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ABSTRACT

While recent works (e.g. o1, DeepSeek R1) have shown great promise of using long
Chain-of-Thought (CoT) at test-time to improve reasoning capabilities of language
models, it is challenging to scale up due to inefficient memory usage — intermediate
computations accumulate indefinitely in the context even no longer needed for
generating future thoughts. We propose PENCIL to address this limitation, which
incorporates a reduction mechanism into the autoregressive generation process,
allowing the model to recursively clean up intermediate thoughts in ways learned
from training. With the reduction mechanism, the maximal context length during
generation can decrease from the time complexity for solving the problem, which
is often exponential for inherently hard tasks, to the actual space required, which
is often polynomial. By using space efficiently, PENCIL can generate longer
thoughts using small memory and thus solve larger-scale problems with more
inference time. For example, we show PENCIL achieves almost perfect accuracy
on the challenging Einstein’s puzzle using a small 25M-transformer with 2048
context length. Theoretically, we show PENCIL can perform universal space-
efficient computation by simulating Turing machines with optimal time and space
complexity.

1 INTRODUCTION

Recently, there has been a surge of interest in reasoning with Chain-of-Thought (CoT) (Wei et al.,
2022) and generating longer thoughts at test-time to tackle larger-scale and more complicated
problems (OpenAI, 2024; Guo et al., 2025; Snell et al., 2024; Muennighoff et al., 2025). CoT is an
iterative generation process: each intermediate reasoning step is appended to the current context and
treated as the input in subsequent reasoning. The context grows until reaching a final answer. While
such an iterative model is theoretically powerful – capable, in principle, of tackling many intricate
problems given unlimited length (Merrill & Sabharwal, 2023; Feng et al., 2024; Li et al., 2024b) – it
suffers from the inherent write-only limitation: partial computation remains in the context even when
no longer needed for future thought generation. This design becomes particularly problematic for
inherently hard reasoning tasks, where no efficient algorithm exists and thus reasoning inevitably
spans many steps, forcing the context length to grow indefinitely. This not only demands excessive
memory resources that become impractical for computationally hard tasks, but could also degrades
the model’s ability to effectively retrieve information in the context, even when the maximum length
is not exceeded (Liu et al., 2024).

Memory management is a major issue in modern computer systems. Turing machines, for example,
can overwrite tape cells and reclaim space for new computations, while high-level programming
languages rely on stack frames, function calls, and garbage collection to discard unneeded data.
While some previous works have attempted to augment LLMs with external memory (e.g. (Gao
et al., 2023; Wang et al., 2024)), they often lack a direct mechanism for reclamation of no longer
needed memory as stack deallocation or garbage collection. This paper proposes PENCIL, 1 which
introduces cleaning mechanisms to CoT for space-efficient and long-chain reasoning.

In a nutshell, PENCIL combines a next-token generator (e.g., a decoder-only transformer) and a
reduction rule, and applies the reduction rule whenever possible throughout the standard iterative
next-token generation process to reduce context length. In this paper, we focus on a simple yet
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Response : Let's break this problem down into parts! First, let's figure
out how many toys were in all blue bags. Looking at the blue bags,
they made 3 bags with 5 toys in each, so multiplying 3 × 5 = 15.
There were 15 toys in all blue bags. That's just part of the story
though - we still need to know how many toys were in all red bags.
Looking at the red bags, they made 2 bags with 4 toys in each, so
multiplying 2 × 4 = 8. There were 8 toys in all red bags. Now that we
know both amounts, we can find the total toys by adding the toys from
blue and red bags together: 15 + 8 = 23. There were 23 toys used in
total.

...[EndOfPrompt][CALL]Let's break this problem down into parts! [CALL]  First, let's
figure out how many toys were in all blue bags. Looking at the blue bags, they made 3
bags with 5 toys in each, so multiplying 3 × 5 = 15.  [SEP]  There were 15 toys in all
blue bags. [RETURN]

Response : There were 23 toys used in total.

Chain-of-Thought

PENCIL

...[EndOfPrompt][CALL]Let's break this problem down into parts!  There were 15 toys in
all blue bags.

...[EndOfPrompt][CALL]Let's break this problem down into parts!  There were 15 toys in
all blue bags.   [CALL] That's just part of the story though - we still need to know how
many toys were in all red bags. Looking at the red bags, they made 2 bags with 4 toys
in each, so multiplying 2 × 4 = 8. [SEP] There were 8 toys in all red bags. [RETURN]

...[EndOfPrompt][CALL]Let's break this problem down into parts!  There were 15 toys in
all blue bags. There were 8 toys in all red bags. Now that we know both amounts, we can
find the total toys by adding the toys from blue and red bags together: 15 + 8 = 23.
[SEP]There were 23 toys used in total. [RETURN]

...[EndOfPrompt]There were 23 toys used in total.

...[EndOfPrompt][CALL]Let's break this problem down into parts!  There were 15 toys in
all blue bags. There were 8 toys in all red bags. 

[CALL] [SEP] AnswerContext [RETURN]

Context Answer

A toy store put together party bags for a birthday. They made 3 blue bags with 5 toys each and 2 red bags with 4 toys each.
How many toys were used in total?

 Lonnnnnng Thoughts

(b) Internalized thoughts of PENCIL(a)  PENCIL

:

:

:

:

:

:

Prompt : 

: Model Generation

: Reduction Rule

...[EndOfPrompt]There were 23 toys used in total. [EndOfText]:

Figure 1: A toy example illustrating how PENCIL would potentially solve an arithmetic problem.
Bold text indicates content generated in the current iteration, content highlighted in blue indicates
intermediate thoughts to be erased by the reduction rule. See a concrete example of the complete
thinking process for solving QBF in Fig. 5, and an illustration for Einstein’s puzzle in Fig. 6. All
details are included in Appendix G.

universal reduction rule motivated by the function call stack in modern computers.

C [CALL] T [SEP] A [RETURN] ⇒ C A (1)

where [CALL], [SEP], and [RETURN]are special tokens that separate the context (C), thoughts
(T), and answer (A) in the sequence. Once a computation completes (marked by [RETURN]), all
intermediate reasoning steps (those between [CALL]and [SEP]) will be removed, merging the
answer back into the context. Importantly, this process can be applied recursively, allowing for
hierarchical reasoning structures similar to nested function calls in programming. PENCIL alternates
between standard CoT-style generation and this reduction step, automatically discarding unneeded
thoughts based on patterns learned from training. Figure 1 gives a hypothetical example of how
PENCIL might be applied to natural language thoughts.

We train and evaluate PENCIL on SAT, QBF, and Einstein’s puzzle — tasks that inherently require
exponential computation time. PENCIL effectively reduces the maximal CoT length (i.e. the space
requirement) from exponential to polynomial. Consequently, under fixed architecture and context
window, PENCIL allows solving larger-sized problems whereas CoT fails due to exploding context
length. Furthermore, by continually discarding irrelevant tokens, PENCIL can significantly save
training computes and converge faster even when memory or expressiveness is not a bottleneck.
Notably, on the 5×5 Einstein puzzle – a challenging natural-language logic puzzle that even large
models like GPT-4 struggle with – PENCIL achieves a 97% success rate by using a small transformer
with 25M-parameter and 2048-token context.

See discussions about related work in Appendix E.

2 PENCIL: ITERATIVE GENERATION & REDUCTION

Chain-of-Thought (CoT) (Wei et al., 2022) allows language models to generate intermediate reasoning
steps before producing a final answer. Formally, given a finite alphabet Σ, let π : Σ∗ → Σ be a next-
token predictor with parameters θ, which maps an input sequence (x1, x2, · · · , xn) ∈ Σn to the next
token xn+1 ∈ Σ. Correspondingly, we can define a sequence-to-sequence mapping f : Σ∗ → Σ∗ as

f(x1, . . . , xn) ≜ (x1, . . . , xn, π(x1, . . . , xn)) (2)

which concatenates the next token to the current context. For brevity, we will write f instead of f
when the context is clear. CoT with k steps is denoted as fk : Σ∗ → Σ∗, where fk ≜ f ◦ fk−1 and
f1 ≜ f . Given any input sequence x = (x1, x2, . . . , xn) ∈ Σn, each application of f extends the
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sequence by one token, such that fk(x) ∈ Σn+k. Throughout this paper, we use shorthand x:j to
denote (x1, . . . , xj), and xi:j the subsequence from xi to xj .

However, the iterative generation process of CoT is inherently limited by its write-once nature; that
is, once written, intermediate computations permanently occupy the context, regardless of their
relevance in the subsequent reasoning steps. Consequently, the context length would eventually grow
overwhelmingly large for complex reasoning problems. To address this, we introduce PENCIL,
which is CoT equipped with a reduction rule that enables selective elimination of reasoning traces,
allowing the model to scale to larger problems with less memory.

2.1 REDUCTION RULE AND PENCIL

A reduction rule (a.k.a. rewriting rule) (Baader & Nipkow, 1998) is a formal mechanism originated
from logic for transforming one expression to another via predefined patterns and ultimately reaching
a final normal form, i.e. the answer. It serves as a fundamental model of computation in classic
functional programming languages such as λ-calculus (O’Donnell, 1985), and proof assistants for
automated theorem proving and reasoning (Wos et al., 1992). Mathematically, the reduction rule can
be thought of as a unique sequence-to-sequence function ϕ : Σ∗ → Σ∗, which in this paper is from a
longer sequence (x1, . . . , xa) ∈ Σa to a shorter one (xi1 , . . . , xib) ∈ Σb where b ≤ a.

The Reduction Rule Let Σ̂ = Σ ∪ { [CALL], [SEP], [RETURN]} be the extended alphabet
including three special tokens that indicate certain structures of the reasoning trace. Given the new
alphabet, we can instantiate the rule ϕ as (1), where C ∈ (Σ ∪ {[CALL],[SEP],[RETURN]})∗,
T ∈ (Σ∪ {[SEP],[RETURN]})∗, A ∈ (Σ∪ [CALL])∗ are subsequences separated by the special
tokens. The allowance of difference special tokens in C, T, A ensures that the [SEP]token in (1) is
the one immediately before [RETURN], and [CALL]is immediately before [SEP], and thus the
matching is unique.

Intuitively, C can be understood as context that can include information that is either directly relevant
to solving the current problem or irrelevant but useful for solving future problems; T represents the
intermediate thoughts for deriving the answer and A represents the answer. If the input sequence
satisfy the pattern C [CALL] T [SEP] A [RETURN], the rule will activate. Consequently, the
entire intermediate thoughts and the special token triplet will be removed, with the answer being
merged back into the context. Otherwise if the pattern is not satisfied, the rule will leave the input
sequence unchanged.

PENCIL consists of a learnable next-token predictor f as defined in (2) which is responsi-
ble for generating the intermediate reasoning steps (including special tokens [CALL], [SEP],
[RETURN]) as in the standard CoT, and the reduction rule ϕ as defined in (1) that serves to re-
duce the context and clean the memory. Formally, we define one step and k-steps of PENCIL as
PENCIL1 = ϕ ◦ f and PENCILk = (ϕ ◦ f)k. Namely, each step of PENCIL first generates
the next token as in standard CoT and then applies the reduction rule ϕ, deleting the intermediate
computations if the new sequence matches the pattern. PENCIL is defined as a sequence of mappings
{PENCIL1,PENCIL2,PENCIL3, . . .}, which produces the entire thinking process on input x.

2.2 ALTERNATED GENERATION AND REDUCTION PROCESS

The iterative generation and reduction process of PENCIL can be formalized by grouping the f
functions that are interleaved by ineffective reduction steps (where ϕ does not match the pattern):

PENCILk = fkr+1 ◦ ϕ ◦ fkr ◦ ϕ ◦ · · · ◦ ϕ ◦ fk1 (3)
where k =

∑r+1
i=1 ki, and ki denotes the number of tokens generated between the (i− 1)-th and i-th

effective reduction. Here r is the total number of effective reductions, assuming the model terminates
with a [EOS] token indicating stop generation. This process alternates between two phases

Generation x(i) ≜ fki◦ϕ · · ·ϕ◦fk1(x:n) ,Reduction x(i−0.5) ≜ ϕ◦fki−1 · · ·ϕ◦fk1(x:n) (4)

Each element in {x(1), x(2), . . . , x(r+1)} represents a generated sequence ending with [RETURN],
except for x(r+1) which ends with EOS. The set {x(0.5), x(1.5), . . . , x(r+0.5)} contains the reduced
sequences after each effective reduction, with x(0.5) = x being the input prompt. The complete
reasoning trace can be expressed as:

x
fk1

−→ x(1) ϕ−→ x(1.5) · · · x(r+0.5) fkr+1

−→ x(r+1) (5)
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n = 3 4 5 6 7 8 9 10

Baseline Acc. 66 57 46 51 46 51 49 51

CoT Acc. 100 100 100 99 84 63 54 50
TR. 99.6 99.0 98.0 96.2 74.0 69.9 63.8 51.4

PENCIL
Acc. 100 100 100 99 99 100 100 100
TR. 100 99.0 97.1 95.9 91.8 93.3 92.9 83.0

n = 3 4 5 6 7 8 9 10

Baseline Acc. 90 82 85 68 60 69 71 66

CoT Acc. 100 100 97 94 74 72 69 73
TR. 100 100 98.3 93.9 65.1 49.4 40.7 32.8

PENCIL
Acc. 100 100 100 100 100 100 100 100
TR. 100 100 100 100 100 100 100 100

Table 1: Performance comparison on SAT and QBF. Acc denotes the Accuracy (%) and TR denotes
the trace rate (%).
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(b) QBF
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(c) Einstein’s puzzle
Figure 2: Test-time scalability. Comparison of maximally solvable problem size (with ≥ 95%
accuracy) given different inference time budgets.
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(a) QBF n = 3
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(b) QBF n = 4
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(c) QBF n = 5
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(d) QBF n = 6

Figure 3: Comparison of convergence speed on the QBF problem (with n ranges from 3 to 6). Circles
and vertical lines indicate the first time each method reaches optimal performance.

That is, at each iteration i, PENCIL first generates from x(i−0.5), which serves as the prompt for
this iteration, to x(i), a prompt-response pair, until producing [RETURN]; then PENCIL applies the
reduction rule to transform the prompt-response pair x(i) into a new prompt x(i+0.5) for the next
iteration i+ 1.

See Appendix A for a discussion of how PENCIL can significantly reduce the space requirement,
save computes during training, and enable solving larger-scale problems.

3 THINKING WITH PENCIL
In Appendix B we demonstrate how the reduction rule can be applied to several concrete compu-
tationally intensive problems (including SAT, QBF and Einstein’s puzzle) and how PENCIL could
potentially solve them space efficiently.

4 EXPERIMENTS

We next conduct experiments on the problems mentioned in the last section to evaluate the effective-
ness of PENCIL. Implementation and experimental details are deferred to Appendix C.

4.1 RESULTS ON SAT AND QBF
Performance As shown in Table 1, both CoT and PENCIL significantly outperform the baseline (i.e.
without using CoT) and achieve almost perfect performance (≥ 95% accuracy) on small problems
(n ≤ 6 for SAT and 5 for QBF). While CoT’s performance degrades sharply when problem size
increases - dropping to 50% accuracy on SAT and 61% on QBF when n = 10, PENCIL maintains
near-perfect accuracy across all problem sizes. Furthermore, PENCIL’s consistently high trace rate

4



Published as a workshop paper at SCOPE - ICLR 2025

Puzzle Size CoT PENCIL

5× 5
Accuracy (%) 25 97
Trace Rate (%) 2.97 78.27

4× 4
Accuracy (%) 34 100
Trace Rate (%) 8.33 86.52

3× 3
Accuracy (%) 99 99
Trace Rate (%) 99.37 99.66

512 1024 2048
Context Length

10.63M

3.15M

0.40M#P
ar

am
et

er
s 48 61 97

45 54 92

39 38 43

CoT

512 1024 2048
Context Length

99 99 99

95 98 98

52 38 44

PENCIL

25
40
55
70
85
100

Figure 4: (left) Comparison of performance w/o and with the reduction rule on the Einstein’s puzzle.
(right) Effects of model size and context length on accuracy for solving 3×3 Einstein’s puzzle.

(above 90% for most problem sizes) indicates that it precisely follows the intended algorithm’s
reasoning steps.

Test-Time Scalability Figure 2 compares the test-time scalability of CoT and PENCIL given
different inference time budget. For both SAT and QBF problems, PENCIL can effectively solve
larger problems with increased time budget, handling up to n = 10 with inference time around 10s
and 40s respectively while CoT struggles to scale up even when given more time. This is because
the reduction rule enables PENCIL to keep the reasoning length growing polynomially rather than
exponentially with problem size, significantly reducing the requirement of space during generation.

Convergence Figure 3 compares the convergence speed of CoT and PENCIL on the QBF problem
given fixed training FLOPs budget calculated based on (6). To isolate the impact of memory
constraints, which limit the expressiveness of models, we allow unlimited context window length in
this experiment, enabling both methods to potentially achieve perfect performance. Since since for
larger problems CoT’s space consumption becomes prohibitively large and will cause out-of-memory,
we only report results for n = 3 to 6. The results show that PENCIL can effectively save computation,
and thus can consistently achieve better performance under the same compute budget and converge
faster, with the gap becoming more significant as problem size increases.

4.2 RESULTS ON EINSTEIN’S PUZZLE

Besides of the original challenging 5×5 Einstein’s puzzle, we also consider two simplified variants:
3×3, 4×4. For each size of the puzzle, we generate 10, 000 training instances by randomly assigning
attributes to houses and deriving valid constraints that ensure a unique solution. The accuracy is
evaluated based on whether the model can successfully answer the question ”who owns the Fish” on
100 unseen validation samples.

Main Results Figure 4 (left) reports the performance with and without using the reduction rule to
solve different sizes of Einstein’s puzzles. Remarkably, PENCIL solves the original 5×5 puzzle at
97% accuracy using only 25.19M parameters (significantly smaller than GPT-2) and 2048 context
length (the same as GPT-2), with average inference time per sample 42.98s. In comparison, CoT
fails catastrophically on puzzles beyond 3×3, with accuracy dropping to 25% (i.e. close to random
guessing) on 5×5 puzzles, despite using the same architecture and training.

Effects of Model Size As shown in Figure 4 (right), PENCIL achieves consistently high accuracy
with sufficient model capacity (with≥ 3.15M parameters, i.e. a 4-layer transformer) even with limited
context length, while CoT requires both larger models and longer context to achieve comparable
performance. However, when the model size is too small, both methods fail to solve the puzzle
effectively, suggesting a minimum model capacity threshold.

5 SPACE-EFFICIENT AND UNIVERSAL SIMULATION POWER OF PENCIL

Theoretically, we show that PENCIL could simulate Turing machine running in T steps and S space
by generating O(T ) tokens with maximal sequence length O(S), with a mildly powerful next-token
generator, like linear-time generator, or even decoder-only transformer, as suggested by recent
works (Pérez et al., 2021; Merrill & Sabharwal, 2023). This is impossible for the standard CoT. See
detailed discussions in Appendix D.
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6 CONCLUSION

This paper identifies a fundamental limitation of CoT where intermediate computations accumulate
indefinitely in the context, and introduce PENCIL to address this. PENCIL adopts a simple reduction
rule to “clean up” unneeded reasoning steps as soon as they are finalized. This mechanism effectively
transforms long traces into compact representations, enabling efficient training and allowing the model
to handle substantially larger problems under the same memory constraints. Extensive experiments
are done to demonstrate the effectiveness of PENCIL to handle inherently challenging tasks with less
computes and smaller memory.
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A COMPUTATIONAL BENEFITS OF PENCIL

Space Comparison To facilitate direct comparison, we define scaffolded CoT as the trace that
would be produced by PENCIL but without actually removing the thoughts. (We call it scaffolded
because it contains the special tokens that indicate the hierarchical reasoning structure.) Formally,
for any input x, scaffolded CoT is defined as (x , x(1)\x(0.5) , . . . , x(r+1)\x(r+0.5)), where
x(i)\x(i−0.5) represents the tokens generated at iteration i. The maximal sequence length in PENCIL
is max{|x(1)|, |x(2)|, . . . , |x(r+1)|}, whereas the scaffolded CoT has a length of n + k (or n +
k − 3r if excluding special tokens). As we will demonstrate in Sec. B, this difference becomes
particularly significant for complex reasoning tasks where n + k can grow exponentially while
max{|x(1)|, |x(2)|, . . . , |x(r+1)|} is kept polynomial.

Computes Comparison Moreover, though the total number of predicted tokens remains unchanged
with or without reduction, PENCIL achieves significant compute savings by maintaining a sub-
stantially shorter context for each prediction. Specifically, when using a standard causal-masking
transformer with KV cache for storing key and value matrices, the training FLOPs of PENCIL
required for a problem instance x:n is proportional to:∑r+1

i=1

(
|x(i−0.5)|+ |x(i)|+ 1

)
·
(
|x(i)| − |x(i−0.5)|

)
+∑r

i=1

(
|x(i) ∩ x(i+0.5)|+ |x(i+0.5)|+ 1

)
·
∣∣x(i+0.5)\x(i)

∣∣ (6)

where x(i) ∩ x(i+0.5) represents the shared context C before the [CALL]token, and x(i+0.5)\x(i)

denotes the answer A between [SEP]and [RETURN]tokens. The first term accounts for model
generation steps, while the second term captures the computation cost of reduction steps where KV
cache must be recomputed for A after merging it back into the context. We will empirically quantify
(6) in Sec. 4.

B THINKING WITH PENCIL

B.1 SAT AND QBF

SAT is a canonical NP-complete problem. We consider the 3-SAT variant, where each instance
is a Boolean formula in conjunctive normal form with clauses of length three, e.g. (x1 ∨ ¬x2 ∨
x3) ∧ (¬x1 ∨ x2 ∨ ¬x3). The ratio between number of clauses and variables is set as 4.3, larger than
the threshold 4.267 where instances are empirically hardest to solve and satisfiability probability
transitions sharply from 1 to 0 (Selman et al., 1996). QBF is a PSPACE-complete problem that
generalizes SAT by adding universal (∀) and existential (∃) quantifiers. Each instance is a quantified
Boolean formula in Prenex normal form, e.g., ∃x1∀x2∃x3 : (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3).
We set the probability of a variable being existentially quantified as 0.5.

We consider using the DPLL algorithm to solve the SAT problem, and solving the QBF problem
by recursively handling quantifiers and trying variable values. The PENCIL reasoning traces are
generated as we run the algorithm. Both algorithms recursively explore variable assignments by
splitting on an unassigned variable xi and trying branches xi = True and xi = False. The
reduction rule wraps each branch with [CALL], [SEP]and [RETURN], which creates a hierarchical
binary tree structure. See Fig. 5.

Without the reduction rule, the context must retain the complete recursive trace — all partial as-
signments and intermediate formulas — leading to worst-case exponential space complexity O(2n).
For PENCIL, once a branch returns, its intermediate reasoning steps are discarded, therefore search
paths will be discarded, preserving only the final answer. This reduces the maximal length to O(n),
bounded by the search tree depth. As shown in Fig. 7, at n = 10, the maximal sequence length drops
from 13, 804 to 2, 507 for SAT and from 151, 661 to 649 for QBF.

B.2 TAIL RECURSION AND EINSTEIN’S PUZZLE

Einstein’s Puzzle We further consider Einstein’s puzzle (Prosser, 1993), a classic constraint
satisfaction problem where the model must learn to reason in natural language. Each problem
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Prompt : ∃ 2 ∀ 1 : #1 ( 2 ∨ ¬ 2 ∨ 1 ) #2 ( 1 ∨ 2 ) #3 ( 2 ) #4 ( ¬ 2 ∨ ¬ 1 ) #5 ( 1 ∨ ¬ 1 ) #6 ( ¬ 1 ∨ ¬ 2 )

[CALL] Question: prefix_from ∃ 2 Try 2 = False [CALL]
Question: prefix_from ∀ 1 Try 1 = False [CALL]
Question: evaluate 1 = False 2 = False Check #0 ( 2 ∨ ¬
2 ∨ 1 ) True Check #1 ( 1 ∨ 2 ) False [SEP] Answer:
False [RETURN][SEP] Answer: False [RETURN] Try 2
= True [CALL] Question: prefix_from ∀ 1 Try 1 = False
[CALL] Question: evaluate 1 = False 2 = True Check #0
( 2 ∨ ¬ 2 ∨ 1 ) True Check #1 ( 1 ∨ 2 ) True Check #2 ( 2
) True Check #3 ( ¬ 2 ∨ ¬ 1 ) True Check #4 ( 1 ∨ ¬ 1 )
True Check #5 ( ¬ 1 ∨ ¬ 2 ) True Formula = True [SEP]
Answer: True [RETURN] Try 1 = True [CALL] Question:
evaluate 1 = True 2 = True Check #0 ( 2 ∨ ¬ 2 ∨ 1 ) True
Check #1 ( 1 ∨ 2 ) True Check #2 ( 2 ) True Check #3 ( ¬
2 ∨ ¬ 1 ) False [SEP] Answer: False [RETURN] [SEP]
Answer: False [RETURN][SEP] Answer: False
[RETURN]

Chain-of-Thought

Answer: False

PENCIL

...[EndOfPrompt][CALL] Question: prefix_from ∃ 2 Try 2 = False [CALL] Question:
prefix_from ∀ 1 Try 1 = False [CALL] Question: evaluate 1 = False 2 = False Check #0 (
2 ∨ ¬ 2 ∨ 1 ) True Check #1 ( 1 ∨ 2 ) False [SEP] Answer: False [RETURN]

...[EndOfPrompt][CALL] Question: prefix_from ∃ 2 Try 2 = False [CALL] Question:
prefix_from ∀ 1 Try 1 = False Answer: False [SEP] Answer: False [RETURN]

...[EndOfPrompt][CALL] Question: prefix_from ∃
2 Try 2 = False [CALL] Question: prefix_from ∀ 1
Try 1 = False Answer: False

...[EndOfPrompt] [CALL] Question: prefix_from
∃ 2 Try 2 = False Answer: False

...[EndOfPrompt][CALL] Question: prefix_from ∃ 2 Try 2 = False Answer: False Try 2 =
True [CALL] Question: prefix_from ∀ 1 Try 1 = False [CALL] Question: evaluate 1 =
False 2 = True Check #0 ( 2 ∨ ¬ 2 ∨ 1 ) True Check #1 ( 1 ∨ 2 ) True Check #2 ( 2 ) True
Check #3 ( ¬ 2 ∨ ¬ 1 ) True Check #4 ( 1 ∨ ¬ 1 ) True Check #5 ( ¬ 1 ∨ ¬ 2 ) True Formula
= True [SEP] Answer: True [RETURN]

...[EndOfPrompt][CALL] Question: prefix_from ∃
2 Try 2 = False Answer: False Try 2 = True [CALL]
Question: prefix_from ∃ 2 Try 2 = False Answer:
False Try 2 = True [CALL] Question: prefix_from ∀
1 Try 1 = False Answer: True

...[EndOfPrompt][CALL] Question: prefix_from ∃ 2 Try 2 = False Answer: False Try 2 =
True [CALL] Question: prefix_from ∀ 1 Try 1 = False Answer: True Try 1 = True [CALL]
Question: evaluate 1 = True 2 = True Check #0 ( 2 ∨ ¬ 2 ∨ 1 ) True Check #1 ( 1 ∨ 2 )
True Check #2 ( 2 ) True Check #3 ( ¬ 2 ∨ ¬ 1 ) False [SEP] Answer: False [RETURN]

...[EndOfPrompt][CALL] Question: prefix_from ∃
2 Try 2 = False Answer: False Try 2 = True [CALL]
Question: prefix_from ∀ 1 Try 1 = False Answer:
True Try 1 = True Answer: False

...[EndOfPrompt][CALL] Question: prefix_from ∃ 2 Try 2 = False Answer: False Try 2 =
True [CALL] Question: prefix_from ∀ 1 Try 1 = False Answer: True Try 1 = True Answer:
False [SEP] Answer: False [RETURN]

...[EndOfPrompt] [CALL] Question: prefix_from
∃ 2 Try 2 = False Answer: False Try 2 = True
Answer: False

...[EndOfPrompt] [CALL] Question: prefix_from ∃ 2 Try 2 = False Answer: False Try 2 =
True Answer: False [SEP] Answer: False [RETURN] ...[EndOfPrompt] Answer: False

...[EndOfPrompt] Answer: False [EndOfText]

: Model Generation : Reduction Rule

Figure 5: The complete thinking process of PENCIL on a small-sized QBF instance. The “...” at the
beginning of a thought hides the prompt. Bold text represents newly generated thoughts, while blue
highlights indicate thoughts to be removed.

(a) (b) (c)

$ Currently, the pet category of
House #1 allows the following
options: birds dogs, or fish ...
$ Let’s consider constraint 1

$ Since green must be
immediately to the right of Birds,
we remove “green” from House
#1 (it can’t be in the leftmost
position if it’s supposed to be on
the right of something else) ...

$ House #1’s color reduces to
possibilities blue and red ......

[CALL]

[CALL]

[SEP]

[CALL]

[SEP]

$ After considering all
constraints, the possible values
for the pet category of House #1
have been narrowed down to ...
[RETURN]

[CALL]

$ After considering all
constraints, the possible values
for the pet category of House #1
have been narrowed down to ...

[CALL]

$ Currently, the pet category of
House #1 allows only possibility
dogs ...

[CALL]

- Constraint 1 : The green house is
immediately to the right of the one who
keeps birds

Prompt : 

Solution :

     
The Brit owns the fish

  House # 1 2 3
  Color Red Blue Green
  Nationality Swede German Brit
  Pet Dogs Birds Fish

[RETURN]

[CALL]

$ ... Currently, the pet category of
House #1 allows the following
options: birds dogs, or fish ...
$ Let’s consider constraint 1 
$ House #1’s color reduces to ...
$ Let’s consider constraint 2
...
$ Now we've considered all
constraints, let's summarize

$ After considering all
constraints, the possible values
for the pet category of House #1
have been narrowed down to ...

[CALL]

$ House #1’s color reduces to
possibilities blue and red ...

$ Currently, the pet category of
House #1 allows the following
options: birds dogs, or fish ...
$ Let’s consider constraint 1

:

:

:

:

:
$ Since House #1 color
category still has two possible
choices blue and red, we
explore each option separately

$ Some constraints remain
unsatisfied and thus the puzzle
is still not fully solved 

- Constraint 2 : The Brit is immediately to
the right of the German

- Constraint 3 : The one who keeps dogs
is the same house as the red house

- Constraint 4 : The one who keeps birds
is immediately to the right of the Swede

Who owns the fish?

PENCIL

( . . . )

( . . . )

$ Let us suppose House #1
is blue

. . .

( . . . )

. . .. . .

. . .

. . .

Figure 6: A simplified illustration of the algorithm for generating the thinking process for Einstein’s
puzzle (3×3). The puzzle requires determining attributes of each house (Color: Blue/Green/Red,
Nationality: Brit/German/Swede, Pet: Birds/Dogs/Fish) given a set of constraints, with each house
having unique attributes. The “...” in the arrow denotes omitted thoughts for conciseness; the “...” in
the box denotes omitted thought. See the complete example in Appendix G.

instance consists of a list of houses with different attributes (e.g., color, nationality, pet), and given
a set of constraints or clues as the prompt (e.g. the green house is immediately to the right of the
one who keeps birds), the goal is to determine the attributes of each house through logical deduction.
The original puzzle has size 5 × 5 (5 houses and 5 attribute categories, totaling 25 variables), which
presents a significant challenge for language models to solve – even GPT-4 fails to solve it with
few-shot CoT (Dziri et al., 2024).

Special Use Case: Tail Recursion A notable special case of the reduction rule is when the answer
itself leads to another question: when A = [CALL] T’, (1) becomes

C [CALL] T [SEP] [CALL] T’ [RETURN]
⇒ C [CALL] T’.

(7)

We refer to this special use case as tail recursion since it mimics the tail recursion in functional
programming where a function’s returned value is another function call. A practical application
of this rule is to simplify an originally complex question by iteratively reducing it, through some
intermediate reasoning steps, to a more tractable form. In Sec. D we will use this to prove PENCIL’s
space efficiency.
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(c) Einstein’s puzzle

Figure 7: Maximal sequence length with and without the reduction rule.

See Fig. 6 for an illustration of how reduction rules can be applied to solve the Einstein puzzle, which
consists of the following steps in one round of iteration: (a) Propagating constraints to eliminate
impossible attributes combinations; (b) Use the tail recursion rule to merge results from constraints
propagation and update the house states; (c) Iteratively explore different solution branches and discard
intermediate reasoning steps from each branch, only preserving the final answer. As shown in Fig. 7,
for 5×5 puzzle, the maximal sequence reduces dramatically from 151, 192 to 3, 335 (without tail
recursion this number is 7, 705).

C EXPERIMENTAL DETAILS

Training The training of PENCIL is nearly identical to that of CoT with a key difference being how
the data is processed. Specifically, the training pipeline of PENCIL consists of the following steps:

For data preparation, we implement the algorithms for solving the problems mentioned in Sec. B,
generates the corresponding scaffolded CoT with special tokens [CALL], [SEP], [RETURN]as
we run the algorithm, and then transform the long scaffolded CoT sequence into a set of smaller
sequences {x(1), x(2), . . . , x(r+1)} that ends with either [RETURN]or EOS.

During training, the loss function is crucial for the success of training PENCIL. In particular, we
need not compute loss on every single token in each shorter sequence x(i), but only those that are
generated starting from last iteration’s reduction step (i.e. x(i)\x(i−0.5)). We maintain an index for
each x(i) for storing the information of the index where the model generation starts. We can either
feed all shorter sequences into one batch (which is our default choice in experiments), which makes it
possible to reuse the KV cache of other sequences to reduce training computes, or randomly sample
from these sequences from all problem instance, which would lead to similar performance.

Implementation Unless otherwise stated, for model architecture, we choose a 6-layer transformer
with 10.63M parameters for SAT and QBF problems, and an 8-layer transformer with 25.19M
parameters for the more complex Einstein’s puzzle. All experiments use a context window of 2048
tokens and rotary positional encoding (Su et al., 2024); we truncate the sequence to the maximal
context window to fit into the model for all methods if it exceeds the model’s capacity. We use the
same batch size and learning rate for all methods across experiments.

Experimental Setting We adopt the online learning setting where models train until convergence
with unconstrained data access, mirroring the common scenarios in language model training where
data can be effectively infinite (Hoffmann et al., 2022). To ensure fair comparison, we include special
tokens in the CoT, which might benefit its training by introducing additional structural information.

Evaluation Protocol We evaluate on a held-out validation set of 100 problem instances using two
metrics: accuracy (percentage of correct predictions) and trace rate (percentage of reasoning steps
matching the ground truth). For all problems, the labels for different classes are balanced.

D SPACE-EFFICIENT AND UNIVERSAL SIMULATION POWER OF PENCIL

In this section, we will theoretically analyze the expressive power of PENCIL by showing it can
simulate the Turing machine space-efficiently with the maximal context length proportional to the
space complexity. We first define the iterative next-token generator as a general purpose computation
model, which subsumes Turing machine as an example.
Definition 1 (Iterative Next-token Generator). An iterative next-token generator is a tupleM =
(Σ, π,Σaccept,Σreject), where Σ is a finite alphabet and π : Σ∗ → Σ is a function that generates the
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next token based on the current context, and Σaccept,Σreject ⊆ Σ are disjoint sets of accepting and
rejecting tokens respectively.

For any input x ∈ Σ∗, the iterative next-token generatorM recursively generates a sequence of
tokens πk(x) and append each of them to the current sequence before the next generation until it
outputs a token in Σaccept or Σreject. We define the output of iterative next-token generatorM on
input x as 1 if it outputs a token in Σaccept and 0 otherwise.

Time complexity T (M, x) is defined as the number of steps the iterative next-token generatorM
takes to halt on input x. We define T (M, x) =∞ if it does not halt.

The gap between required space and time for a computation occurs when one can summarize the past
computational trace into a shorter state. The summarization is required to be complete, that is, it only
deletes useless information from computational trace and preserves all the tokens generated in the
future.

Definition 2 (State of Iterative Next-token Generator). We say a function s : Σ∗ → Σ∗ is a state
function of an iterative next-token generatorM = (Σ, π,Σaccept,Σreject) if 1) π ◦ s = π; 2) for all
x, x′, y ∈ Σ∗, s(x) = s(x′) =⇒ s((x, y)) = s((x′, y)); 3) s2 = s.

Note the above definition of state function easily implies that the future trace of the iterative next-
token generatorM, i.e. πk(x) for k = 1, 2, . . ., can be uniquely determined by the state function s
ofM. (See equation 1 below)

Lemma 1. Let s be a state function of an iterative next-token generatorM = (Σ, π,Σaccept,Σreject).
It holds that s ◦ fk

π ◦ s = s ◦ fk
π and that πk+1 = πk+1 ◦ s for any k ≥ 0.

GivenM and state function s, we define the space complexity of (M, s) on input x, S(M, s, x)
as the maximal length of the states (s ◦ fπ)k(x) for all steps k. Note by equation 2 and equation 1,
S(M, s, x) is also equal to the maximal length s(fk

π (x)) for all steps k. In other words, s defines
a equivalent class over all possible computational traces ofM, and the mapping x 7→ s(x) erases
unnecessary information in the trace ofM to save space.

In Appendix F.1, we present the details of Turing machine as an iterative next-token generator and its
state function, where each next token is one step simulation of Turing machine and the size of state is
exactly the tape length.

SCROLL Rule Now we introduce a simplified version of PENCIL, SCROLL, which is already
powerful enough to simulate general target iterative next-token generators with optimal time and
space efficiency

SCROLL : T [SEP] T’ [RETURN] ⇒ T’ (8)

More concretely, SCROLL uses one less special token than PENCIL, [CALL], and can be sim-
ulated by PENCIL using tail recursion equation 7. (To simulate SCROLL with PENCIL, genera-
tor with PENCIL ensures its input starts with [CALL], and outputs the same token as that with
SCROLL. The only exception is, when later outputs [SEP], the generator with PENCIL must output
[SEP][CALL]consecutively.)

Next we will see how SCROLL can be used to simulate a target iterative next-token generator with
optimal time and space efficiency. For now we assume our base next-token generator f is powerful
enough so we just focus on designing the possible computational trace of SCROLL. We start with a
simple solution with optimal space but suboptimal time efficiency to illustrate how SCROLL saves
space.

A Space-Efficient but Time-Inefficient Solution Using the same notation in equation 4, we
describe the trace of SCROLL as follows: ∀i ∈ N,

x(i) =
(
fπ ◦ s ◦ f i

π(x),[SEP], s ◦ f i+1
π (x),[RETURN]

)
In other words, each time SCROLL reduction applies, it finishes one step of simulation of the target
iterative next-token generator. The space complexity of SCROLL is twice the maximal length of
the states s(f i

π(x)) for all steps 0 ≤ i ≤ T (M, x), that is, S(M, s, x), which is optimal up to
a multiplicative constant. However, the time complexity of SCROLL is suboptimal, T (M, x) ·
S(M, s, x).
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The issue above is that we apply reduction too often such that most of the steps of our base generator
is spent on applying the reduction rule, instead of generating new tokens. To address this issue, we
introduce a trick called efficient garbage collection, which only applies the reduction rule when the
length of the state is smaller than half of the sequence length before the reduction.

The Efficient Solution in Both Space and Time. We define ti recursively with t0 = 0. For i ∈ N+,
we define ti as the smallest integer larger than ti−1 such that length of the state s ◦ f ti

π (x) is no more
than half of the sequence length of f ti−ti−1

π ◦ s ◦ f ti−1
π (x). (note they are equal at ti−1) ∀i ∈ N, we

define the trace of SCROLL as follows:

x(i)=
(
f ti−ti−1
π ◦s ◦ f ti−1

π (x),[SEP],s◦f ti
π (x),[RETURN]

)
Theorem 2. SCROLL can simulate the target iterative next-token generatorM by using O(T (M, x))
total tokens and a maximal sequence length of O(S(M, s, x)), provided the next token generator of
SCROLL powerful enough to simulate the next-token generator inM and the state function s. So
does PENCIL.

Proof of equation 2 are deferred to Appendix F.2. We want to comment that for simulating the Turing
machine, using the construction in equation F.1, a linear-time next token generator (time spent before
generating the next token is proportional to its input length) suffices. Recent literature (Pérez et al.,
2021; Merrill & Sabharwal, 2023) suggest that decoder-only transformers with average hard attention,
which are also linear time, are capable of simulating next-token generator. By a similar argument,
one could in principle show that they can also simulate the state function in the above design. With
this, we conclude that PENCIL can perform universal computation by simulating any Turing
machine using same amount of time and space, with a mildly powerful next-token generator —
linear time generator for sure suffices, and recent study suggests even transformer would work.

E RELATED WORK

Structured Reasoning A key distinction of scaffolded reasoning approaches stems from how space
is managed during generation. At one extreme, Chain-of-Thought (Wei et al., 2022; Nye et al.,
2021; Kojima et al., 2022) demonstrates that explicit intermediate steps can dramatically improve
performance on complex problems, but at the expense of unbounded context growth. This limitation
has motivated approaches leveraging reasoning structures such as trees and graphs (Yao et al., 2024;
Long, 2023; Besta et al., 2024; Sel et al., 2023; Chen et al., 2022), adopting task decomposition
strategies (Zhou et al., 2022; Drozdov et al., 2022; Khot et al., 2022) or some other prompting
frameworks (Zelikman et al., 2022; Madaan et al., 2024; Suzgun & Kalai, 2024). While these
methods enable more complex reasoning patterns, they require carefully crafted prompts and multiple
rounds of interactions, whereas our approach achieves structured reasoning through end-to-end
training.

Test-Time Scaling Extensive work has focused on addressing the computational bottlenecks of
transformer architectures, particularly during long-context inference. One line of research explores
architectural innovations through sparse and local attention patterns (Beltagy et al., 2020; Kitaev et al.,
2020; Zaheer et al., 2020; Choromanski et al., 2020), while another focuses on memory optimization
via KV-cache reduction (Zhang et al., 2023; Fu et al., 2024; Li et al., 2024a; Nawrot et al., 2024)
and strategic context pruning (Kim et al., 2022; Jiang et al., 2023). However, these approaches still
rely on next-token prediction that fundamentally treats the context window as append-only storage,
leading to inherently inefficient space utilization.

LLMs as Programming Language Recent work has also explored intersections between program-
ming languages and LLMs. For example, Weiss et al. (2021) proposes a language called RASP,
programs in which can be encoded into and learned by transformers (Lindner et al., 2024; Friedman
et al., 2024; Zhou et al., 2023). Liu et al. (2023) empirically shows that language models can be
pre-trained to predict the execution traces of Python code. The reduction rule introduced in this
work draws inspiration from term rewriting systems (Baader & Nipkow, 1998), a foundational means
of computation in functional programming. This enables language models to explicitly emulate
recursion that is otherwise hard to learn (Zhang et al., 2024), and manage space efficiently by erasing
irrelevant contents in memory and focusing attention on those that are useful.
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Computational Power / Limitation of CoT While transformers can theoretically simulate Turing
machines (Pérez et al., 2021; Merrill & Sabharwal, 2023; Strobl et al., 2024; Nowak et al., 2024) with
CoT, their practical computational power is fundamentally constrained by context window limitations.
Particularly, we show that even with CoT, transformers with inherent space constraints would fail to
handle problems requiring extensive intermediate computation. This parallels classical space-bounded
computation theory, where memory management is crucial for algorithmic capabilities (Arora &
Barak, 2009; Garrison, 2024). Our approach addresses this limitation by enabling more efficient use
of the context.

F ADDITIONAL THEORETICAL RESULTS

F.1 DETAILS ON TURING MACHINE AS A ITERATIVE NEXT-TOKEN GENERATOR AND ITS STATE
FUNCTION

Definition 3 (Turing Machine). A Turing machine is a 7-tuple TM = (Γ, b, Q, q0, δ, Qaccept, Qreject)
where:

• Γ is a finite set of the tape alphabet symbols
• b ∈ Γ is the blank symbol
• Q is a finite set of states
• q0 ∈ Q is the initial state
• δ : Q× Γ→ Q× Γ× L,R is the transition function
• Qaccept ⊆ Q is the set of accepting states
• Qreject ⊆ Q is the set of rejecting states

where Qaccept ∩Qreject = ∅ (accepting and rejecting states are disjoint).
Example 1 (Turing Machine as Iterative Next-token Generator). Given a Turing machine TM =
(Γ, b, Q, q0, δ, Qaccept, Qreject) (see definition in 3), we construct an iterative next-token generator
M = (Σ, π,Σaccept,Σreject) as follows:

• Let Σ = Q× Γ× {L,R,N} be the set of tokens, where each token represents a tuple (q, a, d) of
the symbol written (a), the resulting state (q), and the direction of head movement (d).

• Define Σaccept = Qaccept × Γ × {L,R,N} and Σreject = Qreject × Γ × {L,R,N} to be the
accepting and rejecting token sets respectively.

• The function π : Σ∗ → Σ operates as follows on input context x = (q1, a1, d1), . . . , (qk, ak, dk):
1. recover Turing machine state

– The current state is qk from the last token
– The head position p can be computed by starting at 0 and following the directions d1, . . . , dk
– The tape contents can be reconstructed by applying the written symbols a1, . . . , ak at their

respective positions
2. Read the symbol a at the current head position p on the reconstructed tape
3. If qk ∈ Qaccept ∪Qreject, halt
4. Otherwise, compute δ(qk, a) = (q′, a′, d′) and output the token (q′, a′, d′)

Note that this construction preserves both the time and space complexity of the original Turing
machine. Each step of the Turing machine corresponds to exactly one token generation, and the
tape contents can be efficiently reconstructed from the computation history. This is the standard
construction used to show transformer can simulate Turing machine (Pérez et al., 2021; Merrill et al.,
2022).
Example 2 (State function for Iterative Next-Token Generator Simulating Turing Machine). Given
a Turing machine TM = (Γ, b, Q, q0, δ, Qaccept, Qreject) and its corresponding iterative next-token
generatorM = (Σ, π,Σaccept,Σreject), where:

• Σ = Q× Γ× L,R,N represents tokens of form (q, a, d) where q is the resulting state, a is the
symbol written, and d is the direction of head movement

• Σaccept = Qaccept × Γ× L,R,N and Σreject = Qreject × Γ× L,R,N

We define a state function s : Σ∗ → Σ∗ as follows: For input context x ∈ Σ∗ consisting of tokens
(q1, a1, d1), . . . , (qk, ak, dk):
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1. First, reconstruct the tape contents and head position from x:
• Initialize an empty tape T with all cells containing blank symbol b
• Start with head position p0 = 0
• For each token (qi, ai, di) in order:

– Write symbol ai at position pi−1 in T
– Update position: pi = pi−1 + 1 if di = R, pi = pi−1 − 1 if di = L, pi = pi−1 if di = N

2. Let [l, r] be the minimal interval containing:
• The current head position pk
• All non-blank symbols in tape T

3. The state function s(x) outputs a sequence of tokens that reconstructs the min-
imal state using a two-pass approach. Let T [l : r] denote the contents
of tape T in interval [l, r]. The output sequence is constructed as follows:

Algorithm 1: Construction of Minimal Token Sequence (Two-Pass)
Input :Tape contents T [l : r], final state qk, target head position pk
Output :Sequence of tokens S
S ← empty sequence; /* First pass: Move right, writing all symbols

*/
for i← l to r do

Append (qk, T [i], R) to S;
end
/* Second pass: Move left to target position */
i← 0; steps left← r − pk ; // Distance to target
for i← r to pk do

Append (qk, T [i], R) to S;
end
return S;

This improved construction guarantees that:
• First pass writes all required symbols by moving right
• Second pass moves to the target position pk by moving left
• The final state qk is preserved in the last token
• Only the minimal necessary information is retained

The sequence satisfies the required properties as before:

Next-token preservation: π ◦ s = π since:

• The first pass writes all symbols in their correct positions
• The second pass moves to the correct head position
• The final state qk is preserved in the last token

Future trace preservation: If s(x) = s(x′) then s((x, y)) = s((x′, y)) since:

• Two traces with same s output have identical configurations
• Future computation depends only on the current configuration

Idempotence: s2 = s since:

• s(x) already produces minimal representation
• Applying s again yields same minimal representation

The space complexity S(M, s, x) matches the space used by the original Turing machine, as s(x)
retains only the minimal interval containing non-blank symbols and the head position.

F.2 MISSING PROOFS

Proof of 1. For any z ∈ Σ∗, we have that s2(z) = s(z). Now let x = s(z), x′ = z and y =
π(z) = π(s(z)), since s(x) = s(x′), we have s((x, y)) = s((x′, y)), which further implies that
s(fπ(s(z))) = s((x, y)) = s((x′, y)) = s(fπ(z)). Therefore, s ◦ fπ ◦ s = s ◦ fπ. Now we use
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induction to prove that s ◦ fk
π ◦ s = s ◦ fk

π for all k ∈ N+. The base case k = 1 is already proved.
Now suppose s ◦ fk

π ◦ s = s ◦ fk
π , we have s ◦ fk+1

π ◦ s = s ◦ fπ ◦ fk
π ◦ s = s ◦ fπ ◦ s ◦ fk

π ◦ s =
s ◦ fπ ◦ s ◦ fk

π = s ◦ fπ ◦ fk
π , which completes the induction. The second part of the lemma is trivial

by the definition of state function.

Now we turn to the second part, which is a simple consequence of the first part. Note that for k ≥ 1,
πk = π ◦ fk−1

π = π ◦ s ◦ fk−1
π . By first part, s ◦ fk−1

π = s ◦ fk−1
π ◦ s. This completes the proof of

the second part.

Proof of 2. The maximal sequence length must be attained when SCROLL outputs [RETURN]and
before applies the reduction rule. By definition of ti, it holds that the length of the state s ◦ f ti−1

π (x)

is more than half of the sequence length of f ti−1−ti−1
π ◦ s ◦ f ti−1

π (x). Therefore, the sequence length
at ti is no more than 2 · |s ◦ f ti−1

π (x)|+ 2 + |s ◦ f ti
π (x)|+ 2 = O(S(M, s, x)).

The total tokens generated by SCROLL is upper bounded by the sum of length of x(i), which is∑I
i≥1(ti − ti−1 + |s ◦ f ti

π (x)|+ |s ◦ f ti+1
π (x)|+ 2). By definition of ti, it holds that

ti − ti−1 + |s ◦ f ti
π (x)| ≥ 2 · |s ◦ f ti−1

π (x)|, (9)

Telescoping 9 from i = 1 to I − 1, we have that

tI − t0 + |s ◦ f tI
π (x)| ≥

I−1∑
i=1

|s ◦ f ti−1
π (x)|. (10)

Thus we conclude the total length is at most 3tI + 2I + 2|s ◦ f tI
π (x)|, which is at most 5T (M, x) +

2M(M, s, x) = O(T (M, x)), which completes the proof.

G DETAILED EXAMPLES

G.1 BOOLEAN SATISFIABILITY (SAT)

CHAIN-OF-THOUGHT (W/O REDUCTION RULE)

• Prompt:
<|startoftext|> ( 4 ∨ ¬ 3 ∨ ¬ 2 ) ∧ ( ¬ 4 ∨ ¬ 2 ∨ 1 ) ∧ ( ¬ 2 ∨ ¬ 1 ∨ 3 ) ∧ ( 3 ∨

↪→ 4 ∨ 2 ) ∧ ( 3 ∨ ¬ 2 ∨ 4 ) ∧ ( ¬ 1 ∨ 4 ∨ 2 ) ∧ ( 1 ∨ ¬ 4 ∨ 2 ) ∧ ( 4 ∨ ¬ 2 ∨
↪→ 3 ) ∧ ( ¬ 4 ∨ 1 ∨ ¬ 3 ) ∧ ( 3 ∨ 2 ∨ 4 ) ∧ ( ¬ 3 ∨ 1 ∨ ¬ 4 ) ∧ ( ¬ 4 ∨ 2 ∨
↪→ ¬ 3 ) ∧ ( 2 ∨ 4 ∨ ¬ 3 ) ∧ ( 3 ∨ 4 ∨ 2 ) ∧ ( 3 ∨ ¬ 1 ∨ ¬ 4 ) ∧ ( ¬ 1 ∨ ¬ 4 ∨
↪→ ¬ 2 ) ∧ ( 2 ∨ 3 ∨ 4 ) <|endofprompt|>

• Response:
[CALL] Question: ( 4 ∨ ¬ 3 ∨ ¬ 2 ) ∧ ( ¬ 4 ∨ ¬ 2 ∨ 1 ) ∧ ( ¬ 2 ∨ ¬ 1 ∨ 3 ) ∧ ( 3 ∨

↪→ 4 ∨ 2 ) ∧ ( 3 ∨ ¬ 2 ∨ 4 ) ∧ ( ¬ 1 ∨ 4 ∨ 2 ) ∧ ( 1 ∨ ¬ 4 ∨ 2 ) ∧ ( 4 ∨ ¬ 2
↪→ ∨ 3 ) ∧ ( ¬ 4 ∨ 1 ∨ ¬ 3 ) ∧ ( 3 ∨ 2 ∨ 4 ) ∧ ( ¬ 3 ∨ 1 ∨ ¬ 4 ) ∧ ( ¬ 4 ∨ 2 ∨
↪→ ¬ 3 ) ∧ ( 2 ∨ 4 ∨ ¬ 3 ) ∧ ( 3 ∨ 4 ∨ 2 ) ∧ ( 3 ∨ ¬ 1 ∨ ¬ 4 ) ∧ ( ¬ 1 ∨ ¬ 4
↪→ ∨ ¬ 2 ) ∧ ( 2 ∨ 3 ∨ 4 ) Try 1 = True [CALL] Question: ( 4 ∨ ¬ 3 ∨ ¬ 2 ) ∧ (
↪→ ¬ 2 ∨ 3 ) ∧ ( 3 ∨ 4 ∨ 2 ) ∧ ( 3 ∨ ¬ 2 ∨ 4 ) ∧ ( 4 ∨ 2 ) ∧ ( 4 ∨ ¬ 2 ∨ 3 )
↪→ ∧ ( 3 ∨ 2 ∨ 4 ) ∧ ( ¬ 4 ∨ 2 ∨ ¬ 3 ) ∧ ( 2 ∨ 4 ∨ ¬ 3 ) ∧ ( 3 ∨ 4 ∨ 2 ) ∧ ( 3
↪→ ∨ ¬ 4 ) ∧ ( ¬ 4 ∨ ¬ 2 ) ∧ ( 2 ∨ 3 ∨ 4 ) Try 2 = True [CALL] Question: ( 4
↪→ ∨ ¬ 3 ) ∧ ( 3 ) ∧ ( 3 ∨ 4 ) ∧ ( 4 ∨ 3 ) ∧ ( 3 ∨ ¬ 4 ) ∧ ( ¬ 4 ) Found 3 Let
↪→ 3 = True [CALL] Question: ( 4 ) ∧ ( ¬ 4 ) Found 4 Let 4 = True [SEP]
↪→ Answer: False [RETURN] [SEP] Answer: False [RETURN] Try 2 = False [CALL]
↪→ Question: ( 3 ∨ 4 ) ∧ ( 4 ) ∧ ( 3 ∨ 4 ) ∧ ( ¬ 4 ∨ ¬ 3 ) ∧ ( 4 ∨ ¬ 3 ) ∧ ( 3
↪→ ∨ 4 ) ∧ ( 3 ∨ ¬ 4 ) ∧ ( 3 ∨ 4 ) Found 4 Let 4 = True [CALL] Question: ( ¬
↪→ 3 ) ∧ ( 3 ) Found ¬ 3 Let 3 = False [SEP] Answer: False [RETURN] [SEP]
↪→ Answer: False [RETURN] [SEP] Answer: False [RETURN] Try 1 = False [CALL]
↪→ Question: ( 4 ∨ ¬ 3 ∨ ¬ 2 ) ∧ ( ¬ 4 ∨ ¬ 2 ) ∧ ( 3 ∨ 4 ∨ 2 ) ∧ ( 3 ∨ ¬ 2 ∨ 4
↪→ ) ∧ ( ¬ 4 ∨ 2 ) ∧ ( 4 ∨ ¬ 2 ∨ 3 ) ∧ ( ¬ 4 ∨ ¬ 3 ) ∧ ( 3 ∨ 2 ∨ 4 ) ∧ ( ¬ 3
↪→ ∨ ¬ 4 ) ∧ ( ¬ 4 ∨ 2 ∨ ¬ 3 ) ∧ ( 2 ∨ 4 ∨ ¬ 3 ) ∧ ( 3 ∨ 4 ∨ 2 ) ∧ ( 2 ∨ 3 ∨ 4
↪→ ) Try 2 = True [CALL] Question: ( 4 ∨ ¬ 3 ) ∧ ( ¬ 4 ) ∧ ( 3 ∨ 4 ) ∧ ( 4 ∨
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↪→ 3 ) ∧ ( ¬ 4 ∨ ¬ 3 ) ∧ ( ¬ 3 ∨ ¬ 4 ) Found ¬ 4 Let 4 = False [CALL] Question
↪→ : ( ¬ 3 ) ∧ ( 3 ) ∧ ( 3 ) Found ¬ 3 Let 3 = False [SEP] Answer: False [
↪→ RETURN] [SEP] Answer: False [RETURN] Try 2 = False [CALL] Question: ( 3 ∨ 4
↪→ ) ∧ ( ¬ 4 ) ∧ ( ¬ 4 ∨ ¬ 3 ) ∧ ( 3 ∨ 4 ) ∧ ( ¬ 3 ∨ ¬ 4 ) ∧ ( ¬ 4 ∨ ¬ 3 ) ∧
↪→ ( 4 ∨ ¬ 3 ) ∧ ( 3 ∨ 4 ) ∧ ( 3 ∨ 4 ) Found ¬ 4 Let 4 = False [CALL] Question
↪→ : ( 3 ) ∧ ( 3 ) ∧ ( ¬ 3 ) ∧ ( 3 ) ∧ ( 3 ) Found 3 Let 3 = True [SEP] Answer
↪→ : False [RETURN] [SEP] Answer: False [RETURN] [SEP] Answer: False [RETURN]
↪→ [SEP] Answer: False [RETURN] <|endoftext|>

PENCIL (WITH REDUCTION RULE)

• Prompt:

<|startoftext|> ( 4 ∨ ¬ 3 ∨ ¬ 2 ) ∧ ( ¬ 4 ∨ ¬ 2 ∨ 1 ) ∧ ( ¬ 2 ∨ ¬ 1 ∨ 3 ) ∧ ( 3 ∨
↪→ 4 ∨ 2 ) ∧ ( 3 ∨ ¬ 2 ∨ 4 ) ∧ ( ¬ 1 ∨ 4 ∨ 2 ) ∧ ( 1 ∨ ¬ 4 ∨ 2 ) ∧ ( 4 ∨ ¬ 2 ∨
↪→ 3 ) ∧ ( ¬ 4 ∨ 1 ∨ ¬ 3 ) ∧ ( 3 ∨ 2 ∨ 4 ) ∧ ( ¬ 3 ∨ 1 ∨ ¬ 4 ) ∧ ( ¬ 4 ∨ 2 ∨
↪→ ¬ 3 ) ∧ ( 2 ∨ 4 ∨ ¬ 3 ) ∧ ( 3 ∨ 4 ∨ 2 ) ∧ ( 3 ∨ ¬ 1 ∨ ¬ 4 ) ∧ ( ¬ 1 ∨ ¬ 4 ∨
↪→ ¬ 2 ) ∧ ( 2 ∨ 3 ∨ 4 ) <|endofprompt|>

• Response:

Answer: False <|endoftext|>

INTERNAL REASONING PROCESS OF PENCIL

Model Generation (1)

[CALL] Question: ( ¬ 3 ∨ 4 ∨ 1 ) ∧ ( 1 ∨ 3 ∨ 2 ) ∧ ( ¬ 4 ∨ ¬ 3 ∨ ¬ 1 ) ∧ ( ¬ 3 ∨ ¬
↪→ 1 ∨ 2 ) ∧ ( 4 ∨ 1 ∨ 3 ) ∧ ( 4 ∨ 1 ∨ ¬ 3 ) ∧ ( ¬ 3 ∨ ¬ 1 ∨ 4 ) ∧ ( ¬ 1 ∨ 2
↪→ ∨ ¬ 4 ) ∧ ( ¬ 3 ∨ ¬ 1 ∨ 4 ) ∧ ( ¬ 3 ∨ 2 ∨ ¬ 4 ) ∧ ( ¬ 4 ∨ ¬ 1 ∨ 3 ) ∧ ( 2 ∨
↪→ 1 ∨ ¬ 3 ) ∧ ( 1 ∨ 4 ∨ 3 ) ∧ ( 2 ∨ ¬ 3 ∨ 4 ) ∧ ( 2 ∨ ¬ 4 ∨ 1 ) ∧ ( 1 ∨ 3 ∨
↪→ 2 ) ∧ ( 4 ∨ 2 ∨ ¬ 3 ) Try 1 = True [CALL] Question: ( ¬ 4 ∨ ¬ 3 ) ∧ ( ¬ 3 ∨
↪→ 2 ) ∧ ( ¬ 3 ∨ 4 ) ∧ ( 2 ∨ ¬ 4 ) ∧ ( ¬ 3 ∨ 4 ) ∧ ( ¬ 3 ∨ 2 ∨ ¬ 4 ) ∧ ( ¬ 4
↪→ ∨ 3 ) ∧ ( 2 ∨ ¬ 3 ∨ 4 ) ∧ ( 4 ∨ 2 ∨ ¬ 3 ) Try 2 = True [CALL] Question: ( ¬
↪→ 4 ∨ ¬ 3 ) ∧ ( ¬ 3 ∨ 4 ) ∧ ( ¬ 3 ∨ 4 ) ∧ ( ¬ 4 ∨ 3 ) Try 3 = True [CALL]
↪→ Question: ( ¬ 4 ) ∧ ( 4 ) ∧ ( 4 ) Found ¬ 4 Let 4 = False [SEP] Answer:
↪→ False [RETURN]

Reduction Rule (1)

[CALL] Question: ( ¬ 3 ∨ 4 ∨ 1 ) ∧ ( 1 ∨ 3 ∨ 2 ) ∧ ( ¬ 4 ∨ ¬ 3 ∨ ¬ 1 ) ∧ ( ¬ 3 ∨ ¬
↪→ 1 ∨ 2 ) ∧ ( 4 ∨ 1 ∨ 3 ) ∧ ( 4 ∨ 1 ∨ ¬ 3 ) ∧ ( ¬ 3 ∨ ¬ 1 ∨ 4 ) ∧ ( ¬ 1 ∨ 2
↪→ ∨ ¬ 4 ) ∧ ( ¬ 3 ∨ ¬ 1 ∨ 4 ) ∧ ( ¬ 3 ∨ 2 ∨ ¬ 4 ) ∧ ( ¬ 4 ∨ ¬ 1 ∨ 3 ) ∧ ( 2 ∨
↪→ 1 ∨ ¬ 3 ) ∧ ( 1 ∨ 4 ∨ 3 ) ∧ ( 2 ∨ ¬ 3 ∨ 4 ) ∧ ( 2 ∨ ¬ 4 ∨ 1 ) ∧ ( 1 ∨ 3 ∨
↪→ 2 ) ∧ ( 4 ∨ 2 ∨ ¬ 3 ) Try 1 = True [CALL] Question: ( ¬ 4 ∨ ¬ 3 ) ∧ ( ¬ 3 ∨
↪→ 2 ) ∧ ( ¬ 3 ∨ 4 ) ∧ ( 2 ∨ ¬ 4 ) ∧ ( ¬ 3 ∨ 4 ) ∧ ( ¬ 3 ∨ 2 ∨ ¬ 4 ) ∧ ( ¬ 4
↪→ ∨ 3 ) ∧ ( 2 ∨ ¬ 3 ∨ 4 ) ∧ ( 4 ∨ 2 ∨ ¬ 3 ) Try 2 = True [CALL] Question: ( ¬
↪→ 4 ∨ ¬ 3 ) ∧ ( ¬ 3 ∨ 4 ) ∧ ( ¬ 3 ∨ 4 ) ∧ ( ¬ 4 ∨ 3 ) Try 3 = True Answer:
↪→ False

Model Generation (2)

[CALL] Question: ( ¬ 3 ∨ 4 ∨ 1 ) ∧ ( 1 ∨ 3 ∨ 2 ) ∧ ( ¬ 4 ∨ ¬ 3 ∨ ¬ 1 ) ∧ ( ¬ 3 ∨ ¬
↪→ 1 ∨ 2 ) ∧ ( 4 ∨ 1 ∨ 3 ) ∧ ( 4 ∨ 1 ∨ ¬ 3 ) ∧ ( ¬ 3 ∨ ¬ 1 ∨ 4 ) ∧ ( ¬ 1 ∨ 2
↪→ ∨ ¬ 4 ) ∧ ( ¬ 3 ∨ ¬ 1 ∨ 4 ) ∧ ( ¬ 3 ∨ 2 ∨ ¬ 4 ) ∧ ( ¬ 4 ∨ ¬ 1 ∨ 3 ) ∧ ( 2 ∨
↪→ 1 ∨ ¬ 3 ) ∧ ( 1 ∨ 4 ∨ 3 ) ∧ ( 2 ∨ ¬ 3 ∨ 4 ) ∧ ( 2 ∨ ¬ 4 ∨ 1 ) ∧ ( 1 ∨ 3 ∨
↪→ 2 ) ∧ ( 4 ∨ 2 ∨ ¬ 3 ) Try 1 = True [CALL] Question: ( ¬ 4 ∨ ¬ 3 ) ∧ ( ¬ 3 ∨
↪→ 2 ) ∧ ( ¬ 3 ∨ 4 ) ∧ ( 2 ∨ ¬ 4 ) ∧ ( ¬ 3 ∨ 4 ) ∧ ( ¬ 3 ∨ 2 ∨ ¬ 4 ) ∧ ( ¬ 4
↪→ ∨ 3 ) ∧ ( 2 ∨ ¬ 3 ∨ 4 ) ∧ ( 4 ∨ 2 ∨ ¬ 3 ) Try 2 = True [CALL] Question: ( ¬
↪→ 4 ∨ ¬ 3 ) ∧ ( ¬ 3 ∨ 4 ) ∧ ( ¬ 3 ∨ 4 ) ∧ ( ¬ 4 ∨ 3 ) Try 3 = True Answer:
↪→ False Try 3 = False [CALL] Question: ( ¬ 4 ) Found ¬ 4 Let 4 = False [SEP]
↪→ Answer: True [RETURN]

Reduction Rule (2)
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[CALL] Question: ( ¬ 3 ∨ 4 ∨ 1 ) ∧ ( 1 ∨ 3 ∨ 2 ) ∧ ( ¬ 4 ∨ ¬ 3 ∨ ¬ 1 ) ∧ ( ¬ 3 ∨ ¬
↪→ 1 ∨ 2 ) ∧ ( 4 ∨ 1 ∨ 3 ) ∧ ( 4 ∨ 1 ∨ ¬ 3 ) ∧ ( ¬ 3 ∨ ¬ 1 ∨ 4 ) ∧ ( ¬ 1 ∨ 2
↪→ ∨ ¬ 4 ) ∧ ( ¬ 3 ∨ ¬ 1 ∨ 4 ) ∧ ( ¬ 3 ∨ 2 ∨ ¬ 4 ) ∧ ( ¬ 4 ∨ ¬ 1 ∨ 3 ) ∧ ( 2 ∨
↪→ 1 ∨ ¬ 3 ) ∧ ( 1 ∨ 4 ∨ 3 ) ∧ ( 2 ∨ ¬ 3 ∨ 4 ) ∧ ( 2 ∨ ¬ 4 ∨ 1 ) ∧ ( 1 ∨ 3 ∨
↪→ 2 ) ∧ ( 4 ∨ 2 ∨ ¬ 3 ) Try 1 = True [CALL] Question: ( ¬ 4 ∨ ¬ 3 ) ∧ ( ¬ 3 ∨
↪→ 2 ) ∧ ( ¬ 3 ∨ 4 ) ∧ ( 2 ∨ ¬ 4 ) ∧ ( ¬ 3 ∨ 4 ) ∧ ( ¬ 3 ∨ 2 ∨ ¬ 4 ) ∧ ( ¬ 4
↪→ ∨ 3 ) ∧ ( 2 ∨ ¬ 3 ∨ 4 ) ∧ ( 4 ∨ 2 ∨ ¬ 3 ) Try 2 = True [CALL] Question: ( ¬
↪→ 4 ∨ ¬ 3 ) ∧ ( ¬ 3 ∨ 4 ) ∧ ( ¬ 3 ∨ 4 ) ∧ ( ¬ 4 ∨ 3 ) Try 3 = True Answer:
↪→ False Try 3 = False Answer: True

Model Generation (3)
[CALL] Question: ( ¬ 3 ∨ 4 ∨ 1 ) ∧ ( 1 ∨ 3 ∨ 2 ) ∧ ( ¬ 4 ∨ ¬ 3 ∨ ¬ 1 ) ∧ ( ¬ 3 ∨ ¬

↪→ 1 ∨ 2 ) ∧ ( 4 ∨ 1 ∨ 3 ) ∧ ( 4 ∨ 1 ∨ ¬ 3 ) ∧ ( ¬ 3 ∨ ¬ 1 ∨ 4 ) ∧ ( ¬ 1 ∨ 2
↪→ ∨ ¬ 4 ) ∧ ( ¬ 3 ∨ ¬ 1 ∨ 4 ) ∧ ( ¬ 3 ∨ 2 ∨ ¬ 4 ) ∧ ( ¬ 4 ∨ ¬ 1 ∨ 3 ) ∧ ( 2 ∨
↪→ 1 ∨ ¬ 3 ) ∧ ( 1 ∨ 4 ∨ 3 ) ∧ ( 2 ∨ ¬ 3 ∨ 4 ) ∧ ( 2 ∨ ¬ 4 ∨ 1 ) ∧ ( 1 ∨ 3 ∨
↪→ 2 ) ∧ ( 4 ∨ 2 ∨ ¬ 3 ) Try 1 = True [CALL] Question: ( ¬ 4 ∨ ¬ 3 ) ∧ ( ¬ 3 ∨
↪→ 2 ) ∧ ( ¬ 3 ∨ 4 ) ∧ ( 2 ∨ ¬ 4 ) ∧ ( ¬ 3 ∨ 4 ) ∧ ( ¬ 3 ∨ 2 ∨ ¬ 4 ) ∧ ( ¬ 4
↪→ ∨ 3 ) ∧ ( 2 ∨ ¬ 3 ∨ 4 ) ∧ ( 4 ∨ 2 ∨ ¬ 3 ) Try 2 = True [CALL] Question: ( ¬
↪→ 4 ∨ ¬ 3 ) ∧ ( ¬ 3 ∨ 4 ) ∧ ( ¬ 3 ∨ 4 ) ∧ ( ¬ 4 ∨ 3 ) Try 3 = True Answer:
↪→ False Try 3 = False Answer: True [SEP] Answer: True [RETURN]

Reduction Rule (3)
[CALL] Question: ( ¬ 3 ∨ 4 ∨ 1 ) ∧ ( 1 ∨ 3 ∨ 2 ) ∧ ( ¬ 4 ∨ ¬ 3 ∨ ¬ 1 ) ∧ ( ¬ 3 ∨ ¬

↪→ 1 ∨ 2 ) ∧ ( 4 ∨ 1 ∨ 3 ) ∧ ( 4 ∨ 1 ∨ ¬ 3 ) ∧ ( ¬ 3 ∨ ¬ 1 ∨ 4 ) ∧ ( ¬ 1 ∨ 2
↪→ ∨ ¬ 4 ) ∧ ( ¬ 3 ∨ ¬ 1 ∨ 4 ) ∧ ( ¬ 3 ∨ 2 ∨ ¬ 4 ) ∧ ( ¬ 4 ∨ ¬ 1 ∨ 3 ) ∧ ( 2 ∨
↪→ 1 ∨ ¬ 3 ) ∧ ( 1 ∨ 4 ∨ 3 ) ∧ ( 2 ∨ ¬ 3 ∨ 4 ) ∧ ( 2 ∨ ¬ 4 ∨ 1 ) ∧ ( 1 ∨ 3 ∨
↪→ 2 ) ∧ ( 4 ∨ 2 ∨ ¬ 3 ) Try 1 = True [CALL] Question: ( ¬ 4 ∨ ¬ 3 ) ∧ ( ¬ 3 ∨
↪→ 2 ) ∧ ( ¬ 3 ∨ 4 ) ∧ ( 2 ∨ ¬ 4 ) ∧ ( ¬ 3 ∨ 4 ) ∧ ( ¬ 3 ∨ 2 ∨ ¬ 4 ) ∧ ( ¬ 4
↪→ ∨ 3 ) ∧ ( 2 ∨ ¬ 3 ∨ 4 ) ∧ ( 4 ∨ 2 ∨ ¬ 3 ) Try 2 = True Answer: True

Model Generation (4)
[CALL] Question: ( ¬ 3 ∨ 4 ∨ 1 ) ∧ ( 1 ∨ 3 ∨ 2 ) ∧ ( ¬ 4 ∨ ¬ 3 ∨ ¬ 1 ) ∧ ( ¬ 3 ∨ ¬

↪→ 1 ∨ 2 ) ∧ ( 4 ∨ 1 ∨ 3 ) ∧ ( 4 ∨ 1 ∨ ¬ 3 ) ∧ ( ¬ 3 ∨ ¬ 1 ∨ 4 ) ∧ ( ¬ 1 ∨ 2
↪→ ∨ ¬ 4 ) ∧ ( ¬ 3 ∨ ¬ 1 ∨ 4 ) ∧ ( ¬ 3 ∨ 2 ∨ ¬ 4 ) ∧ ( ¬ 4 ∨ ¬ 1 ∨ 3 ) ∧ ( 2 ∨
↪→ 1 ∨ ¬ 3 ) ∧ ( 1 ∨ 4 ∨ 3 ) ∧ ( 2 ∨ ¬ 3 ∨ 4 ) ∧ ( 2 ∨ ¬ 4 ∨ 1 ) ∧ ( 1 ∨ 3 ∨
↪→ 2 ) ∧ ( 4 ∨ 2 ∨ ¬ 3 ) Try 1 = True [CALL] Question: ( ¬ 4 ∨ ¬ 3 ) ∧ ( ¬ 3 ∨
↪→ 2 ) ∧ ( ¬ 3 ∨ 4 ) ∧ ( 2 ∨ ¬ 4 ) ∧ ( ¬ 3 ∨ 4 ) ∧ ( ¬ 3 ∨ 2 ∨ ¬ 4 ) ∧ ( ¬ 4
↪→ ∨ 3 ) ∧ ( 2 ∨ ¬ 3 ∨ 4 ) ∧ ( 4 ∨ 2 ∨ ¬ 3 ) Try 2 = True Answer: True [SEP]
↪→ Answer: True [RETURN]

Reduction Rule (4)
[CALL] Question: ( ¬ 3 ∨ 4 ∨ 1 ) ∧ ( 1 ∨ 3 ∨ 2 ) ∧ ( ¬ 4 ∨ ¬ 3 ∨ ¬ 1 ) ∧ ( ¬ 3 ∨ ¬

↪→ 1 ∨ 2 ) ∧ ( 4 ∨ 1 ∨ 3 ) ∧ ( 4 ∨ 1 ∨ ¬ 3 ) ∧ ( ¬ 3 ∨ ¬ 1 ∨ 4 ) ∧ ( ¬ 1 ∨ 2
↪→ ∨ ¬ 4 ) ∧ ( ¬ 3 ∨ ¬ 1 ∨ 4 ) ∧ ( ¬ 3 ∨ 2 ∨ ¬ 4 ) ∧ ( ¬ 4 ∨ ¬ 1 ∨ 3 ) ∧ ( 2 ∨
↪→ 1 ∨ ¬ 3 ) ∧ ( 1 ∨ 4 ∨ 3 ) ∧ ( 2 ∨ ¬ 3 ∨ 4 ) ∧ ( 2 ∨ ¬ 4 ∨ 1 ) ∧ ( 1 ∨ 3 ∨
↪→ 2 ) ∧ ( 4 ∨ 2 ∨ ¬ 3 ) Try 1 = True Answer: True

Model Generation (5)
[CALL] Question: ( ¬ 3 ∨ 4 ∨ 1 ) ∧ ( 1 ∨ 3 ∨ 2 ) ∧ ( ¬ 4 ∨ ¬ 3 ∨ ¬ 1 ) ∧ ( ¬ 3 ∨ ¬

↪→ 1 ∨ 2 ) ∧ ( 4 ∨ 1 ∨ 3 ) ∧ ( 4 ∨ 1 ∨ ¬ 3 ) ∧ ( ¬ 3 ∨ ¬ 1 ∨ 4 ) ∧ ( ¬ 1 ∨ 2
↪→ ∨ ¬ 4 ) ∧ ( ¬ 3 ∨ ¬ 1 ∨ 4 ) ∧ ( ¬ 3 ∨ 2 ∨ ¬ 4 ) ∧ ( ¬ 4 ∨ ¬ 1 ∨ 3 ) ∧ ( 2 ∨
↪→ 1 ∨ ¬ 3 ) ∧ ( 1 ∨ 4 ∨ 3 ) ∧ ( 2 ∨ ¬ 3 ∨ 4 ) ∧ ( 2 ∨ ¬ 4 ∨ 1 ) ∧ ( 1 ∨ 3 ∨
↪→ 2 ) ∧ ( 4 ∨ 2 ∨ ¬ 3 ) Try 1 = True Answer: True [SEP] Answer: True [RETURN]

Reduction Rule (5)
Answer: True

Model Generation (Final Response)
Answer: True <|endoftext|>
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G.2 QUANTIFIED BOOLEAN FORMULA (QBF)

CHAIN-OF-THOUGHT (W/O REDUCTION RULE)

• Prompt:
<|startoftext|> ∀ 3 ∀ 2 ∃ 4 ∃ 1 : #1 ( ¬ 3 ∨ 2 ∨ 4 ) #2 ( ¬ 4 ∨ 3 ) #3 ( ¬ 4 ∨ 4 ∨

↪→ 3 ) #4 ( ¬ 3 ∨ 1 ) #5 ( ¬ 3 ∨ 3 ) #6 ( ¬ 4 ∨ ¬ 2 ) #7 ( ¬ 2 ∨ 1 ) #8 ( ¬ 1
↪→ ∨ 3 ∨ 2 ) <|endofprompt|>

• Response:
[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 2

↪→ Try 2 = False [CALL] Question: prefix_from ∃ 4 Try 4 = False [CALL]
↪→ Question: prefix_from ∃ 1 Try 1 = False [CALL] Question: evaluate #1 =
↪→ False #2 = False #3 = False #4 = False Check #0 ( ¬ 3 ∨ 2 ∨ 4 ) True Check
↪→ #1 ( ¬ 4 ∨ 3 ) True Check #2 ( ¬ 4 ∨ 4 ∨ 3 ) True Check #3 ( ¬ 3 ∨ 1 ) True
↪→ Check #4 ( ¬ 3 ∨ 3 ) True Check #5 ( ¬ 4 ∨ ¬ 2 ) True Check #6 ( ¬ 2 ∨ 1 )
↪→ True Check #7 ( ¬ 1 ∨ 3 ∨ 2 ) True Formula = True [SEP] Answer: True [
↪→ RETURN] [SEP] Answer: True [RETURN] [SEP] Answer: True [RETURN] Try 2 =
↪→ True [CALL] Question: prefix_from ∃ 4 Try 4 = False [CALL] Question:
↪→ prefix_from ∃ 1 Try 1 = False [CALL] Question: evaluate #1 = False #2 =
↪→ True #3 = False #4 = False Check #0 ( ¬ 3 ∨ 2 ∨ 4 ) True Check #1 ( ¬ 4 ∨ 3
↪→ ) True Check #2 ( ¬ 4 ∨ 4 ∨ 3 ) True Check #3 ( ¬ 3 ∨ 1 ) True Check #4 (
↪→ ¬ 3 ∨ 3 ) True Check #5 ( ¬ 4 ∨ ¬ 2 ) True Check #6 ( ¬ 2 ∨ 1 ) False [SEP]
↪→ Answer: False [RETURN] Try 1 = True [CALL] Question: evaluate #1 = True #2
↪→ = True #3 = False #4 = False Check #0 ( ¬ 3 ∨ 2 ∨ 4 ) True Check #1 ( ¬ 4
↪→ ∨ 3 ) True Check #2 ( ¬ 4 ∨ 4 ∨ 3 ) True Check #3 ( ¬ 3 ∨ 1 ) True Check #4
↪→ ( ¬ 3 ∨ 3 ) True Check #5 ( ¬ 4 ∨ ¬ 2 ) True Check #6 ( ¬ 2 ∨ 1 ) True
↪→ Check #7 ( ¬ 1 ∨ 3 ∨ 2 ) True Formula = True [SEP] Answer: True [RETURN] [
↪→ SEP] Answer: True [RETURN] [SEP] Answer: True [RETURN] [SEP] Answer: True [
↪→ RETURN] Try 3 = True [CALL] Question: prefix_from ∀ 2 Try 2 = False [CALL]
↪→ Question: prefix_from ∃ 4 Try 4 = False [CALL] Question: prefix_from ∃ 1
↪→ Try 1 = False [CALL] Question: evaluate #1 = False #2 = False #3 = True #4
↪→ = False Check #0 ( ¬ 3 ∨ 2 ∨ 4 ) False [SEP] Answer: False [RETURN] Try 1 =
↪→ True [CALL] Question: evaluate #1 = True #2 = False #3 = True #4 = False
↪→ Check #0 ( ¬ 3 ∨ 2 ∨ 4 ) False [SEP] Answer: False [RETURN] [SEP] Answer:
↪→ False [RETURN] Try 4 = True [CALL] Question: prefix_from ∃ 1 Try 1 = False
↪→ [CALL] Question: evaluate #1 = False #2 = False #3 = True #4 = True Check
↪→ #0 ( ¬ 3 ∨ 2 ∨ 4 ) True Check #1 ( ¬ 4 ∨ 3 ) True Check #2 ( ¬ 4 ∨ 4 ∨ 3 )
↪→ True Check #3 ( ¬ 3 ∨ 1 ) False [SEP] Answer: False [RETURN] Try 1 = True [
↪→ CALL] Question: evaluate #1 = True #2 = False #3 = True #4 = True Check #0
↪→ ( ¬ 3 ∨ 2 ∨ 4 ) True Check #1 ( ¬ 4 ∨ 3 ) True Check #2 ( ¬ 4 ∨ 4 ∨ 3 )
↪→ True Check #3 ( ¬ 3 ∨ 1 ) True Check #4 ( ¬ 3 ∨ 3 ) True Check #5 ( ¬ 4 ∨ ¬
↪→ 2 ) True Check #6 ( ¬ 2 ∨ 1 ) True Check #7 ( ¬ 1 ∨ 3 ∨ 2 ) True Formula =
↪→ True [SEP] Answer: True [RETURN] [SEP] Answer: True [RETURN] [SEP] Answer:
↪→ True [RETURN] Try 2 = True [CALL] Question: prefix_from ∃ 4 Try 4 = False
↪→ [CALL] Question: prefix_from ∃ 1 Try 1 = False [CALL] Question: evaluate #1
↪→ = False #2 = True #3 = True #4 = False Check #0 ( ¬ 3 ∨ 2 ∨ 4 ) True Check
↪→ #1 ( ¬ 4 ∨ 3 ) True Check #2 ( ¬ 4 ∨ 4 ∨ 3 ) True Check #3 ( ¬ 3 ∨ 1 )
↪→ False [SEP] Answer: False [RETURN] Try 1 = True [CALL] Question: evaluate
↪→ #1 = True #2 = True #3 = True #4 = False Check #0 ( ¬ 3 ∨ 2 ∨ 4 ) True
↪→ Check #1 ( ¬ 4 ∨ 3 ) True Check #2 ( ¬ 4 ∨ 4 ∨ 3 ) True Check #3 ( ¬ 3 ∨ 1
↪→ ) True Check #4 ( ¬ 3 ∨ 3 ) True Check #5 ( ¬ 4 ∨ ¬ 2 ) True Check #6 ( ¬ 2
↪→ ∨ 1 ) True Check #7 ( ¬ 1 ∨ 3 ∨ 2 ) True Formula = True [SEP] Answer: True
↪→ [RETURN] [SEP] Answer: True [RETURN] [SEP] Answer: True [RETURN] [SEP]
↪→ Answer: True [RETURN] [SEP] Answer: True [RETURN] <|endoftext|>

PENCIL (WITH REDUCTION RULE)

• Prompt:
<|startoftext|> ∀ 3 ∀ 2 ∃ 4 ∃ 1 : #1 ( ¬ 3 ∨ 2 ∨ 4 ) #2 ( ¬ 4 ∨ 3 ) #3 ( ¬ 4 ∨ 4 ∨

↪→ 3 ) #4 ( ¬ 3 ∨ 1 ) #5 ( ¬ 3 ∨ 3 ) #6 ( ¬ 4 ∨ ¬ 2 ) #7 ( ¬ 2 ∨ 1 ) #8 ( ¬ 1
↪→ ∨ 3 ∨ 2 ) <|endofprompt|>

• Response:
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Answer: True <|endoftext|>

INTERNAL REASONING PROCESS OF PENCIL

Model Generation (1)
[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 2

↪→ Try 2 = False [CALL] Question: prefix_from ∃ 4 Try 4 = False [CALL]
↪→ Question: prefix_from ∃ 1 Try 1 = False [CALL] Question: evaluate #1 =
↪→ False #2 = False #3 = False #4 = False Check #0 ( ¬ 3 ∨ 2 ∨ 4 ) True Check
↪→ #1 ( ¬ 4 ∨ 3 ) True Check #2 ( ¬ 4 ∨ 4 ∨ 3 ) True Check #3 ( ¬ 3 ∨ 1 ) True
↪→ Check #4 ( ¬ 3 ∨ 3 ) True Check #5 ( ¬ 4 ∨ ¬ 2 ) True Check #6 ( ¬ 2 ∨ 1 )
↪→ True Check #7 ( ¬ 1 ∨ 3 ∨ 2 ) True Formula = True [SEP] Answer: True [
↪→ RETURN]

Reduction Rule (1)
[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 2

↪→ Try 2 = False [CALL] Question: prefix_from ∃ 4 Try 4 = False [CALL]
↪→ Question: prefix_from ∃ 1 Try 1 = False Answer: True

Model Generation (2)
[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 2

↪→ Try 2 = False [CALL] Question: prefix_from ∃ 4 Try 4 = False [CALL]
↪→ Question: prefix_from ∃ 1 Try 1 = False Answer: True [SEP] Answer: True [
↪→ RETURN]

Reduction Rule (2)
[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 2

↪→ Try 2 = False [CALL] Question: prefix_from ∃ 4 Try 4 = False Answer: True

Model Generation (3)
[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 2

↪→ Try 2 = False [CALL] Question: prefix_from ∃ 4 Try 4 = False Answer: True [
↪→ SEP] Answer: True [RETURN]

Reduction Rule (3)
[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 2

↪→ Try 2 = False Answer: True

Model Generation (4)
[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 2

↪→ Try 2 = False Answer: True Try 2 = True [CALL] Question: prefix_from ∃ 4
↪→ Try 4 = False [CALL] Question: prefix_from ∃ 1 Try 1 = False [CALL]
↪→ Question: evaluate #1 = False #2 = True #3 = False #4 = False Check #0 ( ¬
↪→ 3 ∨ 2 ∨ 4 ) True Check #1 ( ¬ 4 ∨ 3 ) True Check #2 ( ¬ 4 ∨ 4 ∨ 3 ) True
↪→ Check #3 ( ¬ 3 ∨ 1 ) True Check #4 ( ¬ 3 ∨ 3 ) True Check #5 ( ¬ 4 ∨ ¬ 2 )
↪→ True Check #6 ( ¬ 2 ∨ 1 ) False [SEP] Answer: False [RETURN]

Reduction Rule (4)
[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 2

↪→ Try 2 = False Answer: True Try 2 = True [CALL] Question: prefix_from ∃ 4
↪→ Try 4 = False [CALL] Question: prefix_from ∃ 1 Try 1 = False Answer: False

Model Generation (5)
[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 2

↪→ Try 2 = False Answer: True Try 2 = True [CALL] Question: prefix_from ∃ 4
↪→ Try 4 = False [CALL] Question: prefix_from ∃ 1 Try 1 = False Answer: False
↪→ Try 1 = True [CALL] Question: evaluate #1 = True #2 = True #3 = False #4 =
↪→ False Check #0 ( ¬ 3 ∨ 2 ∨ 4 ) True Check #1 ( ¬ 4 ∨ 3 ) True Check #2 ( ¬
↪→ 4 ∨ 4 ∨ 3 ) True Check #3 ( ¬ 3 ∨ 1 ) True Check #4 ( ¬ 3 ∨ 3 ) True Check
↪→ #5 ( ¬ 4 ∨ ¬ 2 ) True Check #6 ( ¬ 2 ∨ 1 ) True Check #7 ( ¬ 1 ∨ 3 ∨ 2 )
↪→ True Formula = True [SEP] Answer: True [RETURN]
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Reduction Rule (5)
[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 2

↪→ Try 2 = False Answer: True Try 2 = True [CALL] Question: prefix_from ∃ 4
↪→ Try 4 = False [CALL] Question: prefix_from ∃ 1 Try 1 = False Answer: False
↪→ Try 1 = True Answer: True

Model Generation (6)
[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 2

↪→ Try 2 = False Answer: True Try 2 = True [CALL] Question: prefix_from ∃ 4
↪→ Try 4 = False [CALL] Question: prefix_from ∃ 1 Try 1 = False Answer: False
↪→ Try 1 = True Answer: True [SEP] Answer: True [RETURN]

Reduction Rule (6)
[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 2

↪→ Try 2 = False Answer: True Try 2 = True [CALL] Question: prefix_from ∃ 4
↪→ Try 4 = False Answer: True

Model Generation (7)
[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 2

↪→ Try 2 = False Answer: True Try 2 = True [CALL] Question: prefix_from ∃ 4
↪→ Try 4 = False Answer: True [SEP] Answer: True [RETURN]

Reduction Rule (7)
[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 2

↪→ Try 2 = False Answer: True Try 2 = True Answer: True

Model Generation (8)
[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 2

↪→ Try 2 = False Answer: True Try 2 = True Answer: True [SEP] Answer: True [
↪→ RETURN]

Reduction Rule (8)
[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True

Model Generation (9)
[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL]

↪→ Question: prefix_from ∀ 2 Try 2 = False [CALL] Question: prefix_from ∃ 4
↪→ Try 4 = False [CALL] Question: prefix_from ∃ 1 Try 1 = False [CALL]
↪→ Question: evaluate #1 = False #2 = False #3 = True #4 = False Check #0 ( ¬
↪→ 3 ∨ 2 ∨ 4 ) False [SEP] Answer: False [RETURN]

Reduction Rule (9)
[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL]

↪→ Question: prefix_from ∀ 2 Try 2 = False [CALL] Question: prefix_from ∃ 4
↪→ Try 4 = False [CALL] Question: prefix_from ∃ 1 Try 1 = False Answer: False

Model Generation (10)
[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL]

↪→ Question: prefix_from ∀ 2 Try 2 = False [CALL] Question: prefix_from ∃ 4
↪→ Try 4 = False [CALL] Question: prefix_from ∃ 1 Try 1 = False Answer: False
↪→ Try 1 = True [CALL] Question: evaluate #1 = True #2 = False #3 = True #4 =
↪→ False Check #0 ( ¬ 3 ∨ 2 ∨ 4 ) False [SEP] Answer: False [RETURN]

Reduction Rule (10)
[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL]

↪→ Question: prefix_from ∀ 2 Try 2 = False [CALL] Question: prefix_from ∃ 4
↪→ Try 4 = False [CALL] Question: prefix_from ∃ 1 Try 1 = False Answer: False
↪→ Try 1 = True Answer: False
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Model Generation (11)
[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL]

↪→ Question: prefix_from ∀ 2 Try 2 = False [CALL] Question: prefix_from ∃ 4
↪→ Try 4 = False [CALL] Question: prefix_from ∃ 1 Try 1 = False Answer: False
↪→ Try 1 = True Answer: False [SEP] Answer: False [RETURN]

Reduction Rule (11)
[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL]

↪→ Question: prefix_from ∀ 2 Try 2 = False [CALL] Question: prefix_from ∃ 4
↪→ Try 4 = False Answer: False

Model Generation (12)
[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL]

↪→ Question: prefix_from ∀ 2 Try 2 = False [CALL] Question: prefix_from ∃ 4
↪→ Try 4 = False Answer: False Try 4 = True [CALL] Question: prefix_from ∃ 1
↪→ Try 1 = False [CALL] Question: evaluate #1 = False #2 = False #3 = True #4
↪→ = True Check #0 ( ¬ 3 ∨ 2 ∨ 4 ) True Check #1 ( ¬ 4 ∨ 3 ) True Check #2 ( ¬
↪→ 4 ∨ 4 ∨ 3 ) True Check #3 ( ¬ 3 ∨ 1 ) False [SEP] Answer: False [RETURN]

Reduction Rule (12)
[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL]

↪→ Question: prefix_from ∀ 2 Try 2 = False [CALL] Question: prefix_from ∃ 4
↪→ Try 4 = False Answer: False Try 4 = True [CALL] Question: prefix_from ∃ 1
↪→ Try 1 = False Answer: False

Model Generation (13)
[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL]

↪→ Question: prefix_from ∀ 2 Try 2 = False [CALL] Question: prefix_from ∃ 4
↪→ Try 4 = False Answer: False Try 4 = True [CALL] Question: prefix_from ∃ 1
↪→ Try 1 = False Answer: False Try 1 = True [CALL] Question: evaluate #1 =
↪→ True #2 = False #3 = True #4 = True Check #0 ( ¬ 3 ∨ 2 ∨ 4 ) True Check #1
↪→ ( ¬ 4 ∨ 3 ) True Check #2 ( ¬ 4 ∨ 4 ∨ 3 ) True Check #3 ( ¬ 3 ∨ 1 ) True
↪→ Check #4 ( ¬ 3 ∨ 3 ) True Check #5 ( ¬ 4 ∨ ¬ 2 ) True Check #6 ( ¬ 2 ∨ 1 )
↪→ True Check #7 ( ¬ 1 ∨ 3 ∨ 2 ) True Formula = True [SEP] Answer: True [
↪→ RETURN]

Reduction Rule (13)
[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL]

↪→ Question: prefix_from ∀ 2 Try 2 = False [CALL] Question: prefix_from ∃ 4
↪→ Try 4 = False Answer: False Try 4 = True [CALL] Question: prefix_from ∃ 1
↪→ Try 1 = False Answer: False Try 1 = True Answer: True

Model Generation (14)
[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL]

↪→ Question: prefix_from ∀ 2 Try 2 = False [CALL] Question: prefix_from ∃ 4
↪→ Try 4 = False Answer: False Try 4 = True [CALL] Question: prefix_from ∃ 1
↪→ Try 1 = False Answer: False Try 1 = True Answer: True [SEP] Answer: True [
↪→ RETURN]

Reduction Rule (14)
[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL]

↪→ Question: prefix_from ∀ 2 Try 2 = False [CALL] Question: prefix_from ∃ 4
↪→ Try 4 = False Answer: False Try 4 = True Answer: True

Model Generation (15)
[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL]

↪→ Question: prefix_from ∀ 2 Try 2 = False [CALL] Question: prefix_from ∃ 4
↪→ Try 4 = False Answer: False Try 4 = True Answer: True [SEP] Answer: True [
↪→ RETURN]
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Reduction Rule (15)
[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL]

↪→ Question: prefix_from ∀ 2 Try 2 = False Answer: True

Model Generation (16)
[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL]

↪→ Question: prefix_from ∀ 2 Try 2 = False Answer: True Try 2 = True [CALL]
↪→ Question: prefix_from ∃ 4 Try 4 = False [CALL] Question: prefix_from ∃ 1
↪→ Try 1 = False [CALL] Question: evaluate #1 = False #2 = True #3 = True #4 =
↪→ False Check #0 ( ¬ 3 ∨ 2 ∨ 4 ) True Check #1 ( ¬ 4 ∨ 3 ) True Check #2 ( ¬
↪→ 4 ∨ 4 ∨ 3 ) True Check #3 ( ¬ 3 ∨ 1 ) False [SEP] Answer: False [RETURN]

Reduction Rule (16)
[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL]

↪→ Question: prefix_from ∀ 2 Try 2 = False Answer: True Try 2 = True [CALL]
↪→ Question: prefix_from ∃ 4 Try 4 = False [CALL] Question: prefix_from ∃ 1
↪→ Try 1 = False Answer: False

Model Generation (17)
[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL]

↪→ Question: prefix_from ∀ 2 Try 2 = False Answer: True Try 2 = True [CALL]
↪→ Question: prefix_from ∃ 4 Try 4 = False [CALL] Question: prefix_from ∃ 1
↪→ Try 1 = False Answer: False Try 1 = True [CALL] Question: evaluate #1 =
↪→ True #2 = True #3 = True #4 = False Check #0 ( ¬ 3 ∨ 2 ∨ 4 ) True Check #1
↪→ ( ¬ 4 ∨ 3 ) True Check #2 ( ¬ 4 ∨ 4 ∨ 3 ) True Check #3 ( ¬ 3 ∨ 1 ) True
↪→ Check #4 ( ¬ 3 ∨ 3 ) True Check #5 ( ¬ 4 ∨ ¬ 2 ) True Check #6 ( ¬ 2 ∨ 1 )
↪→ True Check #7 ( ¬ 1 ∨ 3 ∨ 2 ) True Formula = True [SEP] Answer: True [
↪→ RETURN]

Reduction Rule (17)
[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL]

↪→ Question: prefix_from ∀ 2 Try 2 = False Answer: True Try 2 = True [CALL]
↪→ Question: prefix_from ∃ 4 Try 4 = False [CALL] Question: prefix_from ∃ 1
↪→ Try 1 = False Answer: False Try 1 = True Answer: True

Model Generation (18)
[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL]

↪→ Question: prefix_from ∀ 2 Try 2 = False Answer: True Try 2 = True [CALL]
↪→ Question: prefix_from ∃ 4 Try 4 = False [CALL] Question: prefix_from ∃ 1
↪→ Try 1 = False Answer: False Try 1 = True Answer: True [SEP] Answer: True [
↪→ RETURN]

Reduction Rule (18)
[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL]

↪→ Question: prefix_from ∀ 2 Try 2 = False Answer: True Try 2 = True [CALL]
↪→ Question: prefix_from ∃ 4 Try 4 = False Answer: True

Model Generation (19)
[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL]

↪→ Question: prefix_from ∀ 2 Try 2 = False Answer: True Try 2 = True [CALL]
↪→ Question: prefix_from ∃ 4 Try 4 = False Answer: True [SEP] Answer: True [
↪→ RETURN]

Reduction Rule (19)
[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL]

↪→ Question: prefix_from ∀ 2 Try 2 = False Answer: True Try 2 = True Answer:
↪→ True

Model Generation (20)
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[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL]
↪→ Question: prefix_from ∀ 2 Try 2 = False Answer: True Try 2 = True Answer:
↪→ True [SEP] Answer: True [RETURN]

Reduction Rule (20)
[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True Answer:

↪→ True

Model Generation (21)
[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True Answer:

↪→ True [SEP] Answer: True [RETURN]

Reduction Rule (21)
Answer: True

Model Generation (Final Response)
Answer: True <|endoftext|>

G.3 EINSTEIN’S PUZZLE

CHAIN-OF-THOUGHT (W/O REDUCTION RULE)

• Prompt:
<|startoftext|> Constraint#1 : the Green house is immediately to the right of the

↪→ one who keeps Birds
Constraint#2 : the Brit is immediately to the right of the German
Constraint#3 : the one who keeps Dogs is the same house as the Red house
Constraint#4 : the one who keeps Birds is immediately to the right of the Swede

↪→ <|endofprompt|>

• Response:
[CALL] ====== Possible Assignments ======
House#1
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 [CALL]
PHASE 1: Single-value logic for Green and Birds under RIGHT constraint
PHASE 2: Handling relation Green RIGHT Birds
Green is immediately RIGHT of Birds
Removing Green from House#1 because Green can't be in the leftmost house if it's

↪→ to the RIGHT of Birds
Removing Birds from House#3 can't be in the rightmost house if it's to the LEFT

↪→ of Green
[SEP] House#1 Color category changed from 3 possibilities Blue Green Red to 2

↪→ possibilities Blue Red
House#3 Pet category changed from 3 possibilities Birds Dogs Fish to 2

↪→ possibilities Dogs Fish [RETURN]
Applying Constraint#2 [CALL]
PHASE 1: Single-value logic for Brit and German under RIGHT constraint
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PHASE 2: Handling relation Brit RIGHT German
Brit is immediately RIGHT of German
Removing Brit from House#1 because Brit can't be in the leftmost house if it's to

↪→ the RIGHT of German
Removing German from House#3 can't be in the rightmost house if it's to the LEFT

↪→ of Brit
[SEP] House#1 Nationality category changed from 3 possibilities Brit German Swede

↪→ to 2 possibilities German Swede
House#3 Nationality category changed from 3 possibilities Brit German Swede to 2

↪→ possibilities Brit Swede [RETURN]
Applying Constraint#3 [CALL]
PHASE 1: Single-value logic for Dogs and Red under SAME constraint
PHASE 2: Handling relation Dogs SAME Red
Dogs must be in the SAME house as Red
[SEP] No changes from this constraint [RETURN]
Applying Constraint#4 [CALL]
PHASE 1: Single-value logic for Birds and Swede under RIGHT constraint
PHASE 2: Handling relation Birds RIGHT Swede
Birds is immediately RIGHT of Swede
Removing Birds from House#1 because Birds can't be in the leftmost house if it's

↪→ to the RIGHT of Swede
Removing Swede from House#3 can't be in the rightmost house if it's to the LEFT

↪→ of Birds
[SEP] House#3 Nationality category changed from 2 possibilities Brit Swede to 1

↪→ possibilities Brit
House#1 Pet category changed from 3 possibilities Birds Dogs Fish to 2

↪→ possibilities Dogs Fish [RETURN]
[SEP] [CALL] ====== Possible Assignments After Propagation ======
House#1
Color category have 2 possibilities Blue Red
Nationality category have 2 possibilities German Swede
Pet category have 2 possibilities Dogs Fish
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category have 3 possibilities Blue Green Red
Nationality category is Brit
Pet category have 2 possibilities Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4 [

↪→ RETURN]
=> Puzzle not solved yet
====== Branch ======
Branching on House#1 Color category with 2 possibilities Blue Red
Trying possibility Blue in House#1 Color category
[CALL] ====== Possible Assignments ======
House#1
Color category is Blue
Nationality category have 2 possibilities German Swede
Pet category have 2 possibilities Dogs Fish
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category have 3 possibilities Blue Green Red
Nationality category is Brit
Pet category have 2 possibilities Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 [CALL]
PHASE 1: Single-value logic for Green and Birds under RIGHT constraint
Removing Blue from House#2 Color category because Blue is pinned in another house
Removing Blue from House#3 Color category because Blue is pinned in another house
Forcing Birds in House#2 Pet category because it can only appear here
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PHASE 2: Handling relation Green RIGHT Birds
Green is immediately RIGHT of Birds
Since Birds is pinned to House#2 , removing Green from House#2 because Green must

↪→ be right of House#2
Placing Green in House#3 because Birds is pinned to House#2
[SEP] House#2 Color category changed from 3 possibilities Blue Green Red to 1

↪→ possibilities Red
House#3 Color category changed from 3 possibilities Blue Green Red to 1

↪→ possibilities Green
House#2 Pet category changed from 3 possibilities Birds Dogs Fish to 1

↪→ possibilities Birds [RETURN]
Remove Constraint#1 because it is satisfied
Applying Constraint#2 [CALL]
PHASE 1: Single-value logic for Brit and German under RIGHT constraint
Removing Brit from House#2 Nationality category because Brit is pinned in another

↪→ house
PHASE 2: Handling relation Brit RIGHT German
Brit is immediately RIGHT of German
German must be exactly one house to the LEFT , removing from House#1
Placing German in House#2 because Brit is pinned to House#3
[SEP] House#1 Nationality category changed from 2 possibilities German Swede to 1

↪→ possibilities Swede
House#2 Nationality category changed from 3 possibilities Brit German Swede to 1

↪→ possibilities German [RETURN]
Remove Constraint#2 because it is satisfied
Applying Constraint#3 [CALL]
PHASE 1: Single-value logic for Dogs and Red under SAME constraint
PHASE 2: Handling relation Dogs SAME Red
Dogs must be in the SAME house as Red
Since Red is pinned to House#2 , removing Dogs from House#1
Since Red is pinned to House#2 , removing Dogs from House#3
House#2 can't hold Dogs since it can't hold Red
[SEP] House#2 Color category changed from 1 possibilities Red to 0 possibilities

↪→ empty
House#1 Pet category changed from 2 possibilities Dogs Fish to 1 possibilities

↪→ Fish
House#3 Pet category changed from 2 possibilities Dogs Fish to 1 possibilities

↪→ Fish [RETURN]
[SEP] No Solution [RETURN]
Trying possibility Red in House#1 Color category
[CALL] ====== Possible Assignments ======
House#1
Color category is Red
Nationality category have 2 possibilities German Swede
Pet category have 2 possibilities Dogs Fish
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category have 3 possibilities Blue Green Red
Nationality category is Brit
Pet category have 2 possibilities Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 [CALL]
PHASE 1: Single-value logic for Green and Birds under RIGHT constraint
Removing Red from House#2 Color category because Red is pinned in another house
Removing Red from House#3 Color category because Red is pinned in another house
Forcing Birds in House#2 Pet category because it can only appear here
PHASE 2: Handling relation Green RIGHT Birds
Green is immediately RIGHT of Birds
Since Birds is pinned to House#2 , removing Green from House#2 because Green must

↪→ be right of House#2
Placing Green in House#3 because Birds is pinned to House#2
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[SEP] House#2 Color category changed from 3 possibilities Blue Green Red to 1
↪→ possibilities Blue

House#3 Color category changed from 3 possibilities Blue Green Red to 1
↪→ possibilities Green

House#2 Pet category changed from 3 possibilities Birds Dogs Fish to 1
↪→ possibilities Birds [RETURN]

Remove Constraint#1 because it is satisfied
Applying Constraint#2 [CALL]
PHASE 1: Single-value logic for Brit and German under RIGHT constraint
Removing Brit from House#2 Nationality category because Brit is pinned in another

↪→ house
PHASE 2: Handling relation Brit RIGHT German
Brit is immediately RIGHT of German
German must be exactly one house to the LEFT , removing from House#1
Placing German in House#2 because Brit is pinned to House#3
[SEP] House#1 Nationality category changed from 2 possibilities German Swede to 1

↪→ possibilities Swede
House#2 Nationality category changed from 3 possibilities Brit German Swede to 1

↪→ possibilities German [RETURN]
Remove Constraint#2 because it is satisfied
Applying Constraint#3 [CALL]
PHASE 1: Single-value logic for Dogs and Red under SAME constraint
PHASE 2: Handling relation Dogs SAME Red
Dogs must be in the SAME house as Red
Placing Dogs in House#1 since Red is in this house
Since Red is pinned to House#1 , removing Dogs from House#3
[SEP] House#1 Pet category changed from 2 possibilities Dogs Fish to 1

↪→ possibilities Dogs
House#3 Pet category changed from 2 possibilities Dogs Fish to 1 possibilities

↪→ Fish [RETURN]
Remove Constraint#3 because it is satisfied
Applying Constraint#4 [CALL]
PHASE 1: Single-value logic for Birds and Swede under RIGHT constraint
PHASE 2: Handling relation Birds RIGHT Swede
Birds is immediately RIGHT of Swede
[SEP] No changes from this constraint [RETURN]
Remove Constraint#4 because it is satisfied
[SEP] [CALL] ====== Possible Assignments After Propagation ======
House#1
Color category is Red
Nationality category is Swede
Pet category is Dogs
House#2
Color category is Blue
Nationality category is German
Pet category is Birds
House#3
Color category is Green
Nationality category is Brit
Pet category is Fish
Unsatisfied constraints are [RETURN]
=> Puzzle is solved
[SEP] Solution House#1
Color category is Red
Nationality category is Swede
Pet category is Dogs
House#2
Color category is Blue
Nationality category is German
Pet category is Birds
House#3
Color category is Green
Nationality category is Brit
Pet category is Fish [RETURN]
[SEP] Solution House#1
Color category is Red
Nationality category is Swede
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Pet category is Dogs
House#2
Color category is Blue
Nationality category is German
Pet category is Birds
House#3
Color category is Green
Nationality category is Brit
Pet category is Fish [RETURN]
=> House#3 owns the Fish
=> the Brit owns the Fish <|endoftext|>

PENCIL (WITH REDUCTION RULE)

• Prompt:
<|startoftext|> Constraint#1 : the Green house is immediately to the right of the

↪→ one who keeps Birds
Constraint#2 : the Brit is immediately to the right of the German
Constraint#3 : the one who keeps Dogs is the same house as the Red house
Constraint#4 : the one who keeps Birds is immediately to the right of the Swede

↪→ <|endofprompt|>

• Response:
Solution House#1
Color category is Red
Nationality category is Swede
Pet category is Dogs
House#2
Color category is Blue
Nationality category is German
Pet category is Birds
House#3
Color category is Green
Nationality category is Brit
Pet category is Fish
=> House#3 owns the Fish
=> the Brit owns the Fish <|endoftext|>

INTERNAL REASONING PROCESS OF PENCIL

Model Generation (1)
[CALL] ====== Possible Assignments ======
House#1
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 [CALL]
PHASE 1: Single-value logic for Fish and Red under RIGHT constraint
PHASE 2: Handling relation Fish RIGHT Red
Fish is immediately RIGHT of Red
Removing Fish from House#1 because Fish can't be in the leftmost house if it's to

↪→ the RIGHT of Red
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Removing Red from House#3 can't be in the rightmost house if it's to the LEFT of
↪→ Fish

[SEP] House#3 Color category changed from 3 possibilities Blue Green Red to 2
↪→ possibilities Blue Green

House#1 Pet category changed from 3 possibilities Birds Dogs Fish to 2
↪→ possibilities Birds Dogs [RETURN]

Reduction Rule (1)
[CALL] ====== Possible Assignments ======
House#1
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 House#3 Color category changed from 3 possibilities Blue

↪→ Green Red to 2 possibilities Blue Green
House#1 Pet category changed from 3 possibilities Birds Dogs Fish to 2

↪→ possibilities Birds Dogs

Model Generation (2)
[CALL] ====== Possible Assignments ======
House#1
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 House#3 Color category changed from 3 possibilities Blue

↪→ Green Red to 2 possibilities Blue Green
House#1 Pet category changed from 3 possibilities Birds Dogs Fish to 2

↪→ possibilities Birds Dogs
Applying Constraint#2 [CALL]
PHASE 1: Single-value logic for Green and Red under LEFT constraint
PHASE 2: Handling relation Green LEFT Red
Green is immediately LEFT of Red
Removing Green from House#3 because Green can't be in the rightmost house if it's

↪→ to the LEFT of Red
Removing Red from House#1 because Red can't be in the leftmost house if it's to

↪→ the RIGHT of Green
[SEP] House#1 Color category changed from 3 possibilities Blue Green Red to 2

↪→ possibilities Blue Green
House#3 Color category changed from 2 possibilities Blue Green to 1 possibilities

↪→ Blue [RETURN]

Reduction Rule (2)
[CALL] ====== Possible Assignments ======
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House#1
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 House#3 Color category changed from 3 possibilities Blue

↪→ Green Red to 2 possibilities Blue Green
House#1 Pet category changed from 3 possibilities Birds Dogs Fish to 2

↪→ possibilities Birds Dogs
Applying Constraint#2 House#1 Color category changed from 3 possibilities Blue

↪→ Green Red to 2 possibilities Blue Green
House#3 Color category changed from 2 possibilities Blue Green to 1 possibilities

↪→ Blue

Model Generation (3)
[CALL] ====== Possible Assignments ======
House#1
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 House#3 Color category changed from 3 possibilities Blue

↪→ Green Red to 2 possibilities Blue Green
House#1 Pet category changed from 3 possibilities Birds Dogs Fish to 2

↪→ possibilities Birds Dogs
Applying Constraint#2 House#1 Color category changed from 3 possibilities Blue

↪→ Green Red to 2 possibilities Blue Green
House#3 Color category changed from 2 possibilities Blue Green to 1 possibilities

↪→ Blue
Applying Constraint#3 [CALL]
PHASE 1: Single-value logic for Fish and Swede under RIGHT constraint
PHASE 2: Handling relation Fish RIGHT Swede
Fish is immediately RIGHT of Swede
Removing Swede from House#3 can't be in the rightmost house if it's to the LEFT

↪→ of Fish
[SEP] House#3 Nationality category changed from 3 possibilities Brit German Swede

↪→ to 2 possibilities Brit German [RETURN]

Reduction Rule (3)
[CALL] ====== Possible Assignments ======
House#1
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#2
Color category have 3 possibilities Blue Green Red
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Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 House#3 Color category changed from 3 possibilities Blue

↪→ Green Red to 2 possibilities Blue Green
House#1 Pet category changed from 3 possibilities Birds Dogs Fish to 2

↪→ possibilities Birds Dogs
Applying Constraint#2 House#1 Color category changed from 3 possibilities Blue

↪→ Green Red to 2 possibilities Blue Green
House#3 Color category changed from 2 possibilities Blue Green to 1 possibilities

↪→ Blue
Applying Constraint#3 House#3 Nationality category changed from 3 possibilities

↪→ Brit German Swede to 2 possibilities Brit German

Model Generation (4)
[CALL] ====== Possible Assignments ======
House#1
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 House#3 Color category changed from 3 possibilities Blue

↪→ Green Red to 2 possibilities Blue Green
House#1 Pet category changed from 3 possibilities Birds Dogs Fish to 2

↪→ possibilities Birds Dogs
Applying Constraint#2 House#1 Color category changed from 3 possibilities Blue

↪→ Green Red to 2 possibilities Blue Green
House#3 Color category changed from 2 possibilities Blue Green to 1 possibilities

↪→ Blue
Applying Constraint#3 House#3 Nationality category changed from 3 possibilities

↪→ Brit German Swede to 2 possibilities Brit German
Applying Constraint#4 [CALL]
PHASE 1: Single-value logic for Brit and Birds under LEFT constraint
PHASE 2: Handling relation Brit LEFT Birds
Brit is immediately LEFT of Birds
Removing Brit from House#3 because Brit can't be in the rightmost house if it's

↪→ to the LEFT of Birds
Removing Birds from House#1 because Birds can't be in the leftmost house if it's

↪→ to the RIGHT of Brit
[SEP] House#3 Nationality category changed from 2 possibilities Brit German to 1

↪→ possibilities German
House#1 Pet category changed from 2 possibilities Birds Dogs to 1 possibilities

↪→ Dogs [RETURN]

Reduction Rule (4)
[CALL] ====== Possible Assignments ======
House#1
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
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House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 House#3 Color category changed from 3 possibilities Blue

↪→ Green Red to 2 possibilities Blue Green
House#1 Pet category changed from 3 possibilities Birds Dogs Fish to 2

↪→ possibilities Birds Dogs
Applying Constraint#2 House#1 Color category changed from 3 possibilities Blue

↪→ Green Red to 2 possibilities Blue Green
House#3 Color category changed from 2 possibilities Blue Green to 1 possibilities

↪→ Blue
Applying Constraint#3 House#3 Nationality category changed from 3 possibilities

↪→ Brit German Swede to 2 possibilities Brit German
Applying Constraint#4 House#3 Nationality category changed from 2 possibilities

↪→ Brit German to 1 possibilities German
House#1 Pet category changed from 2 possibilities Birds Dogs to 1 possibilities

↪→ Dogs

Model Generation (5)
[CALL] ====== Possible Assignments ======
House#1
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 House#3 Color category changed from 3 possibilities Blue

↪→ Green Red to 2 possibilities Blue Green
House#1 Pet category changed from 3 possibilities Birds Dogs Fish to 2

↪→ possibilities Birds Dogs
Applying Constraint#2 House#1 Color category changed from 3 possibilities Blue

↪→ Green Red to 2 possibilities Blue Green
House#3 Color category changed from 2 possibilities Blue Green to 1 possibilities

↪→ Blue
Applying Constraint#3 House#3 Nationality category changed from 3 possibilities

↪→ Brit German Swede to 2 possibilities Brit German
Applying Constraint#4 House#3 Nationality category changed from 2 possibilities

↪→ Brit German to 1 possibilities German
House#1 Pet category changed from 2 possibilities Birds Dogs to 1 possibilities

↪→ Dogs
[SEP] [CALL] ====== Possible Assignments After Propagation ======
House#1
Color category have 2 possibilities Blue Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
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Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4 [

↪→ RETURN]

Reduction Rule (5)
[CALL] ====== Possible Assignments After Propagation ======
House#1
Color category have 2 possibilities Blue Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4

Model Generation (6)
[CALL] ====== Possible Assignments After Propagation ======
House#1
Color category have 2 possibilities Blue Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Branch ======
Branching on House#1 Color category with 2 possibilities Blue Green
Trying possibility Green in House#1 Color category
[CALL] ====== Possible Assignments ======
House#1
Color category is Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 [CALL]
PHASE 1: Single-value logic for Fish and Red under RIGHT constraint
Removing Dogs from House#2 Pet category because Dogs is pinned in another house
Removing Dogs from House#3 Pet category because Dogs is pinned in another house
Removing Green from House#2 Color category because Green is pinned in another

↪→ house
Removing Blue from House#2 Color category because Blue is pinned in another house
PHASE 2: Handling relation Fish RIGHT Red
Fish is immediately RIGHT of Red
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Since Red is pinned to House#2 , removing Fish from House#2 because Fish must be
↪→ right of House#2

Placing Fish in House#3 because Red is pinned to House#2
[SEP] House#2 Color category changed from 3 possibilities Blue Green Red to 1

↪→ possibilities Red
House#2 Pet category changed from 3 possibilities Birds Dogs Fish to 1

↪→ possibilities Birds
House#3 Pet category changed from 3 possibilities Birds Dogs Fish to 1

↪→ possibilities Fish [RETURN]

Reduction Rule (6)
[CALL] ====== Possible Assignments After Propagation ======
House#1
Color category have 2 possibilities Blue Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Branch ======
Branching on House#1 Color category with 2 possibilities Blue Green
Trying possibility Green in House#1 Color category
[CALL] ====== Possible Assignments ======
House#1
Color category is Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 House#2 Color category changed from 3 possibilities Blue

↪→ Green Red to 1 possibilities Red
House#2 Pet category changed from 3 possibilities Birds Dogs Fish to 1

↪→ possibilities Birds
House#3 Pet category changed from 3 possibilities Birds Dogs Fish to 1

↪→ possibilities Fish

Model Generation (7)
[CALL] ====== Possible Assignments After Propagation ======
House#1
Color category have 2 possibilities Blue Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
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Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Branch ======
Branching on House#1 Color category with 2 possibilities Blue Green
Trying possibility Green in House#1 Color category
[CALL] ====== Possible Assignments ======
House#1
Color category is Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 House#2 Color category changed from 3 possibilities Blue

↪→ Green Red to 1 possibilities Red
House#2 Pet category changed from 3 possibilities Birds Dogs Fish to 1

↪→ possibilities Birds
House#3 Pet category changed from 3 possibilities Birds Dogs Fish to 1

↪→ possibilities Fish
Remove Constraint#1 because it is satisfied
Applying Constraint#2 [CALL]
PHASE 1: Single-value logic for Green and Red under LEFT constraint
PHASE 2: Handling relation Green LEFT Red
Green is immediately LEFT of Red
[SEP] No changes from this constraint [RETURN]

Reduction Rule (7)
[CALL] ====== Possible Assignments After Propagation ======
House#1
Color category have 2 possibilities Blue Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Branch ======
Branching on House#1 Color category with 2 possibilities Blue Green
Trying possibility Green in House#1 Color category
[CALL] ====== Possible Assignments ======
House#1
Color category is Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
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=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 House#2 Color category changed from 3 possibilities Blue

↪→ Green Red to 1 possibilities Red
House#2 Pet category changed from 3 possibilities Birds Dogs Fish to 1

↪→ possibilities Birds
House#3 Pet category changed from 3 possibilities Birds Dogs Fish to 1

↪→ possibilities Fish
Remove Constraint#1 because it is satisfied
Applying Constraint#2 No changes from this constraint

Model Generation (8)
[CALL] ====== Possible Assignments After Propagation ======
House#1
Color category have 2 possibilities Blue Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Branch ======
Branching on House#1 Color category with 2 possibilities Blue Green
Trying possibility Green in House#1 Color category
[CALL] ====== Possible Assignments ======
House#1
Color category is Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 House#2 Color category changed from 3 possibilities Blue

↪→ Green Red to 1 possibilities Red
House#2 Pet category changed from 3 possibilities Birds Dogs Fish to 1

↪→ possibilities Birds
House#3 Pet category changed from 3 possibilities Birds Dogs Fish to 1

↪→ possibilities Fish
Remove Constraint#1 because it is satisfied
Applying Constraint#2 No changes from this constraint
Remove Constraint#2 because it is satisfied
Applying Constraint#3 [CALL]
PHASE 1: Single-value logic for Fish and Swede under RIGHT constraint
Removing German from House#1 Nationality category because German is pinned in

↪→ another house
Removing German from House#2 Nationality category because German is pinned in

↪→ another house
PHASE 2: Handling relation Fish RIGHT Swede
Fish is immediately RIGHT of Swede
Swede must be exactly one house to the LEFT , removing from House#1
Placing Swede in House#2 because Fish is pinned to House#3
[SEP] House#1 Nationality category changed from 3 possibilities Brit German Swede

↪→ to 1 possibilities Brit
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House#2 Nationality category changed from 3 possibilities Brit German Swede to 1
↪→ possibilities Swede [RETURN]

Reduction Rule (8)
[CALL] ====== Possible Assignments After Propagation ======
House#1
Color category have 2 possibilities Blue Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Branch ======
Branching on House#1 Color category with 2 possibilities Blue Green
Trying possibility Green in House#1 Color category
[CALL] ====== Possible Assignments ======
House#1
Color category is Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 House#2 Color category changed from 3 possibilities Blue

↪→ Green Red to 1 possibilities Red
House#2 Pet category changed from 3 possibilities Birds Dogs Fish to 1

↪→ possibilities Birds
House#3 Pet category changed from 3 possibilities Birds Dogs Fish to 1

↪→ possibilities Fish
Remove Constraint#1 because it is satisfied
Applying Constraint#2 No changes from this constraint
Remove Constraint#2 because it is satisfied
Applying Constraint#3 House#1 Nationality category changed from 3 possibilities

↪→ Brit German Swede to 1 possibilities Brit
House#2 Nationality category changed from 3 possibilities Brit German Swede to 1

↪→ possibilities Swede

Model Generation (9)
[CALL] ====== Possible Assignments After Propagation ======
House#1
Color category have 2 possibilities Blue Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
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Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Branch ======
Branching on House#1 Color category with 2 possibilities Blue Green
Trying possibility Green in House#1 Color category
[CALL] ====== Possible Assignments ======
House#1
Color category is Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 House#2 Color category changed from 3 possibilities Blue

↪→ Green Red to 1 possibilities Red
House#2 Pet category changed from 3 possibilities Birds Dogs Fish to 1

↪→ possibilities Birds
House#3 Pet category changed from 3 possibilities Birds Dogs Fish to 1

↪→ possibilities Fish
Remove Constraint#1 because it is satisfied
Applying Constraint#2 No changes from this constraint
Remove Constraint#2 because it is satisfied
Applying Constraint#3 House#1 Nationality category changed from 3 possibilities

↪→ Brit German Swede to 1 possibilities Brit
House#2 Nationality category changed from 3 possibilities Brit German Swede to 1

↪→ possibilities Swede
Remove Constraint#3 because it is satisfied
Applying Constraint#4 [CALL]
PHASE 1: Single-value logic for Brit and Birds under LEFT constraint
PHASE 2: Handling relation Brit LEFT Birds
Brit is immediately LEFT of Birds
[SEP] No changes from this constraint [RETURN]

Reduction Rule (9)
[CALL] ====== Possible Assignments After Propagation ======
House#1
Color category have 2 possibilities Blue Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Branch ======
Branching on House#1 Color category with 2 possibilities Blue Green
Trying possibility Green in House#1 Color category
[CALL] ====== Possible Assignments ======
House#1
Color category is Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
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Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 House#2 Color category changed from 3 possibilities Blue

↪→ Green Red to 1 possibilities Red
House#2 Pet category changed from 3 possibilities Birds Dogs Fish to 1

↪→ possibilities Birds
House#3 Pet category changed from 3 possibilities Birds Dogs Fish to 1

↪→ possibilities Fish
Remove Constraint#1 because it is satisfied
Applying Constraint#2 No changes from this constraint
Remove Constraint#2 because it is satisfied
Applying Constraint#3 House#1 Nationality category changed from 3 possibilities

↪→ Brit German Swede to 1 possibilities Brit
House#2 Nationality category changed from 3 possibilities Brit German Swede to 1

↪→ possibilities Swede
Remove Constraint#3 because it is satisfied
Applying Constraint#4 No changes from this constraint

Model Generation (10)
[CALL] ====== Possible Assignments After Propagation ======
House#1
Color category have 2 possibilities Blue Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Branch ======
Branching on House#1 Color category with 2 possibilities Blue Green
Trying possibility Green in House#1 Color category
[CALL] ====== Possible Assignments ======
House#1
Color category is Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 House#2 Color category changed from 3 possibilities Blue

↪→ Green Red to 1 possibilities Red
House#2 Pet category changed from 3 possibilities Birds Dogs Fish to 1

↪→ possibilities Birds
House#3 Pet category changed from 3 possibilities Birds Dogs Fish to 1

↪→ possibilities Fish
Remove Constraint#1 because it is satisfied
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Applying Constraint#2 No changes from this constraint
Remove Constraint#2 because it is satisfied
Applying Constraint#3 House#1 Nationality category changed from 3 possibilities

↪→ Brit German Swede to 1 possibilities Brit
House#2 Nationality category changed from 3 possibilities Brit German Swede to 1

↪→ possibilities Swede
Remove Constraint#3 because it is satisfied
Applying Constraint#4 No changes from this constraint
Remove Constraint#4 because it is satisfied
[SEP] [CALL] ====== Possible Assignments After Propagation ======
House#1
Color category is Green
Nationality category is Brit
Pet category is Dogs
House#2
Color category is Red
Nationality category is Swede
Pet category is Birds
House#3
Color category is Blue
Nationality category is German
Pet category is Fish
Unsatisfied constraints are [RETURN]

Reduction Rule (10)
[CALL] ====== Possible Assignments After Propagation ======
House#1
Color category have 2 possibilities Blue Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Branch ======
Branching on House#1 Color category with 2 possibilities Blue Green
Trying possibility Green in House#1 Color category
[CALL] ====== Possible Assignments After Propagation ======
House#1
Color category is Green
Nationality category is Brit
Pet category is Dogs
House#2
Color category is Red
Nationality category is Swede
Pet category is Birds
House#3
Color category is Blue
Nationality category is German
Pet category is Fish
Unsatisfied constraints are

Model Generation (11)
[CALL] ====== Possible Assignments After Propagation ======
House#1
Color category have 2 possibilities Blue Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
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Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Branch ======
Branching on House#1 Color category with 2 possibilities Blue Green
Trying possibility Green in House#1 Color category
[CALL] ====== Possible Assignments After Propagation ======
House#1
Color category is Green
Nationality category is Brit
Pet category is Dogs
House#2
Color category is Red
Nationality category is Swede
Pet category is Birds
House#3
Color category is Blue
Nationality category is German
Pet category is Fish
Unsatisfied constraints are
=> Puzzle is solved
[SEP] Solution House#1
Color category is Green
Nationality category is Brit
Pet category is Dogs
House#2
Color category is Red
Nationality category is Swede
Pet category is Birds
House#3
Color category is Blue
Nationality category is German
Pet category is Fish [RETURN]

Reduction Rule (11)
[CALL] ====== Possible Assignments After Propagation ======
House#1
Color category have 2 possibilities Blue Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Branch ======
Branching on House#1 Color category with 2 possibilities Blue Green
Trying possibility Green in House#1 Color category
Solution House#1
Color category is Green
Nationality category is Brit
Pet category is Dogs
House#2
Color category is Red
Nationality category is Swede
Pet category is Birds
House#3
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Color category is Blue
Nationality category is German
Pet category is Fish

Model Generation (12)
[CALL] ====== Possible Assignments After Propagation ======
House#1
Color category have 2 possibilities Blue Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Branch ======
Branching on House#1 Color category with 2 possibilities Blue Green
Trying possibility Green in House#1 Color category
Solution House#1
Color category is Green
Nationality category is Brit
Pet category is Dogs
House#2
Color category is Red
Nationality category is Swede
Pet category is Birds
House#3
Color category is Blue
Nationality category is German
Pet category is Fish
[SEP] Solution House#1
Color category is Green
Nationality category is Brit
Pet category is Dogs
House#2
Color category is Red
Nationality category is Swede
Pet category is Birds
House#3
Color category is Blue
Nationality category is German
Pet category is Fish [RETURN]

Reduction Rule (12)
Solution House#1
Color category is Green
Nationality category is Brit
Pet category is Dogs
House#2
Color category is Red
Nationality category is Swede
Pet category is Birds
House#3
Color category is Blue
Nationality category is German
Pet category is Fish

Model Generation (Final Response)
Solution House#1
Color category is Green
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Nationality category is Brit
Pet category is Dogs
House#2
Color category is Red
Nationality category is Swede
Pet category is Birds
House#3
Color category is Blue
Nationality category is German
Pet category is Fish
=> House#3 owns the Fish
=> the German owns the Fish <|endoftext|>
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