

Human Performance

Human (testmini) 78.5 75.2 76.4 83.2 79.1 72.4 66.5 79.0 71.7

Table 12. Comparison of model performances across various mathematical subjects on the multi-step problem set(SAR). The first and
second highest accuracy of MLLMs are marked in red and blue, respectively.
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Model Overall AG Algebra MG Combinatorics TG SG Arithmetic CG

LLMs(Text-only, CoT with 2-shot)

Deepseek-Chat[9] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

LLMs(Text + Image Caption, CoT with 2-shot)

Deepseek-Chat[9] 1.0 0.0 0.0 0.0 0.0 0.0 14.2 0.0 0.0

Open-source MLLMs (Text + Image, CoT with 2-shot)

Math-LLaVA-13B[36] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
LLaVA-v1.5-13B[24] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
LLaVA-v1.5-7B[24] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
VILA-13B[22] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
InternLM-XComposer2.5-VL-7B[10] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
InternVL-Chat-8B[6] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Llama-3.2-Vision-Instruct-11B[11] 1.0 0.0 0.0 0.0 0.0 0.0 14.2 0.0 0.0
Deepseek-VL-7B[27] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
LLaVA-NeXT-Interleave-7B[18] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mantis-Idefics2-8B[16] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mantis-siglip-8B[16] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Qwen2VL-Instruct-7B[41] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
LLaVA-OneVision-SI-7B[17] 1.0 0.0 0.0 0.0 0.0 0.0 14.2 0.0 0.0
LLaVA-OneVision-SFT-7B[17] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
LLaVA-OneVision-Chat-7B[17] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
LLaVA-OneVision-SI-72B[17] 1.0 0.0 0.0 0.0 0.0 0.0 14.2 0.0 0.0
LLaVA-OneVision-SFT-72B[17] 2.0 0.0 6.6 0.0 0.0 0.0 14.2 0.0 0.0
LLaVA-OneVision-Chat-72B[17] 2.0 0.0 6.6 0.0 0.0 0.0 14.2 0.0 0.0

Closed-source MLLMs (Text + Image, CoT with 2-shot)

Qwen-vl-plus[3] 1.0 0.0 0.0 0.0 0.0 0.0 14.2 0.0 0.0
GPT-4V[30] 3.0 0.0 6.6 0.0 0.0 0.0 28.5 0.0 0.0
Qwen-vl-max[3] 2.0 0.0 6.6 0.0 0.0 0.0 14.2 0.0 0.0
Gemini-1.5-Pro[37] 5.0 0.0 6.6 12.5 0.0 0.0 28.5 0.0 0.0
GPT-4o[32] 6.0 0.0 6.6 6.2 50.0 0.0 28.5 0.0 8.3
Claude-3.5[2] 4.0 0.0 0.0 6.2 0.0 10.0 28.5 0.0 0.0

Human Performance

Human (testmini) 66.0 60.6 66.7 52.2 100.0 70.0 71.4 63.2 75.0

Table 13. Comparison of model performances across various mathematical subjects on the multi-step problem set(QCR).
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Models Multiple-Choice Single-Step Free-Form Multi-Step Free-Form(SAR)

Original +CoT +2-shot & CoT Original +CoT +2-shot & CoT Original +CoT +2-shot & CoT

Closed-source Models

Claude-3.5-sonnet [2] 39.5 41.6(+2.1) 44.0(+2.4) 19.6 25.3(+5.7) 24.1(-1.2) 30.4 32.7(+2.3) 32.3(-0.4)

GPT-4o [32] 41.9 36.2(-5.7) 41.9(+5.7) 24.1 28.1(+4.0) 22.5(-5.6) 25.4 31.6(+6.2) 32.6(+1.0)

Gemini-1.5-pro [37] 40.5 35.0(-5.5) 35.8(+0.8) 19.7 22.6(+2.9) 23.4(+0.8) 31.1 33.9(+2.8) 31.7(-2.2)

Qwen-vl-max [3] 41.5 41.3(-0.2) 37.3(-4.0) 15.5 17.1(+1.6) 15.8(-1.3) 29.4 29.0(-0.4) 29.5(+0.5)

GPT-4V [30] 28.9 33.2(+4.3) 32.5(-0.7) 19.8 18.2(-1.6) 16.4(-1.8) 20.0 23.2(+3.2) 23.8(+0.6)

Open-source Models

LLaVA-OneVision-Chat-72B [17] 39.3 38.0(-1.3) 38.0(0.0) 15.8 14.2(-1.6) 13.1(-1.1) 25.2 24.0(-1.2) 26.2(+2.2)

LLaVA-OneVision-Chat-7B [17] 31.6 31.0(-0.6) 31.5(+0.5) 9.8 8.8(-1.0) 4.8(-4.0) 14.7 18.6(+3.9) 18.3(-0.3)

LLaVA-NeXT-Interleave-7B [18] 29.7 29.4(-0.3) 26.6(-2.8) 6.0 3.1(-2.9) 2.7(-0.4) 11.5 6.8(-4.7) 5.1(-1.7)

Qwen2VL-Instruct-7B [41] 33.6 28.2(-5.4) 27.8(-0.4) 6.2 5.2(-1.0) 2.8(-2.4) 5.5 10.7(+5.2) 10.8(+0.1)

Deepseek-VL-Chat-7B [27] 29.0 28.8(-0.2) 26.0(-2.8) 6.0 2.7(-3.3) 1.5(-1.2) 5.1 2.5(-2.6) 2.3(-0.2)

Table 14. Model Performance Evaluation across 3 Question Types and Configurations. The best performance in each category is bolded.
Improvements over the previous configuration are indicated in red for increases and green for decreases.

Benchmarks Language Multi-image Avg Question length Avg Analysis length Image Relevance Annotation Subject Number Size Source MC FF MS

MathVista EN ✗ 77.1 ✗ ✗ 7 1K/6K Synthesized ✓ ✗ ✗
GeoQA EN ✗ 37.1 58.2 ✗ 1 0.7K Internet ✓ ✗ ✗
MATH-Vision EN ✗ 42.4 ✗ ✗ 16 3K Synthesized ✓ ✗ ✗
MMMU-math EN ✗ 40.8 ✗ ✗ 8 0.5K Textbook ✓ ✓ ✗
Mathverse-mv EN ✓ 76.9 ✗ ✗ 1 0.8K Synthesized ✓ ✗ ✗
CMM-math CN ✓ - - ✗ 7 0.7K Internet ✓ ✓ ✗

MV-MATH(Ours) EN ✓ 80.2 150.9 ✓ 11 2K Internet&Annotated ✓ ✓ ✓

Table 15. Comparison with existing multimodal math benchmarks. MC: Multiple Choice, FF: Free-form, MS:Multi-Step.
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Question: A rectangular sheet of paper and a circular sheet of paper are cut as 

shown in the figure, each resulting in a similar theorem exception figure.𝐴𝐶 =
3, 𝐵𝐶 = 4, 𝐴𝐵 = 5, with squares cut out along each side. In Figure 1 the sides 𝐻𝐼 

and 𝐿𝑀 and the points 𝐾 and 𝐽 are all on the edges of the rectangular paper. In 

Figure 2, the center 𝑂 of the circle is at the midpoint of 𝐴𝐵, and points 𝐻 and 𝐼 

are on the circle. The ratio

of the area of the rectangu-

Lar paper to the area of the 

circular paper is ( )

A. 400: 127𝜋 
B. 484: 145𝜋 
C. 440: 137𝜋 
D. 88: 25𝜋

Claude-3.5-Sonnet Answer
Let's approach this problem step by step:

Step 1:The rectangular paper's dimensions are AC + BC = 3 + 4 = 7 units wide and 

AB = 5 units long.

Step 2:Area of rectangle = 7 * 5 = 35 square units.

Step 3:In the circular paper, O is the midpoint of AB. So, the radius of the circle is 

half of AB.Radius = 5/2 = 2.5 units.

Step 4:Area of circle = πr² = π * (2.5)² = 6.25π square units.

Step 5:The cut-out squares have sides equal to the shortest side of the triangle, which 

is AC = 3 units.

Step 6:Area of one cut-out square = 3² = 9 square units

Total area of cut-out squares = 9 * 4 = 36 square units

Step 7:Remaining area = 35 - 36 = -1 square unit

This negative value indicates that the cut-out squares overlap, and their total area is 

actually less than 36.

Step 8:The actual area of cut-out squares is the area of the rectangle minus the area 

of the theorem exception figure.

Area of theorem exception figure = 3 * 4 = 12 square units

Actual area of cut-out squares = 35 - 12 = 23 square units

Step 9:Remaining area of circle = 6.25π - 23 square units

Step 10:Ratio = Area of rectangular paper : Area of circular paper= 35 : (6.25π) = 

560 : 100π= 140 : 25π = 28 : 5π

Step 11:A. 400 : 127π ≈ 3.15 : π    B. 484 : 145π ≈ 3.34 : π   C. 440 : 137π ≈ 3.21 : π   

D. 88 : 25π = 3.52 : π  Our calculated ratio 28 : 5π = 5.6 : π is closest to option D.

Answer: {D}

Ground Truth: C

Visual Perception Error

Figure 21. An example of visual perception error.
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To determine which pattern can be obtained by unfolding the given cube, we 

need to visualize how the cube's faces are connected and how they would lay 

flat when unfolded.

Step 1: Identify the faces of the cube.

-The cube has six faces: one with a circle, one with a triangle, and four plain 

faces.

Step 2: Visualize the unfolding process.

-When the cube is unfolded, the faces will be laid out in a connected manner. 

The face with the circle will be adjacent to the face with the triangle, and the 

plain faces will be adjacent to these two faces.

Step 3: Compare the given options with the expected layout.

- Option A: The layout shows the circle and triangle faces adjacent to each 

other, with the plain faces correctly positioned.

- Option B: The layout shows the circle and triangle faces adjacent to each 

other, but the plain faces are not correctly positioned.

- Option C: The layout shows the circle and triangle faces adjacent to each 

other, but the plain faces are not correctly positioned.

- Option D: The layout shows the circle and triangle faces adjacent to each 

other, but the plain faces are not correctly positioned.

- Answer: {A}

Question: As shown in the figure, if the cube 

is unfolded, which of the following patterns 

can be obtained?

Claude-3.5-Sonnet Answer

Ground Truth: D

Visual Perception Error

A B C D

Figure 22. An example of visual perception error.
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Question: In a math class, the teacher leads the students to use four 

right-angled triangles with legs 𝑎 and 𝑏 as shown in Figure 1 to form 

two chord diagrams (as shown in Figure 2 and Figure 3). Given that 

the area of the large square 𝐴𝐵𝐶𝐷 is 48 and the area of the small 

square 𝐸𝐹𝐺𝐻 is 12, what is the area of one right-angled triangle.                              

A. 3                     B. 4.5                  C. 6                  D. 9

Claude-3.5-Sonnet Answer

Step 1 (Understand the problem): We need to find the area of one right-

angled triangle given the areas of the large square 𝐴𝐵𝐶𝐷 and the small 

square 𝐸𝐹𝐺𝐻.

Step 2 (Mathematical basis): The area of the large square 𝐴𝐵𝐶𝐷 is given 

as 48, and the area of the small square 𝐸𝐹𝐺𝐻 is given as 12. The large 

square 𝐴𝐵𝐶𝐷 is composed of the small square 𝐸𝐹𝐺𝐻 and four right-

angled triangles.

Step 3 (Calculate the total area of the four triangles): The area of the large 

square 𝐴𝐵𝐶𝐷 minus the area of the small square 𝐸𝐹𝐺𝐻 gives the total 

area of the four right-angled triangles.

𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑓𝑜𝑢𝑟 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 
=  {𝐴𝑟𝑒𝑎 𝑜𝑓 } 𝐴𝐵𝐶𝐷 − {𝐴𝑟𝑒𝑎 𝑜𝑓 } 𝐸𝐹𝐺𝐻 

𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑓𝑜𝑢𝑟 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 =  48 −  12 =  36 
Step 4 (Calculate the area of one triangle): Since there are four right-

angled triangles, the area of one triangle is:

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑜𝑛𝑒 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 =  {𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑓𝑜𝑢𝑟 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠}/{4}

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑜𝑛𝑒 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 =
36

4
=  9 

Answer: {𝐷}

Ground Truth: B

Reasoning Error

Figure 23. An example of reasoning error.
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To find the volume of the geometric body composed of small cubes with edge 

lengths of 1, we need to analyze the views from the front, left, and top.

Step 1 (Analyze the front view):

- The front view shows a structure with 3 columns.

- The left and right columns each have 1 cube.The middle column has 2. 

Step 2 (Analyze the left view):

- The left view shows a structure with 2 columns.The left column has 1 cube.

     The right column has 2 cubes.

Step 3 (Analyze the top view):

- The top view shows a structure with 5 cubes arranged in a cross pattern.

- This confirms the layout seen from the front and left views.

Step 4 (Determine the number of cubes):

-   From the front view, we have 1 cube in the left column, 2 cubes in the 

middle column, and 1 cube in the right column.

- From the left view, we have 1 cube in the left column and 2 cubes in the 

right column. Combining these views, we can deduce the following:

- The left column has 1 cube. The middle column has 2 cubes.

- The right column has 1 cube. The top view confirms that there are 5 cubes 

in total.

Step 5 (Calculate the volume):Since each cube has an edge length of 1, the 

volume of each cube is 13 = 1. The total volume is the number of cubes 

multiplied by the volume of each cube.

Answer: The volume of the geometric body is 5.

Question: An object is composed of multiple small cubes with edge 

lengths of 1. The shapes of the geometric body as seen from the front, left, 

and top are shown in the figures below. Then, the volume of the geometric 

body is _____.

Claude-3.5-Sonnet Answer

Ground Truth: 8

Reasoning Error

View from the front View from the topView from the left

Figure 24. An example of reasoning error.
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Question: As shown in Figure 1, in rectangle 𝐴𝐵𝐶𝐷, point 𝐸 is on 𝐴𝐷, 

and point 𝐴 is folded to the right along the fold line 𝐵𝐸 as shown in 

Figure 2. Through point 𝐴, 𝐴𝐹 ⊥ 𝐷𝐶 at 𝐹. If 𝐴𝐵 = 6 3, 𝐵𝐶 = 13, 

∠𝐵𝐸𝐴 = 60°, then in Figure 3, AF=_____.

Claude-3.5-Sonnet Answer

Step 1: The goal is to calculate 𝐴𝐹 after point 𝐴 is folded to the right 

along 𝐵𝐸. Important details provided:

𝐴𝐵=6 3, 𝐵𝐶=13, and ∠𝐵𝐸𝐴=60°. After folding, 𝐴𝐹⊥𝐷𝐶
Step 2: Using triangle △𝐴𝐵𝐸 and the given data ∠𝐵𝐸𝐴=60°:
Assume 𝐵𝐸 is calculated using trigonometry:𝐵𝐸=𝐴𝐵⋅cos(60°)

Substituting 𝐴𝐵=6 3: 

𝐵𝐸 = 6 3  ⋅ cos(60°) =  6 3 ⋅
1

2
=  3 3 ​.

Step 3: Using △𝐴𝐵𝐸 again, 𝐴𝐸 is found using the Pythagorean 

theorem:𝐴𝐸2 = 𝐴𝐵2 − 𝐵𝐸2.Substitute 𝐴𝐵=6 3   and BE=3 3   (from 

the earlier step):

𝐴𝐸2 = (6 3)2− 3 3
2

= 108 − 27 = 81

𝐴𝐸 = 81 = 9
Step 4: To find 𝐴𝐹, assume that 𝐴𝐹 is directly proportional to 𝐵𝐸 due to 

the perpendicular relationship between 𝐴𝐹 and 𝐷𝐶. Using the proportions:

𝐴𝐹 =
𝐴𝐵

2
=

6 3

2
= 3 3

Ground Truth: 4

Knowledge Error

Figure 25. An example of knowledge error.
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Step 1 (Analyze the problem): As P moves from A to O to C, the area of 

quadrilateral CEPF changes. We need to analyze how the area changes in 

different stages.

Step 2 (Stage 1: P is on AO): When P is on AO (0 < 𝑥 < 2), the area of 

CEPF increases as P moves from A to O. This is because both PE and PF 

increase as P moves towards O.

Step 3 (Stage 2: P is on OC): When P is on OC (2 < 𝑥 < 2 + 2), the area of 

CEPF decreases as P moves from O to C. This is because while PE decreases, 

PF increases, but the overall effect is a decrease in the area.

Step 4 (Analyze the options): Based on the above analysis, we can eliminate 

options A, C, and D. Option A shows a continuous increase in the area, which 

is incorrect. Option C shows a linear increase and then a linear decrease, 

which is also incorrect. Option D shows a decrease in the area initially, which 

is not possible.

Step 5 (Final analysis): Option B correctly represents the change in the area 

of 𝐶𝐸𝑃𝐹. The area initially increases, reaches a maximum when P is at O, 

and then decreases as P moves towards C.

Answer: {B}

Question: As shown in the figure, the diameter AB of the semicircle O is 4, 

and C is the midpoint of the arc AB. The segments CO, CA, and CB are 

drawn. Point P starts from A and moves along

 𝐴 → 𝑂 → 𝐶 until it reaches C. Two perpendi-

cular lines PE and PF are drawn from point 

P to AC at E and to BC at F, respectively. Let 

the distance traveled by point P be x. The area

 y of quadrilateral CEPF as a function of x 

can be best represented by the graph()

Claude-3.5-Sonnet Answer

Ground Truth: A

Knowledge Error

A B C D

Figure 26. An example of knowledge error.

33



Question: As shown in the figure, in △ 𝐴𝐵𝐶 , 𝐶𝐷 ⊥ 𝐵𝐴 and 𝐶𝐷 

intersects the extension line of 𝐵𝐴 at 𝐷, 𝐷𝐸 ⊥ 𝐴𝐶 at 𝐸.
(1) As shown in Figure 1, if ∠𝐵 = 35°, ∠𝐶𝐷𝐸 = 60°, find the degree of 

∠𝐴𝐶𝐵;

(2) As shown in Figure 2, if 𝐴𝐶  bisects ∠𝐵𝐶𝐷, 𝐵𝐹 ⊥ 𝐴𝐶 and 𝐵𝐹 

intersects the extension of 𝐶𝐴 at 𝐹, directly write out the angle equal to 

∠𝐴𝐶𝐵 (except ∠𝐴𝐶𝐵).

Claude-3.5-Sonnet Answer

(1) Step 1: Identify the Relationship Between Angles in △𝐴𝐵𝐶
∠𝐶𝐷𝐸=60°, and 𝐷𝐸 ⊥ 𝐴𝐶, ∠𝐵 = 35°, implies that:

 ∠𝐷𝐶𝐸 = 90° − 60° = 30°
Step 2: ∠𝐴𝐶𝐵 is equal to ∠𝐵𝐶𝐷 minus ∠𝐷𝐸𝐶:

∠𝐴𝐶𝐵 = ∠𝐵𝐶𝐷 − ∠𝐷𝐶𝐸 = 55° − 30° = 25°
(2) Step 1: Analyze the Geometry

𝐴𝐶 bisects ∠𝐵𝐶𝐷, so:

∠𝐴𝐶𝐷=
∠𝐵𝐶𝐷

2

𝐵𝐹⊥𝐴𝐶, and 𝐵𝐹 intersects the extension of 𝐶𝐴 at 𝐹.

Step 2: Assume that ∠𝐵𝐶𝐷=2×∠𝐴𝐶𝐵
So we have:

∠𝐴𝐵𝐶 = ∠𝐶𝐵𝐹 − ∠𝐴𝐵𝐹 = ∠𝐴𝐵𝐹

∠𝐴𝐶𝐷=
∠𝐵𝐶𝐷

2
 =∠𝐴𝐶𝐵=∠ABF

Ground Truth: (1) 25°             (2)∠ACD, ∠ABF, ∠ADE

Calculation Error

Figure 27. An example of calculation error.
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Step 1 (Understanding the problem): The circle with a radius of 7 cm is 

divided into 20 equal parts and rearranged into a shape that resembles a 

parallelogram.

Step 2 (Calculate the circumference of the circle): The circumference C of a 

circle is given by the formula:

𝐶 = 2𝜋𝑟
where r is the radius of the circle. Given r=7cm:

𝐶 = 2𝜋 · 7 = 14𝜋
Step 3 (Determine the length of the base of the parallelogram): Since the 

circle is divided into 20 equal parts, each part represents an arc of the circle. 

When rearranged, these arcs form the base of the parallelogram. The length 

of the base is half the circumference of the circle:

𝑏𝑎𝑠𝑒 𝑙𝑒𝑛𝑔𝑡ℎ =
14𝜋

2
= 7𝜋

Step 4 (Determine the height of the parallelogram): The height of the 

parallelogram is equal to the radius of the circle, which is 7cm.

Step 5 (Calculate the perimeter of the parallelogram): The perimeter P of a 

parallelogram is given by:

𝑃 = 2 · 𝑏𝑎𝑠𝑒𝑙𝑒𝑛𝑔𝑡ℎ + ℎ𝑒𝑖𝑔ℎ𝑡 = 2 · 7𝜋 + 7 = 14 𝜋 + 1 = 58.94
Answer: {58.94 cm}

Question: As shown in Figure 1, a circle with a radius of 7cm is divided 

into 20 equal parts, then cut out and rearranged into the shape shown in 

Figure 2. The perimeter of the resulting shape is____.

Claude-3.5-Sonnet Answer

Ground Truth: 57.96

Calculation  Error

Figure 28. An example of calculation error.
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Sorry, I cannot help you with this request.

Question: There is a cylindrical wooden block buried in the wall (as shown 

in Figure (1)). Its diameter is unknown, so it is sawed open (along the cross 

section) with a saw. (As shown in Figure (2) When the measured depth 𝐶𝐸 

is 1 inch, the sawed width 𝐴𝐵 is 1 foot, and the diameter 𝐶𝐷 of the wooden 

block is _____ inches. (1 foot = 10 inches)

Claude-3.5-Sonnet Answer

Ground Truth: 26

Reject Error

Figure 29. An example of reject error.

I'm sorry, but I am unable to solve this problem.

Question: As shown in Figure 1, a large tree broke and fell during a strong 

earthquake, with the top of the tree landing 12 meters away from the base 

and 5 meters above the ground. Figure 2 is a diagram illustrating the tree's 

breakage. Determine the height of the tree before it broke.

A. 20 meters B. 18 meters C. 16 meters D. 15 meters

Claude-3.5-Sonnet Answer

Ground Truth: B

Reject Error

Figure 30. An example of reject error.
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