

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FORMALISING HUMAN-IN-THE-LOOP: COMPUTATIONAL REDUCTIONS, FAILURE MODES, AND LEGAL–MORAL RESPONSIBILITY

Anonymous authors

Paper under double-blind review

ABSTRACT

We use the notion of oracle machines and reductions from computability theory to formalise different Human-in-the-loop (HITL) setups for AI systems, distinguishing between trivial human monitoring (i.e., total functions), single endpoint human action (i.e., many-one reductions), and highly involved human–AI interaction (i.e., Turing reductions). We then proceed to show that the legal status and safety of different setups vary greatly. We present a taxonomy to categorise HITL failure modes, highlighting the practical limitations of HITL setups. We then identify omissions in UK and EU legal frameworks, which focus on HITL setups that may not always achieve the desired ethical, legal, and sociotechnical outcomes. We suggest areas where the law should recognise the effectiveness of different HITL setups and assign responsibility in these contexts, avoiding human ‘scapegoating’. Our work shows an unavoidable trade-off between attribution of legal responsibility, and technical explainability. Overall, we show how HITL setups involve many technical design decisions, and can be prone to failures out of the humans’ control. Our formalisation and taxonomy opens up a new analytic perspective on the challenges in creating HITL setups, helping inform AI developers and lawmakers on designing HITL setups to better achieve their desired outcomes.

1 INTRODUCTION

Human-in-the-loop (HITL)—the practice of embedding human oversight into a computational machine, such as an Automated Decision Making System (ADMS) or AI system—is frequently invoked as a safeguard to ensure AI safety and accountability (Green, 2022). We show that the effectiveness of HITL for satisfying both safety and regulatory requirements hinges critically on the specifics of the ADMS’s design and implementation. We present a novel formalisation of HITL setups as computational reductions (§2.1). We analyse those corresponding to total functions, many-one reductions, and Turing reductions, showing that each leads to vastly different safety outcomes. Existing legal frameworks, such as Article 22 of GDPR (2016) and Article 14 of EU AI Act (2024) only consider HITL under a simplistic view, and do not account for the variety of setups we show possible. And so, we clarify the various outcomes (§2), failure modes (§3), and legal and moral responsibilities (§4) associated with each of our setups. We further demonstrate an inherent, ever present tension when using HITL, whereby setups with increased human interpretability and explainability hinder clear attribution of responsibility, and vice versa (§4.3). Ultimately, HITL is no panacea to the problem of ADMS safety, and we identify six concrete suggestions for its effective use (§5).

Although introducing HITL is increasingly a strategic choice to improve sociotechnical systems (Grønsund & Aanestad, 2020), our focus is not on optimising the average-case performance, but rather on ensuring safety, reliability, and robustness. We are primarily concerned with preventing ADMS-related harms by recognising that different degrees of human involvement in HITL setups carry varied technical and ethical implications that should be recognised by the law. Our perspective therefore asks when a HITL setup represents genuine and meaningful human control of an ADMS, and encompasses its moral, legal and political ideals of keeping ‘social control’ over technology (Abbink et al., 2024). Our manuscript responds to the question of when, if ever, should we use HITL? And how can we select HITL setups in order to minimise *harm* and *risk* and thus ensure *safety* (all defined in A.1)? (cf. Pillar 1 in Chiodo & Müller (2025)).

054 Much terminology exists for human–ADMS interactions. HITL setups have humans actively integrated into the ADMS’s deployment cycle (we do not cover human input in training or development).
 055 Human-on-the-loop (HOTL) have humans acting as supervisors, intervening only when necessary.
 056 Setups where the ADMS operates without direct human intervention are termed Human-out-of-the-
 057 loop (HOOTL). Human-in-Command (HIC) has humans determine the high-level functioning of
 058 the ADMS. Meaningful Human Control (MHC) was introduced to study what influence a human
 059 should have on the execution of an action and what levels of cognitive and moral awareness they
 060 need. Further discourse on these terms is given in A.2. Our work demonstrates how different HITL
 061 setups can be generalised and formalised using computability theory, unifying these related but
 062 disparate concepts. Such formalism creates a general framework to analyse HITL setups across varied
 063 contexts, and provides a consistent way for regulators to examine HITL involvement where required
 064 by law, thereby also reducing the ability for companies to introduce tokenistic HITL setups.
 065

066 Though intended to protect society, HITL setups can end up protecting the ADMS instead, with the
 067 human becoming the ‘moral crumple zone’ taking on accountability and enabling potentially faulty
 068 ADMSs to persist (Elish, 2019). Hence, a closer scrutiny of HITL setups and their failure modes
 069 is necessary. The lack of a well-defined formal meaning of what HITL can and does involve, and
 070 why HITL may be beneficial in sociotechnical systems, is a recognised problem. And yet, having
 071 a HITL setup is frequently presented as a critical safety measure, even in high-risk domains (with
 072 supporting details in A.3). Recognising the different degrees to which humans are, and should be,
 073 involved in HITL setups, we present a classification of these using computational reductions. Our
 074 primary contributions are threefold. In §2 we give a novel formalisation of HITL setups which
 075 unifies various known HITL categorisations and identify a fundamental distinction within HITL
 076 setups. In §3 we give a taxonomy of failure modes and ethical concerns for HITL setups and find
 077 they are correlated with our distinction. And in §4 we consider what HITL setups the law requires
 078 and how responsibility is assigned when they fail. In doing so, we contextualise the failure modes
 079 and categories of HITL setups to highlight ways laws can be improved to ensure safety and efficacy.
 080 Our work also uncovers an unavoidable trade-off between responsibility and explainability in HITL
 081 setups.

082 2 COMPUTATIONAL REDUCTIONS FOR HITL SETUPS

083 This section aims to characterise computationally distinct HITL setups, using the concept of reductions. An **oracle machine** is a deterministic automaton T^* on a fixed language W with a work tape,
 084 an extra ‘oracle tape’, and some states marked as ‘oracle states’. For any function $f : W \rightarrow W$, T^*
 085 gives rise to a ‘machine with oracle’ T^f , whose computations proceed as usual, but which whenever
 086 it enters an oracle state has the content $w \in W$ of the oracle tape (instantly) replaced by $f(w)$;
 087 whenever T^* halts, it outputs the oracle tape. This definition is reminiscent of the notions of \exists -non-
 088 determinism and random automata, in that T^* by itself defines, for any input, a computation tree
 089 that contains all possible behaviours depending on the behaviour in the oracle states (respectively,
 090 the non-deterministic states or the random states). The difference is in semantics, as the result of one
 091 computation is not defined by some general property of the computation tree, but by ‘plugging in’
 092 f and thus resolving all the choices with f . A discussion of oracle machines can be found in Soare
 093 (1987, Chapter III, Section 1); we adopt here a variation of the terminology from van Melkebeek
 094 (2000, Section 2.4). Our analysis is concerned with how the computational power of T^f varies with
 095 T^* , rather than with f . The most salient distinction for us is that between machines which only call
 096 f once, and those which call f an unbounded number of times. These correspond to two different
 097 notions of ‘reduction’ between functions f and g : if there is an oracle machine T^* such that T^f
 098 computes g , one says g is **Turing-reducible** to f . If moreover T^* is such that it halts immediately
 099 after its first call of the oracle, then one says g is **many-one reducible** to f .
 100

101 Observe that an oracle call may be rather trivial. T^* might ignore the content of the oracle tape,
 102 in which case the choice of f does not matter. Even if T^* reads/writes from the oracle tape, its
 103 computational result might not depend on these steps. However, our concern lies with the *function*
 104 defined by T^f , not the machine itself (even though one could examine it to increase computational
 105 transparency). Therefore, we are interested more so in what we define as a **real query**, which we
 106 say occurs at an oracle call if a fork exists at that point in the computation tree *and* not all branches
 107 have the same set of possible outputs. The former of these ensures the oracle can still have some

108 meaningful impact on the computation, and the latter ensures we avoid an ‘all roads lead to Rome’
 109 scenario where the machine can take multiple computational paths all leading to the same output.
 110

111 **2.1 HITL SETUPS AS A COMPUTATIONAL REDUCTION**

113 We propose describing human–machine systems in terms of this formalism. Any human–machine
 114 computational process uses algorithmic components at some points and human interventions at oth-
 115 ers. We hence conceive of a HITL setup as a type of Human-Based Computation (Yuen et al., 2009),
 116 in that the machine assigns particular tasks or problems to one or more humans to solve. Our per-
 117 spective is different to how the term is typically used. We are not interested in large-scale human
 118 knowledge, but rather in the specialised knowledge of individuals. And the human is not the subor-
 119 dinate labourer of the machine or a simple assistant, but rather is in symbiosis with the entire system.
 120 We now examine this to see what computational synergy can exist between human and machine.

121 The architecture of a decision-making process including the algorithmic specifications corresponds
 122 to the oracle machine T^* . The function f is provided by the human: at certain points in the process,
 123 human *judgment* on values and data enters the computation, which corresponds to T^* calling the
 124 oracle, and which we denote as a **human query**. We do not assume the human is ‘correct’ (see §3.1
 125 for HITL failure modes), or even deterministic (for supporting details on how we see the human’s
 126 role, see B.1). Here we include human interventions that are otherwise uninvited by the machine;
 127 computationally, it makes no difference what precipitated the human input (though in reality this
 128 still needs to be considered for evaluating safety). In response to a human query, we also allow the
 129 human to write an ‘emergency stop’ symbol to the oracle tape, denoted by $!$; whenever the machine
 130 reads $!$ on the tape it halts immediately with no output. Note that the possibility to halt after a query
 131 with no output does not count towards the set of computational outcomes when determining if a
 132 query is real.

133 If an oracle machine is set up to never ask a human query, and humans have no way to intervene
 134 or stop its operation, this corresponds to a HOTL from §1; we will not cover this further. If an
 135 oracle machine is set up to ask human queries, but none are real queries, then we denote this as a
human trivially monitoring the loop, abbreviated to **trivial monitoring**. This corresponds to a
 136 HOTL setup from §1, but where the human is only able to stop the process; note they may do so at
 137 any stage in the computation, even if not explicitly asked. Computationally, in a trivial monitoring
 138 setup, the human is not affecting the computational steps of the machine in any meaningful way,
 139 and serves only to prevent the machine from continuing its computation. It is ‘trivial’ only in the
 140 computational sense, while still playing a crucial safety role, as argued by Crootof et al. (2023,
 141 p. 448) when discussing human sign-off requirements by ‘positioning human(s) as end-of-the-loop
 142 gatekeepers’. This means that T^* defines a total function independent of the human. The human can
 143 only decide whether to terminate the machine before it completes its computation (an ‘ignorance is
 144 bliss’ scenario). If an oracle machine is instead set up to ask precisely one real human query and then
 145 immediately halt, giving the answer to that real query as its output, then we denote this as a **human**
 146 **at the end of the loop**, abbreviated to **endpoint action**. Here, the machine does some computation
 147 itself, then hands over to the human to perform the rest. If the oracle machine is set up to always
 148 ask potentially unbounded (and at least two) real queries (i.e., a number not bounded as a total
 149 computable function of the input), we denote this as a **human involved in the loop**, abbreviated
 150 to **involved interaction**. Practically, this is most resembling the scenario of human and machine
 151 working together, where the machine and human engage in a game of computational ping-pong: the
 152 machine does some work, hands over to the human who does some more and then hands back to
 153 the machine, and so forth. For example, a ‘creative’ collaboration with a Large Language Model
 154 (LLM) where the human prompts the LLM to produce an initial response (or ask a question) which
 155 the human uses to determine the next detail they give the LLM, and so on. In endpoint actions and
 156 involved interactions, we also allow the human to stop the machine at any time. Supporting details
 157 and diagrams of these setups are in B.2. Note this is a *theoretical* framing, and in any physical setup
 158 a human will naturally have limitations such as their reaction and response time, maximum amounts
 159 of data they can comprehend, computational steps they might not be able to see or ‘reach’, limits on
 how many queries they can answer, etc. Such limitations are covered later in §3.

160 Thus, in an *involved interaction*, the oracle machine Turing-reduces the computation to the human,
 161 but *does not* many-one reduce it. In an *endpoint action*, the oracle machine many-one reduces the
 computation to the human, but it *does not* define a total function. And in *trivial monitoring*, the

162 human can terminate the machine, but not otherwise influence its computation. Underscoring the
 163 *agency* of the human (its ability to actively impact the system), our setup types are determined by
 164 the *shortest* potential human-machine interaction path in the computational tree, not the longest;
 165 supporting details are given in B.3. We explain with supporting details in B.4 why we choose not
 166 to explicitly study the myriad of intermediate reduction types, as endpoint actions and involved
 167 interactions give the ‘simplest’ and ‘most complicated’ ways a human can interact with a machine.
 168 However, we give further discourse in D.6 on how our remaining analysis in this manuscript applies
 169 to such intermediate reduction types, as well as ways to formalise them into HITL setups.

170 As an example, consider a route-planning machine in a HITL setup with the human driver of a car.
 171 It may demonstrate trivial monitoring (presenting one route for the human to accept or reject), or
 172 endpoint action (presenting the human several routes to choose their preferred one), or involved
 173 interaction (where the human is fully involved in the process, from early choices of where/when to
 174 travel, up to the latter optimisation of different route types, number of stops, etc.); B.5 gives further
 175 discourse on this. With growing reliance on human queries, the agency of the human and therefore
 176 the access of the machine to human values increases, resulting in decisions becoming more adjusted
 177 to human needs.

178
 179
 180
 181

182 2.2 WHY ARE WE CONSIDERING THESE REDUCTIONS?

183
 184

185 Computationally, a Turing reduction between functions is viewed as weaker than a many-one reduction,
 186 because we fix the computational problem first, and then ask what oracles that problem reduces
 187 to. Our considerations with HITL setups (supporting details in B.6) are the opposite; we take a
 188 *fixed oracle* (a human), and see which problems can be solved with that oracle (B.1 gives supporting
 189 details on the sense in which the human is ‘fixed’). Thus, in terms of constructing optimal HITL
 190 setups, an involved interaction allows us to solve the most problems with a given human. We thus
 191 propose that the HITL setups with the greatest potential to achieve human agency, alignment, safety,
 192 transparency, and thus overall reliability, are those with the greatest reliance on human input, i.e.,
 193 involved interactions (with supporting details in B.7). The more real queries made, the more we have
 194 a human *in the loop* (rather than a HOTL). In existing work, Andersen & Maalej (2024) describe 10
 195 *design patterns* for HITL setups, with three centred around HITL during deployment/inference. The
 196 first is the ‘Recommendation System’ where a human makes the final decision based on the machine
 197 output. The second is ‘Active Moderation’ where, for a set of tasks, humans perform them in the
 198 cases where the machine cannot do so reliably. The third option ‘Thumbs up or Thumbs down’ sees
 199 the human either accept or correct the machine output. These are all endpoint actions or trivial mon-
 200 itorings. Notably, none of Andersen & Maalej (2024)’s patterns describe interactions where the task
 201 is aborted rather than corrected—effectively requiring the human to be as capable as the machine
 202 at the initial task (rather than being able to ‘merely’ recognise an error). In §4 we connect this to
 Meaningful Human Control.

203 In a trivial monitoring setup, the human is not involved in the computation between the machine
 204 starting and finishing its work. And so in an opaque ‘black box’ computational process, such as
 205 many ADMSSs, one may have no idea how it was carried out. However, one can begin to ‘unmask’
 206 the black-box if the machine asks real queries, as each precipitates a human-interpretable question
 207 giving *some* information about what the machine is currently ‘doing’ at that point in the computa-
 208 tion. The more real queries, the more effective this unmasking is. In an endpoint action setup,
 209 the machine reveals *one* computational step at the very end, giving *some* insight into its workings.
 210 And in an involved interaction setup, there may be many real queries, revealing insight at many
 211 points throughout the computation. Of course, there may still be ‘black-box’ computation between
 212 these real queries. But rather than one *big* black box, the process appears as many *smaller* black
 213 boxes connected at the points where a human provides input. The machine–human ‘ping-pong’
 214 can be viewed as a *chain of computations* (with supporting details and illustrations in B.8). Thus,
 215 in an involved interaction setup we argue that these smaller black boxes increase *explainability* of
 what went into determining the final output. This chain is relevant again in §4.3 where we discuss
 responsibility within HITL setups.

216 2.3 DETERMINING HITL SETUP TYPES IN PRACTICE
217

218 So how do we *identify* a HITL setup as trivial monitoring, endpoint action, or involved interaction,
219 and why use such formalism? B.9 gives supporting details on why this is important, yet difficult.
220 *Technically*, showing non-existence of a ‘simpler’ reduction is hard, as it cannot be done by example
221 but instead requires deep analysis of the computational process. *Legally*, showing the human will
222 do something meaningful is hard, as asking the human a series of ‘pointless’ questions may violate
223 the legal principles of ‘meaningful’. And *morally*, showing the HITL setup is not simply a facade
224 masking a less-involved process is also hard, as one needs to ensure the machine does not simply
225 ignore answers the human gives (or worse: inverts answers). Overall, our classification of HITL
226 setups into trivial monitoring, endpoint action, and involved interaction outlines what is *possible*
227 with HITL. But identifying such setups, from the technical, legal, and moral perspectives above,
228 is another challenge altogether. We propose that some of the ‘burden of proof’ be shifted onto
229 developers, such as obliging them to demonstrate, and document, various aspects of their ADMS;
230 we argue (with supporting details in B.9) that this makes identification of the setup type a much
231 more manageable problem.

232 Our route-planning example in §2.1 raises questions about the *practicalities* of HITL setups. In
233 the endpoint action scenario, the machine could have instead asked the human a fixed finite series
234 of questions such as ‘Prioritise speed or efficiency?’, ‘Maximum acceptable distance between fuel
235 stations?’, etc., and done computation between each, to find a route. This would *appear* to be an
236 involved interaction (actually a bounded truth table reduction; see supporting details in B.10). How-
237 ever, these could be encapsulated by instead asking the human to choose from a (long) list presented
238 at the end; an endpoint action. But in *practical* terms, asking a human 20 binary questions is much
239 more feasible than presenting 2^{20} options. Computational aspects are *one* consideration in HITL
240 setups; the abilities and limitations of humans are another—they do not operate like abstract or-
241 acles. But, to understand how human input feeds into a HITL setup, and ‘design out’ the failure
242 modes presented in the next section, we must have first understood how the human is involved from
243 a computational perspective.

244 3 HITL FAILURE MODES
245246 3.1 CHARACTERISTICS OF EFFECTIVE HITL SETUPS, AND TAXONOMY OF FAILURE MODES
247

248 According to Sterz et al. (2024), necessary and sufficient conditions for effective (general) oversight
249 of AI are given when the human overseer has 1) an adequate understanding of the system, 2) the self-
250 control to act on their judgment, 3) the power to intervene effectively, and 4) intentions aligned with
251 the oversight goals. They, and others, note that successful oversight depends on many user-specific
252 attributes, including technical skills, domain knowledge, general attitudes towards technology, es-
253 pecially those related to interpreting AI outputs, as well as attributes of the human–machine setup
254 (cf. Sterz et al. (2024); Sudeeptha et al. (2024); Langer et al. (2025b)). The arguments presented in
255 the literature remain at a comparatively abstract level, and do not distinguish by HITL setup. Over-
256 all, as our reductions in §2.1 show, the functioning of HITL setups does not rely on the design of the
257 machine alone, nor on the characteristics of the human overseer, but on how they are put into rela-
258 tion with each other. This complex sociotechnical relationship allows us to turn the theoretical and
259 empirical insights from the literature into practice, and analyse potential failure modes. We present
260 our own taxonomy centred around five main failure categories, giving a partial breakdown of each:

- 261 **1. Failure of the machine components.** These include: Unexpected inputs or outputs, problematic
262 machine evolution or self-adaptation, biased or erroneous outputs, and other unexpected behaviour.
- 263 **2. Failure of the process and workflow.** These include: Insufficient power of the human, insuffi-
264 cient self-control/independence, insufficient reaction time, unrealistic expectations, delayed notifi-
265 cation, insufficient support, and other process and workflow failures.
- 266 **3. Failure at the human–machine interface.** These include: Incomprehensible or incomplete out-
267 puts, complex or poorly designed user interface, insufficient training, and other epistemic failures.
- 268 **4. Failure of the human component.** These include: Cognitive bias, automation bias, fatigue,
269 incongruous intentions, stress or overload, lacking courage, and other human-centric failures.
- 270 **5. Exogenous circumstances.** These include: Unreasonable laws, unreasonable societal expecta-
271 tions, inappropriate workplace requirements, and other external pressures.

270 C.1 gives supporting details on the empirical rationale and literature behind these categories, along
 271 with an extended table of failure modes. The categories are ordered by ‘amount of human-ness’,
 272 from purely digital failure (no human-ness), to failure of social pressure and wider society (vast
 273 human-ness). Our taxonomy covers HITL setups in general computational machines, of which
 274 ADMSs are an example. C.2 gives further discourse showing failure categories 2 and 4 are distinct.
 275

276 3.2 CONNECTIONS TO OUR HITL SETUP TYPES

277 Setups configured for trivial monitoring, where the human cannot provide computationally meaningful
 278 input beyond ‘proceed’ or ‘halt’, may be particularly susceptible to failure modes related to
 279 the human component. The human’s comparatively passive role means that automation bias, fatigue,
 280 or simply lacking the courage or perceived authority to halt a process become significant risks. This
 281 setup can also mask process and workflow design failures, such as the human having insufficient
 282 power to truly intervene or having unrealistic expectations about the level of oversight provided.
 283 Failures originating in the machine components themselves might also proceed unchecked, as the
 284 monitoring human may lack the mechanism or mandate for closer scrutiny.
 285

286 An endpoint action setup relies on a single, critical human input after the machine has performed its
 287 computation, concentrating failure risks around that specific interaction point. Human–machine in-
 288 terface failures become critical: if the machine presents incomprehensible or incomplete outputs, or
 289 if the interface is poorly designed, the human may be unable to make informed decisions. Similarly,
 290 human component failures like cognitive bias can influence their single judgment with no backup
 291 checks present. Failures in process and workflow design, such as insufficient reaction time allowed
 292 for the human or delayed notification that input is required, are also highly relevant here.
 293

294 In an involved interaction with potentially many queries, failure modes quickly become more com-
 295 plex. The back-and-forth nature of the process makes larger design failures (e.g., unclear roles) and
 296 human–machine interface issues more pronounced. While increased interaction might help the hu-
 297 man catch machine failures (and vice-versa), and break down a vast set of options into a manageable
 298 list of choices (see §2.3), it may also lead to unexpected machine behaviour if the machine adapts to
 299 the user in unintended ways. Human failures such as fatigue or stress from prolonged interaction, or
 300 the accumulation of cognitive biases across multiple decision points, can additionally degrade per-
 301 formance over time. Furthermore, the complexity involved can hide superficial engagement with the
 302 machine outputs when quantitative interaction is mistakenly understood as qualitative interaction:
 303 many smaller human–machine interactions may not sufficiently change the machine’s output. Over-
 304 all, while a HITL setup requiring involved interaction gives the human the most power to intervene,
 305 it is also the setup which is most complex, thus leading to more nuanced failure mechanisms.
 306

307 In summary, different failure categories may be more likely for different HITL setups, and each
 308 category can be realised through different failure modes. We believe this taxonomy of five failure
 309 categories is able to capture *most* HITL failures. However, the list below each category should not
 310 be seen as exhaustive, but rather reflects a selection from the wider literature, with further discourse
 311 in C.1. They are here to illustrate that one should not only consider HITL setups via reductions,
 312 but also by simultaneously grouping different failure modes into our categories from §3.1. This
 313 provides a two-dimensional actionable picture of HITL setups focused on harm prevention. Akin to
 314 the oversight of general mathematical technologies (Chioldo & Müller, 2025; Müller et al., 2025),
 315 ignoring entire categories is a likely way to failure, while ignoring individual list items can still
 316 lead to failures in specific contexts. In short, reductions and failure categories should always be
 317 considered together.
 318

319 3.3 EXAMPLES OF HITL SETUP FAILURES

320 This taxonomy enables us to identify where and why real HITL deployments fail. We can apply it
 321 to several case studies of (failed) HITL setups, showing how these setups failed in relation to the
 322 above taxonomy. What comes to light from these is that failures of HITL setups are usually due to
 323 poor integration (Müller et al., 2025), and what is often put down to ‘technical failure’ or ‘human
 324 error’ can actually be avoided if proper integration is carried out (as happened with an ADMS
 325 security scanning setup at a sports stadium, where two firearms were brought through security and
 326 the problem was blamed on ‘human error’; see C.3 for further discourse). To further illustrate
 327 the failure facets of endpoint action HITL setups, C.4 gives further discourse on the catastrophic
 328

324 fire at Notre-Dame Cathedral. Here, we turn to a fatal self-driving car collision involving a trivial
 325 monitoring HITL setup (and C.5 gives further discourse on some mitigations, along the lines of our
 326 taxonomy from §3.1):

327 As presented in Hawkins (2018); Fitzsimmons (2018); NTSB (2019), in March 2018 the first
 328 recorded incident of a pedestrian fatality from a collision with a self-driving car occurred. The
 329 car had a trivial monitoring HITL setup created by Uber, with a human driver (an Uber employee)
 330 at the wheel poised to intervene and ‘take over’ the driving at any point if they observed a problem
 331 with the self-driving mechanism (NTSB, 2019, p. 8). In this HITL setup, the human operator mon-
 332 itored the ADMS responsible for autonomous driving and had the ability to intervene by braking
 333 and/or taking the wheel, but they did not have the ability to change the ADMS’s decision-making
 334 in more complex ways. The human monitor was expected to perpetually ‘hover their hands above
 335 the steering wheel and foot above the brake pedal’ (ibid., p. 12) (unrealistic expectations), without
 336 ever touching them as that would disable the self-driving mode (ibid., p. 11). The car had been in
 337 self-driving mode for 19 minutes before the crash, with no tasks required of the human driver (ibid.,
 338 p. 19) (fatigue, automation bias). The self-driving ADMS first identified the pedestrian 5.6 seconds
 339 before collision, as they were jaywalking across the road. However, as it had not been programmed
 340 to classify a jaywalker (ibid., p. 16), it spent the next 4.1 seconds misclassifying the pedestrian as
 341 ‘another vehicle’, ‘bicycle’, and ‘other’ (ibid., p. 15) (unexpected inputs). The ADMS first pre-
 342 dicted a collision 1.5 seconds before impact and began evasive action; at 0.2 seconds before impact
 343 the ADMS established that impact was inevitable, instigated a controlled slowdown, and gave the
 344 human driver the first warning notification of upcoming impact (ibid., p. 16) (delayed notification,
 345 insufficient reaction time). The human driver had, from 6 seconds before impact, been gazing down
 346 at the control panel (ibid., p. 18), allegedly watching their cellphone (ibid., p. 24) (incongruous
 347 intention). With a warning lead-in time of 0.2 seconds—approximately human reaction time—the
 348 human driver had virtually no time to take control; they took the wheel 0.02 seconds before impact,
 349 and the car then hit the pedestrian. The entire HITL setup was affected by a poor safety culture
 350 (ibid., p. 38) (insufficient support, other external pressures). In this example, the failure cascade
 351 spans across our taxonomy: (1) the ADMS components failed by not recognising the pedestrian, (2)
 352 the workflow failed as the human allegedly was not embedded in a supporting safety-culture and
 353 had insufficient reaction time and unrealistic expectations, (3) the human–machine interface setup
 354 failed by allowing an environment whereby the human could watch a video, and (4) the human
 355 failed by being inattentive. However, one key further failure of this setup arose post-incident, when
 356 the law failed to hold the company accountable in any way or form (corresponding to (5) from our
 357 taxonomy), which brings us the final aspect of our manuscript: responsibility.

358 4 LEGAL–MORAL RESPONSIBILITY

360 We now narrow our focus to ADMSs. If a HITL setup fails and causes harm, the law and morality
 361 investigate what went wrong and who is at fault. The Uber case (§3.3) highlights the challenges
 362 when legal frameworks intersect with HITL failure modes. In this case, both criminal and civil
 363 liability fell on the Uber *employee*; the human operating the car. This was despite allegations that
 364 Uber’s technology was flawed (i.e., not recognising the jaywalking pedestrian) and the company’s
 365 poor safety culture (for case details, see Stamp (2024)). In the final section of this manuscript, as a
 366 ‘proof of concept’ we consider relevant (EU, UK) legal frameworks concerning design setups and
 367 liability (D.1 gives supporting details on why we chose these jurisdictions) and point to ways that
 368 they can be improved by incorporating our formalisation of HITL setups. We also identify a trade-
 369 off between responsibility and explainability in choosing setups. Though, in all HITL setups where
 370 responsibility gaps emerge, we argue that there should be a more nuanced approach to liability, to
 371 avoid the scapegoating of humans to shield technology companies like in the Uber case.

372 4.1 HITL SETUPS AND THE LAW

373 The UK and EU General Data Protection Regulation (the *GDPR*, which only applies to *personal*
 374 data processing (Article 4(1) GDPR)) and the EU AI Act have imposed requirements for human
 375 oversight mechanisms to be implemented for automated decision making and *high-risk AI* (see Arti-
 376 cle 6 and Annex III of the EU AI Act). Both legal frameworks take a ‘by design’ approach, requiring
 377 developers to embed certain safety mechanisms into the technical setup of their ADMSs before they

378 are deployed. This means that the law does not only threaten legal liability when things go wrong
 379 (discussed later in §4.4), but it also mandates measures to *prevent* harm from occurring. Given the
 380 focus of the GDPR and EU AI Act in relation to HITL, lawmakers have acknowledged that HITL
 381 setups are a crucial tool to prevent harm in high-stakes scenarios like biometrics, law enforcement,
 382 and employment (EU AI Act, 2024, Annex III and GDPR, 2016, Article 22(1)).

383 Article 22(1) of the GDPR governs ‘solely automated decisions’, generally prohibiting trivial monitoring
 384 setups (with supporting details in D.2) that could cause legal effects (or similar) on individuals, like credit applications or e-recruiting practices (Vollmer, 2023, Recital 71, GDPR). To go
 385 beyond trivial monitoring and avoid falling within the scope Article 22 (which requires consent and
 386 other safeguarding requirements), companies need to implement ‘**meaningful oversight**’ (European
 387 Commission, 06/02/2018, p. 19): currently understood as an endpoint action. Similarly, the EU AI
 388 Act requires high-risk AI to be ‘designed and developed in such a way, including with appropriate
 389 human–machine interface tools, so that they can be **effectively overseen**’ by individuals while in
 390 use (EU AI Act, 2024, Article 14(1)). The wording ‘effective’ and ‘meaningful’ in both the GDPR
 391 and EU AI Act suggest that trivial monitoring alone is insufficient to meet legal obligations. A trivial
 392 monitoring setup with no influence on the decision or computational outcome cannot be doing
 393 anything ‘meaningful’ or ‘effective’. Current laws focus on the role of humans at a very late stage
 394 in the HITL setup, in either trivial monitoring or endpoint action setups and as Sarra (2024, p. 4)
 395 notes, ‘substantial human intervention in previous stages appears to be irrelevant’. But the law (and
 396 related guidelines) do not indicate what alternative HITL setups should be implemented (see D.2 for
 397 supporting details).

399 4.2 MOVING TOWARDS INVOLVED INTERACTION

400 Our computational classification of HITL setups provides a framework to compare the significance
 401 of the human’s involvement, and their ability to reduce harms within each setup. More frequent
 402 human interventions have computational and ethical implications (§2.2, 3.2). We argue that stronger
 403 reductions involving at least some (and potentially unbounded) querying of the human should be
 404 required to implement ‘meaningful’ or ‘effective’ oversight as stipulated by the law. By setting
 405 out technical setups that align with legal requirements, developers are incentivised to design their
 406 ADMSs with greater human involvement, which can improve system safety. Beyond the oversight
 407 requirements, the EU AI Act and GDPR also prescribe certain safeguarding duties on the human,
 408 whereby they are expected to prevent or minimise risks to ‘health’, ‘safety’, ‘legitimate interests’,
 409 and ‘fundamental rights’. Yet, in trivial monitoring or endpoint action, humans are not effectively
 410 enabled to perform their safeguarding duties because they may face a completely ‘black box output’
 411 from a machine (§2.2). From such an output it could be impossible for the human to assess whether
 412 any rights or interests have been infringed, due to any inherent opaqueness of the ADMS’s output
 413 and of the factors that influenced the decision.

414 By contrast, in involved interactions, the agency of the human within the sociotechnical system is
 415 enhanced and they become actively enabled to meet their safeguarding duties. In a HITL setup
 416 where the ADMS asks many questions, the human can better assess what should or should not
 417 be factored into the ADMS’s output to make fair decisions that do not infringe rights or interests
 418 (§2.2). Thus, the human has increased agency to scrutinise the ADMS’s process. Further, endpoint
 419 action or involved interaction setups enable the human to input their own information. Depending
 420 on what the ADMS asks, the human may be able to better align the output of the ADMS with human
 421 values, for example by confirming or denying the relevance of certain input factors, like religion,
 422 race, or sex. D.3 gives supporting details with an example of the benefits of stronger reductions (like
 423 involved interaction) with a recent legal case involving SCHUFA—whereby an automated credit
 424 scoring system with a (weak) endpoint action HITL setup was deemed by the courts as acting as
 425 a trivial monitoring setup (supporting details in D.2). As explained in D.3, by implementing an
 426 involved interaction (§2.1) to break the automation bias of the human (§3.1), SCHUFA could have
 427 prevented the slip back to trivial monitoring and thus avoided violating Article 22 (§4.1). Of course,
 428 involved interactions are not a perfect solution as they still suffer all the potential HITL failure modes
 429 (§3.1, 3.2). But, in general, they enhance the agency of companies and humans, better enabling
 430 them to meet their legal and moral obligations to provide oversight as well as safeguard the decision
 431 subject’s rights. But ultimately, without proper consideration for what actions the human can take
 432 in *theory* (§2), and the ways in which human–machine interactions fail in *practice* (§3), the human
 433 may have to be *superhuman* to meet these safeguarding duties (§4.1). Specific learning strategies

432 for operationalising HITL setups are given with supporting details in D.4, including learning to
 433 defer (L2D) and conformal predictions, and how they can facilitate involved interaction setups by
 434 triggering and aiding real queries to the human.

435

436 **4.3 HITL RESPONSIBILITY AND EXPLAINABILITY TRADE-OFF**
 437

438 While an involved interaction may enable the human to positively impact and scrutinise the output
 439 of an ADMS, this comes with a trade-off which complicates legal and moral responsibility. ‘Re-
 440 sponsibility gaps’ refer to situations where the ‘black box’ features of autonomous technologies,
 441 combined with the complexity of the sociotechnical system, obfuscate an immediate source of re-
 442 sponsibility for the impact of an ADMS (assisted) decision (Matthias, 2004). Introducing significant
 443 human influence into a system has been posited as a way to reduce responsibility gaps when com-
 444 pared with systems with limited or no human influence (Sienknecht, 2024, p. 194). Indeed, using
 445 our reductions framework, in a HITL setup with a weak reduction such as an endpoint action, it may
 446 well be easier to directly link the impact of the ADMS with the actions of the human because they
 447 may have approved the ADMS’s output, thus closing responsibility gaps. Conversely, in an ADMS
 448 with no human, ‘the ADMS’ is responsible (though assigning responsibility to an ADMS opens up
 449 a web of distributed responsibility, where a number of parties may share moral responsibility). But,
 450 as we now show, the link between responsibility gaps and HITL is far more complex.

451

452 While we advocate for stronger setups (involved interactions) to meet GDPR and EU AI Act obliga-
 453 tions, within these it is immensely complex to determine how the human input(s) impact the ADMS
 454 output due to the human–machine entanglement (see D.5 for supporting details). In §2.2 we de-
 455 scribed a chain of computation. But the longer this chain, the more obfuscated responsibility is, as
 456 it becomes harder to pinpoint which human and/or machine decision(s) had the most impact. While
 457 the human does have more impact on the ADMS, the impact of these inputs, even if recorded (sup-
 458 porting details in D.5), on the ADMS’s output remains potentially unknown. By contrast, it could
 459 be relatively simple to identify the human’s impact within a setup like trivial monitoring or endpoint
 460 action, because they effectively make a decision at the start whether to use an ADMS, and a decision
 461 at the end whether to use its output and if so, how. Here, the impact of the human on the overall
 462 ADMS and its output is clear, unlike in an involved interaction. As such, we witness a trade-off
 463 within involved interactions. On the one hand, they enable the recording of questions asked by the
 464 ADMS and the responses inputted by the human, increasing transparency and explainability of con-
 465 tributing factors (cf. §2.2). On the other hand, the human–machine entanglement erodes attribution
 466 of the human’s impact on the ADMS’s outputs, creating responsibility gaps from the complexity
 467 of identifying which decision point(s) led to system failure. This is an unavoidable explainability–
 468 responsibility trade-off: a more explainable HITL setup with clearer intermediate computational
 469 steps obfuscates responsibility; a setup with clearer attribution of responsibility is far more ‘black-
 470 box’. This trade-off needs consideration when using the law to motivate building better HITL setups,
 471 as the two can operate at cross purposes. In D.6 we give supporting details on how our legal and
 472 moral analysis applies to HITL setups built from the intermediate reduction types given in B.4, as
 473 well as a way to formalise HITL setups from those (and other) reduction types.

474

475 **4.4 AVOIDING THE HITL ‘SCAPEGOAT’**

476

477 So far, we have identified omissions in the law’s approach to moral responsibility gaps and the un-
 478 derstanding of the technicalities of HITL setups. To avoid the human being treated as a scapegoat
 479 (like in the Uber case), we argue that regulations should provide guidance on HITL setups in terms
 480 of reduction types, to incentivise companies to design such setups more effectively. The GDPR
 481 and EU AI Act go some way to resolve these emerging responsibility gaps by imposing liability
 482 on the data controller or technology provider to ensure that ADMSs are *designed in ways* that en-
 483 able ‘meaningful’ or ‘effective’ oversight to allow the human to safeguard the rights of decision
 484 subjects. This manuscript contributes by showing *how* this might be done from computational (§2)
 485 and practical (§3) perspectives. This is important because the onus is on the company, whether
 486 or not the human causes harm, to design setups effectively. Nevertheless, the scope of these legal
 487 frameworks is limited and claims may also arise in negligence law when harm has occurred. For
 488 example, the UK courts have previously departed from established principles in challenging cases
 489 involving ‘responsibility gaps’ to compensate individuals who have been harmed but the cause of
 490 injury cannot be discerned (for supporting details see D.7). These cases involved workers devel-

486
 487
 488
 489
 490
 491
 oping deadly mesothelioma from exposure to asbestos fibres across multiple employers (House of
 Lords, 2006). There, liability was calculated by an amount relative to the proportion of exposure the
 claimant had at a given employer, even though they might not have actually caused harm directly.
 The principles underlying the court’s treatment of the mesothelioma cases may provide inspiration
 for how we should address similar responsibility gaps in HITL setups with involved interaction (for
 further discourse see D.7).

492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 In the US, one already sees a tendency to hold the human liable for the failure of an ADMS (Stamp,
 2024). The authors are apprehensive about such liability approaches in the event of failure across
 all computational setups from §2.1.¹ It might seem like the most intuitive response, especially in
 trivial monitoring and endpoint action where the human often has final control over the actions.
 Yet, as our taxonomy in §3.1 shows, failures arise for multifaceted reasons which the human might
 have limited control over. Even in involved interactions, where moral philosophy has shown us that
 responsibility is more complex, the human should not be used as a complete ‘scapegoat’ to shield
 companies from accountability for their contributions to failures, even despite their increased agency
 in the sociotechnical system. The mesothelioma-style cases provide a foundation for how the courts
 should respond to this which aligns with the computational realities of involved interactions and the
 responsibility gaps that emerge at these intersections. Where the human also has onerous obligations
 to safeguard individuals and ADMSs are error prone, biased, and frequently act in unexpected ways,
 we need to avoid the human taking total liability for all failures.

504
 505
 506

5 CONCLUSION AND SUGGESTIONS

507
 508 Our analysis brings new clarity to the design of HITL setups by characterising them through com-
 509 putational reductions and complementing this formalism with an empirically motivated taxonomy
 510 of HITL failure modes. HITL setups involve complex sociotechnical decisions and are susceptible
 511 to failures beyond human control, which necessitates this joint perspective for designing effective
 512 and responsible setups. Our analysis connected these setups and failure mechanisms to existing
 513 limitations and omissions in the law. This allowed us to make suggestions for more refined rules
 514 surrounding HITL requirements, as well as identify a trade-off between responsibility attribution
 515 and technical explainability, and recommend that courts cautiously approach liability in these cases.
 516 We thus make the following suggestions for those designing or regulating HITL setups:

517 1. Define the computational HITL setup, if possible aiming for more than trivial monitoring.
 518 2. Avoid ‘bolting-on’ HITL to existing workflows; they must be fully integrated into the process.
 519 3. Establish guidelines for meaningful human oversight that consider different HITL setups.
 520 4. Ensure that expectations placed on humans in HITL setups match their competency.
 521 5. Implement measures to prevent humans becoming ‘moral crumple zones’ protecting machines.
 522 6. Understand the trade-offs between legal clarity and technical explainability, to inform more nu-
 523 nanced approaches to assigning liability in HITL failure cases.

524 If done poorly, a HITL setup can create a dangerous two-way deferral of responsibility between
 525 machines and humans. Humans may overly defer to machine computation, and machine designers
 526 may overly rely on humans for safety, all of which can lead to disastrous consequences. Integrating
 527 HITL is not a binary process; many ways exist, with different consequences. As a bad HITL setup
 528 may be just as harmful as no HITL setup, achieving a *good* setup needs to be the objective.

529
 530
 531
 532
 533
 534
 535
 536
 537
 538 ¹Unless the human has acted in ways that can be proved as deliberately malicious or seriously negligent.
 539 But even then, ADMS designers are responsible for implementing controls that prevent human malevolence
 and create fail safes and checks on how the human interacts with the ADMS.

540 REPRODUCIBILITY STATEMENT
541

542 The vast majority of results and analysis in this manuscript are of a completely theoretical nature,
543 and thus can be verified through further theoretical research. As outlined in C.1, the initial empirical
544 foundation of the taxonomy of §3.1 is derived from a series of ethics consultations with different
545 startups. These consultations were conducted between 2020 and 2022. As explained in C.1, we
546 further substantiated the taxonomy by comparing our initial observations with the existing literature.
547

548 STATEMENT ON USE OF LARGE LANGUAGE MODELS
549

550 We have used Gemini Pro 2.5 Deep Research to help with literature search, and Gemini Pro to help
551 with grammar and formulation in selected places.
552

553 REFERENCES
554

555 David Abbink, Daniele Amoroso, Luciano Cavalcante Siebert, Jeroen van den Hoven, Giulio
556 Mecacci, and Filippo Santoni de Sio. Introduction to meaningful human control of artificially
557 intelligent systems. In Giulio Mecacci, Daniele Amoroso, Luciano Cavalcante Siebert, David
558 Abbink, Jeroen van den Hoven, and Filippo Santoni de Sio (eds.), *Research Handbook on Mean-
559 ingful Human Control of Artificial Intelligence Systems*, pp. 1–11. Edward Elgar Publishing, 2024.

560 Aldeida Aleti. Software testing of generative ai systems: Challenges and opportunities. In 2023
561 *IEEE/ACM International Conference on Software Engineering: Future of Software Engineering
562 (ICSE-FoSE)*, pp. 4–14, Los Alamitos, CA, USA, May 2023. IEEE Computer Society. doi: 10.1109/ICSE-FoSE59343.2023.00009.

564 Saar Alon-Barkat and Madalina Busuioc. Human-AI interactions in public sector decision making:
565 “automation bias” and “selective adherence” to algorithmic advice. *Journal of Public Adminis-
566 tration Research and Theory*, 33(1):153–169, 2023.

568 Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Con-
569 crete problems in AI safety. *arXiv Preprint arXiv:1606.06565*, 2016. doi: 10.48550/arXiv.1606.
570 06565.

571 Jakob Smedegaard Andersen and Walid Maalej. Design patterns for machine learning-based systems
572 with humans in the loop. *IEEE Software*, 41(4):151–159, 2024. doi: 10.1109/MS.2023.3340256.

574 Marc Anderson and Karén Fort. Human where? A new scale defining human involvement in tech-
575 nology communities from an ethical standpoint. *International Review of Information Ethics*, 31
576 (1), 2022.

577 Lisanne Bainbridge. Ironies of automation. *Automatica*, 19(6):775–779, 1983.

579 Veronica Barassi. Toward a theory of AI errors: Making sense of hallucinations, catastrophic fail-
580 ures, and the fallacy of generative AI. *Harvard Data Science Review*, Special Issue 5, 2024.

582 Anton S. Becker, Sungmin Woo, Doris Leithner, Angela Tong, Marius E. Mayerhofer, and H. Al-
583 berto Vargas. The “hungry judge” effect on prostate MRI reporting: Chronobiological trends from
584 35’004 radiologist interpretations. *European Journal of Radiology*, 179:111665, 2024. ISSN
585 0720-048X. doi: 10.1016/j.ejrad.2024.111665.

586 Ross W. Bellaby. Can AI weapons make ethical decisions? *Criminal Justice Ethics*, 40(2):86–107,
587 2021. doi: 10.1080/0731129X.2021.1951459.

588 Mihir Bellare. Practice-oriented provable-security. In Ivan Bjerre Damgård (ed.), *Lectures on Data
589 Security: Modern Cryptology in Theory and Practice*, pp. 1–15. Springer Berlin Heidelberg,
590 Berlin, Heidelberg, 1999. ISBN 978-3-540-48969-6. doi: 10.1007/3-540-48969-X_1.

592 Katrin Bennhold and James Glanz. Notre-Dame’s safety planners underestimated the risk, with
593 devastating results. *New York Times*, 19.04.2019. URL <https://www.nytimes.com/2019/04/19/world/europe/notre-dame-fire-safety.html>.

594 Samuel R. Bowman, Jeeyoon Hyun, Ethan Perez, Edwin Chen, Craig Pettit, Scott Heiner, Kamilė
 595 Lukošiūtė, Amanda Askell, Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron
 596 McKinnon, Christopher Olah, Daniela Amodei, Dario Amodei, Dawn Drain, Dustin Li, Eli Tran-
 597 Johnson, Jackson Kernion, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal
 598 Ndousse, Liane Lovitt, Nelson Elhage, Nicholas Schiefer, Nicholas Joseph, Noemí Mercado,
 599 Nova DasSarma, Robin Larson, Sam McCandlish, Sandipan Kundu, Scott Johnston, Shauna
 600 Kravec, Sheer El Showk, Stanislav Fort, Timothy Telleen-Lawton, Tom Brown, Tom Henighan,
 601 Tristan Hume, Yuntao Bai, Zac Hatfield-Dodds, Ben Mann, and Jared Kaplan. Measuring
 602 Progress on Scalable Oversight for Large Language Models. *arXiv Preprint arXiv:2211.03540*,
 603 2022. doi: 10.48550/arXiv.2211.03540.

604 Quan Ze Chen, Tobias Schnabel, Besmira Nushi, and Saleema Amershi. HINT: integration testing
 605 for ai-based features with humans in the loop. In *Proceedings of the 27th International Conference*
 606 *on Intelligent User Interfaces*, IUI '22, pp. 549–565, New York, NY, USA, 2022. Association for
 607 Computing Machinery. ISBN 9781450391443. doi: 10.1145/3490099.3511141.

608 Maurice Chiodo and Dennis Müller. Manifesto for the responsible development of mathematical
 609 works – a tool for practitioners and for management. *Journal for Theoretical & Marginal Math-*
 610 *ematics Education*, 4(1), 2025. doi: 10.5281/zenodo.16729482.

611 Maurice Chiodo, Henning Grosse Ruse-Khan, Dennis Müller, Lea Ossmann-Magiera, and Herbert
 612 Zech. Regulating AI: A matrix for gauging impact and its legal implementation. *University of*
 613 *Cambridge Faculty of Law Research Paper*, 2024.

614 Tara Cosoleto. Man jailed for bringing loaded gun into packed MCG. *The Age*, 2025. URL
 615 <https://www.theage.com.au/national/victoria/man-jailed-for-bringing-loaded-gun-into-packed-mcg-20250905-p5mstg.html>.

616 Court of Justice of the European Union. SCHUFA holding (scoring): C-634/21, 07.12.2023. URL
 617 <https://curia.europa.eu/juris/liste.jsf?language=de&td=ALL&num=C-634/21>.

618 Rebecca Crootof, Margot E. Kaminski, and William Nicholson Price II. Humans in the loop. *Van-*
 619 *derbilt Law Review* (429), *University of Colorado Law Legal Studies Research Paper No. 22-10*,
 620 *University of Michigan Public Law Research Paper No. 22-011*, 2023.

621 Jovana Davidovic. On the purpose of meaningful human control of AI. *Frontiers in big data*, 5:
 622 1017677, 2023.

623 Tiffany DeMasters. Watch: Viral video shows tourist drive straight into bay at west hawai‘i harbor.
 624 *Big Island Now*, 2023. URL <https://bigislandnow.com/2023/05/02/watch-viral-video-shows-tourist-drive-straight-into-bay-at-west-hawaiiharbor/>.

625 Nathalie Diberardino, Clair Baleshta, and Luke Stark. Algorithmic harms and algorithmic wrongs.
 626 In *Proceedings of the 2024 ACM Conference on Fairness, Accountability, and Transparency*, pp.
 627 1725–1732, 2024.

628 Roel Dobbe. System safety and artificial intelligence. In *Proceedings of the 2022 ACM Conference*
 629 *on Fairness, Accountability, and Transparency*, pp. 1584–1584, 2022.

630 Madeleine Clare Elish. Moral crumple zones: Cautionary tales in human-robot interaction. *Engag-*
 631 *ing Science, Technology, and Society*, 5:40–60, 2019. doi: 10.17351/estss2019.260.

632 Mica R Endsley. Toward a theory of situation awareness in dynamic systems. *Human factors*, 37
 633 (1):32–64, 1995.

634 EU AI Act. Regulation (EU) 2024/1689 of the european parliament and of the council. *Official*
 635 *Journal of the European Union*, 2024.

636 European Commission. Guidelines on automated individual decision-making and profiling for the
 637 purposes of regulation 2016/679, 06/02/2018. URL <https://ec.europa.eu/newsroom/article29/items/612053/en>.

648 Michelle Fitzsimmons. Here's what the initial report into the fatal Uber self-driving car crash reveals.
 649 *Techradar*, 2018. URL <https://www.techradar.com/news/heres-what-the-initial-report-into-the-fatal-uber-self-driving-car-crash-reveals>.
 650
 651
 652

653 GDPR. Regulation (EU) 2016/679 of the European Parliament and of the Council. *Official Journal of the European Union*, 2016.
 654
 655

656 Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna Wallach,
 657 Hal Daumé Iii, and Kate Crawford. Datasheets for datasets. *Communications of the ACM*, 64
 658 (12):86–92, 2021. doi: 10.1145/3458723.
 659
 660

661 Ben Green. The flaws of policies requiring human oversight of government algorithms. *Computer Law & Security Review*, 45:105681, 2022. ISSN 2212-473X. doi: 10.1016/j.clsr.2022.105681.
 662 URL <https://www.sciencedirect.com/science/article/pii/S026736492000292>.
 663
 664

665 Zachary Griffen and Kellie Owens. From “human in the loop” to a participatory system of governance for AI in healthcare. *The American Journal of Bioethics*, 24(9):81–83, 2024.
 666
 667

668 Tor Grønsund and Margunn Aanestad. Augmenting the algorithm: Emerging human-in-the-loop work configurations. *The Journal of Strategic Information Systems*, 29(2):101614, 2020. ISSN 09638687. doi: 10.1016/j.jsis.2020.101614.
 669
 670

671 Simon Gunst and Ferdi De Ville. The brussels effect: how the gdpr conquered silicon valley. *European Foreign Affairs Review*, 26(3):437 – 458, 2021. doi: 10.54648/eerr2021036.
 672
 673

674 Andrew J. Hawkins. Uber self-driving car saw pedestrian but didn't brake before fatal crash, feds say. *The Verge*, 2018. URL <https://www.theverge.com/2018/5/24/17388696/uber-self-driving-crash-ntsb-report>.
 675
 676

677 Marion Ho-Dac and Baptiste Martinez. Human oversight of artificial intelligence and technical standardisation, 2024.
 678
 679

680 David Hoffman. I had a funny feeling in my gut. *Washington Post*, 10:A19, 1999.
 681
 682

683 House of Lords, 2006. Barker v Corus (UK) plc. UKHL 20. <https://www.bailii.org/uk/cases/UKHL/2006/20.html>.
 684
 685

686 Zilin Huang, Zihao Sheng, Chengyuan Ma, and Sikai Chen. Human as AI mentor: Enhanced human-in-the-loop reinforcement learning for safe and efficient autonomous driving. *Communications in Transportation Research*, 4:100127, December 2024. ISSN 2772-4247. doi: 10.1016/j.commtr.2024.100127.
 687
 688

689 Information Commissioner's Office. What does the UK GDPR say about automated decision-making and profiling? <https://ico.org.uk/for-organisations/uk-gdpr-guidance-and-resources/individual-rights/automated-decision-making-and-profiling/what-does-the-uk-gdpr-say-about-automated-decision-making-and-profiling/>, August 2025.
 690
 691

692 Information Commissioner's Office and Alan Turing Institute. Explaining decisions made with ai, 2022. URL <https://ico.org.uk/for-organisations/uk-gdpr-guidance-and-resources/artificial-intelligence/explaining-decisions-made-with-artificial-intelligence/>.
 693
 694

695 Kai-Kristian Kemell, Jukka K Nurminen, and Ville Vakkuri. Monitoring machine learning systems from the point of view of ai ethics. In *Proceedings of the Conference on Technology Ethics 2024 (Tethics 2024)*. RWTH Aachen, 2024.
 696
 697

698 Jin Yong Kim, Corey Lester, and X Jessie Yang. Beyond binary decisions: Evaluating the effects of AI error type on trust and performance in AI-assisted tasks. *Human Factors*, pp. 1062–1083, 2025.
 699
 700

702 Kitty Kioskli, Theofanis Fotis, Eleni Seralidou, Marios Passaris, and Nineta Polemi. trustSense:
 703 Measuring human oversight maturity for trustworthy ai. *Computers*, 14(11), 2025. doi: 10.3390/
 704 computers14110483.

705 Dominik Kowald, Sebastian Scher, Viktoria Pammer-Schindler, Peter Müllner, Kerstin Waxnegger,
 706 Lea Demelius, Angela Fessl, Maximilian Toller, Inti Gabriel Mendoza Estrada, Ilija Šimić, et al.
 707 Establishing and evaluating trustworthy AI: overview and research challenges. *Frontiers in Big
 708 Data*, 7:1467222, 2024.

709 Markus Langer, Veronika Lazar, and Kevin Baum. On the complexities of testing for compliance
 710 with human oversight requirements in ai regulation. In *International Conference on Bridging the
 711 Gap between AI and Reality*, pp. 160–169. Springer, 2025a. doi: 10.1007/978-3-032-07132-3_11.

712 Markus Langer, Veronika Lazar, and Kevin Baum. How to test for compliance with human oversight
 713 requirements in AI regulation? *arXiv preprint arXiv:2504.03300*, 2025b.

714 Justin Larouzee and Jean-Christophe Le Coze. Good and bad reasons: The Swiss cheese model and
 715 its critics. *Safety science*, 126:104660, 2020.

716 Johann Laux and Hannah Ruschemeier. Automation Bias in the AI Act: On the legal implications
 717 of attempting to de-bias human oversight of AI. *European Journal of Risk Regulation*, pp. 1–16,
 718 2025. doi: 10.1017/err.2025.10033.

719 David Madras, Toni Pitassi, and Richard Zemel. Predict responsibly: Improving fairness and accu-
 720 racy by learning to defer. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
 721 and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 31. Curran
 722 Associates, Inc., 2018.

723 David Manheim and Aidan Homewood. Limits of safe ai deployment: Differentiating oversight and
 724 control. *arXiv preprint arXiv:2507.03525*, 2025. doi: 10.48550/arXiv.2507.03525.

725 Douglas Mattern. Beyond nuclear terrorism. *Peace Review*, 19(4):563–569, 2007.

726 Andreas Matthias. The responsibility gap: Ascribing responsibility for the actions of learning au-
 727 tomata. *Ethics and information technology*, 6:175–183, 2004.

728 Rhys McWhirter and Frankie Tam. China’s ai regulation, 2025. URL <https://ezine.eversheds-sutherland.com/legal-issues-around-ai/chinas-ai-regulation>.

729 Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben Hutchinson,
 730 Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. Model cards for model reporting.
 731 In *Proceedings of the Conference on Fairness, Accountability, and Transparency*, FAT*
 732 ’19, pp. 220–229, New York, NY, USA, 2019. Association for Computing Machinery. ISBN
 733 9781450361255. doi: 10.1145/3287560.3287596.

734 Christoph Molnar. *Interpretable machine learning*. Leanpub, 2020. URL <https://christophm.github.io/interpretable-ml-book/counterfactual.html>.

735 James H. Moor. Is ethics computable? *Metaphilosophy*, 26(1/2):1–21, 1995. ISSN 00261068,
 736 14679973. URL <http://www.jstor.org/stable/24439044>.

737 Jonathan Morgan. Lost Causes in the House of Lords: Fairchild v Glenhaven Funeral Services. *The
 738 Modern Law Review*, 66(2):277–284, 2003.

739 Dennis Müller, Maurice Chiodo, and Mitja Sienknecht. Integrators at war: Mediating in AI-assisted
 740 resort-to-force decisions. *arXiv preprint arXiv:2501.06861*, 2025.

741 Sriraam Natarajan, Saurabh Mathur, Sahil Sidheekh, Wolfgang Stammer, and Kristian Kersting.
 742 Human-in-the-loop or AI-in-the-loop? Automate or Collaborate? In *Proceedings of the AAAI
 743 Conference on Artificial Intelligence*, volume 39, pp. 28594–28600, 2025.

744 William D Nothwang, Michael J McCourt, Ryan M Robinson, Samuel A Burden, and J Willard
 745 Curtis. The human should be part of the control loop? In *2016 Resilience Week (RWS)*, pp.
 746 214–220. IEEE, 2016.

756 NTSB. Collision Between Vehicle Controlled by Developmental Automated Driving System and
 757 Pedestrian: Accident Report (NTSB/HAR-19/03: PB2019-101402), 2019. URL <https://trid.trb.org/view/1751168>.
 759

760 Elian Peltier, James Glanz, Mika Gröndahl, Weiyi Cai, Adam Nossiter, and Liz Alderman. Notre-
 761 Dame came far closer to collapsing than people knew. This is how it was saved. *New York Times*,
 762 18.06.2019. URL <https://www.nytimes.com/interactive/2019/07/16/world/europe/notre-dame.html>.
 763

764 James Reason. *Human error*. Cambridge university press, 1990.
 765

766 William E. Ridgway, David A. Simon, Dana E. Holmstrand, Somon Kim, and Lisa V. Zivkovic.
 767 California finalizes CCPA regulations for automated decision-making technology, risk assessments
 768 and cybersecurity audits. *Skadden Publication / Cybersecurity and Data Privacy Update*, 2025.
 769 URL <https://www.skadden.com/insights/publications/2025/10/california-finalizes-ccpa-regulations>.
 770

771 Josh Robertson and Madi Chwasta. Security breach at MCG raises questions about AI screening
 772 technology. *ABC News*, 2025. URL <https://www.abc.net.au/news/2025-04-05/evolv-concerns-mcg-guns-security-breach/105138072>.
 773

774 Heather M Roff and Richard Moyes. Meaningful human control, artificial intelligence and au-
 775 tonomous weapons. In *Briefing Paper Prepared for the Informal Meeting of Experts on Lethal*
 776 *Au-Tonomous Weapons Systems, UN Convention on Certain Conventional Weapons*, 2016.
 777

778 Astrid Marieke Rosenthal-von der Pütten and Alexandra Sach. Michael is better than mehmet: ex-
 779 ploring the perils of algorithmic biases and selective adherence to advice from automated decision
 780 support systems in hiring. *Frontiers in Psychology*, 15:1416504, 2024.
 781

782 Salvatore Ruggieri and Andrea Pugnana. Things machine learning models know that they don't
 783 know. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 28684-
 784 28693, 2025. doi: 10.1609/aaai.v39i27.35094.
 785

786 Peter Ryan and Rachel Eddie. Revealed: The flaw in process that allowed guns into MCG, and how
 787 security will be tightened. *The Age*, 2025. URL <https://www.theage.com.au/sport/afl/revealed-the-flaw-in-process-that-allowed-guns-into-mcg-and-how-security-will-be-tightened-20250415-p51rsx.html>.
 788

789 Jesús Salgado-Criado. Human oversight of artificial intelligence: An operations management
 790 perspective. *Journal of Industrial Engineering and Management*, 18(2):285-304, 2025. doi:
 791 10.3926/jiem.8567.
 792

793 Sabine Salloch and Andreas Eriksen. What are humans doing in the loop? Co-reasoning and
 794 practical judgment when using machine learning-driven decision aids. *The American Journal*
 795 *of Bioethics*, 2024. doi: 10.1080/15265161.2024.2353800.
 796

797 Claudio Sarra. Artificial intelligence in decision-making: A test of consistency between the "EU AI
 798 Act" and the "General Data Protection Regulation". *Athens Journal of Law*, 11(1):1-17, 2024.
 799 URL <https://www.athensjournals.gr/law/2024-1-X-Y-Sarra.pdf>.
 800

801 Nadine Sarter, David Woods, and C. Billings. Automation surprises. In G. Salvendy (ed.), *Handbook*
 802 *of Human Factors and Ergonomics*, volume 2, pp. 1926-1943. Wiley and Sons, 1997.
 803

804 Linda D Scott. Taming the wild west: Harnessing the future of artificial intelligence. *Nursing*
 805 *Outlook*, 73(2), 2025. URL [https://www.nursingoutlook.org/article/S0029-6554\(25\)00059-4/fulltext](https://www.nursingoutlook.org/article/S0029-6554(25)00059-4/fulltext).
 806

807 Daniela Sele and Marina Chugunova. Putting a human in the loop: Increasing uptake, but decreasing
 808 accuracy of automated decision-making. *Plos one*, 19(2):e0298037, 2024. doi: 10.1371/journal.
 809 pone.0298037.

810 Renee Shelby, Shalaleh Rismani, Kathryn Henne, AJung Moon, Negar Rostamzadeh, Paul Nicholas,
 811 N'Mah Yilla-Akbari, Jess Gallegos, Andrew Smart, Emilio Garcia, et al. Sociotechnical harms
 812 of algorithmic systems: Scoping a taxonomy for harm reduction. In *Proceedings of the 2023*
 813 *AAAI/ACM Conference on AI, Ethics, and Society*, pp. 723–741, 2023.

814 Charlotte Siegmann and Markus Anderljung. The brussels effect and artificial intelligence: How
 815 eu regulation will impact the global ai market. *arXiv preprint arXiv:2208.12645*, 2022. doi:
 816 10.48550/arXiv.2208.12645.

817 Mitja Sienknecht. Proxy responsibility: addressing responsibility gaps in human-machine decision
 818 making on the resort to force. *Australian Journal of International Affairs*, 78(2):191–199, 2024.

819 Robert I. Soare. *Recursively Enumerable Sets and Degrees*. Perspectives in Mathematical Logic.
 820 Springer, 1987.

821 Helen Stamp. The reckless tolerance of unsafe autonomous vehicle testing: Uber’s culpability for
 822 the criminal offense of negligent homicide. *Journal of Law, Technology, & Internet*, 15:37 – 75,
 823 2024.

824 Molly Wright Steenson. AI, Ethics, and Design: Revisiting the Trolley Problem. In Stephen J. A.
 825 Ward (ed.), *Handbook of Global Media Ethics*, pp. 513–533. Springer International Publishing,
 826 Cham, 2021. doi: 10.1007/978-3-319-32103-5_26.

827 Sarah Sterz, Kevin Baum, Sebastian Biewer, Holger Hermanns, Anne Lauber-Rönsberg, Philip
 828 Meinel, and Markus Langer. On the quest for effectiveness in human oversight: Interdisciplinary
 829 perspectives. In *Proceedings of the 2024 ACM Conference on Fairness, Accountability, and Trans-*
 830 *parency*, FAccT ’24, pp. 2495–2507, New York, NY, USA, 2024. Association for Computing
 831 Machinery. doi: 10.1145/3630106.3659051.

832 Eleni Straitouri, Lequn Wang, Nastaran Okati, and Manuel Gomez Rodriguez. Improving expert
 833 predictions with conformal prediction. In Andreas Krause, Emma Brunskill, Kyunghyun Cho,
 834 Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th Inter-*
 835 *national Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning*
 836 *Research*, pp. 32633–32653. PMLR, 23–29 Jul 2023.

837 Ishara Sudeeptha, Wieland Müller, Alexander Richter, Michael Leyer, and Ferry Nolte. Obstacles
 838 to human-AI collaboration. In *Proceedings of the 2024 International Conference on Information*
 839 *Systems (CIS 2024 Proceedings)*, 12 2024.

840 Chuan-Ching Tsai, Jin Yong Kim, Qiyuan Chen, Brigid Rowell, X Jessie Yang, Raed Kontar, Megan
 841 Whitaker, and Corey Lester. Effect of artificial intelligence helpfulness and uncertainty on cog-
 842 nitive interactions with pharmacists: Randomized controlled trial. *Journal of Medical Internet*
 843 *Research*, 27:e59946, 2025.

844 Jurriaan van Diggelen, Karel van den Bosch, Mark Neerincx, and Marc Steen. Designing for mean-
 845 ingful human control in military human-machine teams. In Giulio Mecacci, Daniele Amoroso,
 846 Luciano Cavalcante Siebert, David Abbink, Jeroen van den Hoven, and Filippo Santoni de Sio
 847 (eds.), *Research Handbook on Meaningful Human Control of Artificial Intelligence Systems*, pp.
 848 232–252. Edward Elgar Publishing, 2024.

849 Dieter van Melkebeek. *Randomness and Completeness in Computational Complexity*. Lecture Notes
 850 in Computer Science. Springer, 2000.

851 Nicholas Vollmer. Recital 71 EU General Data Protection Regulation (EU-GDPR), 2023. URL
 852 <https://www.privacy-regulation.eu/en/recital-71-GDPR.htm>.

853 Markus Wagner. Taking humans out of the loop: implications for international humanitarian law.
 854 *Journal of Law, Information and Science*, 21(2):155–165, 2011.

855 Man-Ching Yuen, Ling-Jyh Chen, and Irwin King. A survey of human computation systems. In
 856 *2009 International Conference on Computational Science and Engineering*, volume 4, pp. 723–
 857 728, 2009. doi: 10.1109/CSE.2009.395.

864 **A INTRODUCTORY MATERIAL**
865866 The main purpose of this appendix section is to provide further details on some of the terminology
867 we use that we did not have space for in the main part of the manuscript, which we now signpost
868 here for convenience.869 In A.1 we specify the interpretation of *harm* that we make use of in this manuscript, as well as the
870 associated terms *risk* and *safety*, connecting these to existing literature. Next, A.2 further expands
871 on the many terms related to HITL setups that appear in the literature, with references for each.
872 And finally, in A.3 we discuss how existing conceptions of HITL are presented in the literature, how
873 these relate to our work, and what we plan to do in the rest of the manuscript to extend and formalise
874 these concepts.875 **A.1 WHAT WE MEAN BY HARM, RISK, AND SAFETY**
876877 Broadly speaking, we take ‘harm’ to mean the infliction of some form of damage, be it physical or
878 otherwise. Related to this, ‘risk’ refers to the chance of some harm(s) occurring. And ‘safety’ is the
879 reduction or mitigation of risk, and hence avoidance of harm.880 We use these terms in the broadest possible sense when talking about the failures of HITL setups.
881 For example, strictly speaking, the (human) driver of a car falling asleep at the wheel is not a ‘harm’,
882 but rather a (normatively-defined) ‘wrong’ (Diberardino et al., 2024). However, it may rapidly lead
883 to a (rather severe) harm, such as a car crash. So when we talk about harms, we also include
884 these ‘wrongs’; events and actions which, though not necessarily harms in their own right, would
885 almost certainly lead to harms in the strict sense of the word. And the same goes for how ‘harm’ is
886 interpreted in the definitions of risk and safety.887 Substantial further work has studied the specific actions within sociotechnical systems that lead to
888 material harm (Diberardino et al., 2024), as well as what these harms can potentially be (Shelby
889 et al., 2023) and how one may take steps to actively avoid them (Dobbe, 2022). Indeed, it may
890 be insightful to relate these notions to failure modes (§3) and HITL setup structure (§2) from this
891 manuscript as part of future work.892 **A.2 EXISTING TERMINOLOGY**
893894 The existing terminology describing human involvement with ADMSs varies with differing de-
895 grees of human interaction and control. HITL setups have humans actively integrated into the
896 ADMS’s operational cycle (here we exclude human input in the training or development phase),
897 while Human-on-the-loop (HOTL) have humans primarily acting as supervisors who intervene only
898 when necessary (Nothwang et al., 2016). Setups where the ADMS is designed to operate without
899 direct human input or intervention can be termed Human-out-of-the-loop (HOOTL) (Wagner, 2011).
900 A higher level perspective is given by Human-in-Command (HIC), whereby humans determine the
901 high-level functioning of the ADMS (Anderson & Fort, 2022; Kowald et al., 2024). To bridge the
902 legal and ethical responsibility gaps (Matthias, 2004) that can exist in such setups, the concept of
903 Meaningful Human Control (MHC) was introduced to study how much influence a human should
904 have on the execution of an action and what necessary levels of cognitive and moral awareness they
905 should possess (Davidovic, 2023; Roff & Moyes, 2016; Abbink et al., 2024). In this context, Green
906 (2022) speaks of three human oversight policies: 1) ‘restricting solely automated decisions’, 2) ‘em-
907 phasising human discretion’, 3) ‘requiring meaningful human input.’ Later, in §2, we show how
908 existing HITL terminology can be understood from the perspective of formal computability theory,
909 and use this to deconstruct (3) above into a more fine-grained categorisation.910 **A.3 EXISTING CONCEPTIONS OF HITL**
911912 HITL setups can in certain situations mimic the trolley problem (i.e., the human needing to choose
913 between multiple undesirable outcomes), particularly when the human has no ability to shut off the
914 ADMS entirely, but often also go beyond it in legal, moral and technical complexity (cf. Steenson
915 (2021)). Recent research suggests that while HITL setups lead to more uptake of ADMSs, they
916 potentially also decrease accuracy (Sele & Chugunova, 2024). Green (2022) particularly discusses
917 the empirical evidence for human oversight policies of ADMSs, arguing that these generally fail to

918 address the fundamental flaws in controversial government algorithms while simultaneously offering
 919 legitimisation of the algorithms and the protection of vendors and agencies from accountability.
 920 Elish (2019) similarly raises the point that HITL setups can end up protecting the ADMS rather than
 921 the human, speaking of humans as the ‘moral crumple zone’ taking on accountability and enabling
 922 potentially faulty ADMSs to stay in place. Overall, this literature suggests that a closer scrutiny of
 923 HITL setups and their failure modes is necessary.

924 The lack of a well-defined meaning of what a HITL setup can and does involve, and why such
 925 setups may be beneficial in sociotechnical systems, is a recognised problem. Recent literature has
 926 attempted to specify potentially desirable HITL setups in medical contexts. Salloch & Eriksen
 927 (2024) have argued that both clinicians and patients should be included as ‘co-reasoners’ in a medical
 928 ADMS context, making their own judgments about if, how, and why to use this technology, as well
 929 as how to use its results. Accordingly, they argue that such a HITL setup is valuable in that it
 930 forces questioning by both parties about whether to use ADMS technology thereby justifying its
 931 use, reduces automation bias by encouraging doctors to not rely on an ADMS without justifying
 932 its use to the patient, and uses an ADMS not just as a tool to generate answers but as ‘discussion’
 933 prompts based on the values and aims of both patients and doctors. Building off the setup in Salloch
 934 & Eriksen (2024), Griffen & Owens (2024) have argued for a kind of proliferation of HITL setups
 935 in medical ADMSs, highlighting the potential role of other clinical staff, and the value of having a
 936 diverse range of humans in these setups.

937 Recognising that human experts must play an active role in HITL setups, Natarajan et al. (2025)
 938 argue to shift the perspective and call such setups AI-in-the Loop (AI²L), whereby it is the ADMS
 939 that is part of a larger sociotechnical (human-led) process. Recognising the different degrees to
 940 which humans are, and should be, involved in producing functioning HITL setups, we present a
 941 classification of these in §2.1 (using Turing and many-one reductions) to concretise the language for
 942 further legal and ethical analysis.

943 HITL is frequently presented as a critical safety measure in high-risk domains (EU AI Act, 2024),
 944 such as autonomous driving (Huang et al., 2024) and the military (van Diggelen et al., 2024). How-
 945 ever, the scalability of human oversight has been increasingly questioned (cf. Chiodo et al. (2024)),
 946 especially for advanced ADMSs. The challenge of *scalable oversight* highlights fundamental lim-
 947 itations: human supervisors may struggle to meaningfully oversee ADMSs whose cognitive capa-
 948 bilities surpass their own across multiple domains (Amodei et al., 2016; Bowman et al., 2022). Our
 949 work in this manuscript, on both the formal classification of HITL setups, and their failure modes,
 950 will help shed light on the positive and negative safety aspects of different HITL setups.

951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

972 **B COMPUTATIONAL REDUCTIONS**
973974 The main purpose of this appendix section is to elucidate some additional background and insights
975 from reductions that we did not have space for in the main part of the manuscript, which we now
976 signpost here for convenience.
977978 In B.1 we give full details of what we mean by conceiving of the human in a HITL setup as an
979 oracle. This includes a thorough treatment of the technical and formal machinery and background
980 used, as well as certain clarifications on what actually happens in these setups in practice. Following
981 on from this, B.2 gives a diagrammatic illustration of the three HITL setups we define.
982983 B.3 covers how human agency motivates our HITL setup definitions. B.4 discusses intermediate
984 setup types between endpoint action and involved interaction, and why we have chosen to avoid
985 covering them explicitly in our analysis. B.5 gives an expanded description of our route-planning
986 example demonstrating our three setup types.
987988 We then proceed to cover the computational strengths (B.6) and socio-technical benefits (B.7) of
989 involved interactions, and in B.8 give a diagrammatic representation of how they ‘open the black
990 box’ of the computation for additional scrutiny.
991992 We finish by discussing the difficulties of determining setup types in practice, and what additional
993 approaches need to be carried out by developers to make determination more manageable (B.9). We
994 give specific reference to setups which might appear to be one type, but in practice can be mimicked
995 by a less-powerful one (B.10).
996997 **B.1 CONCEIVING HUMANS AS ORACLES**
998999 In our formalisation of the notion of human-in-the-loop we represent the human by a fixed oracle
1000 function f which is used in some oracle machine T^* . This may suggest that we are assuming
1001 human decisions are transparent, deterministic, and truthful (perhaps even requiring some kind of
1002 omniscience). On the contrary, our view of human-machine setups as oracle machines implies quite
1003 the opposite.
10041005 The operation performed by the human in a HITL setup is precisely one which cannot be automated.
1006 Practically speaking, this is the reason the human enters the computation in the first place.
1007 The reasons for this difficulty in automation can be manifold, depending on the nature of the operation.
1008 It may be difficult for machines to do or even grasp, and involve questions whose answers
1009 are subjective, require life experience to give, rely on some sort of ‘moral judgement’, or depend
1010 on unforeseeable circumstances. Often the human may be confronted with questions that do not
1011 admit a ‘correct’ answer in the same way evaluating some arithmetic expression does, e.g., if they
1012 entail judgements on values, morality, or emotional response. In regards to subjectivity and morality,
1013 some fundamental computational problems are discussed in detail in Moor (1995), and more
1014 recently Bellaby (2021) argued that at least (ethical) decisions cannot be made by systems which
1015 are predictable. Hence these problems are left for the human to grapple with; a practicality whose
1016 outcome (almost by definition) cannot be predicted by the machine developer. If the developer did
1017 know what the human would answer on some query, or how the human might ‘compute’ such an
1018 answer, they could simply implement that response or computational process in the machine. This
1019 we formalise by saying that the developer implements the machine T^* , which is essentially an al-
1020 gorithm that asks questions at certain times. Such questions are those which the developers cannot
1021 give an algorithmic answer for, and instead require a human to answer. The instance answering
1022 the questions is the oracle function f ; the developer does not know the precise behaviour of such a
1023 function, but has to treat the outputs as computationally meaningful (see below). The human is to
1024 act as the oracle; they will answer the questions to the best of their ability (ideally), but of course
1025 may have a myriad of failure modes as discussed in §3.1.
10261027 Once the decision-making procedure is put into action, the human will provide some inputs that
1028 are processed by T^* . Therefore, in effect, the human is providing some function f . Crucially, the
1029 developer has no influence on f (or at best very weak influence) and hence the function is for all
1030 practical purposes fixed from their perspective—they have to design the system to make the best out
1031 of whatever the human will answer. Yet, this function need not be literally fixed in advance. The
1032 human could change their mind over the course of the decision-making process, and thus answer the
1033

same question differently if asked later.² Indeed, it could be that in the morning the human flips a coin determining their moral compass for that day, or they are exhausted and behave differently than they would at other times,³ or they have learned new things and improved their skills over time—many settings in which the human behaves in ways that are not transparent or even determined in advance are conceivable. It could even be that there are multiple humans who together provide the input, or different humans at different times or at different points in the human–machine interaction. Thus if we conceive of the human as an oracle, and say that any particular oracle is given by a function f , this does not impose any assumptions whatsoever on how humans behave. We also do not suggest in any way that the specific person to serve as the human in the HITL setup needs to be known in advance when we say that f is for practical purposes to be viewed as fixed.

The distinction we make between the properties of the oracle function and the computational power entailed by the oracle machine mirrors that encountered with random machines.⁴ In a random machine, any particular computation is guided by an oracle function f which is a bona fide (deterministic) function. However, the point of random machines is that the oracle function is drawn from a probability distribution which then induces a probability distribution on machines (hence, computed functions). In this sense, ‘the oracle’ is random, because the probability distribution on f is what introduces randomness into the computation. This is even though any particular oracle *function* f itself is deterministic, and some of these may produce the correct output while others do not. A random machine obtains its strength through the fact that it is designed to call a random oracle, for which the properties of any individual oracle function are irrelevant (indeed, f could be *any* function from words to words); it only matters that *most* oracle functions yield the correct output. Likewise, a decision-making procedure involving a HITL setup obtains its strength through sufficient use of the human, but it does so precisely because the behaviour of the human is not predictable. What is important for us is not so much what function f is ‘computed’ by a human oracle, but rather how any reasonable such function could fit into the decision-making procedure modelled by T^\bullet .

Along the same lines, we would like to make a few clarifications.

1. In the computation, the machine T^\bullet has to use whatever answer the human provides, treating it as ‘true’ to some extent. This is a trivial observation: if the human input was treated as completely untrustworthy, it could not be used to generate any insight. Thus a developer has to allow the oracle to answer questions ‘however it sees fit’ and design the system to process any reasonable answer as ‘serious’. This of course does not mean that the (human) oracle is actually truthful or ‘correct’, or is even providing the ‘best possible’ response. Indeed, developers should take into account that it may not be.
2. As we point out in §4, there may also be legal or moral requirements for a human to evaluate and respond to a question arising in the decision-making process, even if it seems a machine could answer it. In this case, the contribution of the human is moral, rather than strictly computational, as phrased above. Still, the human plays an integral role if the overall decision by the human–machine system needs to reach some legal or moral status, and so the human is needed to produce the output.
3. We do not mean to imply that a literal Turing machine which operates in the way we describe would be a *practical* model of modern computational systems. Rather, our perspective is that it seems productive to transfer notions from computability theory to human–machine systems. Our formalisation is supposed to enable this conceptual move.

To summarise, the point of describing HITL setups in terms of the formalism of oracle machines is not to view (or idealise) humans as oracle functions, but rather to view human–machine decision-making setups as oracle machines.

²This can be modelled by the function if the time at which the query is asked is part of the ‘input’ the human receives.

³To give just one example from a vast literature on physiological effects on decision-making: radiologists’ judgements on prostate imaging results become more pessimistic later in the day (Becker et al., 2024).

⁴See van Melkebeek (2000, p. 33) for some introductory discussion of random Turing machines; there the oracle is just a string which is read bit by bit, but this does not affect the argument.

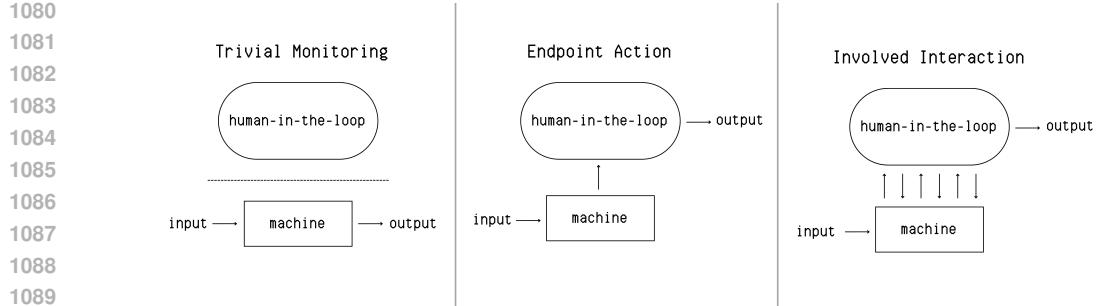


Figure 1: Operational diagram of each of our HITL setups.

B.2 DIAGRAMS OF HOW OUR HITL SETUPS OPERATE

In Figure 1 we illustrate the operation of our HITL setups: trivial monitoring, endpoint action, and involved interaction. Note the computational ‘ping-pong’ between the machine and the human in the involved interaction setup, which significantly increases human input into the process.

B.3 THE MOTIVATION FROM HUMAN AGENCY

The value of human agency in the decision-making process informs our definition of endpoint action and involved interaction in a subtle way. Recall that while computationally, any many-one reduction is a Turing reduction, a setup designed for endpoint action is by definition *not* an involved interaction. This is because the strength of an involved interaction comes precisely from the fact that it is not ‘just’ an endpoint action, as discussed in B.6. And the definition of involved interaction not only excludes endpoint action in this sense; it must also never have the option of behaving as an endpoint action. To clarify, consider an ADMS which has two possible ‘modes’ depending on the input: either it makes a decision and presents it as an output for a human to review, or it enters a multi-stage collaborative process with the human that allows for substantial contribution from the human. This would be an instance of an endpoint action, because the machine can ‘choose’ whether to involve the human. While such systems have many practical advantages, the authors believe that they do not give the human the agency associated with an involved interaction. Likewise, a computational process which can terminate with no contribution from the human at all is trivial monitoring, regardless of how the process behaves in other scenarios or even on average. We explain our rationale for this aspect in our definitions in detail in D.4; the *option* of agency does not actually imply agency.

B.4 INTERMEDIATE HITL SETUPS

Why have we omitted discussion of restricted cases of involved interactions, such as where the machine can only ask the human oracle a bounded finite number of real queries (corresponding to a Turing reduction where the oracle can be consulted only a bounded number of times)? Computationally, this would lie properly between a many-one reduction and a ‘full’ Turing reduction. This omission is deliberate, as it would invite discussion also of the many other intermediate reduction types between many-one and Turing.⁵ Conceptually, an endpoint action describes the ‘simplest’ way a human can interact with a machine in a computationally meaningful way, and an involved interaction describes the ‘most complicated’;⁶ these two types alone give us a deep and rich area to analyse. It may well prove valuable to replicate the technical, legal, and moral analysis done in this manuscript on some of these intermediate reductions (e.g., when the machine can do its calculation, hand over to the human to do some more, then take back the human output and do some final machine calculation; having ‘one round of ping-pong’). The technical, legal, and moral possibilities

⁵Including bounded truth-table reductions, truth-table reductions, and weak truth-table / bounded Turing reductions (the last of these we discuss in further detail in B.10). See Soare (1987, p. 83) or van Melkebeek (2000, Section 2.4) for details.

⁶Moreover, these intermediate reductions are strictly nested. That is, many-one reduction \Rightarrow bounded truth-table reduction \Rightarrow truth-table reduction \Rightarrow weak truth-table / bounded Turing reduction \Rightarrow Turing reduction (Soare, 1987, p. 83). In each case, there is progressively more use of the oracle.

1134 may well be endless, so we have elected to examine the extremal cases for now: endpoint actions,
 1135 and involved interactions, which correspond to many-one reductions and Turing reductions respec-
 1136 tively. However, in D.6 we return to these intermediate reduction types, to see what of our analysis
 1137 in this manuscript can be carried over to HITL setup types based on these intermediate reductions.
 1138 There, we provide an avenue for future work by giving a generalised way to convert that family of
 1139 reductions (or indeed any family, under certain conditions) into a family of HITL setup types.

1140 The key notion for our purposes is thus that of the real query. Some care is needed when applying
 1141 this notion in practice, for both technical and moral reasons. To illustrate this very simply, consider
 1142 a machine that attempts to guess an integer n , where it is known that $n = m + k$ for some integers
 1143 m, k about which nothing is known. The machine might ask whether m is even and then whether
 1144 k is even. According to our definition, the first question is not a real query because by itself it does
 1145 not change the set of possible outputs (any integer can be written as an even integer m plus some
 1146 integer k). The second question then is a real query, as it determines for instance the parity of n .
 1147 However, if the first question was somehow omitted, the second question would not be a real query
 1148 for the same reason the first is not. This simple example shows that whether something is a real
 1149 query depends not just on the question but on the whole computation. These interactions between
 1150 questions and their implications on the output may be complicated in some systems. The key point
 1151 however is simple: a query is only substantial insofar it leads to a real query.

1152 A related question which arises from our analogy to computability theory is what resource-
 1153 limitations on the machines and oracles in question play a role. In the theory of computation quite
 1154 substantial attention was paid to the question of what happens if oracle machines which run in poly-
 1155 nomial time are given oracles for various hard but computationally feasible problems. Such is the
 1156 theory of complexity classes from and around the polynomial hierarchy, including P, NP, BPP, Π_2^P ,
 1157 and PSpace (see van Melkebeek (2000, section 2) for definitions of these classes and (ibid. Section
 1158 2.4.3) for complete problems). Mathematically this theory is quite different from the theory of re-
 1159 ductions without resource-limitations (i.e., classical recursion theory). To some extent our taxonomy
 1160 of failure modes (§3.1) might be viewed as a comment on the resource limitations of human oracles.
 1161 It may be useful to explore such viewpoints in later work, but we refrain from doing so as it does
 1162 not seem to clarify the main points of this manuscript.

1163
 1164
 1165

B.5 ROUTE PLANNING MACHINES DEMONSTRATING DIFFERENT HITL SETUPS

1166 Consider a route-planning machine in a HITL setup with the human driver of a car. It may demon-
 1167 strate any one of the following HITL setups:

1168 *Trivial monitoring*: The human could enter the origin and destination, and the machine could then
 1169 present a driving route. The human then has the choice to take the route, or not. Here, the human has
 1170 no input to the computation process, and can only ‘turn off’ the machine (by ignoring its output).

1171 *Endpoint action*: The human could enter the origin and destination, and the machine could present
 1172 the human with several different options, perhaps labelling them as ‘fastest’, ‘most fuel efficient’,
 1173 ‘most reliable’, ‘passes fuel stations regularly’. The human can then choose between these. Here,
 1174 the human takes over at the end of the machine’s work to finish the computation and produce the
 1175 route to be taken (from the list presented to them).

1176 *Involved interaction*: The human could instead input into the machine ‘I want to visit my sibling’.
 1177 The machine could then start computing, and asking the human a series of questions. It might start
 1178 with ‘when are you travelling?’, take the answer, and do some more computation before coming
 1179 back with ‘when do you need to be there by?’, then take that answer and do a bit more computation
 1180 and come back with ‘what do you need to bring?’, then ‘is anyone else travelling with you?’, and so
 1181 on, each time doing some computation between each question. These questions cannot be stacked
 1182 all at the start, as the answer to earlier questions might determine which later questions are asked
 1183 (and the number of questions may not be a priori bounded at the onset). The machine *may* then
 1184 present some sort of optimised driving route. Or it may produce a very different output, such as
 1185 suggesting to take the train as there is bad traffic, or to go on another day closer to the sibling’s
 1186 birthday. Or it may even advise against travel due to adverse weather. Here, the human has regular,
 1187 meaningful, and not a priori bounded input into the computation.

1188 B.6 THE STRENGTH OF INVOLVED INTERACTIONS
1189

1190 Computationally, a Turing reduction between functions is viewed as weaker than a many-one reduction,
1191 as many-one implies Turing. This comes from a viewpoint that *fixes a computational problem*,
1192 and then asks what the space of oracles it reduces to is. So a Turing reduction is considered weak,
1193 because the problem reduces to more oracles; a many-one reduction would reduce it to fewer oracles
1194 so the reduction itself is strong. Thus, if one tries to many-one reduce a given problem to some oracle
1195 rather than Turing-reduce it, then one (generally) requires a stronger oracle, which in the context of
1196 HITL setups means a more competent human. Therefore, our concern is the opposite: we advocate
1197 maximising the space of functions that can be computed with a *fixed oracle* (a human). With that
1198 perspective, a Turing reduction is considered strong, because more problems Turing-reduce to the
1199 given oracle than if we used many-one reductions instead. In a HITL setup, the oracle is fixed (the
1200 human), so limiting the setups to endpoint actions limits the space of problems that can be solved.
1201 Therefore, making the space of problems solvable as large as possible is achieved by maximising
1202 the influence of the human, i.e., by using an involved interaction setup.

1203
1204 B.7 THE BENEFITS OF USING INVOLVED INTERACTIONS
1205

1206 What exactly are the benefits of an involved interaction HITL setup? In short: because human (ora-
1207 cle) influence can add valuable, desirable insights throughout the overall computation, in particular
1208 at times where it is most needed by the machine.

1209 Firstly, the human has more influence on the overall computational process, and thus on the out-
1210 come. With more, potentially unbounded, real human queries, the *agency* of the human is increased.
1211 Secondly, and related to this, the human has more opportunity to input their judgements and val-
1212 ues into the overall computational process, thus giving more opportunity for the human to ensure
1213 the machine computation is *aligned* with its values. Thirdly, by intervening more often, the human
1214 has more opportunity to identify (and rectify) problems and safety issues within the machine com-
1215 putational process, before a final output or behaviour occurs. Increased human queries ‘bakes in’
1216 the potential for increased human scrutiny. This aids with the *safety* of the HITL setup. Finally,
1217 and related to this, with more human queries, the machine is articulating intermediate steps that are
1218 human-interpretable more often (as a human input is sought), thus aiding with *transparency* of the
1219 computational process.

1220 Overall, these four aspects come together to improve the *reliability* of the HITL setup.
1221
1222

1223 B.8 OPENING THE BLACK BOX VIA INVOLVED INTERACTIONS
1224

1225 In Figure 2 we illustrate the gradual ‘unmasking of the black box’ as one increases human in-
1226 volvement, from trivial monitoring, to endpoint action, and involved interaction. Note the chain
1227 of computation in the illustration of the involved interaction setup; this is a different way to view
1228 the computational ‘ping-pong’ between the machine and the human, and shows how this ping-pong
1229 serves to help unmask the black-box computation by the repeated handovers between the machine
1230 and the human. The human activity, and human–machine handovers, are all very interpretable to an
1231 observer.

1232 This is because each time the machine needs to ‘ask a question’ to the human, it must precipitate
1233 its inner computation in a human-interpretable way, and then take a (human-interpretable) input. As
1234 more such questions that are asked, the overall box becomes proportionately more filled with these
1235 human interpretable questions-answers, and so the black-box steps make up less of the process. As
1236 the number of such questions becomes very large, the remaining ‘black box’ parts of the computation
1237 become proportionately quite small, allowing humans to get a very good overall understanding of
1238 the computation (even if they cannot see every minute detail). As shown in Figure 2, the trivial
1239 monitoring setup is completely black-box, the endpoint action setup has a large black box process
1240 (but significant human-interpretable process), and the involved interaction setup is mostly human-
1241 interpretable steps (with very small black-box processes between them).

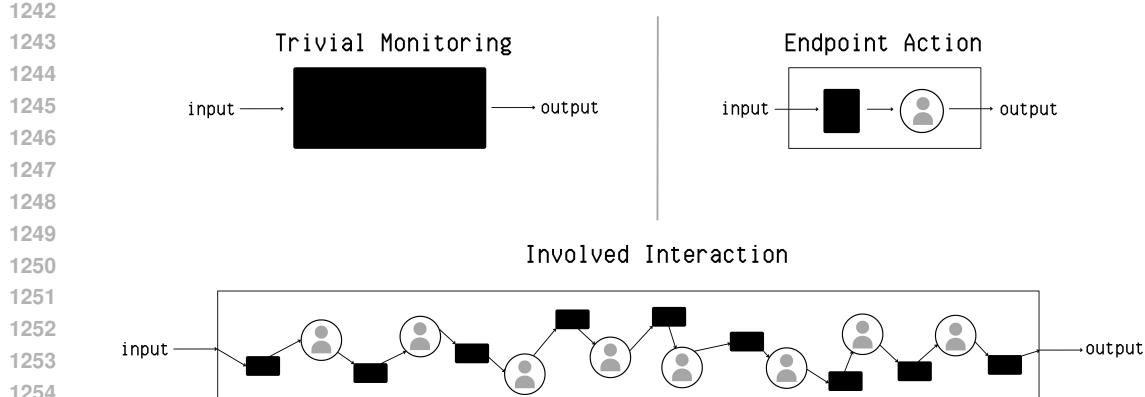


Figure 2: How real queries in HITL setups can unmask black-box computation.

B.9 DETERMINING, TESTING AND DOCUMENTING HITL TYPES

The formal description for HITL setups presented in §2.1 is an important aspect of our manuscript. It is heavily relied upon later in §4, giving ways to prevent developers from circumventing the regulatory *intentions* behind any informal definitions of what a HITL setup should be. In particular, our definition of a real query, and the associated formalism around how each HITL setup type makes use of real queries, prevents such setups from having a ‘veil’ of significant human involvement. The formalism describes these setups in a way that at the very least makes it hard to ‘cheat’ by implementing them ‘in name only’ without the meaningful effect intended. However, determining HITL setup types, and what they achieve, is a challenging task from each of a technical, legal, and moral perspective.

From a technical perspective, showing the non-existence of a reduction is difficult. While it is fairly straightforward to demonstrate some setup constitutes, say, a many-one reduction, by simply inspecting the structure of the reduction, that would not (in our terminology) show that a HITL setup is an endpoint action. To achieve that, one would also need to show that the machine always asks a real human query during the computation. Similarly, to show a HITL setup is an involved interaction, one would need to show that it is a Turing reduction, but also show that the machine always asks potentially unbounded and more than one real human query during the computation. Heuristically, while it is ‘easy’ to show that there is a human in the loop (as this is simply done by saying that a human is present), it is much harder to (computationally) verify how much the human will actually be asked to do.

From a legal perspective, showing that the human will do something meaningful is also difficult (as discussed in relation to the SCHUFA case in D.2). While one could have a HITL setup where there are real human queries which are completely deterministic and replicable by the machine (e.g., asking the human ‘What is 1+1?’), asking the human a series of ‘pointless’ questions (that the machine could just as easily carry out itself) may violate the legal principles of ‘meaningful’ or ‘effective’ human input, as discussed in §4.

From a moral perspective, showing the HITL setup is not simply a facade masking a less-involved process is also difficult. One could have a HITL setup where there are human queries which the machine cannot do itself (i.e., bringing in genuine human judgement), but then the remainder of the (machine) computation simply ignores the input. This would be an instance of a crucial query that is implemented in a way that is not ‘real’ in our sense. Even if the query is real (computationally), it might be that its impact on the computation is very small, or worse still, the machine might actively invert or go against the input. In reality, whether a query allows the human to meaningfully influence the outcome is not described by the binary notion of real queries. In any case, asking the human a question with a (seemingly) important answer, and then not using that or inverting the answer, would at best be a terrible oversight by the machine developers, and at worst be completely disingenuous and in opposition to the aim of HITL strategies. If not properly justified, and articulated to the human

1296 in the loop and to the individuals affected by the decision, it may not only undermine the human's
 1297 agency (a problem also discussed in the context of learning to defer in D.4) but also undermine their
 1298 expectations about how a moral socio-technical system like a HITL setup should be functioning. To
 1299 follow the spirit of our HITL formulation, such a *decision to ignore* would still need to be subjected
 1300 to human oversight, albeit potentially not from the human whose input was ignored. If the machine
 1301 were to actively go against a human input, with no human option to check or reverse this decision,
 1302 and that had been a deliberate design feature, then that would be completely immoral from the
 1303 perspective proposed in this manuscript.

1304 However, some of the difficulties in verifying a HITL setup type from any (or all) of the three
 1305 perspectives as described above implicitly assume the determination is done by some external actor
 1306 (say, an auditor, or regulator, or colleague from a separate 'compliance' department), on whom all
 1307 the onus sits to make such a determination. The implication above is that such an actor is given
 1308 the ADMS to 'check', on their own, and so all the difficulties above arise. But that need not be
 1309 where the full 'burden of proof' has to lie. Instead, one can shift some of this burden of proof to
 1310 the *developers*, and require them to *demonstrate* particular behaviour or structural aspects of the
 1311 system. Mechanisms for this already partially exist, or can be extended, in the form of required
 1312 documentation, formal verification of certain aspects of the software, testing/benchmark regimes,
 1313 etc. As we now show, in such an environment, the difficulties mentioned above start to become
 1314 more manageable.

1315 For example, model cards for model reporting as developed by Mitchell et al. (2019) already in-
 1316 clude documenting the intended use and ethical considerations. These sections could be (substan-
 1317 tially) extended to include documentation of the HITL type and how the developers and integrators
 1318 of the ADMS have attempted to mitigate certain failure modes. In combination with learning to
 1319 defer and other learning strategies to operationalise involved interaction setups (further discussed in
 1320 D.4), data sheets for data sets (as developed by Gebru et al. (2021)) could also play a critical role
 1321 if they are (substantially) extended to include a discussion about the relative strengths/weaknesses
 1322 of the training data in relation to the human(s). Crucially, any standardised documentation of the
 1323 HITL setup/type must focus on the integrated socio-technical nature of the entire setup; it is not
 1324 enough to only consider the data, model, or human independently. We note, however, that such ap-
 1325 proaches require extensive further research, and the development of potentially new formats. As the
 1326 formalisation presented in this manuscript is novel, it does not fit neatly into existing documentary
 1327 approaches without (potentially substantial) changes and additions to them.

1327 Salgado-Criado (2025) argue that the culture within the organisation developing the AI does not just
 1328 influence how socio-technical setups for AI oversight are developed, but also how they are eval-
 1329 uated by the organisation. Critically, any form of testing and documentation thus requires educating
 1330 developers about the subtle differences between human oversight and human control as they per-
 1331 tain to HITL setups. Proper verification, testing, documentation, and adjustment of the HITL type
 1332 requires developers with an awareness of *ex ante*,⁷ real-time, and *ex post*⁸ aspects of control and
 1333 oversight. Manheim & Homewood (2025) have developed a five-stage 'AI supervision maturity
 1334 model' to measure and document how developers engage with these aspects, ranging from level 1 (a
 1335 team does not engage with control and oversight in a well-defined and structured way) to level 5 (a
 1336 team has properly identified risks, implemented measures, and communicated these to all relevant
 1337 parties).

1338 Writing about the development and usage of AI in medicine and nursing, Scott (2025, p. 1) argues
 1339 that '[s]imilar to the frontier days of rapid expansion and lawlessness, AI is aptly linked to this
 1340 time-period. It is moving fast and at least in the United States, there are unregulated, unchecked,
 1341 and unethical applications to its use.' And the above difficulties are certainly present in a regulatory
 1342 and cultural environment whereby few restrictions on new technologies and requirements for doc-
 1343 umentation exist, while 'checkers'⁹ have to check it all from scratch. But if the technicalities of the
 1344 system, and its development processes, must be designed and presented in a way that demonstrates
 1345 certain behaviour of the system, then one is no longer dealing with an 'arbitrary piece of code'. If a

1346 ⁷Meaning 'before the event'.

1347 ⁸Meaning 'after the event'.

1348 ⁹A 'checker' could include any of the following: auditor, regulator, developer, consultant, etc. And such
 1349 people may be internal, or external, to the organisation creating the ADMS. We wish to consider any and all
 such people or entities tasked with carrying out such checks.

1350 checker is instead tasked with checking a particular verification/proof, or documentation of a development process, holds, that is a much more tractable undertaking. Under a regulatory environment
 1351 such as this, one might therefore consider the following approaches to determining a HITL setup
 1352 type:
 1353

1354 From a technical perspective, developers might be able to provide formal (mathematical) proofs to
 1355 show that their setup is genuinely of a given type. However, further research is necessary into the
 1356 exact nature of what constitutes such a proof, and when exactly it is possible to provide it. Inspiration
 1357 may be taken from the extensive literature on formal software verification, but as we wish to make
 1358 clear throughout the remainder of this appendix it also requires substantial further research and
 1359 changes in the development process.

1360 From a development perspective, formal verification necessarily means designing the system in such
 1361 a way that this can be formally verified: a HITL setup may unlikely be verifiable if such aims were
 1362 not considered during the initial design and development phases. Such a shift necessarily restricts
 1363 the scope of what can be built, but at the same time adds the ability to demonstrate what the system
 1364 does. In particular, developers would need to show that the setup does ask real queries, by showing
 1365 the human will be consulted (some number of times), and that different responses lead to different
 1366 outputs by the machine. It is already often the case that checkers are required to check for system
 1367 properties that are incomputable *in general*, as this applies even to the Halting Problem. So by
 1368 limiting what is designed and how, proofs can be provided which can then be checked.

1369 Regarding any formal approach, however, it is important to consider that not all aspects from tra-
 1370 ditional software testing necessarily translate to all ADMSs. For example, Aleti (2023) note that
 1371 testing LLMs introduces an ‘oracle problem’ (whereby LLMs often produce subjective outputs that
 1372 cannot be measured against one objective standard) and problems regarding the comprehensiveness
 1373 of tests (the tasks given to LLMs are often diverse, so a single test suite is unlikely to capture every-
 1374 thing). Both can have a significant impact on verifying that an LLM-based ADMS setup constitutes
 1375 a specific HITL setup. In particular, any requirement to formally verify a HITL setup type may
 1376 result in different restrictions for different types of ADMSs.

1377 An additional difficulty in measuring the effectiveness of a HITL setup comes from having limited
 1378 data about the human(s) involved and how they behave (both independently, and while interacting
 1379 with the ADMS). To learn more about how humans react to and use specific AI systems, and how
 1380 that may affect HITL setups, Chen et al. (2022) have suggested a crowd-based methodology (HINT:
 1381 Human-AI INtegration Testing). Their method is designed to gather information about how humans
 1382 interact with (and oversee) a specific ADMS. While such large scale sampling is not always possi-
 1383 ble, the information gained from such sampling can be particularly helpful if multiple humans are
 1384 involved or if their characteristics and behavioural traits are not yet known to the developers during
 1385 the development of the ADMS. Such methods may, in certain circumstances, allow developers to
 1386 not just formally prove the existence of an involved interaction setup, but also to empirically test
 1387 for specific failure modes. We note, however, that substantial research is required into the dynamic
 1388 nature of an involved interaction, and what this means for the consequences of an *existence* proof for
 1389 such a HITL setup. For example, how does *knowing with proof* that a certain HITL setup constitutes
 1390 an involved interaction change how the human functions in the loop?

1391 From a legal perspective, developers might demonstrate what sort of questions the ADMS will ask
 1392 the human, at what stages in the computation this will occur, and how such inputs will be used,
 1393 with full documentation. In relation to Article 14 of the EU AI Act, Langer et al. (2025a) argue
 1394 that this can range from a checklist-based approach to empirical testing, whereby the former fo-
 1395 cuses on straightforward checks such as checking certain best practices (e.g., Has the human been
 1396 trained on specific failure modes? Is there an actual way for the human to stop the ADMS? What
 1397 mechanism is used to force the ADMS to ask a question?), and the latter validates that the socio-
 1398 technical system works in practice (e.g., Can the human actually perform their oversight function
 1399 effectively, at all times, including during high-volume, fast-paced, and other high-stress events?).
 1400 Langer et al. (2025b) see a necessary trade-off between efficiency of documentation and testing, and
 1401 effectively mitigating risks. The problem of holistically testing a HITL setup often appears practi-
 1402 cally intractable: they note that proper (real-world) testing and documentation requires substantial
 1403 resources and expertise that goes beyond specific technical knowledge, including psychology, law,
 1404 and human-computer interaction. Additionally, they argue that all actions and insights are difficult
 1405 to scale, as both the testing and documentation is highly tailored to one specific HITL setup; if the

1404
 1405 ADMS, the human, or the application domain changes, some (or all) aspects of testing and docu-
 1406 mentation have to be done afresh. Whilst we do suggest that shifting (some of) the burden of proof
 1407 onto developers will solve some of these problems, doing so requires further research to turn the
 1408 open problems that Aleti (2023) and Langer et al. (2025a) identify into something that can be done
 1409 in practice. Nonetheless, we believe that progress can (eventually) be made on these, at least in some
 1410 settings.

1410 More concretely, this requires extending existing, and developing new, handbooks and regulatory
 1411 guidelines for developers, articulating what needs to be achieved. The developers might also pro-
 1412 vide active demonstrations for testing, and face ‘reverse checks’ where checkers ask what human
 1413 inputs would be needed to achieve a particular outcome. Such reverse checks could be understood to
 1414 be the human equivalent of counterfactual explanations for the ADMS decision (cf. Molnar (2020)).
 1415 Testing, and documenting, whether that outcome is achievable by fixing some of the human inputs
 1416 in a certain way may need to be part of it: the previous section on the technical perspective discussed
 1417 how to demonstrate the presence of *real* queries; here we now seek a demonstration of whether such
 1418 queries are *meaningful* by seeing if certain outcomes are actually achievable.¹⁰ While it remains
 1419 difficult to determine what the ‘minimum requirements’ for legal compliance would be with respect
 1420 to the UK/EU GDPR and EU AI Act, since it will also be contextual, ‘good practice’ regulatory
 1421 guidance can assist developers to meet their responsibilities. A further example of this is the ‘Ex-
 1422 plaining decisions made with AI’ regulatory guidance from the Information Commissioner’s Office
 1423 and Alan Turing Institute (2022). Part 2 of the guidance is aimed at technical teams and includes
 1424 guidance on explainability and interpretability requirements for ADMSs. Going further than this,
 1425 we suggest that a ‘checker’ can then examine everything produced by the developers along these
 1426 lines (demonstrations, documentation, etc.), and observe whether any relevant legal requirements
 1427 are being satisfied.

1427 From a moral perspective, Kemell et al. (2024, p. 13) crucially note that ‘[e]thics is not just numbers’
 1428 when it comes to machine learning operations, meaning assessing them has to go beyond measuring
 1429 and verifying their performance. Still, from a moral perspective, there are certain technical aspects
 1430 that can be considered to paint a picture of the functioning of a HITL setup. For example, developers
 1431 might create recording mechanisms to log precisely what questions the ADMS asked the human and
 1432 what answers were given. This can then be retained, consulted, and presented at the end of the
 1433 computation, either for checking by the human in the loop to see if the ‘spirit’ of their answers had
 1434 been preserved (perhaps necessitating the setup *ending* on a real human query in this way), or by
 1435 an external checker to see if this had occurred (done at the time, or in a testing environment, or
 1436 long after the fact). One could then see whether the ADMS is systematically ignoring (or worse
 1437 still, inverting) the human responses by comparing the final output to what those responses were, to
 1438 see if the output has remained ‘morally aligned’ with the human inputs given. While such logs do
 1439 not turn a black box into a white box, a sophisticated logging mechanism not only helps developers
 1440 understand the HITL type at the present time, but also helps them improve the ADMS over time, and
 1441 helps the human(s) to learn about the ADMS and about their own strengths/weaknesses, enabling
 1442 them to make their own necessary adjustments over time.

1442 It is important to note that developers of ADMSs may face substantial hurdles, and competing in-
 1443 terests, when they attempt to log interactions and document the HITL setup’s moral shortcomings.
 1444 For example, Müller et al. (2025) argue in the context of resort-to-force decision-making that power
 1445 imbalances between developers, integrators, higher-level decision makers, and users can lead to de-
 1446 cisions being overwritten when moral insights clash with what upper-level decision makers perceive
 1447 as pressing economic and political realities. Just as Ho-Dac & Martinez (2024) see the need for
 1448 international standardisation to eliminate technical barriers in oversight, there is a need for standard-
 1449 isation of testing and documenting moral aspects of HITL setup types: while the concrete morality
 1450 of HITL setups necessarily differs and is context dependent, many of the questions that need
 1451 to be asked, and documented, have a more universal character to assess whether the HITL setup
 1452 embodies the positive principles of HITL design regarding human agency, value alignment, and
 1453 non-scapegoating (as further discussed in §4). This character is similar to the universality of ques-
 1454 tions, and context-dependency of answers, for model cards and data sheets, and to the universality
 1455 of questions observed for more general mathematical work by Chiodo & Müller (2025). Universal

1456 ¹⁰A mortgage determination tool may ask a series of real queries, but if postcode is fixed at a certain value
 1457 then it may come to pass that the set of possible lending amounts are all sums of money under \$1000; hardly a
 1458 meaningful distinction between those and a mortgage rejection.

1458 requirements and best-practices can help developers to achieve the difficult task of verifying, doc-
 1459umenting, and maintaining a specific HITL setup type, and to defend it in potentially adversarial
 1460 circumstances.

1461 In the context of cryptographic systems, Bellare (1999) discusses the idea of ‘practice-oriented
 1462 provable-security’ that bridges theory and practice; it is not enough to prove that a theoretical pro-
 1463 tocol is secure, one also needs to show that the resulting protocol implementation is practical, as if
 1464 it isn’t then that renders it unusable and thus hampers overall security. We also see theory-practice
 1465 tension regarding the verification, and documentation, of HITL setups: while the formalisation pre-
 1466 sented in this manuscript suggests that something akin to ‘provable HITL setup types’ may be possi-
 1467 ble, the failure modes, moral and legal complexity, and general difficulties associated with machine
 1468 learning operations and machine-computer interactions, suggest specific trade-offs are almost al-
 1469 ways necessary when attempting to verify, test, and document HITL types. The rather technical
 1470 nature of ‘practice-oriented provable-security’ turns into a fully *socio*-technical problem for HITL.
 1471 This associated complexity is also seen by others. For example, Kioskli et al. (2025) develop ‘trust-
 1472 Sense’: a questionnaire-based tool focused on measuring the ‘maturity’ of an oversight approach,
 1473 and thus, in particular, the ‘maturity’ of the development team and organisation. Shifting some of
 1474 the burden of proof from (external) checkers to developers requires this kind of holistic look at the
 1475 risks and mitigating measures taken during the entire lifecycle of a HITL setup, so inspiration may
 1476 be taken from such approaches.

1477 And so, whilst we envisage various technical *tools* to assist both developers and checkers in the
 1478 demonstration and verification of HITL setup type, we neither imagine, nor advocate for, any fully
 1479 *automated* processes to do so. The methods described above all involve substantial human partic-
 1480 ipation, in accordance with our argument throughout this manuscript that better outcomes can be
 1481 achieved with human-machine interplay rather than either on their own. Overall, by shifting some
 1482 of the burden of proof to the developers, the role of any checker (the things they can check for,
 1483 and how effectively they can check them) evolves from a completely unenviable one fraught with
 1484 numerous difficulties, to one that appears more feasible. The difficulties in determining HITL setup
 1485 type given at the start of this appendix begin to look more manageable when the checker is not
 1486 left entirely on their own, but rather actively assisted by a regulatory and cultural environment that
 1487 places requirements on developers to design, develop, document, and demonstrate aspects of their
 1488 ADMS and associated HITL setup.

1489 B.10 BOUNDED TRUTH TABLE REDUCTION

1490 In the endpoint action scenario of our route-planning example in §2.1 and B.5, the machine could
 1491 have instead asked the human a fixed finite series of questions such as ‘Do you prioritise speed or
 1492 efficiency?’, ‘What is your maximum acceptable distance between fuel stations?’, etc., and done
 1493 computation between each, to find a single route to then present. This is an involved interaction,
 1494 but in a precise sense it is not ‘fully using the potential’ of a Turing reduction. Namely, this process
 1495 corresponds to a type of intermediate reduction as mentioned in B.4: a bounded truth table reduction.
 1496 The crucial difference is that the uses of the oracle tape are bounded independent of the oracle. This
 1497 process can be viewed as one that presents only one query and performs only a trivial operation
 1498 after this. Namely, an oracle machine that asks a (human) oracle a (predetermined, finite) set of
 1499 questions ‘in series’ one after the other, is computationally equivalent to one which does a slightly
 1500 different computation with these options ‘in parallel’ and presents the conglomeration of questions
 1501 to the oracle at the very end, phrased as one (big) question. So essentially these setups are the same
 1502 as those which have only one real query, which are slightly stronger¹¹ than those for endpoint action,
 1503 but weaker than those in involved interaction. Not all Turing reductions are made equal, and even
 1504 among those which are not many-one reductions, some may behave differently than others from the
 1505 perspective we advocate here.

1506

1507

1508

1509

1510

1511

¹¹The Halting Problem does not many-one reduce to its complement, but there is a Turing reduction with only one query. It remains to be discussed when this distinction matters for human oracles.

1512 **C HITL FAILURE MODES**

1513
 1514 The main purpose of this appendix section is to motivate and expand upon our taxonomy of HITL
 1515 failure modes, with more detail than would otherwise fit in the main part of the manuscript. We now
 1516 signpost this here for convenience.

1517 The main part of the appendix, C.1, explains the origins and motivation of our taxonomy of failure
 1518 modes, based in part on our experiences in industry. This is supplemented by extensive existing
 1519 literature on the topic which supports our taxonomy. We also include a much-elaborated table of
 1520 failure modes for our five failure categories. In C.2 we clarify, by way of examples, how two similar-
 1521 looking failure categories are genuinely distinct.

1522 To round off the appendix we give two case studies, covering additional examples of failed HITL
 1523 setups that have occurred. The first of these (C.3) is covered in general terms. The second (C.4)
 1524 is dissected and analysed according to our taxonomy from §3.1, as was done for the case study in
 1525 §3.3. We finish in C.5 with a description of how our taxonomy could have been applied to prevent
 1526 the failure and subsequent harm of the HITL setup in our case study in §3.3.

1528 **C.1 LITERATURE ON HITL FAILURE MODES**

1529
 1530 The empirical foundation of the taxonomy given in §3.1 is primarily derived from a series of ethics
 1531 consultations conducted between 2020 and 2022. During this period, one of the authors served
 1532 on the ethics advisory board for an AI startup accelerator program [*anonymised for peer review*].
 1533 As part of this engagement, the author provided ethics consultations to over 25 AI startups and
 1534 conducted intensive, in-depth ethics workshops with three additional companies.

1535 These consultations provided a valuable opportunity to observe how AI practitioners conceptualise
 1536 system failures. A recurring theme emerged: participants, who often possessed strong technical
 1537 backgrounds in fields such as computer science, mathematics, and engineering, demonstrated a
 1538 sophisticated understanding of potential technological failure modes. This technical expertise aligns
 1539 directly with the first category in our proposed taxonomy: ‘Failure of the machine components’.

1540 Conversely, the consultations revealed that the complexities arising within broader sociotechnical
 1541 systems, particularly those with an (implicit) human-in-the-loop, were less consistently understood.
 1542 The dialogues surrounding the limitations and potential failures of human–machine interactions
 1543 highlighted critical areas for conceptual development, and showed that a more fine-grained tax-
 1544 onomy of failure modes is warranted than simply categorising all other failures as ‘human error’.
 1545 These interactions, therefore, were crucial in helping us develop essential insights, thus allowing us
 1546 to identify the subsequent categories of our taxonomy.

1547 The issues that arose with the startups consistently coalesced around four foundational themes be-
 1548 yond the purely technical. These themes, which informed the taxonomy’s structure, included:

- 1550 • Process and Workflow: For example, the design and strategic importance of robust data
 1551 segregation practices, illustrated by questions concerning the rationale for utilising unique
 1552 encryption keys for different clients to mitigate a (human) loss of a key.
- 1553 • human–machine Interface: For example, the psychological and ergonomic significance of
 1554 interface design choices, such as the colour and typography of warning messages, in con-
 1555veying critical information.
- 1556 • The Human Component: For example, the necessity of anticipating and modelling a wide
 1557 spectrum of user behaviours, including those that are unconventional or counter-normative
 1558 such as the unanticipated uploading of sensitive information by users to an insufficiently-
 1559 secured cloud storage system.
- 1560 • Exogenous Factors: For example, the complex ethical and legal considerations involved in
 1561 the contractual allocation of liability between software providers and B2B end-users.

1562
 1563 A common theme in these ‘mixed’ failure modes was that startups, and in particular the technical
 1564 developers themselves, did not necessarily see such failure modes as their areas of responsibility.
 1565 Multiple times, the author heard variants of the statement ‘This problem would be human error, and
 1566 not a problem in our technology, so we are not responsible for it’. The contrast between nuanced

1566 failure modes and the general idea of ‘being a user problem’, helped spawn the idea that with poor
 1567 sociotechnical choices at the design stage, the humans participating in the HITL setups were being
 1568 (unintentionally) *set up to fail*.

1569 The fineness/coarseness of the taxonomy as 5 failure categories is a pragmatic interpretation of
 1570 the topics that came up during these interactions, and how the various developers and managers
 1571 were able to deal with them. We tried to keep in mind what appears to be best-suited to those
 1572 designing, developing, and deploying HITL setups, and we note that there may well be other, more
 1573 philosophically-oriented breakdowns one might use.

1574 Many of the individual failure modes which were observed during these consultations can by now
 1575 also be found in the wider literature, albeit there they are presented with a different structure and/or
 1576 in unstructured ways. For example, the recent literature survey written by Sterz et al. (2024) de-
 1577 velops a taxonomy for general human oversight in the context of AI. While they only consider
 1578 the failure categories of technical design, human, and environment, they still discuss many of the
 1579 individual failure modes presented in our taxonomy. We note that the differences between our tax-
 1580 onomy and that of Sterz et al. (2024) are a reflection of the empirical experience of conducting
 1581 ethics consultations with startups, whereby discussions of the failure modes were naturally ordered
 1582 by ‘increasing human-ness’ or ‘lack of technicalities,’ and many concerns emerged at the bound-
 1583 aries between human practices, abstract processes and technological details (thereby requiring us
 1584 to have 5 categories). Moreover, Chiodo & Müller (2025) cover the harms and failure modes of
 1585 general mathematical work in their ‘10 Pillars of responsible development’, which also has close
 1586 connections to our taxonomy and its breakdown into various failure modes.

1587 Having studied failure modes for AI-supported governmental decisions, Green (2022) also notes that
 1588 the introduction of a HITL setup can harm the overall safety of a sociotechnical system; something
 1589 that was also observed during the ethics consultations, as the ‘this is not a technical problem’ attitude
 1590 was often accompanied by placing a lot of potentially unwarranted hope on human oversight, thus
 1591 creating a false sense of security in the AI product or service being produced.

1592 Regarding the consultations with startups, the author also found that discussions on failure modes in
 1593 automated industrial processes, as well as the commonly discussed ‘Swiss cheese model’ (Larouzee
 1594 & Le Coze, 2020) for accidents, whereby an accident can happen despite many defensive layers if
 1595 the ‘holes’ of each layer are properly aligned, were still relevant in HITL contexts. For example,
 1596 Bainbridge (1983) wrote about the automation of industrial processes, Endsley (1995) studied the
 1597 situational awareness of humans in automated processes, Sarter et al. (1997) looked at automation
 1598 surprises, and Reason (1990) for human errors—the latter two have influenced categories 3 and 4 of
 1599 our taxonomy, focusing on the human and the human–machine interface. Understanding that many
 1600 of these failure modes are not unique to AI systems or more general ADMSSs, but can also be found
 1601 in other (industrial) situations helped convey the spectrum of responsibilities to various startups.
 1602 We present here in Table 1 an extended (but still non-exhaustive) breakdown of our taxonomy, with
 1603 additional failure modes included, extending the list from §3.1. This is done in tabular form for ease
 1604 of reading:

1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619

1620
1621
1622
1623
1624
1625

Table 1: HITL failure modes

Failure of the machine components	Failure of the process and workflow	Failure at the human–machine interface	Failure of the human component	Exogenous circumstances
<ul style="list-style-type: none"> • Unexpected inputs or outputs • Problematic machine evolution or self-adaptation • Hallucinations • Reasoning errors • Overfitting of training data • Biased or other erroneous outputs • Unfalsifiable outputs • Lacking ‘common sense’ • Morally unacceptable outputs • Other unexpected behaviour 	<ul style="list-style-type: none"> • Insufficient power of the human • Insufficient self-control/independence • Insufficient reaction time • Unrealistic expectations • Delayed notification • Lack of disaster planning • Insufficient management support • Insufficient psychological support • Lack of rest • Conflict of interest • Other process and workflow failures 	<ul style="list-style-type: none"> • Incomprehensible or incomplete outputs • Complex or poorly designed user interface • Constantly changing user interface • Insufficient training • Poor documentation • Transition failures between different humans • Other HCI adaptability failures • Other epistemic failures • Other interaction failures 	<ul style="list-style-type: none"> • Cognitive bias • Automation bias • Confirmation bias • Fatigue • Incongruous intentions • Stress or overload • Lacking courage • Lacking motivation • Lacking self-awareness • Lacking humility • Onset of groupthink • Other human-centric failures 	<ul style="list-style-type: none"> • Unreasonable laws • Unreasonable societal expectations • Conflicting requirements • Misaligned objectives • Political pressure • Unexpected exogenous shocks • Poor safety culture • Inappropriate workplace requirements • Insufficient resources • Other external pressures

1651
1652 One can further see very recent literature connected to each specific failure category given above:
16531654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

1. Regarding failure of the machine components, Barassi (2024) investigates what the term ‘AI errors’ even means given the new and complex world of LLMs and other multi-modal models. And Kim et al. (2025) discuss how ADMS errors can systematically feed into human performance and human errors further down the line.
2. Regarding failure of the process and workflow, Rosenthal-von der Pütten & Sach (2024) conduct a deep investigation showing many humans in HITL setups may simply be unable to detect *systemic* bias in the overall output of an ADMS (in their study, a hiring algorithm).
3. Regarding failure at the human–machine interface, Tsai et al. (2025) have studied human performance on ADMS-assisted verification tasks, showing a substantial increase in cognitive processing and cognitive load on the humans when the ADMS assistance was activated due to the increase in content being displayed to them.
4. Regarding failure of the human component, Alon-Barkat & Busuioc (2023) demonstrate ‘selective adherence’ of humans, which is ‘the propensity to adopt algorithmic advice selectively, when it matches pre-existing stereotypes about decision subjects’ (Alon-Barkat & Busuioc, 2023, p. 154).
5. Regarding exogenous circumstances, Laux & Ruschemeyer (2025) provide a critique of the EU AI Act, and in particular how its ‘focus on providers does not adequately address design and context as causes of automation bias’ (Laux & Ruschemeyer, 2025, p. 1).

1674
1675

C.2 DEMONSTRATING A DISTINCTION BETWEEN FAILURE CATEGORIES 2 AND 4

1676
1677
1678
1679

There might be some ambiguity between failure category 2 (process and workflow) and failure category 4 (human component) of our taxonomy in §3.1, as each may seem to convey failure purely with the human in the HITL setup. But these are genuinely distinct, and there are examples where one of these categories failed but the other operated normally. We give some here.

1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696

Failure of the process and workflow (cat. 2), where the human component (cat. 4) did not fail:

As presented in Mattern (2007), during the Cold War the Soviet Union had several early-warning bunkers set up, scanning the skies for any incoming nuclear missiles in order to give central command time to launch retaliatory strikes. Lieutenant Colonel Stanislav Petrov worked at one such bunker, Serpukhov-15, near Moscow. On 26 September 1983, while acting as the duty officer there, the automated computer monitoring system there reported that U.S. missiles had been launched. This reported automatically to the early-warning system headquarters, which in turn eventually reported directly to Soviet leadership. Were a report that missiles had been launched to reach Soviet leadership, a retaliatory strike would have almost certainly followed, leading to a full-blown nuclear war between the two nations. Petrov made the decision to inform the early-warning system headquarters that the alert was a false alarm. He made this determination as he only saw five missiles on his computer screens and considered that it was unlikely a U.S. nuclear strike would be this small, and so must be an error (Hoffman, 1999). He was correct; the detection system was indeed erroneous. Had he not actively overruled the automated report in this way, a nuclear war may well have commenced. Clearly, the process and workflow of this HITL setup was problematic as messages were automatically sent to the early-warning system headquarters, and it was only on account of the extraordinary actions of the human component (Petrov) that a quick correction message was sent; Petrov had mere minutes to react, but did so effectively.

1697
1698
1699
1700
1701
1702
1703
1704
1705
1706

Failure of the human component (cat. 4), where the process and workflow (cat. 2) did not fail:

As presented in (DeMasters, 2023), on 29 April 2023 a tourist following GPS navigation drove their car into the ocean at Honokohau Harbor, Hawaii, and needed to be rescued (the car itself ended up completely submerged in the water). It was reported that ‘the GPS they were following led them straight to the water.’ The event occurred in broad daylight, and no contributing factors were reported apart from the GPS misdirection. The process and workflow of this HITL setup seems to have worked properly; the car was being driven by a human, and the GPS navigation system gave a *recommended* route. The human component (the driver) failed dramatically, as they did not use the context of their surrounds to scrutinise this recommendation sufficiently but instead deferred entirely to the automated recommendation, thus leading to the car being driven into the ocean.

1707
1708

C.3 HITL AS PART OF AN AI SECURITY SCANNER SETUP

1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723

As presented in Robertson & Chwasta (2025), in April 2025 two men were alleged to have brought firearms through the ADMS-powered security scanning setup at the Melbourne Cricket Ground (MCG). This was an endpoint action HITL setup, with scanners running an ADMS used to flag attendees who *might* be carrying weapons, and then manual secondary screening used to conduct a final, definitive inspection. Initially, the blame was conjectured to have been ‘human error’ in the secondary scanning process. However, as mentioned in (*ibid.*), with a potentially high false-positive rate, secondary (human) scanners may have faced the combined challenges of operator fatigue (having to scan many attendees in a short space of time as they arrived for the beginning of a match), as well as complacency (having to scan countless attendees, *none* of whom were actually carrying weapons). The human scanners may have become quite tired, and many have lost faith in the ADMS (the scanner) as it overwhelmingly returned false positives. Indeed, shortly after initial reporting, it was revealed that the alleged offenders did not in fact have a metal detecting wand waved over them, even though the ADMS flagged them for additional checks (Ryan & Eddie, 2025). Both men were eventually prosecuted and found guilty of bringing firearms into the MCG (Cosoleto, 2025).

1724
1725

C.4 HITL AS PART OF SEMI-AUTOMATED FIRE DETECTION SETUPS

1726
1727

As presented in Bennhold & Glanz (19.04.2019); Peltier et al. (18.06.2019), in April 2019 a catastrophic fire broke out in the attic space of Notre-Dame Cathedral. The cathedral had an ADMS for fire monitoring with an endpoint action HITL setup. When a fire was detected by the machine, a

short message ‘fire’ was sent to the monitoring office in the cathedral, without specifying exactly where the fire was (incomplete outputs). As is standard across France, fire alarms never automatically notify the fire brigade, so as to avoid false callouts (unreasonable laws). The employee on duty was only on his third day of the job and working unsupervised (insufficient training, unrealistic expectations). The employee was required to phone a guard, who then had to physically check the attic; a 6 minute journey up many stairs (insufficient reaction time). Unfortunately, the guard got lost, and went up the wrong staircase to the attic of the sacristy, which was the adjacent building (insufficient training). The employee then called his manager rather than the fire brigade (lacking courage), but could not reach him (insufficient support, insufficient power of the human), and it took time for the manager to call back and instruct the guard to leave the sacristy, go down the stairs, and then climb another staircase to the attic of the cathedral. By the time the guard reached the attic of the cathedral, the fire was raging. The fire brigade was then called, over 30 minutes after the first detection of a fire. This was a fairly simple system, computationally speaking, but nonetheless was a HITL setup that failed completely with spectacular consequences.

C.5 MITIGATIONS FOR THE UBER HITL SETUP

In §3.3 we describe the trivial monitoring setup used by Uber in their self-driving car that was involved in a pedestrian fatality, where we signposted some of the failure modes from our taxonomy in §3.1 as they manifested in that case study. We now provide some mitigations that might have been taken (by Uber, or others) to address these and reduce the risk of a harmful outcome.

- To reduce fatigue, give more realistic human expectations, and involve the human more in the process, Uber might have created a squeeze trigger on the steering wheel, allowing the human to rest their hands on the wheel and ‘feel’ the AI driving, while not disengaging the AI unless they gave the trigger a gentle squeeze.
- To ensure vigilance and detect fatigue or distraction, Uber could have installed a vigilance device such as a light or buzzer that requires the human to press a button within a short period after notification. Uber could have also installed a dead man’s switch, to trigger if the human took more than one hand off the wheel at once (working in tandem with the squeeze trigger suggestion above).
- To reduce fatigue, Uber could have set the human periodic tasks, such as to turn the windscreen wipers on/off, briefly change the intensity of the headlights, etc., rather than have them sit there with no set tasks for prolonged periods.
- To reduce automation bias, Uber could have implemented a system whereby the human and AI driving systems would swap periodically, say, every 5 minutes. That would have increased the sense in the human whereby they had definite responsibility, regularly.
- To compensate for machine failure in the form of misclassification of the pedestrian, Uber could have implemented some change point detection within the classification system; any rapid fluctuation between (re)-classification of an object within a short period (here, rapidly switching between ‘another vehicle’, ‘pedestrian’ and ‘other’ within 4.1 seconds) might imply some high level of uncertainty and, in such situations, trigger a warning to the driver to increase vigilance, and possibly even initiate a controlled slowdown. This could make use of an ML technique of *learning to defer*, where models are trained to defer to human judgement under certain circumstances. For supporting details of this method, see D.4.
- To reduce instances of the human choosing to carry out other tasks and thus be distracted, Uber could have carried out a security check of the human, to remove any distracting devices such as personal smartphones, and configured any Uber-issued devices to be unable to play videos or similarly distract the driver. Uber could have also provided the human with explicit guidelines, training, and examinations, to ensure that they were aware of, and competent in, avoiding distractions.
- To deal with the poor company safety culture, Uber could have changed its internal management and training systems, to teach, encourage, and reward, safety-conscious work. This could have included things such as safety training, regular safety checks of work (by management and/or peers), and a reward system (bonuses, certificates, etc.) for employees discovering unsafe aspects of the system.

1782
1783
1784
1785
1786
1787
1788
1789

- To encourage various actors to take on the responsibility of ensuring safety, the surrounding legal-regulatory system could have been set up in a way to make it clear who in the process would be accountable should an accident occur. A regulatory system where *some* accountability is placed on *all* parties might have (externally) encouraged more individuals, and Uber as an organisation, to take on more responsibility for ensuring safety and responding to concerns raised by whistleblowers. We explain one approach to a more distributed accountability model in §4.4 based on similar cases with complex causation chains where many actors contributed to the resulting harm that occurred.

1790
1791 Of course, this list is not exhaustive. And not every mitigation is guaranteed to work perfectly. How-
1792 ever, by using our taxonomy from §3.1 to identify the potential points of failure of this HITL setup,
1793 *enough* of these failures could have been *sufficiently mitigated* to properly invoke the Swiss cheese
1794 model of accident causation and prevention (Larouzee & Le Coze, 2020), as already mentioned in
1795 C.1. A system does not need to work perfectly to prevent harm, but if too many subsystems operate
1796 substandardly, harm is inevitable. Our taxonomy from §3.1 gives a concrete tool to help avoid this
1797 happening.

1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

1836 **D HITL IN THE LAW**

1837
 1838 The main purpose of this appendix section is to provide additional details for the legal cases and
 1839 arguments that we present in the manuscript, the details of which are far too long to fit in the main
 1840 part of the manuscript. We now signpost this here for convenience.

1841 We begin in D.1 with a brief explanation and justification for limiting our scope to EU and UK
 1842 law. In D.2 we cover the legal concept of automated decision making, and how this relates to our
 1843 definition of trivial monitoring. There, we detail the SCHUFA case, where the courts found that the
 1844 credit scoring company SCHUFA violated the GDPR by (inadvertently) carrying out automated
 1845 decision making by adopting a trivial monitoring setup.

1846 We then highlight the legal benefits of endpoint actions in D.3, showing that such HITL setups can
 1847 help the human to carry out their legal and moral safeguarding duties to a better extent. There, we
 1848 also show that SCHUFA could have averted violating the GDPR had it made use of an involved
 1849 interaction setup. And in D.4 we go into detail about how existing machine learning strategies, such
 1850 as learning to defer, can be integrated into our involved interaction HITL setups to improve operation
 1851 and efficiency of the setup.

1852 In D.5 we detail how causation can be difficult to determine in an involved interaction setup. Then,
 1853 in D.6 we apply our legal and moral insights from our studied HITL setups to additional reduction
 1854 types, showing what can be carried over, and giving a way to formalise these reduction types into
 1855 new HITL setups.

1856 And in D.7 we present the outcome of some legal cases related to mesothelioma where a principle
 1857 of joint liability was used by the courts to bridge responsibility gaps, and how this might apply to
 1858 involved interactions when trying to establish legal liability.

1860 **D.1 OUR CHOICE OF LEGAL JURISDICTIONS TO COVER**

1861 This manuscript examines several legal frameworks that govern HITL setups. Some operate *ex*
 1862 *ante*,¹² such as the EU/UK GDPR and EU AI Act, which apply regardless of whether a failure
 1863 occurs because they regulate the ‘effectiveness’ and ‘meaningfulness’ of human oversight (see §4.1,
 1864 4.2). Others operate *ex post*¹³ when a HITL setup fails and causes physical or psychological harm,
 1865 and here we focus on the common law of negligence in the UK. We adopt a broad approach by
 1866 analysing both *ex ante* and *ex post* mechanisms to provide a more comprehensive picture of the legal
 1867 instruments at play in the development and deployment pipeline, while limiting our jurisdictional
 1868 scope to the UK and EU for the three reasons outlined below.

1869
 1870 The first reason is because of the EU AI Act and GDPR’s global influence. The EU AI Act is
 1871 the world’s first comprehensive AI regulatory framework. Like the GDPR, it is expected to have
 1872 a ‘Brussels effect’, serving as a blueprint for other jurisdictions considering how to regulate AI
 1873 (Siegmann & Anderljung, 2022). Gunst & De Ville (2021)’s work on the GDPR and how its rules
 1874 ‘conquered Silicon Valley’, demonstrates how EU standards in data protection influenced state-level
 1875 developments in the US, such as California’s data protection law. New regulations introduced in the
 1876 California Consumer Privacy Act have already mimicked the GDPR’s Article 22(1) solely automated
 1877 decision-making provisions by imposing obligations on businesses who use ‘computation to replace
 1878 or substantially replace human decision-making’ (Ridgway et al., 2025). This is very similar to the
 1879 ADMS definition in Article 22 of the GDPR and includes similar safeguards and obligations. It is
 1880 also likely that provisions in the EU AI Act will translate to US state regulations as more companies
 1881 internalise EU standards across their operations (Siegmann & Anderljung, 2022).

1882 Siegmann & Anderljung (2022) argue that this dynamic is particularly relevant for large US-based
 1883 technology companies whose AI systems fall into the Act’s high-risk category (which is the focus of
 1884 this manuscript). Although the EU’s Code of Practice is only applicable to the provisions in the EU
 1885 AI Act relating to general-purpose AI, major AI companies including Anthropic, Microsoft, OpenAI,
 1886 Mistral AI, and Amazon have already signed the Code, signalling early intentions to comply
 1887 with the Act’s requirements. Therefore, in this manuscript, we focus on the EU jurisdiction because
 1888 of the GDPR and AI Act’s broad scope whereby it is applicable in all 27 EU member states, but

1889¹²This means ‘before the event’, and refers to proactive laws that aim to prevent future legal violations.

¹³This means ‘after the event’, and refers to laws that punish actors after the legal violation has occurred.

1890 in anticipation that its human oversight and automated decision-making requirements will have an
 1891 extraterritorial scope.

1892 Secondly, the authors acknowledge that the US and China are crucial jurisdictions to consider with
 1893 respect to their regulation of HITL (in relation to the former, the Uber case §3.3 demonstrates this);
 1894 however, analysis of these jurisdictions falls outside the scope of this manuscript. The US landscape
 1895 comprises a complex patchwork of rules, executive orders, and legislation which all differ per state,
 1896 making it difficult to analyse coherently within the constraints of this manuscript. China has taken
 1897 a more targeted approach, with rules and standards based on specific products and services, for in-
 1898 stance, TC260-003 on generative AI which incorporates HITL-related requirements for the labelling
 1899 and detection of unlawful content (McWhirter & Tam, 2025). While both are important jurisdictions
 1900 to consider, these regimes warrant a separate and more tailored examination, which would have di-
 1901 luted the in-depth legal analysis of the UK and EU frameworks if provided in this account. Our
 1902 focus on the EU AI Act and EU/UK GDPR should therefore be understood as a *proof of concept*
 1903 for connecting HITL formulations, failure modes, and legal requirements that future research can
 1904 extend to other jurisdictions. We invite further research, specifically as an obvious starting point
 1905 on how California’s new automated decision-making requirements will map onto the HITL failure
 1906 taxonomy (§3.1) presented in this manuscript. As well as this, we suggest that future research also
 1907 considers a comparative study of the legal oversight and accountability frameworks with respect to
 1908 ADMS alongside the HITL taxonomy proposed in this manuscript (§3.1) in the context of other
 1909 jurisdictions, to name a few that could be relevant, Brazil, Nigeria, and India.

1910 Thirdly, this manuscript also draws on the UK common law of negligence to analyse how liability
 1911 is assigned when HITL setups fail. Like the EU’s legislative frameworks, UK common law remains
 1912 influential beyond its borders. As former British colonies, many Commonwealth countries still
 1913 retain foundational common law elements and principles from the UK in their legal systems today.
 1914 For instance, in relation to causation in negligence (although not an exhaustive list of countries)
 1915 India, Australia, Canada, and South Africa share the similar foundational doctrines and rely on UK
 1916 case law as persuasive authority when making decisions. As such, the arguments advanced here for
 1917 ensuring negligence principles account for HITL failure modes and avoid ‘HITL scapegoating’ by
 1918 drawing upon mesothelioma cases (§4.4) will be relevant across these jurisdictions and contribute
 1919 to broader conversations on common law approaches to AI accountability.

1920 D.2 TRIVIAL MONITORING AS AUTOMATED DECISIONS (GDPR)

1921 At present, Article 22 of the GDPR generally prohibits trivial monitoring and classifies it as a solely
 1922 automated decision despite the presence of an active HITL setup. The GDPR requires that any
 1923 ADMS used to make decisions with legal (or similar) effects need to reflect at least an endpoint
 1924 action HITL setup to break automation. The scope of Article 22 was affirmed by the Court of
 1925 Justice of the European Union (CJEU) in the SCHUFA case (Court of Justice of the European
 1926 Union, 07.12.2023). Prior to SCHUFA, it was thought that if there was *any* active HITL setup
 1927 then this could not be a solely automated decision within the scope of Article 22. However, in the
 1928 case, the judge opined that a HITL setup *can* still exist within a solely automated decision if the
 1929 human is just carrying out trivial monitoring. This is because in trivial monitoring, the human is not
 1930 meaningfully influencing the decision-making process, and so is unlikely to have any impact on the
 1931 ultimate output of the system, meaning that the decision-making is basically still automated.

1932 The SCHUFA case concerned a credit scorer (SCHUFA) who created credit repayment probability
 1933 scores through automated processing. SCHUFA then shared these scores with lender banks who
 1934 determined whether they would lend money to individuals, using those scores. The issue in the case
 1935 was whether an automated decision occurs between SCHUFA and the individuals, even though the
 1936 bank lenders were in the middle of the decision making process (acting as ‘the human’ in this HITL
 1937 setup). However, since the bank lenders relied so heavily on the scores, in reality, it meant that they
 1938 were simply applying the output of SCHUFA’s decision. Thus, the CJEU determined that this was
 1939 an example of a solely automated decision between SCHUFA and the individuals seeking a loan,
 1940 showing that trivial monitoring setups are generally considered to be automated if the human has no
 1941 meaningful influence on the decision.

1942 This case marked a significant shift in the law’s approach to HITL by recognising that tokenistic
 1943 humans cannot be used to enable companies to fall outside the scope of Article 22 and thus avoid

1944 the onerous obligations associated with this provision. If data controllers want to perform an auto-
 1945 mated decision with no human intervention or if the human is just carrying out trivial monitoring,
 1946 to be lawful, they must also have explicit consent from the decision subject (or another specific
 1947 justification) that permits decision making with such limited oversight. Additionally, when perform-
 1948 ing automated decision making, the data controller must also have certain safeguards in place, such
 1949 as the ability for individuals to request human intervention, receive explanations of decisions, and
 1950 contest the outputs.

1951 In order for a decision making process to fall outside the scope of Article 22 and ‘break automa-
 1952 tion’, the human needs to actively influence the decision making process. The CJEU provided little
 1953 guidance on what the ideal HITL setup looks like since this was beyond the scope of the case. How-
 1954 ever, guidance from the UK’s data protection authority (Information Commissioner’s Office, 2025)
 1955 suggests that to avoid making an automated decision, data controllers need to ensure that the human
 1956 weighs up the output and interprets it before applying it to the decision subject. This reflects end-
 1957 point action, since the machine asks one real query and the human considers the machine’s output
 1958 and adds some more insight to make the final decision.

1959 Therefore, the law recognises trivial monitoring as solely automated and generally prohibited (unless
 1960 consent or other justification and safeguards are present). In addition, regulatory guidance suggests
 1961 that endpoint action is required to move data controllers outside the scope of automated decision
 1962 making in Article 22. However, as shown in this manuscript, there are significant yet distinct ethical
 1963 and computational implications between trivial monitoring, endpoint action, and involved interac-
 1964 tion setups that the law does not acknowledge.

1965 We argue in this manuscript that involved interaction provides legal benefits that align with the
 1966 broader responsibilities set out in the UK GDPR and EU AI Act. Therefore, building upon the ju-
 1967 risprudence of the SCHUFA case, data protection authorities should provide guidance to companies
 1968 to implement at least endpoint action, and preferably involved interaction as an ideal HITL setup to
 1969 fall outside the scope of Article 22. Existing guidance lacks practical tools that ADMS developers
 1970 can use to enable *effective* and *meaningful* oversight. As such, including the specific computational
 1971 setups like trivial monitoring, endpoint action and involved interaction with their applicable legal
 1972 obligations would help clarify the scope of automated decisions to technical audiences and provide
 1973 developers with concrete methods to configure their human–machine setups accordingly.

1974 1975 D.3 THE LEGAL BENEFITS OF INVOLVED INTERACTION

1976 Article 14 of the EU AI Act states that ‘Human oversight shall aim to prevent or minimise the risks
 1977 to health, safety or fundamental rights’. Similarly, Article 22(3) of the GDPR stipulates that data
 1978 controllers implement ‘suitable measures to safeguard the data subject’s rights and freedoms and
 1979 legitimate interests’. These safeguarding duties are onerous and it is difficult to understand how the
 1980 human in a trivial monitoring or endpoint action setup would be able to minimise risks to an indi-
 1981 vidual’s human rights or safeguard a decision subject’s legitimate interests. In trivial monitoring and
 1982 endpoint action setups, the human may have no influence on, or understanding of, the computational
 1983 process involved in the decision.

1984 Indeed, in these setups the human may face a completely ‘black box output’. For example, in
 1985 an endpoint action, the human may just receive a probability score for credit risk. Using only
 1986 this, the human would need to determine whether it should be applied to an individual and also
 1987 whether it infringes any values. Thus, endpoint action and trivial monitoring setups contain an
 1988 inherent opaqueness which prevents the human from understanding the significance of certain inputs
 1989 or factors on the output of the ADMS. As a result, the human may lack sufficient knowledge and
 1990 ability to influence, effectively evaluate, and implement the decisions made by an ADMS to uphold
 1991 their safeguarding duties.

1992 In §4.2, we argued that in systems with weaker reductions such as endpoint action, the human is
 1993 not enabled to effectively influence the system, and thereby meet their obligations under GDPR or
 1994 the EU AI Act. We therefore propose that involved interactions are included in regulatory guidance
 1995 to guide developers on how the human can meaningfully impact the system, thereby meeting legal
 1996 requirements.

1998 Carrying forward the example of the SCHUFA case (D.2), if the lender was engaged in an involved
 1999 interaction setup, the ADMS could query the human in the course of the computation which would
 2000 enhance the human’s understanding of whether the decision subject’s rights or legitimate interests
 2001 are being eroded. For instance, the human could be asked questions by the ADMS such as ‘is the
 2002 individual’s postcode relevant to the credit score?’ or ‘what information should be used to substitute
 2003 the lack of credit history?’.

2004 Additionally, involved interaction setups give the human a chance to watch and scrutinise more of
 2005 the computational process, as mentioned earlier. This may help overall safety, as they may ‘spot a
 2006 problem’ early on, such as the ADMS asking questions about a credit applicant that should not be
 2007 used as part of the assessment. Therefore, involved interaction avoids the ‘sloppy’ (Crootof et al.,
 2008 2023, p. 434) implementation of a human into human–machine setups, by enabling the human to
 2009 better fulfil their safeguarding duties by evaluating the output of an ADMS in accordance with the
 2010 rights and freedoms of decision subjects.

2011 Also, an involved interaction setup could have actually *averted* SCHUFA’s legal issues regarding the
 2012 court’s determination of their system as automated decision making (prohibited by Article 22). In
 2013 that case, it was deemed that even though the intermediary bank *appeared* to be acting as ‘the human’
 2014 in an endpoint action HITL setup by taking the credit score from SCHUFA and using it within their
 2015 own processes for determining credit worthiness, the courts determined that in actual fact that the
 2016 human was in a trivial monitoring setup as they were merely ‘passing on’ the credit score as a credit
 2017 worthiness determination. What we see here is that in this ostensibly endpoint action setup, the
 2018 human ‘slipped back’ to a trivial monitoring setup by completely deferring to the machine output;
 2019 a clear case of (a particular form of) automation bias in our taxonomy of HITL failure modes (see
 2020 §3.1); one which was deliberate and designed into the system which unintentionally resulted in
 2021 serious legal implications. Had the human (the bank) properly maintained its (endpoint action) role
 2022 of using the machine output to feed into a human decision, then Article 22 of the GDPR would not
 2023 have been violated by SCHUFA.

2024 However, as explained in §3, HITL setups naturally fail, for a wide variety of reasons (automation
 2025 bias being one of them), and this should have been anticipated by SCHUFA. So what could SCH-
 2026 UFA have done to avert violating Article 22? One way would have been to properly implement an
 2027 involved interaction setup, needing several interventions from the human in the machine computa-
 2028 tion. This would have ensured the decisions were not automated, thus avoiding a violation of Article
 2029 22. With the endpoint action setup SCHUFA had in place, the human could simply ‘nod through’ the
 2030 machine output in an algorithmic way, by accepting all applications scored above a certain thresh-
 2031 old, and rejecting all those below it, meaning the setup was given by a total function. As such, this
 2032 broke the requirement of an endpoint action, which is that ‘the oracle machine many-one reduces
 2033 the computation to the human, but it *does not* define a total function’ (§2.1).

2034 If, on the other hand, the setup was as involved interaction, the human could not have nodded
 2035 through the machine queries throughout if they were indeed real queries (as defined in §2), as they
 2036 may well have faced a query not admitting a yes/no answer. Of course, the queries might all be algo-
 2037 rithmically solvable (and so the setup again reduces to an involved interaction), but here SCHUFA
 2038 would have been *incentivised* to ensure this did not happen, to avoid violating Article 22. Thus,
 2039 SCHUFA would have been in a much better position to avoid carrying out automated decisions (i.e.,
 2040 avoid violating Article 22) had they implemented an involved interaction setup whereby the human
 2041 (the bank) needed to answer questions throughout the computation process. By implementing an
 2042 involved interaction (§2.1) to break the automation bias of the human (§3.1), SCHUFA could have
 2043 prevented the slip back to trivial monitoring and thus avoided violating Article 22 (§4.1).

2044 This demonstrates a real example where our arguments from §4.2 play out, illustrating the benefits
 2045 of having a HITL setup with stronger reductions, and thus more human involvement and input.

2046 D.4 HITL AND ITS CONNECTION TO DIFFERENT LEARNING STRATEGIES

2047 The concept of *learning to defer* (L2D), as introduced by Madras et al. (2018), describes an adap-
 2048 tive learning framework within a two-stage sequential socio-technical system. Here, an AI model is
 2049 trained to either generate a prediction autonomously or to defer the decision to a human decision-
 2050 maker. This policy is adaptive: the model considers not only its own confidence but also the ant-
 2051 iculated performance of the human decision-maker. This is in contrast to the simpler concept of

2052 *rejection learning*, where the model defers to a human when it is not confident in its own prediction,
 2053 independently of how competent the human may (or may not) be. In L2D, if the model chooses to
 2054 predict rather than defer, the human is completely bypassed, and the model’s output is adopted as
 2055 the system’s final decision.

2056 According to the formalisation presented in §2.1, the standard L2D setup does not constitute a HITL
 2057 setup. Our formalisation conceptualises HITL as a socio-technical system where the human has
 2058 guaranteed influence or oversight capability (from the ability to stop the machine, to being properly
 2059 involved in the decision-making process). However, as described by Madras et al. (2018), L2D
 2060 violates this requirement because the machine has the authority to exclude the human from the loop
 2061 entirely. Additionally, in L2D systems the human’s agency is eroded by the system considering a
 2062 computationally produced analysis of both the human and itself. Similarly, rejection learning either
 2063 eliminates or engages the agency of the human, but only by considering a computationally produced
 2064 analysis of itself. In both cases, in general the human’s agency has been effectively eliminated.
 2065 While there will be cases for the human to potentially affect the output of the whole system, agency
 2066 was defined as the human’s ‘ability to actively impact the system’ (§2 and B.3), and in general the
 2067 ability of the human to impact the system is contingent on the machine’s computational analysis.
 2068 Because of this contingency, these setups do not place the human in a position of agency because
 2069 their ability is always contingent on factors that they have no control over. Computationally, L2D
 2070 implements an oracle machine that executes *at most one* real query. If the machine chooses not to
 2071 defer, it executes zero queries, operating as a human-out-of-the-loop (i.e., HOOTL) setup.

2072 Despite not fitting the strict formalisation of a HITL setup, L2D offers significant utility in many
 2073 contexts. As Madras et al. (2018) argue, an autonomous decision made by a machine may be prefer-
 2074 able in certain circumstances. For example, when it demonstrably outperforms the human (e.g.,
 2075 specific medical diagnostic tasks), when the human decision-maker exhibits systematic biases that
 2076 the model can mitigate, or in high-volume or fast-paced environments where human (cognitive) ca-
 2077 pacity or stress resistance are limiting factors. Thus, a genuine L2D setup can help mitigate certain
 2078 failures of the human component (§3.1). Alternatively, providing the machine with the ability to
 2079 defer a task also helps mitigate failures of the machine component (§3.1). One specific instance
 2080 where L2D could have improved a HITL setup is given in the discussion of potential mitigations for
 2081 the Uber case in C.5,

2082 However, giving the machine the authority to exclude the human entirely can also violate legal and
 2083 regulatory requirements for specific HITL setups, as well as open up issues of moral responsibility
 2084 given the erosion of human agency. If the machine were to carry out an entire decision process
 2085 with no human intervention, then this would fail to satisfy requirements in the EU AI Act which
 2086 require effective human oversight for high-risk AI systems, as described in §4.1. In addition, this
 2087 would classify as a prohibited solely automated decision as per Article 22(1) of the EU/UK GDPR,
 2088 requiring an exception like explicit consent to be lawful. Even if the machine had the *option* to defer
 2089 to the human, if a particular decision was made *without* such a deferral then that would still remain a
 2090 ‘solely automated decision’. Furthermore, as discussed in the SCHUFA case (for supporting details
 2091 see D.2), merely adding a human to approve the machine’s decision to not defer wouldn’t alleviate
 2092 this. The argument that the machine decided not to defer because it believed it had a better chance of
 2093 making a good decision than the human would not be a justification for making such an automated
 2094 decision, even if it could be shown statistically that the machine was more ‘reliable’ on average; the
 2095 GDPR is concerned with *individual rights* relating to the processing of personal data, not *average-
 2096 case outcomes* of the decisions made in automated processing.

2097 From a moral perspective, the effective elimination of the agency of the human, while sometimes
 2098 enabling the human to impact the system—that is, eliminating the human’s *general* ability to impact
 2099 the system, while *sometimes* enabling it to do so depending entirely on the machine’s analysis –
 2100 presents a significant moral issue. From a value alignment perspective, one of the benefits of an
 2101 involved interaction setup is that it enables the human to input human values into the machine,
 2102 enhancing value alignment. However, in this context the human’s influence being contingent on
 2103 the machine’s determination implies that any values the machine may ‘embody’ by virtue of, say,
 2104 its training data, will supersede any values the human may input. This defeats the objective of
 2105 value alignment, which would require the values of the human to supersede that of the machine.
 Further, such a setup also substantially enhances the practical risk of scapegoating, where systems
 appear to have a human in the loop, but in reality these humans have no real agency over the system
 whatsoever, but yet are held responsible for any harmful outcomes. Similar systems that allow the

2106 machine to disregard the input of the human on any computationally designed basis run into the
 2107 same fundamental issue with value alignment, where the values of the machine will supersede that
 2108 of the human. Any system that *eliminates* the agency of the human, restricting their impact on a
 2109 computationally designed basis, is therefore not seen as a positive setup either morally or legally.

2110 In such situations, L2D is not a stand-alone HITL setup according to the laws mentioned above, or to
 2111 our formalisation, but rather needs to be *integrated* into HITL setups, slightly differently from what
 2112 Madras et al. (2018) imagine. Rather than giving the machine the option to exclude the human, the
 2113 human needs to have the option to stop the computation (trivial monitoring), or the machine’s output
 2114 must pass through to a final human decision (endpoint action), or the human must properly interact
 2115 with the machine to jointly improve the answer (involved interaction). Another example, where
 2116 such adaptations would need to be made, is in the automated cancer diagnosis process discussed
 2117 by Madras et al. (2018, p. 1), as under the EU AI Act’s human oversight provisions in Article 14,
 2118 the doctor would not be allowed to automatically accept the machines’ diagnosis without effective
 2119 oversight to check its validity.

2120 But these legal restraints do not diminish the value of L2D; quite the opposite. L2D can become
 2121 a crucial component in highly complex HITL setups such involved interactions where the machine
 2122 needs to determine various points in the computational process to ask for (i.e., defer to) human
 2123 judgement or input. In the ‘ping-pong’ process between human and machine in an involved inter-
 2124 action, L2D becomes an excellent method for the machine to understand when to pause and seek
 2125 useful human input. If embedded within an involved interaction HITL setup, L2D presents a path
 2126 towards operationalising this setup type which is otherwise difficult to achieve. This also goes some
 2127 way to ensuring that the machine does not simply ignore human inputs; it is explicitly trained to de-
 2128 fer to, and make use of, human inputs in certain circumstances. Embedding L2D, or even rejection
 2129 learning, in an involved interaction setup can help make it practical at scale by giving the human
 2130 a manageable load of queries to answer or inputs to make. This will reduce certain failure modes
 2131 from §3.1 such as human fatigue, automation bias, stress, and insufficient reaction time. This would
 2132 still adhere to legal requirements for human oversight and automated decision-making because the
 2133 human still remains effectively *in the loop*.

2134 More generally, as Ruggieri & Pugnana (2025, p. 28684) note, ‘[i]n many high-stake domains,
 2135 abstaining from providing an output is a better strategy than bearing the risk of wrong outputs.’ The
 2136 ability to deal with aleatoric uncertainty (irreducible stochastic variability for outputs given the same
 2137 input) and the epistemic uncertainty (e.g., data points which are substantially different from those
 2138 seen during training) are crucial for any HITL setup. The formalisation presented in this manuscript
 2139 does not assume that the human response is necessarily correct or better than the machine (for
 2140 supporting details see B.1), and, as discussed by Madras et al. (2018), that does not always have
 2141 to be the case. Hence, machine learning approaches which factor in limitations in the knowledge
 2142 of the human and/or machine are an important aspect to consider when trying to operationalise the
 2143 formalisation presented in this manuscript.

2144 Ruggieri & Pugnana (2025) survey different such approaches, including rejection learning, dynamic
 2145 model selection, learning to defer, and uncertainty estimation. However, as discussed in the context
 2146 of L2D, not all methods presented in the literature represent genuine HITL setups according to our
 2147 formalisation: often the socio-technical setup will need to be adjusted to *actively* include the human,
 2148 or to at least give the human the option to intervene and interact with the machine. All methods
 2149 surveyed by Ruggieri & Pugnana (2025) have the ability to provide valuable new information to the
 2150 human. Such information ranges from knowing how close a data point is to the decision boundary
 2151 (in ambiguity rejection), to the newness of a data point (in novelty rejection), to estimates about the
 2152 relative human-machine strengths (in L2D), or more general information about uncertainties. Criti-
 2153 cally, however, a HITL setup does not see this output as the result of a one-step machine procedure,
 2154 rather it is seen as information on which *the human* should be able to act.

2155 Such a perspective, however, does not explain, on its own, how the human can build trust in the
 2156 machine and how the degree of trust should impact action. To solve this problem in the context
 2157 of multi-label classification tasks, Straitouri et al. (2023) develop a HITL setup to improve expert
 2158 predictions using *conformal predictions*: instead of presenting the human with an assortment of
 2159 information about a data point and its classification, the machine creates a set of potential labels
 from which the human has to choose. Their implementation represents an endpoint action: the
 machine ‘forcefully asks experts to predict labels from these sets’ (Straitouri et al., 2023, p. 1). The

2160 machine reduces and thereby defines the set of available options, but the human has to make the final
 2161 decision by picking a label from the machine-generated set. Unlike in the L2D scenario presented
 2162 by Madras et al. (2018), the human involvement is not optional in this setting.

2163 Finally, the practical implementation of these learning strategies requires a careful balancing act
 2164 between the different failure modes. As discussed, L2D has the ability to mitigate certain failures
 2165 of the machine and/or human, but it can introduce new failures at the process and workflow level by
 2166 giving the machine the ability to exclude the human from the loop. And conformal predictions may
 2167 introduce additional automation bias, if the human is not allowed to consider or stops considering
 2168 other labels or responses outside those suggested. Generally, the approaches surveyed by Ruggieri &
 2169 Pugnana (2025) are designed to mitigate specific failure modes, but their successful implementation
 2170 in HITL setups may require trade-offs to adequately deal with all five failure categories presented in
 2171 §3.1.

2172 D.5 WHY LEGAL CAUSATION IS DIFFICULT IN INVOLVED INTERACTION

2173 Involved interactions have a somewhat unfortunate drawback, in that they can make determining
 2174 legal causation difficult. On the one hand, the reduction methodology we define in §2.1 does give a
 2175 consistent and formal mode of analysing HITL setups in order to assess the extent of the human’s
 2176 involvement in the computation, and the meaningfulness of their involvement. Particularly, where
 2177 the human can influence computational systems through real queries, it can be said that they have
 2178 more meaningful involvement. The consistency of this approach, and the level of formalism pre-
 2179 sented in §2.1 (and justified in §2.3 and B.9), is also crucial for regulators in practice, enabling them
 2180 to identify and address tokenistic HITL setups where the HITL has no meaningful involvement even
 2181 though it may ‘appear’ as though they are doing a lot.

2182 On the other hand, in an involved interaction, it becomes extremely complex to determine whether
 2183 the human actually influenced the machine’s computation throughout the ‘ping-pong’ process. Even
 2184 if interaction logs are kept to trace the queries and back-and-forth interactions, it may not be possible
 2185 to evaluate the impact of the human’s input on the output of the ADMS due to the indeterminism
 2186 of the computation tree. Each human input changes what the ADMS does next, and each ADMS
 2187 query changes how the human views the process and thus how they might answer. It may become
 2188 impossible to discern how and where failures arise and what these features are attributable to.

2190 D.6 USING AND FORMALISING INTERMEDIATE HITL SETUPS

2191 In B.4 we mentioned three intermediate reduction types, from which one could potentially also form
 2192 HITL setup types. These are reductions that sit ‘between’ many-one reductions and Turing reduc-
 2193 tions, where each type has more reliance on the oracle (i.e., ‘asks more queries’, loosely speaking)
 2194 than the previous. This presents a ‘sliding scale’ of five reduction types that one could consider,¹⁴
 2195 with progressively more oracle involvement along the scale. Our discussion in B.4 gave some tech-
 2196 nical reasons as to why we did not carry out a full analysis of these intermediate reduction types
 2197 in this manuscript, focusing on the fact that many-one and Turing reductions were at the two ends
 2198 of that scale. We now explain why, from a legal and moral perspective, our existing analysis of
 2199 how many-one and Turing reductions are used in HITL setups extends to provide insight on these
 2200 intermediate reductions.

2201 To begin, our legal analysis of the concepts of meaningful and effective oversight as they relate to
 2202 the EU/UK GDPR and EU AI Act (§4.1) showed that, as far as these two regulations are concerned,
 2203 endpoint action and involved interaction HITL setups¹⁵ are *equivalent* under those laws. That is,
 2204 a (very well implemented) endpoint action HITL setup might already satisfy the (current) legal re-
 2205 quirements of meaningful and effective oversight (cf. Sarra (2024), as explained in §4.1). We argued
 2206 that an involved interaction setup might *better* satisfy such legal (and moral) oversight requirements
 2207 in certain circumstances (§4.2), and moreover that having an involved interaction setup might re-
 2208 duce the chances of accidentally ‘slipping back’ to a trivial monitoring setup (§4.2 and D.3). But, in

2209 ¹⁴These are: many-one reductions, bounded truth-table reductions, truth-table reductions, weak truth-table /
 2210 bounded Turing reductions, and Turing reductions, where each reduction type implies all the types after it. So
 2211 according to our interpretation of the *strength* of a HITL setup (B.6), this ordering is reversed when considering
 2212 the strength of each of these as a HITL setup.

2213 ¹⁵Corresponding to many-one reductions and Turing reductions respectively.

2214 terms of oversight obligations, the EU/UK GDPR and EU AI Act do not draw any explicit distinction
 2215 between endpoint actions and involved interactions; these reductions (and thus all intermediate
 2216 reductions between them) collapse down to the same legal category. Hence, from a legal perspective
 2217 *on oversight* in ADMSs, considering these intermediate reduction types does not add much insight
 2218 (with regards to compliance with the laws we are considering).

2219 However, these same laws (the GDPR and EU AI Act) impose various safeguarding duties on the
 2220 human, which (in §4.2) we argued can be partially realised through a HITL setup where the ADMS
 2221 asks the human more frequent queries, thus giving the human more insight into the computational
 2222 process, and so improving overall *explainability*. And while these laws do not specify the need
 2223 for involved interactions directly, moving towards involved interaction setups can, as we showed in
 2224 §4.2, improve explainability by virtue of the fact that they have more human queries than, say, an
 2225 endpoint action setup. This, however, comes with an unavoidable trade-off as we discuss in §4.3:
 2226 increasing the level of human involvement with clearer intermediate computational steps necessarily
 2227 decreases the ability to assign responsibility for harmful impacts. Further inspection reveals that this
 2228 argument is not specific to involved interactions; *any* increase in real human queries will increase
 2229 explainability, but at the same time decrease the ability to assign responsibility. Thus, by examining
 2230 the ‘two ends of the spectrum’ (endpoint actions and involved interactions), we have examined
 2231 the two extremes of this trade-off. Insofar as the intermediate reductions mentioned above are
 2232 concerned, ADMS developers, or indeed regulators, can now pick, or ‘tune’, this trade-off to suit the
 2233 surrounding circumstances, and go up (or down) this ‘sliding scale’ to find the right *balance* between
 2234 explainability and assignment of responsibility. For example, in certain sectors, establishing responsi-
 2235 bility might not be a significant issue because insurance obligations will take effect and consume
 2236 costs from a practical point of view (e.g., in medical practice, and in particular hospitals, it might
 2237 be preferable to have more explainability over clearer accountability). And in other, more time-
 2238 restricted situations, one might want less ‘ping-pong’ between the machine and the human to save
 2239 time, ideally with very well-chosen points in the computation where the machine requests human
 2240 input (as discussed in D.4).

2241 By explaining *how* this trade-off operates, exemplified through our analysis of the two extremal
 2242 reductions (many-one and Turing), we thus empower both developers and lawmakers to *choose their*
 2243 *own* intermediate reduction, and form a HITL setup from it, on a case-by-case basis in accordance
 2244 with the one that best reflects the needs of their system and the surrounding circumstances. Our
 2245 explainability-responsibility analysis holds for all these intermediate reductions, and so it is merely
 2246 a case of ‘going along the scale’ and choosing a reduction that is suitable. In essence, our analysis
 2247 covers all possible reduction types between many-one and Turing. And this need not be restricted
 2248 to the three intermediate types already mentioned; it is more general than this. Take any (possibly
 2249 infinite) totally ordered set of (oracle machine) reduction types between many-one and Turing; our
 2250 analysis will always apply to the HITL setups produced from such a set. Indeed, for any pair
 2251 of (oracle machine) reduction types P, Q , if every reduction of type Q is also of type P , then
 2252 a HITL setup based on P -reductions that are not Q -reductions will always be further along the
 2253 explainability-responsibility trade-off scale than one based on Q -reductions (in the direction of more
 2254 explainability / less responsibility). Thus, if one can find or conceptualise a new reduction type that
 2255 sits between any of the five we have listed so far (and locate where), then one can quickly see where
 2256 a HITL setup built from it sits on the explainability-responsibility trade-off scale. Hence, from a
 2257 legal perspective *on explainability*, dealing with these intermediate reduction types is already fully
 2258 covered by our existing analysis.

2259 There is a technical subtlety here that would still need to be overcome, which we now explain. When
 2260 we formalised endpoint actions and involved interactions from many-one reductions and Turing
 2261 reductions, we placed additional lower bounds on the minimum number of queries the machine
 2262 could ask, and moreover forced these to be real queries. This was for several reasons:

- 2263 1. To prevent a HITL setup based on a many-one reduction being considered as an involved
 2264 interaction, as mathematically a many-one reduction is also a (‘lazy’) Turing reduction that
 2265 only asks one question of the oracle.
- 2266 2. To compensate for the large ‘gap’ between many-one and Turing reductions. The definition
 2267 ‘stronger than a many-one reduction’ is too broad, as a reduction that always asks two
 2268 queries in succession is stronger than many-one, but nowhere near as strong as a general
 2269 Turing reduction.

2268 3. To disregard queries that did not affect the computation, so that we had a better grasp of
 2269 how many good (i.e., real) queries were being asked.
 2270

2271 To carry out this formalisation for the three additional intermediate reductions types mentioned
 2272 above would be a significant undertaking, and moreover would not address any additional reduc-
 2273 tion types that might be introduced later. So instead, we give a general method for carrying out a
 2274 formalisation of reduction types as HITL setups as follows:

2275 Take any (possibly infinite) totally ordered set S of (oracle machine) reduction types between many-
 2276 one and Turing. With the notation of P -reductions given above, we say that a HITL setup is a
 2277 P -setup (relative to S) if both of the following hold:

2278 1. The setup can be described by an oracle machine carrying out a P -reduction to the oracle.
 2279 2. For every $Q \in S$ with $Q \leq P$, the HITL setup cannot be described by a Q -reduction.
 2280

2281 So a HITL setup is a P -setup if it can be simulated by a P -reduction, but not by any reduction Q
 2282 weaker than P . One can then apply our analysis from above to this set S of reduction types (and
 2283 corresponding HITL setups). This still forms a sliding scale of increased reliance on the oracle (the
 2284 human), and also reflects the explainability-responsibility trade-off. Note that, once this set S is
 2285 chosen, the concept of a P -setup is then well defined *relative to S* , but does depend on S : given two
 2286 sets S, S' that contain a fixed reduction type P , if S' contains a reduction type P' such that $P' \leq P$
 2287 and $Q \leq P'$ for all $Q \in S$, then the notion of P -setup will be stronger relative to S' than relative to
 2288 S .

2289 With a set S of reductions that is sufficiently large (five, in what we have described above), one can
 2290 then argue that there is sufficient granularity to ensure that sliding along the scale leads to a genuine
 2291 and meaningful increase in human involvement in the setup. This does not apply when S consists
 2292 only of many-one reductions and Turing reductions, as the gap is too large, which is why our earlier
 2293 analysis uses a slightly different notion. And so, with the above formalisation, one could take any
 2294 (possibly infinite) totally ordered set S of reduction types and assign those as ‘the reductions to
 2295 choose from’ (and then form HILT setups from).

2296 A worst-case scenario here is that a P -setup ends up being ‘a tiny bit better than a Q -setup’, where Q
 2297 is the strongest reduction type below P . But with enough reduction types in S , this becomes less and
 2298 less significant, as the ‘gaps’ between reduction types become smaller and smaller. It is mitigated
 2299 entirely if no such ‘strongest’ Q below P exists, meaning that there are infinitely many reductions
 2300 types in S and they are *dense*¹⁶ (with no discrete/isolated reduction types within it). At the imple-
 2301 mentation level, the difference between individual P -setups (i.e., ‘gaps’) stemming from S would
 2302 become negligible when S is large enough; if S were infinite and dense then no such gap would ex-
 2303 ist. However, with S infinite and dense, verifying one had such a P -setup could then become quite
 2304 hard, as there would be no ‘next weakest’ reduction type to compare to, and so one would probably
 2305 need to approximate it by reductions ‘sufficiently close’ to P ; such an approximation should suffice
 2306 for practical purposes.

2307 Though this generalised formalisation method does not exactly match how we formalised HITL
 2308 setups from many-one and Turing reductions in §2.1, it is nonetheless a valid and motivated way
 2309 to make use of large set of reduction types when considering HITL setups. Laws, technology, and
 2310 societal desires may evolve over time, and our methodology here retains at least some persistence if
 2311 further, more nuanced reduction types and corresponding HITL setups are deemed necessary in the
 2312 future.

2313 D.7 MESOTHELIOMA CASES AS A SOLUTION FOR INVOLVED INTERACTION

2314 In this manuscript, we raise a problem concerning the assignment of responsibility in an involved
 2315 interaction setup. Here, we explore how the law can confront this challenge by looking back to pre-
 2316 vious cases which have dealt with similar ‘responsibility gaps’ in different contexts. The UK courts

2317
 2318 ¹⁶The authors are unaware of whether an infinite set of totally ordered reduction types between many-one
 2319 and Turing exists, let alone one that is dense and/or contains the three intermediate degrees given above. While
 2320 not necessary for the further development of this paper (as there might be minimal practical value in having
 2321 infinitely many reduction types to choose from), it nonetheless poses an interesting theoretical problem in
 2322 mathematics for further work.

2322 have previously departed from established causality principles to compensate workers who had de-
 2323 veloped deadly mesothelioma from exposure to asbestos fibres across multiple employers (House
 2324 of Lords, 2006). In this line of cases, claimants had worked for several employers. At any point
 2325 in their employment, they could have been exposed to asbestos fibres, causing them to develop
 2326 mesothelioma. However, even a single asbestos fibre can trigger mesothelioma. As such, it was
 2327 medically impossible to pinpoint which employer exposed the claimant to the asbestos that caused
 2328 the mesothelioma. Departing from common causation principles in the mesothelioma cases, the
 2329 court held that all the employers could be *jointly liable* if it could be proven that they ‘materially
 2330 increased the risk of harm’, rather than finding a direct causal link between the employers and the
 2331 mesothelioma.

2332 In order to distribute the liability jointly, each employer’s contribution to the claimant’s overall risk
 2333 of contracting the disease was considered. Courts sometimes divided the liability in proportion to the
 2334 duration of exposure, even though they might not have actually caused harm directly. For example,
 2335 if a claimant worked at one employer for 30% of their ‘total exposure time’, that employer was
 2336 liable for 30% of the damages. This approach was confirmed in cases like House of Lords (2006)
 2337 and later modified by the UK’s Compensation Act 2006, which allowed claimants to recover full
 2338 compensation from a single employer, who could then seek contribution from others.

2339 The reasoning in the mesothelioma cases has received significant criticism from some legal aca-
 2340 demics since these cases were fundamentally decided on public policy grounds, as opposed to legal
 2341 principle (Morgan, 2003). The judges in the House of Lords reasoned that it would be unfair not to
 2342 compensate workers just because causation could not be attributed according to the existing legal
 2343 tests. However, as shown in this manuscript, there are similar compelling public policy grounds to
 2344 avoid the ‘scapegoating’ of the human where responsibility gaps emerge. For example, although
 2345 decided in accordance with US law, the Uber case described in §3.3 shows how the human can face
 2346 injustice if the liability is solely attributed to them. The Uber case involved numerous failure modes
 2347 which spanned across the taxonomy presented in this manuscript and beyond the control of the hu-
 2348 man (see §3.3). As such, when HITL setups fail, liability must be more distributed to account for
 2349 responsibility gaps.

2350 The mesothelioma cases are a good foundation for judges deciding cases involving the entangled
 2351 human-machine configurations in involved interactions because they reflect the impossibility of
 2352 determining causation. In principle, the judges could hold any of the contributors that materially
 2353 increase the risk of harm in the HITL setup liable. In an involved interaction setup, it may be
 2354 impossible to determine what actually might have influenced the harm, but a myriad of factors could
 2355 materially increase the risk of harm. Such factors could include any feature of the system that
 2356 significantly enhance the likelihood of HITL failure modes in §3.1, such as lack of training of the
 2357 human, overworking the human causing fatigue, or even extreme bias in the training data used for
 2358 an ADMS. Drawing upon the law’s approach to liability in mesothelioma cases, in the context of
 2359 this manuscript, identifying contributors which ‘materially increase the risk of harm’ can be used
 2360 by the courts to hold multiple actors (including the technology companies) accountable so that the
 2361 human is not treated as a ‘scapegoat’ solution in ‘moral crumple zones’ (Elish, 2019). Such legal
 2362 solutions also incentivise companies to actively design systems to reduce the risk of failure because
 2363 of the high liability consequences.

2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375