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Abstract

Recent advances in Multimodal Large Language Models (MLLMs) have enabled
the development of mobile agents that can understand visual inputs and follow
user instructions, unlocking new possibilities for automating complex tasks on
mobile devices. However, applying these models to real-world mobile scenarios
remains a significant challenge due to the long-horizon task execution, difficulty in
error recovery, and the cold-start problem in unfamiliar environments. To address
these challenges, we propose MobileUse, a GUI agent designed for robust and
adaptive mobile task execution. To improve resilience in long-horizon tasks and dy-
namic environments, we introduce a hierarchical reflection architecture that enables
the agent to self-monitor, detect, and recover from errors across multiple tempo-
ral scales—ranging from individual actions to overall task completion—while
maintaining efficiency through a Reflection-on-Demand strategy. To tackle cold-
start issues, we further introduce a proactive exploration module, which enriches
the agent’s understanding of the environment through self-planned exploration.
Evaluations on the AndroidWorld and AndroidLab benchmarks demonstrate that
MobileUse establishes new state-of-the-art performance, achieving success rates of
62.9% and 44.2%, respectively. To facilitate real-world applications, we release
an out-of-the-box toolkit for automated task execution on physical mobile devices,
which is available at https://github. com/MadeAgents/mobile-use,

1 Introduction

Recent advances in multimodal large language models (MLLMs) have significantly enhanced the
capability of Al systems to understand and interact with visual environments. By jointly processing
text and images, MLLMs such as GPT-4V (Achiam et al., 2023), Gemini (Team et al., [2024),
Claude (Anthropic, 2024), and Qwen-VL (Bai et al.,[2025) have demonstrated impressive performance
on a range of vision-language tasks, including visual question answering (Hu et al., 2023} [2024]),
image captioning (Bianco et al.| 2023} Rotstein et al.,|2024)), and GUI control (Miiller and Zuni¢,[2024:
Q1 et al., |2025). These developments open up promising opportunities for building general-purpose
agents capable of interleaved visual and textual contexts perceiving and instruction following.

Among various platforms, mobile devices present a promising option for building general-purpose
intelligent agents due to their vast scope and versatility. On one hand, the wide variety of apps
available on mobile platforms provides an expansive environment, making it an ideal domain for
developing agents capable of addressing diverse user needs. Moreover, with only a touchable screen,

*Equal contribution.
TWork done during an internship at OPPO.
iCorresponding authors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://github.com/MadeAgents/mobile-use

user interactions on mobile devices are typically constrained to a small set of intuitive actions
(e.g., click, swipe, type), making the action space relatively simple compared to desktops. On the
other hand, building GUI agents specifically for mobile scenarios can address real user needs by
automating repetitive or complex tasks, such as filling out forms, navigating multi-step settings, that
would otherwise require significant manual effort. This is particularly valuable in contexts such
as accessibility support, productivity enhancement, and digital assistance. With this in mind, we’d
like to develop an effective mobile GUI agent—one that can serve as a viable solution for realizing
general-purpose Al

Several recent studies have explored the potential of building mobile agents with advanced MLLMs.
A significant body of work (Wu et al. 2024; |Lin et al.| 2024} Xu et al., 2024bj} |Qin et al., 2025)
focuses on constructing high-quality datasets and fine-tuning MLLMs to develop specialized domain-
adapted models for GUI interaction tasks. Meanwhile, frameworks such as AppAgent-v2 (Li et al.,
2024a), MobileAgent-v2 (Wang et al., 2024a)), and Agent-S2 (Agashe et al., |2025) decompose
mobile tasks into structured decision-making pipelines, leveraging the reasoning and compositional
abilities of cutting-edge LLMs and MLLMs. Despite this progress, building robust agents for
dynamic mobile tasks remains a significant challenge. (C1) Robustness in long-horizon tasks
and dynamic environments: Many mobile tasks require long-horizon execution and are inherently
complex, involving a sequence of interdependent actions. Coupled with the dynamic nature of mobile
environments, where elements can frequently change (e.g., due to app updates or varying screen
layouts), errors are inevitable during task execution. This necessitates that mobile agents be capable
of detecting failures and recovering gracefully. (C2) Unfamiliar scenarios: It is common for mobile
agents to encounter unfamiliar apps and interfaces, particularly in cold-start settings, which require
strong exploration and on-the-fly learning capabilities to operate effectively.

To address these challenges, we introduce MobileUse, a GUI agent designed for robust execution
and flexible error recovery in dynamic mobile operation tasks. 1) We equip MobileUse with a
hierarchical reflection architecture, which enables the agent to self-monitor, verify, and revise its
decisions during the execution. Hierarchical reflection works from the microscopic step-level to the
macroscopic task-level: It checks whether each action is in line with expectations, whether the process
follows the correct track, and whether the goal is successfully accomplished. Besides, recognizing that
excessive reflection on each step could increase the overhead and even be detrimental, we incorporate
a Reflection-on-Demand strategy. By selectively invoking reflection based on a confidence score,
hierarchical reflection achieves the unity of performance and efficiency. 2) Observing that many
failures are caused by unfamiliarity with the environment, we design a proactive exploration module,
enabling the agent to proactively interact with the environment prior to the task execution. It collects
general knowledge on unfamiliar apps, helps the agent complete downstream tasks more efficiently
and accurately in cold-start scenarios. As a whole, we build MobileUse as a multi-agent framework,
including an Operator for task execution, a Progressor for progress summarization, Hierarchical
Reflectors for thoughtful reflection, and a Proactive Explorer for knowledge accumulation.

We evaluate the performance of MobileUse on two dynamic Android benchmarks: AndroidWorld and
AndroidLab. Empirical results show that MobileUse achieves state-of-the-art (SOTA) performance,
with success rates of 62.9% and 44.2%, respectively. With comprehensive ablation studies and
analyses, we highlight the effectiveness of hierarchical reflection and proactive exploration in solving
complex tasks. To facilitate real-world applications, we release an out-of-the-box toolkit for automated
task execution on physical mobile devices. With detailed documentation, users can easily connect
their mobile phones to MobileUse and experience its capabilities as a powerful mobile assistant.

In summary, we propose MobileUse, a GUI agent with the following contributions:

* Hierarchical Reflection. We propose hierarchical reflection, a novel architecture to support
robust execution and flexible error handling in mobile operation tasks. The hierarchical
reflection architecture enables the agent to detect and recover from errors only when nec-
essary, operating across multiple levels—from individual action execution to overall task
completion.

* Proactive Exploration. We design a proactive exploration module to improve robustness
against unfamiliar environments. Rather than relying on explicit instructions, our method
depends on the model’s proactive exploration to accumulate common knowledge for better
task execution.



* SOTA Performance and Support for Real-world Application. We conduct comprehensive
evaluations on two mobile benchmarks and demonstrate that MobileUse achieves state-of-
the-art performance compared to strong baselines. To facilitate real-world applications, we
release an out-of-the-box toolkit for automated task execution on physical mobile devices.

2 Related Works

2.1 GUI Agent

Autonomous agents have demonstrated significant potential in enhancing human tasks effectively.
In digital environments, information involves multimodal information with text, images, and visual
elements. This complexity poses challenges for language models, driving increased research interest
in GUI Agents.

Models like GPT-40 (Hurst et al., [2024)), Qwen2.5-VL (Bai et al., [2025)), and UI-TARS (Qin et al.,
2025)) integrate visual understanding capabilities, enabling end-to-end execution of GUI automation
tasks through natural language instructions. These models advance fine-grained visual perception,
document parsing, object localization, and reasoning, laying the foundation for versatile GUI Agents.
Similarly, AppVLM (Papoudakis et al.l 2025)), FerretUI-2 (L1 et al.,|2024b), and Aria-UI (Yang et al.,
2024b) offer lightweight visual models, while a scalable data pipeline and pretraining on GUI tasks
further enhance grounding and interaction ability. To better identify the interactive Ul elements, V-
Droid (Dai et al.l 2025) parses the XML representation of the UI state. It utilizes an agent as a verifier
rather than a conventional generator to execute appropriate actions. Advancements in multi-modal
understanding, reasoning, and task automation have significantly enhanced the capabilities of GUI
Agents (Anthropic, [2024), positioning them as transformative tools in human-mobile interaction.

2.2 Multi-Agent System

As research on automatic agents progresses, multi-agent systems are increasingly emphasized due
to the inherent limitations of monolithic approaches in handling long-context scenarios involving
multi-modal data. Single agents often struggle to meet the demands of planning, reasoning, and
grounding tasks simultaneously. Magentic-One(Fourney et al.,|2024), AutoGen(Wu et al., [2023]),
and CAMEL (Li et al., [2023) facilitate an orchestrator-agent framework, where the orchestrator
plans and interprets user intent and generates instructions, while the assistant agent executes tool
invocations. Mobile-Agent-V2 (Wang et al.,|2024a) introduces a reflection agent to evaluate operator
performance and suggest corrective actions when deviations occur. AppAgent (Zhang et al.| 2025)),
Agent-S2 (Agashe et al.,|2024) enhances task decomposition by a self-evolution module, leveraging
web knowledge and episodic memory for long-horizon tasks. These advancements highlight the
growing importance of collaborative multi-agent architectures in complex task automation.

However, the current comprehension of the reflection module is still inadequate. Reflection at the
action level (Wang et al., 2024a; Wu et al.,|2025) demonstrates limited utility in facilitating long-
horizon tasks, while an excessive reliance on simplistic reflections not only prolongs processing
time but also frequently leads to operational errors caused by hallucination-induced assessments. In
addition, existing agent frameworks exploring self-evolution modules typically extract task-related
experiences from previously executed trajectories. Nevertheless, these experiences often fail to be
effectively transferred to the execution of new tasks, limiting their adaptability and generalization.

3 MobileUse

3.1 Framework Overview

As illustrated in Figure [I] we build MobileUse as a multi-agent framework designed for robust
execution and flexible error recovery in dynamic mobile operation tasks. It consists of two stages:
Proactive Exploration stage enables the agent to familiarize itself with the new environment while
systematically exploring and accumulating common knowledge. Autonomous Mobile Opera-
tion stage incorporates the Operator, Hierarchical Reflectors, and the Progressor to execute user
instructions in a collaborative and feedback-driven loop.
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Figure 1: Overview of the MobileUse agent. In the Proactive Exploration stage, MobileUse famil-
iarizes itself with the new environment while systematically exploring and accumulating common
knowledge. In the Autonomous Mobile Operation stage, given a user instruction, in each step the
Operator will observe the screenshot and output a specific action. Then MobileUse will perform
hierarchical reflection at three different levels for robust task execution. Finally, the Progressor will
summarize and update the current progress at the end of each step iteration.

Table 1: Notations and corresponding descriptions.

Notation  Description

I User instruction.
K Knowledge collected through proactive exploration.
Kr Knowledge related to the user instruction 1.
E,O,R,P The Explorer, Operator, Reflector and Progressor.
st Screenshot at step ¢. The superscript ¢ means the ¢-th step.
at The output generated by the Operator at step .

at, aa, a’,  The thought, structure and natural language representation of an action. a® = (al, a%, a})
atyge, Gpauams  The action type and parameters. al, = (afype, Qparams)
ri, T, rf, The feedback generated by the Action, Trajectory, and Global Reflector at step t.
rt The feedback of hierarchical reflection at step t. r’ = (rf, rf, rf]).

pt The summarized progress generated by the Progressor at step t.

Stage I: Proactive Exploration. In this stage, the agent is guided to proactively interact with the
apps and generate common knowledge K based on the execution trajectory. We do not provide
user instructions for the agent to complete specific tasks, allowing the agent to fully explore the
environment without being constrained by specific tasks. More details are provided in Section

Stage II: Autonomous Mobile Operation. Given a user instruction I, firstly relevant knowledge
K7 will be retrieved to support downstream execution. In the ¢-th step of the task execution, the
Operator O serves as the decision-making agent to generate actions a’ with I, K7, current screenshot
st, history actions a'*~1, the feedback r*~! and progress p'~! from last step. Formally,

a' = (af,al,al)) = O(I, Kp, s', a1 rt =1 pt™h), 4))

where a} is a thought containing the reasoning process, a!, and a!, are the structured and natural
language descriptions of the action. See Appendix [B|for the full action space After action execution,
MobileUse will perform hierarchical reflection to generate reflection r* 1n three different levels
(Section n Finally, the Progressor P maintains a progress summary p’ of the task execution,
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Figure 2: Overview of the hierarchical reflection architecture. The Action Reflector operates on a
single step to provide immediate feedback. The Trajectory Reflector operates on the latest trajectory
to ensure effective progress. The Global Reflector operates on the overall interaction history to
validate the task completion.

updating it after each step by integrating past progress, the latest action, and reflection feedback:
p' =P pal ). @)

This two-stage execution with the collaboration of different modules enables MobileUse to accumulate
knowledge, interpret complex instructions, and adaptively self-correct, resulting in robust and reliable
task execution.

3.2 Hierarchical Reflection

During the execution of complex mobile tasks, agents frequently encounter challenges such as
incorrect grounding (Gou et al., [2025]), hallucinations (Liu et al., 2023)), flawed planning (Agashe
et al.} 20235)), and getting stuck in repetitive behaviors (Agashe et al.l|2024). These errors often go
undetected in purely feedforward architectures and can accumulate over time, ultimately leading to
task failure. To mitigate these issues, we propose a hierarchical reflection architecture that enables the
agent to self-monitor, verify, and revise its decisions across multiple temporal scales. This mechanism
comprises three components: Action Reflector for immediate feedback, Trajectory Reflector for
progress reflection, and Global Reflector for overall validation, as illustrated in Figure 2]

3.2.1 Action Reflector

When operating the device, a mobile agent can make various mistakes, such as opening the wrong
app, forgetting to activate the text box before typing text, clicking the wrong icon, etc. When errors
occur, the screen often does not change as expected. The Action Reflector Rygion i designed to
provide immediate feedback after each action execution. At each step ¢, the Action Reflector will
observe the screenshots before and after the action execution to determine whether the action achieved
its intended effect. To enhance perception and facilitate error localization, we design a Perception
module Pe to pre-compute the visual difference between the two screenshots and highlight the
changed regions using bounding boxes. The Action Reflection process can be formulated as:

Tt == Raction(la Stv Pe(st, StJrl)a at)a (3)

a

where 7!, is the generated feedback that describes the error and possible causes.

In the actual task execution process, we observe that most of the actions made by the Operator are
correct. Therefore, invoking the Action Reflector at every step can introduce latency and unnecessary
computation. Additionally, the Action Reflector can make mistakes, which will mislead the Operator
to a wrong state or repeated error correction. To address this, we propose a Reflection-on-Demand
strategy, which dynamically determines when to trigger reflection based on the action confidence.

Specifically, in step t, the Operator outputs a predicted action type afype, represented as a token
sequence (w1, ws, ..., wy), where usually k € {1,2}. Each token w; is associated with a model-
assigned probability p(w;). We compute the confidence score é for the action as the mean log-
probability of its tokens:

1k
¢t = z ;logp(wi). 4)



Only when ¢t < 0, where 0 is a predefined threshold, the Action Reflector is invoked to reflect on the
current step.

Equipped with the Action Reflector, MobileUse is capable of detecting and recovering from er-
rors caused by one-step failure, such as failed grounding, visual hallucinations, and incorrect Ul
understanding.

3.2.2 Trajectory Reflector

Only the Action Reflector is not enough for the robust and consistent execution of complex and
long-horizon mobile tasks. Sometimes, the mobile agent executes each action correctly, but it is not
on the right path to finish the user instruction. In other circumstances, although the Action Reflector
recognizes the error in the current step and provides some suggestions, the agent is not guaranteed to
fully recover from the potential camulated errors, resulting in a repeated failure in the near future.

Here we design a Trajectory Reflector Rypjectory, Which operates over the latest progress, and a short
history of recent actions (e.g., last 3-5 steps) along with the corresponding action-level reflections to
evaluate whether the trajectory is coherent and progressing toward task completion. It is designed
to detect error patterns that span multiple steps, such as deviations from the user instruction due to
accumulated drift or repeated actions. Formally,

7t = Rugjectory (I, "1, (', 78), .., (', rh)), )

where 7! is the generated feedback. p'~! is the progress summarized by the Progressor in the last
step. r, will be empty if the Action Reflector is not invoked in the corresponding step.

The Trajectory Reflector is also called only when necessary to balance the efficiency and performance.
Instead of computing a confidence score, we define several trigger conditions for the Trajectory
Reflector that focus on task progress and error patterns: (1) Repeated Actions, indicating that the
agent is stuck or making ineffective decisions. (2) Repeated Screenshots, suggesting that the agent
is failing to make progress. (3) Accumulated Action-Level Errors, requiring broader analysis
to assess whether the trajectory is deviating from the task goal. Once any of these conditions are
detected, the Trajectory Reflector is invoked to analyze recent actions, helping the Operator stay on
track and make effective progress toward fulfilling the user instruction.

3.2.3 Global Reflector

When the Operator believes that the user instruction has been completed, it will terminate the task
execution with a specially defined action terminate. However, the task may not actually be finished.
In a long-horizon task that consists of several sub-goals, the agent may omit some important steps. In
other cases, the Operator will terminate the task prematurely due to hallucination or high complexity
of the task.

The Global Reflector Rgqpa is designed to review the completion of tasks from a global perspective.
Invoked only upon task completion, the Global Reflector evaluates whether the user instruction has
been successfully fulfilled based on the historical actions and the latest screenshots. If it determines
that the task remains incomplete, it will provide feedback to the Operator, who will be asked to
continue finishing the task in the next iteration. Otherwise, the task will be terminated gracefully.
Formally,

¢ 0,0 .0 tot b o T -
Ty = Raoval (L, (@, 74, 7¢), .-, (@', 15, m¢),87, ..., 8") if ay,, = terminate, (6)

»had yhar

where 7% and r? will be empty if the corresponding reflector is not invoked in the i-th iteration. In
MobileUse, we choose j = max(0,t — 3) to balance the efficiency.

Together, these three-level reflection mechanisms form a hierarchical reflection architecture that
allows the agent to detect and correct errors at different scales. Each reflector provides timely
feedback to the Operator, enabling it to revise strategies, avoid redundant behavior, and maintain
alignment with the user instruction throughout the task.

3.3 Proactive Exploration

When interacting with mobile devices, the agent often makes mistakes due to unfamiliarity with
the environment, such as not knowing the meaning of a certain icon’s color, as shown in Figure



@ A possible solution is to adopt the self-evolution mechanism (Agashe et al.| [2024] [Wang et al.,
2025} |L1u et al.L|2025b), which gradually accumulates experience when completing tasks. However,
erroneous experiences can interfere with the model’s normal execution of actions. On the other hand,
the lack of common knowledge about interactions makes it difficult for the model to correct complex
operations through self-evolution.

Proactive exploration is designed to enable the agent to mimic human exploration of new envi-
ronments and discover the operational common knowledge of the environment. As illustrated
in the left of Figure [I] our method adopts a multi-agent collaboration framework to guide the
exploration process: (i) For each app, we guide the Action Agent explores unfamiliar regions
of the current app environment without relying on task-specific instructions. (ii) After a tra-

jectory with n steps T; = (51, a,..., a", s”) is collected by the Action Agent, the Summary
Agent identifies valuable operation trajectories and summarizes them into reusable experiences
K; = summary (s',a’, ..., a"" s"), thereby establishing an automated pipeline for data explo-

ration and knowledge generation. We constrain these summarized experiences to be as general and
beneficial as possible. (iii) The Judge Agent monitors the exploration process to prevent redundant or
ineffective behavior and provides corrective feedback when necessary.

Unlike the previously proposed task-driven exploration approach (Zhang et al.| 2025)), which relies
on manually constructed tasks, our proactive exploration is a task-agnostic and mostly autonomous
method. By combining different agents, it can proactively and effectively collect general knowledge
about UI layouts, navigation patterns, and potential states, which is especially useful when dealing
with scenarios involving exceed the boundaries of their pre-trained capabilities.

4 Experiments

4.1 Experimental Settings

Benchmarks. We evaluate the performance of MobileUse on two widely-used mobile benchmarks:
AndroidWorld (Rawles et al.,|[2025)) and AndroidLab (Xu et al.| 2024a). AndroidWorld includes
116 tasks across 20 apps, with randomized parameters that yield millions of possible task variants,
emphasizing generalization to diverse instructions and UI states. AndroidLab covers 138 tasks from
9 apps with fine-grained success metrics and a structured evaluation pipeline. Both benchmarks
provide controllable Android interaction environments, standardized task initialization procedures,
and well-defined automated evaluation processes, ensuring consistency in evaluation.

Baselines. We compare our method against a diverse set of recent baselines, grouped into two
main categories. Single-agent models are end-to-end systems that directly map textual or visual
inputs to GUI operations, including general-purpose models such as GPT-40 (Achiam et al.| 2023)),
Claude (Anthropicl 2024), Gemini (Wang et al.| [2024b), and Qwen2.5-VL (Bai et al.| [2025). It
also includes domain-specialized models such as InfiGUIAgent (Liu et al., [2025a), Aguvis (Xu
et al., [2024b), V-Droid (Dai et al., [2025), and UI-TARS (Qin et al.| 2025)), which are specifically
trained or fine-tuned on various GUI operation datasets. Multi-agent frameworks like UGround (Gou
et al}2025), Aguvis (Xu et al.}[2024b)), Aria-UI (Yang et al.| 2024b), and Agent-S2 (Agashe et al.|
2025) decompose the task into sub-components, usually combining powerful language models (e.g.,
GPT-40) with perception or grounding modules for improved decision-making.

Implementation Details. We use the open-source multimodal language model Qwen2.5-VL-72B-
Instruct (Bai et al., 2025) with temperature = 0 for our base model. To assess the impact of
model size, we also evaluate the performance with the Qwen2.5-VL-7B-Instruct and 32B model in
Appendix [D.2] Besides, we release the MobileUse Toolkit with open-source code and comprehensive
documentation, which is detailed in Appendix [E]

4.2 Main Results

Table [2] and Table [3| demonstrate that MobileUse outperforms existing mobile agents on the An-
droidWorld and AndroidLab benchmarks, achieving 62.9% and 44.2% success rates, respectively.
In AndroidWorld, MobileUse achieves a 3.4% performance improvement compared to the SOTA
solution V-Droid. Compared to the best Multi-Agent baseline Agent-S2, which is built on a powerful
close VLLM Claude-3.7-Sonnet and a carefully tuned vision model UI-TARS-72B-DPO, MobileUse
achieves a 8.6% performance improvement. Compared to the single agent Qwen2.5-VL-72B-Instruct,



MobileUse significantly increases the success rate by 27.9%. In AndroidLab, MobileUse achieves a
5.9% performance improvement on the task success rate compared to the strongest baseline V-Droid.
It also achieves the best result on the sub-goal success rate. The RRR and ROR are secondary metrics
reflecting each agent step’s redundancy and rationality. Although MobileUse is not optimal in these
two aspects, it just illustrates that our hierarchical reflection mechanism can reflect and correct errors
with more execution steps, achieving a better performance on the overall success rate.

Table 2: Success Rate (%) on the AndroidWorld benchmark.

Method Model SRt
InfiGUIAgent (Liu et al.,[2025a) InfiGUIAgent-2B 9.0
CogAgent (Hong et al., 2024b) CogAgent-9B-20241220 9.0
Gemini (Wang et al.; [2024b) Gemini-1.5-Pro 22.8
Single Aguvis (Xu et al.., 2024b) Aguvis-72B 26.1
Agent Claude (Anthropic}|2024) Claude Computer-Use 279
GPT-40 (Hurst et al.,[2024) GPT-40 34.5
Qwen2.5-VL (Bai et al.,|2025) Qwen2.5-VL-72B-Instruct 35.0
UI-TARS (Qin et al.,[2025) UI-TARS-72B-SFT 46.6
V-Droid (Dai et al., [2025) V-Droid 59.5
M3A (Rawles et al .} [2025) GPT-4 Turbo 30.6
UGround (Gou et al.,[2025) GPT-40 + UGround 32.8
Aguvis (Xu et al., [2024b)) GPT-40 + Aguvis-7B 37.1
Multi- Mobile-Agent-v2 (Wang et al.,[2024a) Qwen2.5-VL-72B-Instruct 37.1
Agent  Aria-Ul (Yang et al.;[2024b) GPT-40 + Aria-Ul 44.8
AndroidGen (Lai et al.| [2025) GPT-40 46.8
Agent-S2 (Agashe et al.,2025) Claude-3.7-Sonnet + UI-TARS-72B-DPO  54.3
MobileUse (Ours) Qwen2.5-VL-72B-Instruct 62.9

Table 3: Results on the AndroidLab benchmark. SR, Sub-SR, RRR, and ROR represent Success Rate,
Sub-Goal Success Rate, Reversed Redundancy Ratio, and Reasonable Operation Ratio, respectively.

Model SRT  Sub-SRT RRR?T ROR?
CogVLM2-ft (Hong et al.,|2024a) 11.59 16.06 57.37 85.58
Qwen2.5-VL-72B-Instruct (Bai et al.,[2025) 17.52 24.00 73.60 81.92
Gemini-1.5-Pro (Wang et al.| [2024b) 18.84 22.40 57.72 83.99
Qwen2-7B-ft (Yang et al.,[2024a) 19.57 24.40 77.31 92.48
LLaMA3.1-8B-ft (Grattafiori et al., 2024) 23.91 30.31 75.58 92.46
Claude-3.5-Sonnet (Anthropic [2024) 28.99 32.66 11341 81.16
GPT-40 (Hurst et al., [2024) 31.16 35.02 87.32 85.36
AutoGL(Liu et al.,[2024) 36.20 - - -

V-Droid (Dai et al.,|2025) 38.30 - - -

MobileUse (Ours) 44.20 50.01 74.40 88.50

4.3 Ablation Study

Table 4: Ablation study on the AndroidWorld benchmark.

Method Easy Tasks Medium Tasks  Hard Tasks  Average SR
Base (Operator + Progressor) 65.6 41.1 13.7 49.5

" +) Action Reflector 712 451 227 5517
+) Trajectory Reflector 71.5 46.7 24.7 56.1
+) Global Reflector 70.5 52.8 31.6 58.6
+) Reflection-on-Demand 78.7 50.0 29.0 61.6

" +) Proactive Exploration 836 412 263 629

To assess the impact of hierarchical reflection and proactive exploration on the agent’s performance,
we conduct a comprehensive ablation study on the AndroidWorld benchmark, as shown in Table

*AutoGLM and V-Droid didn’t report the specific results on metrics other than the success rate.



E} In addition to the overall success rate, we also report the success rate on tasks with different
difficulty levels. We can see that each reflector in hierarchical reflection architecture is proven to be
effective, especially for medium- and hard-level tasks. The Reflection-on-Demand strategy leveraged
by the Action Reflector can further improve the performance on easy tasks, suggesting that it can
reduce useless or even erroneous reflection to improve the robustness. After adding these components,
the result achieves a 12.1% SR improvement, demonstrating the effectiveness of our hierarchical
reflection architecture. Additionally, incorporating proactive exploration further improves the SR by
1.3%, and 4.9% on the easy tasks. Proactive Exploration provides an opportunity to interact with the
environment, providing valuable prior knowledge to complete the task. In Appendix[F] we provide a
detailed case study to demonstrate how each module takes effect in the actual task execution process.

4.4 Further Analysis
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Figure 3: Confusion matrix of the task com- Figure 4: Error type analysis with and with- Figure 5: Performance w.r.t. different
pletion with and without hierarchical reflec- out hierarchical reflection on the Android- thresholds of the Reflection-on-Demand
tion on the AndroidWorld benchmark. ‘World benchmark. strategy on the AndroidWorld benchmark.

Hierarchical reflection significantly enhances the agent’s self-correction capability. As depicted
in Figure@, the hierarchical reflection mechanism successfully rectified 18 failed tasks, achieving a
30.51% correction rate with minimal misjudgment at 7.02%. These findings suggest that the hierar-
chical reflection module not only plays a pivotal role in the effective correction of task failures but
also efficiently mitigates the risk of detrimental reflections. Consequently, the efficiency gained from
successful corrections significantly outweighs the inefficiencies caused by occasional misjudgments,
highlighting the module’s positive impact on self-correction processes.

Hierarchical reflection reduces diverse failure modes. In the AndroidWorld benchmark, we
conducted a detailed error task analysis with and without hierarchical reflection. It can be summarized
into six failure types: Planning failures, Navigation failures, Interaction failures, Perception failures,
Grounding failures, and Other failures, which are detailed in Appendix [C} Figure [ illustrates the
impact of hierarchical reflection on different types of task failures in the AndroidWorld benchmark.
Without hierarchical reflection, failures are distributed across various categories such as planning,
perception, navigation, and interaction, with relatively high counts. However, when hierarchical
reflection is applied, there is a noticeable reduction in the number of failures for most error types,
particularly in perception and navigation failure tasks. This indicates that hierarchical reflection
effectively improves task success rates by addressing specific failure modes.

Reflection-on-Demand strategy enhances both performance and efficiency. Here we evaluate
the effect of the Reflection-on-Demand strategy leveraged by the Action Reflector. As shown in
Figure [5] the threshold # = 0 means performing Action Reflection in every step, while § = oo
means disabling the Action Reflector. Notably, with a relatively large threshold # = —0.001, the
number of reflections is reduced while the performance is further improved. This is attributed to the
fact that the Reflection-on-Demand strategy can avoid some erroneous reflections when the action
confidence score is high enough, as shown in Figure [I0] When § = —0.01, although more than
85% of the reflections are omitted, the decrease in the success rate is less than 1.5%. These results
indicate that most of the performance improvement may be attributed to some critical reflections. The
Reflection-on-Demand strategy effectively identifies and preserves these key reflections, enabling
great performance while significantly reducing computational overhead.

4.5 Efficiency

To evaluate the running efficiency of MobileUse and the impact of each module, we calculate the
average execution time for each task on the AndroidWorld benchmark, as shown in Tables [5| and [f]



Table 5: Efficiency comparison of different Table 6: Efficiency of each hierarchical reflection

methods on the AndroidWorld benchmark. module on the AndroidWorld benchmark.
Method Time (s / Task) SR Module Time (s / Task)
M3A (screen + ally tree) 234 254 . _
M3A (al ly tree) 150 30.6 ﬁcgon Eegect"r (z = 0)0 o1 1%06
Mobile-Agent-v2 319 37.1 ction Reflector (¢ = —0.01) :
MobileUse (9 = 0) 359 58.6 Trajectory Reflector 13.2
MobileUse (8 = —0.01) 279 57.8 Global Reflector 7.7

Here, 6 = 0 indicates the deactivation of the Reflection-on-Demand mechanism, meaning that the
Action Reflection is performed at every step. We can find:

MobileUse achieves both efficiency and performance gains. Under the same backbone (Qwen2.5-
VL-72B), MobileUse with Reflection-on-Demand runs faster than Mobile-Agent-v2 and achieves a
much higher success rate on AndroidWorld (>20%), demonstrating the effectiveness of our hierarchi-
cal reflection design. Although M3A is relatively more efficient, this advantage is not sufficient to
offset the performance gap compared to MobileUse. Furthermore, M3A includes the ally tree as
input, whereas MobileUse relies solely on screenshots, which makes it more generalizable across a
wider range of mobile environments.

Hierarchical reflection adds minimal latency. With full reflection enabled, the Action, Trajectory,
and Global Reflectors contribute approximately 25%, 3.5%, and 2% of the total time, respectively.
When applying our Reflection-on-Demand strategy, the reflection overhead is significantly reduced
to 10%, while the success rate drops by less than 1%, showing that unnecessary computation is
effectively avoided without sacrificing performance.

Proactive exploration achieves cost-effective efficiency. We set the total number of exploration
steps to 100 per app, with a time cost of 19.5 seconds per step, allowing each app’s exploration to be
completed within an hour. Notably, exploration is conducted only once per app, and the knowledge
accumulated is shared across multiple downstream tasks, making the exploration cost amortizable
and enhancing its practicality in real-world deployments.

5 Limitations and Future Work

Despite the promising results of MobileUse, there still exists some limitations: 1) MobileUse relies
on the strong instruction-following, reasoning, and grounding capabilities of the foundational model,
which may limit the generalizability to smaller models or edge deployment. 2) The current proactive
exploration module relies on the agent’s inherent capabilities to explore the environment. 3) The tasks
requiring human validation (e.g., biometric login, payment confirmation) are not explicitly discussed.

In the future, we will try to improve the performance of MobileUse with smaller models by adjusting
the agent framework or developing specialized vision-language models. To further optimize the
proactive exploration module, we will design a reward-oriented exploration process to improve the
exploration efficiency. Additionally, we will involve human-in-the-loop security confirmations into
our frameworks to ensure real-world deployment.

6 Conclusion

In this work, we introduce MobileUse, a novel GUI agent designed to robustly automate complex
mobile tasks through a hierarchical reflection architecture. Our approach addresses critical challenges
in mobile environments, including long-horizon task robustness, difficulty in error recovery, and
cold-start adaptation. Extensive experiments on the AndroidWorld and AndroidL.ab benchmarks
demonstrate that MobileUse establishes new state-of-the-art performance, achieving success rates of
62.9% and 44.2%, respectively. To bridge research and real-world utility, we release the MobileUse
Toolkit—a lightweight, modular system for physical mobile device automation. This enables both
practical deployment and future research extensions in mobile automation.
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A Broader Impacts

The proposed MobileUse framework advances mobile task automation through its hierarchical
reflection architecture and proactive exploration module, offering significant positive implications:

Efficiency and Accessibility Gains. MobileUse automates repetitive or complex tasks (e.g., form
filling, multi-step navigation), reducing manual input and cognitive load. This improves efficiency in
professional workflows and enhances accessibility for users with physical or visual impairments by
enabling seamless interaction via automated gestures and screen parsing.

Progress in Multimodal Interaction. By integrating vision-language models for real-time screen
understanding and task execution, MobileUse advances the state-of-the-art in mobile GUI automation.
It provides a practical framework for applying multimodal models in dynamic real-world scenarios,
fostering innovation in human-AlI collaboration frameworks for mobile platforms.

However, current GUI agent capabilities are still limited, leading to concerns about privacy and
security. The automation of mobile tasks by intelligent agents necessarily involves access to sensitive
on-screen content, user inputs, and application states. Without careful design of data handling and
permission control, such systems could increase the risk of privacy leakage, unauthorized actions, or
exploitation by malicious actors. This highlights the importance of incorporating strong safeguards
and transparent audit mechanisms.

B Action Space

Table 7: Action space.

Action Type Parameters Description
Perform a key event on the device using ADB syntax.
key text .
Examples include volume_up, power, clear.
click coordinate Click the screen at the specified (x, y) coordinate.
coordinate, Press and hold on the screen at (x, y) for a specified
long_press .
time number of seconds.
. coordinatel, Swipe from the starting coordinate (x1, y1) to the
swipe . .
coordinate? end coordinate (x2, y2).
type text Input text into the currently focused input box.
clear_text \ Clear the content of the active input box.
system_button button Press a system button: Back, Home, Menu, or Enter.
open text Launch an app on the device by name.
wait time Wait for a specified number of seconds.
take_note text Save observed text on the current screen for future use.
answer text Answer the user query.
. Terminate the current task and report whether it was a
terminate status

success or failure.

C Failure Types

The failure types on AndroidWorld benchmark with and without hierarchical reflection.
* Planning failures, whether the agent produces action is incorrect, insufficient, or early
termination.

* Navigation failures, where the agent struggles to find a certain element or function, suggest-
ing deficiencies in layout understanding and navigation.

* Interaction failures, where the agent is unable to successfully manipulate an element,
reflecting a lack of domain knowledge of GUI interactions.
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* Perception failures, where the agent is misunderstanding the text content on the screen or
the function of the icon.

* Grounding failures, where the agent produces inaccurate coordinates for the language
description provided.

* Other failures, the other types of failures, for example, incorrect answers.

D More Experimental Details

D.1 Experiments Compute Resources

Our experiments are training-free and utilize two types of computational resources. The first type is
the multi-modal large language model service, which we deploy using vLLM(Kwon et al., 2023)) on
a machine running Ubuntu 20.04 with 8 CPU cores, 100 GB of memory, and 4 A100 GPUs (each
with 80 GB of VRAM). The second type of resource is used for running benchmark evaluations,
which require 4 CPU cores and 8 GB of memory. We note that in the absence of GPU resources, the
multi-modal large language model service can alternatively be replaced by third-party APIs.

D.2 Experiments on Different Model Size

Table 8: Success Rate (%) of MobileUse with different model sizes on the AndroidWorld benchmark.

Model Success Rate
MobileUse (Qwen2.5-VL-7B-Instruct) 21.6
MobileUse (Qwen2.5-VL-32B-Instruct) 44 4
MobileUse (Qwen2.5-VL-72B-Instruct) 62.9

Here we change the backbone VLLM of MobileUse to assess how model size affects the agent’s
performance, as shown in Table@ When using Qwen2.5-VL-7B-Instruct, the success rate becomes
very low. This is because the 7B model lacks the basic instruction-following ability. The hierar-
chical reflection and proactive exploration mechanism are almost useless with the 7B model. The
performance of MobileUse with the Qwen2.5-VL-32B-Instruct model improves a lot. Insufficient
grounding and complex reasoning capabilities prevent it from achieving better performance. With the
72B model, MobileUse achieves the SOTA results. With accurate grounding and powerful reasoning
ability of the foundation model, MobileUse can realize its huge potential for solving complex mobile
operation tasks.

E MobileUse Toolkit

We develop the MobileUse Framework as a lightweight, modular, and pluggable toolkit. Based on
Android Debug Bridge (ADB), this toolkit achieves seamless connectivity with a physical mobile
device. Integrated with Gradio(Abid et al.,[2019), it provides a visual web interface where users can
input commands through a web browser to drive automated smartphone operations and monitor the
execution process of the agent in real time. The MobileUse Toolkit enables end-users to achieve one-
click smartphone automation and intuitively experience the capabilities of GUI Agents. Furthermore,
its flexible design supports the activation, deactivation, and customization of reflection mechanisms at
various stages of hierarchical reflection, offering researchers an effective platform for experimentation
and extension.

As shown in Figure|[d] to use the Tookit, firstly users need to connect their phone to the computer via
ADB. Next, install the MobileUse ToolKit on the computer and launch the WebUI service, which can
be opened with the URL http://127.0.0.1:7860 in a browser. After that, configure the VLM service
on the webpage, enter task commands in the input box, and click run. At this point, the MobileUse
agent will automatically operate the phone and display the execution process on the webpage.
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Figure 6: The illustration of MobileUse Toolkit automating mobile phone operations via ADB.

F Case Study

Figure[7] [8] and [0]show how the Action, Trajectory, and Global Reflector work to correct errors for
robust task execution. Figure|10|shows that the Reflection-on-Demand strategy can avoid incorrect
reflection. Figure [IT]shows how proactive exploration can provide useful knowledge to help with the
task execution.

Goal: Record an audio clip and save it with name "presentation fGwr.m4a" using Audio Recorder app.

type(text=presentati click(coordinate=

on_fGwr.mda) (540, 740)) clearity

Action Reflector

Newrame ! The last action did not meet the 3 New rama
i expectation. The text field was
' not cleared before typing
! "presentation_fGwr.m4a,"
i resulting in the text "Record-
i lpresentation_fGwr.m4a"
i being entered instead of just

New name

Record-Ipresentation_fGwr.mda Record-Ipresentat@n_fGwr.mda

[ Donitask again O Dont ask again [ oorit ask again

"presentation fGwr.m4a." This =HCITIEILES ©

afwle]r]t]y]u]ifo]e indicates that the action of | @™ ety v iop| awertyuiop
alsldlflglhlilk|l clearing the text field was not afs]dlflglblilk]! alsidlflafhljlk]!
el 2| |c v bin|m e performed before typing the 8 2| |c v bin|m e g 2| |c|v]b n m el
3, O . & . N€EW name. 1 "3, O . & 73 © . &4

Figure 7: A case of the Action Reflection. The Operator doesn’t realize that there is a default name
in the input box and enters the new file name directly. The Action Reflector detects this error and
provides feedback to the Operator. In the next step, the operator successfully clears the text box and
enters the correct file name based on the feedback information.
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Goal: Add the following recipes into the Broccoli app: Recipe: Chicken Caesar Salad Wrap description: An ideal recipe for experimenting
with different flavors and ingredients. servings: ......
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Figure 8: A case of the Trajectory Reflection. The Operator wants to click on the input box below, but
due to the presence of the keyboard, the Operator is stuck in the wrong action loop. The Trajectory
Reflector detects repeated actions and guides the operator in trying different operations. Finally, the
Operator finds the new input box by swiping up.

Goal: Open the file task.html in Downloads in the file manager; when prompted open it with Chrome.
Then navigate the X to the bottom-right cell, by using the direction buttons.
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Figure 9: A case of the Global Reflection. The operator doesn’t complete the user’s instruction and
ends the task prematurely. The Global Reflector successfully detects this error and feeds back to the
operator. Finally, the task is successfully finished.
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Goal: Create a timer with 0 hours, 16 minutes, and 35 seconds. Do not start the timer.

w/o Reflection-on-demand
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screenshot after the action
shows that the timer is set to
01 minute and 63 seconds,
which is not the expected
result. This indicates that the
action did not correctly set the
timer to 0 hours, 16 minutes,
and 35 seconds. The failure
may be due to an incorrect tap
or a misinterpretation of the
_timer's input method.
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Figure 10: A case of the Reflection-on-Demand strategy. When the Reflection-on-Demand strategy is
not used, the Action Reflector generates a wrong reflection, causing the Operator to make an incorrect
action in the next step. When the Reflection-on-Demand strategy is used, since the confidence score
of each step is higher than the threshold, the Action Reflector is not triggered, and the Operator
successfully completes the task.
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Goal: What are my high priority tasks in Tasks app? Answer with the titles only. If there are multiples titles, format
your answer in a comma separated list.

w/o Proactive Exploration w/ Proactive Exploration
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Figure 11: A case of the Proactive Exploration. Without exploration of the task app, the agent
doesn’t know which tasks are high priority and gives incorrect answers. After performing proactive
exploration, the agent acquires knowledge about high-priority tasks, which helps him find and identify
high-priority tasks during task execution and finally generates the correct answer.

G Examples of the Collected Knowledge in the Proactive Exploration Stage

Figure[T2] 3] and[T4]show the Knowledge collected from the Tasks, RetroMusic, and Camera apps.

Knowledge collected from the Tasks app.

1, Clicking the microphone icon in the App main page does not seem to produce any visible changes in the current view. The task list remains the
same, and no new elements or options appear. This suggests that the microphone icon might be intended for voice input or commands, but its effects
are not visually represented in the current display.

2, The App main page displays a list of tasks with checkboxes for completion status. Different colors in the checkboxes indicate varying levels of
priority or status. For example, a red checkbox might signify a high-priority task, while a yellow checkbox could indicate a medium-priority task. A
blue checkbox with a checkmark signifies a completed task.

3, The task list includes detailed descriptions for each task, such as "Send an update™ for attending a training session and "Follow up with others" for
client follow-up. These descriptions provide additional context for the tasks.

4, The bottom of the App main page features a floating action button with a plus sign, which is likely used to add new tasks. Other icons at the bottom,
such as the microphone and menu icons, offer additional functionalities, though their specific effects are not visually apparent in the current view.

5, In the task creation section, clicking on the "Task name" field allows for the input of a new task name. The keyboard appears, enabling the user to
type the task details. The task creation section also includes options for setting a start date, due date, and priority level, as well as adding a location and
tags. The priority levels are indicated by different colored circles: gray for low, blue for medium, yellow for high, and red for critical.

6, In the location selection interface, clicking the red circular icon with a location symbol centers the map on the current location. This action does not
change the visual elements significantly but adjusts the map's focus to the user's current geographical position. The interface includes a search bar for
entering location names and a prompt to "Select this location," indicating the user can confirm the chosen location for further actions.

7, When a "Missing permissions" dialog appears, indicating that location permissions are needed to find the current location, clicking the "OK" button
does not dismiss the dialog. This suggests that the App requires explicit permission handling for location services, and the user must grant these
permissions through the device's settings or a subsequent prompt.

8, In the certificate verification interface, the App prompts the user to trust an unknown certificate. The interface displays the X509 certificate details,
including the issuer, validity period, and fingerprints. The user can choose to accept or reject the certificate. Selecting the "ACCEPT" option does not
change the interface, indicating that additional steps or conditions, such as manual verification of the fingerprint, might be required before the
certificate is trusted.

Figure 12: Knowledge collected from the Tasks app.
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Knowledge collected from the RetroMusic app.

1, The App main page provides options like History, Last added, Most played, and Shuffle, each with distinct icons for quick access.
2, The Suggestions section displays a New Music Mix and other music options, allowing users to explore new tracks.

3, The Recent artists section lists artists like George, enabling users to access their music directly.

4, The Recent albums section shows albums such as Music, providing easy navigation to recent music collections.

5, The bottom navigation bar includes icons for For you, Music, and other categories, facilitating seamless navigation within the App.
6, The artist detail section for George includes options like Play all and Shuffle, allowing users to listen to the artist's music in
different ways. The section also displays the artist's album, providing direct access to their music collection.

7, The Song section under the artist detail for George lists individual tracks like "City of Stars," enabling users to play specific songs
directly. The interface supports swiping to reveal more content, enhancing user interaction and exploration of the artist's music.

8, The artist detail section for George includes a visual representation of the artist with a placeholder icon, providing a clear and
organized view of the artist's information and music options.

9, Clicking on a song title in the Song section under the artist detail for George initiates playback of the selected track, as indicated
by the now-playing bar at the bottom of the App main page. This feature allows users to start listening to a specific song immediately.
10, The album detail section for Music includes options like Play all and Shuffle, allowing users to listen to the alboum's music in
different ways. The section also lists individual songs like "Bright Lights" and "Chasing Shadows," enabling users to play specific
tracks directly. The interface supports swiping to reveal more content, enhancing user interaction and exploration of the album's
music.

11, The artist detail section for George includes a visual representation of the artist with a placeholder icon, providing a clear and
organized view of the artist's information and music options. The interface supports swiping to reveal more content, enhancing user
interaction and exploration of the artist's music.

12, The now-playing interface shows the currently playing song, "City of Stars" by George, with a progress bar indicating the
elapsed time. It includes playback controls such as pause, skip, and shuffle, allowing users to manage their music playback.
Additional options like adding the song to a playlist or queue are also available, enhancing the user's music listening experience.

13, The now-playing interface also features a three-dot menu that reveals additional options for the song, including Playback Speed,
Drive mode, Go to album, Go to artist, Add to playlist, Save playing queue, Share, Set as ringtone, Clear playing queue, Details, Go
to Lyrics, Equalizer, and Delete from device. These options provide users with extensive control over their music experience and
management.

14, The Share option in the now-playing interface allows users to choose what they want to share, such as the audio file, a status
update about the currently playing song, or a story. This feature enhances the user's ability to share their music experience with others.
15, After selecting the "Share story" option, the interface displays a preview of the story to be shared, including the song title "City of
Stars" and the artist name "George." The "Share to Stories" button allows users to finalize and share the story, providing a seamless
way to share their current music experience.

16, The interface after clicking the back arrow from the "Share story" preview returns to the now-playing interface, where users can
continue managing their music playback and access additional options. This ensures a smooth transition and maintains the user's
control over their music experience.

17, The now-playing interface includes a lyrics section that can be accessed by clicking the lyrics icon. If no lyrics are found, a
message indicating “No lyrics found" is displayed. This feature allows users to view synchronized lyrics while listening to the song,
enhancing their music listening experience.

18, Swiping on the now-playing interface reveals more content, such as the progress bar and additional playback controls, enhancing
the user's ability to manage their music playback and explore more options.

19, The now-playing interface includes a sleep timer feature that allows users to set a specific duration for the music to play before
stopping. Users can adjust the timer using a slider and choose whether to finish the last song before stopping. The "Start" button
initiates the sleep timer, providing a convenient way to manage music playback during sleep or rest periods.

20, After setting the sleep timer and returning to the now-playing interface, users can continue managing their music playback and
access additional options, ensuring a seamless and uninterrupted music experience.

21, The now-playing interface includes a "Now playing queue" section that displays the current song and upcoming tracks. Users can
manage the queue by adding or removing songs, and there is a "Clear queue™ button to remove all songs from the queue. This feature
provides users with control over their music playlist and allows for easy queue management.

Figure 13: Knowledge collected from the RetroMusic app.
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Knowledge collected from the Camera app.

1, The App main page provides options for selecting different modes, such as "MODE LIST" and "FILMSTRIP". Clicking "MODE
LIST" reveals a menu with "Camera" and "Video" options, indicating the ability to switch between photo and video modes.

2, The App main page includes a camera icon at the bottom, which likely serves as a shortcut to capture photos or videos directly.
3, A settings icon is visible, suggesting access to configuration options for adjusting resolution, quality, and advanced features.

4, The "Z+" and "Z-" buttons at the top indicate functionality for zooming in and out, enhancing the user's control over the view.

5, The App main page displays a room scene with a TV, bookshelf, and window, providing a visual context for the camera's view.
6, After clicking "MODE LIST", the App main page transitions to a view where the camera is ready to capture images, with the
camera icon at the bottom becoming active and ready for use. The three-dot menu at the bottom right likely provides additional
options or settings related to the current mode.

7, Clicking "FILMSTRIP" transitions the App to a new view, which appears to be a blank or loading state, possibly indicating a
section for viewing or managing captured images or videos.

8, The three-dot menu in the top right corner of the App main page reveals a "Details" option, suggesting additional information or
settings can be accessed from this menu.

Figure 14: Knowledge collected from the Camera app.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper’s contributions and scope are clearly claimed in the abstract and
introduction.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We include a seperate "Limitations" section in the paper.
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We release the code for reproduction.
Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We provide code in the supplemental material.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We have detailed the experimental settings.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We can’t conduct significance experiments since most of the baselines are not
open-source.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide detailed information on the computer resources in the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We strictly follow the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the broader impacts in the Appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No data or model is released in this paper.
Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We state the used asset in the README file of our code.
Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We provide a detailed document for our code.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: We use Qwen2.5-VL-72B-Instruct as our backbone model.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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