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ABSTRACT

Multiple instance learning (MIL) is a machine learning paradigm which learns the
mapping between bags of instances and bag labels. There are different MIL tasks
which can be solved by different MIL methods. One common component of all
MIL methods is the MIL pooling filter, which obtains bag level representations
from extracted features of instances. Here, we recommend and discuss a grouping
scheme for MIL pooling filters: point estimate based pooling filters and distribution
based pooling filters. The point estimate based pooling filters include the standard
pooling filters, such as ‘max’, ‘mean’ and ‘attention’ pooling. The distribution
based pooling filters include recently proposed ‘distribution’ pooling and newly
designed ‘distribution with attention’ pooling. In this paper, we perform the first
systematic analysis of different pooling filters. We theoretically show that the distri-
bution based pooling filters are superior to the point estimate based counterparts in
terms of amount of information captured while obtaining bag level representations
from extracted features. Then, we empirically study the performance of the 5 pool-
ing filters, namely ‘max’, ‘mean’, ‘attention’, ‘distribution’ and ‘distribution with
attention’, on distinct real world MIL tasks. We showed that the performance of
different pooling filters are different for different MIL tasks. Moreover, consistent
with our theoretical analysis, models with distribution based pooling filters almost
always performed equal or better than that with point estimate based pooling filters.

1 INTRODUCTION

Multiple instance learning (MIL) is a machine learning paradigm which learns the mapping between
bags of instances and bag labels. MIL models are handy for tasks where data is in the form of bags of
instances and only bag labels are provided. For example, medical image processing tasks are typical
MIL tasks since an image can be treated as a bag of pixels (instances) and there usually exists only an
image (bag) label without providing the particular region-of-interest (Zhu et al., 2017).

The standard MIL task is the positive vs negative bag classification task (Dietterich et al., 1997;
Maron & Lozano-Pérez, 1998). This task asks if a bag contains the targeted object or not. Moreover,
there are other MIL tasks in the literature as well, like unique class count prediction (Oner et al.,
2020), multi-class classification (Feng & Zhou, 2017), multi-task classification (Yang et al., 2016)
or regression (Zhang et al., 2018). In order to solve these MIL tasks, different methods have been
developed. While some methods first classify instances inside bags and then pool the instances’
scores by using an MIL pooling filter (Dietterich et al., 1997; Maron & Lozano-Pérez, 1998; Andrews
et al., 2003; Zhang & Goldman, 2002), others first extract features of instances inside bags, obtain
bag level representations by using an MIL pooling filter and finally classify the bags (Wang et al.,
2018; Ilse et al., 2018; Oner et al., 2020). The common component in the two approaches is the
MIL pooling filter. Here, we recommend a grouping scheme for MIL pooling filters: point estimate
based pooling filters and distribution based pooling filters. The point estimate based pooling filters
include the standard pooling filters, such as ‘max’ pooling (Wang et al., 2018; Wu et al., 2015; Feng
& Zhou, 2017), ‘mean’ pooling (Wang et al., 2018; 2019) or ‘attention’ pooling (Ilse et al., 2018)
(see Sec. 2.1.1). All the above pooling filters have the same nature; they obtain point estimates (like
the mean) of the features of all instances in the bag.

Although point estimate based pooling filters perform well in many applications, they cannot capture
full information inside the features of the instances. On the other hand, it is possible to capture
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richer information with pooling filters that compute the distribution of the features of the instances.
We call this type of pooling filters as distribution based pooling filters. Recently, for example, in
order to obtain bag level representations, marginal distributions of the features are estimated by
using kernel density estimation in Oner et al. (2020). Here, we denote this method as ‘distribution’
pooling. Furthermore, in this paper, we developed another distribution based pooling filter known
as ‘distribution with attention’ pooling by incorporating an attention mechanism into ‘distribution’
pooling. (See Sec. 2.1.2 for the details of these two distribution based pooling filters.)

There are some studies empirically comparing point estimate based pooling filters in a certain
application like sound event detection (Wang et al., 2019). However, they don’t go beyond one
specific application and have lack of theoretical analysis. In this paper, we perform a systematic study
of both point estimate based and distribution based pooling filters. Precisely, we compare 5 filters,
namely, ‘max’, ‘mean’, ‘attention’, ‘distribution’ and ‘distribution with attention’. We theoretically
show that distribution based pooling filters are superior to point estimate based counterparts in terms
of amount of information captured while obtaining bag level representations from extracted features.

To test the real-life performance of pooling filters, we formulated five different MIL tasks using a
lymph node metastases dataset in Oner et al. (2020). The lymph node metastases dataset consists of
images cropped from histopathology slides of lymph node sections (Bejnordi et al., 2017) and has
corresponding ground truth metastases segmentation masks. There are three types of images in this
dataset: fully normal - all cells are normal, fully metastases - all cells are metastases and boundary -
mixture of normal and metastases cells. We formulated five different MIL tasks on this dataset: (i)
positive vs negative bag classification, (ii) unique class count prediction, (iii) multi-class classification,
(iv) multi-task classification and (v) regression (see Sec. 4.1). For each MIL task, we trained five
different models with five different MIL pooling filters and statistically compared their performances.
Consistent with our theoretical analysis, distribution based pooling filters mostly outperformed their
point estimate based counterparts. Lastly, we tested the performance of ‘distribution’ pooling filter
on classical MIL datasets. It outperformed state-of-the-art MIL methods.

Hence, this paper has three main contributions:

1. We recommend and discuss a grouping scheme for MIL pooling filters: point estimate
based pooling filters and distribution based pooling filters. Moreover, we newly designed a
distribution based pooling filter, ‘distribution with attention’, by incorporating an attention
mechanism into ‘distribution’ pooling filter.

2. We theoretically analyzed five different MIL pooling filters and showed that distribution
based pooling filters are superior to point estimate based pooling filters in terms of amount
of information captured while obtaining bag level representations from extracted features.
Also, we showed that among the two distribution based pooling filters, ‘distribution with
attention’ pooling filter is theoretically the best in this sense.

3. Consistent with our theoretical analysis, we experimentally showed that distribution based
pooling filters have equal or better performance than point estimate based pooling filters
both in MIL tasks defined on the lymph node metastases dataset and classical MIL datasets.
Furthermore, the experiments showed that ‘distribution with attention’ pooling filter is better
than ‘distribution’ pooling filter.

For the rest of the paper, Sec. 2 introduces our MIL framework and theoretical analysis of MIL
pooling filters; Sec. 3 gives a brief literature review; Sec. 4 defines the experiments and presents the
results and Sec. 5 concludes the paper.

2 MULTIPLE INSTANCE LEARNING FRAMEWORK

In MIL paradigm, the objective is to predict a bag label Y for a given bag of instances X = {xi|xi ∈
I, i = 1, 2, · · · , N} where I is the instance space and N is the number of instances inside the bag.
Each instance xi ∈ X is endowed with an underlying label yi ∈ L, where L is the instance label
space; however, these labels are inaccessible during training. The relation between bag label Y and
instance labels {yi|yi ∈ L, i = 1, 2, · · · , N} is imposed by the definition of MIL task. Note that
although the number of instances in each bag can be different in real world, it is treated as constant in
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Figure 1: Block diagram of MIL framework. The feature extractor module θfeature extracts a feature
vector fxi ∈ F , ∀xi ∈ X . Then, the MIL pooling filter module θfilter aggregates the extracted
feature vectors and obtains a bag level representation hX ∈ H. Lastly, the bag level representation
transformation module θtransform transforms bag level representation into predicted bag label Ŷ ∈ Y .

this paper for clarity of notation, yet all the properties stated in here are valid for bags with variable
number of instances as well.

Let D be an MIL dataset such that D = {(X,Y ) | X ∈ X and Y ∈ Y}, where X = IN is the
bag space and Y is the bag label space. Given any pair (X,Y ) ∈ D, our objective is to predict
bag label Y for a given bag of instances X = {xi|xi ∈ I, i = 1, 2, · · · , N}. Let Ŷ be predicted
bag label of X . We obtain Ŷ by using a three stage framework, block diagram of which is given
in Figure 1. The first stage is a feature extractor module θfeature : I → F , where F is the feature
space. For each xi ∈ X , the feature extractor module takes xi as input, extracts J features and
outputs a feature vector: fxi = θfeature(xi) = [f jxi |f

j
xi ∈ R, j = 1, 2, · · · , J ] ∈ F where F = RJ .

Let FX = [fxi |fxi ∈ RJ , i = 1, · · ·N ] ∈ RJN be feature matrix constructed from extracted
feature vectors such that ith column corresponds to fxi . The second stage is an MIL pooling filter
module θfilter : RJN → H, where H is the bag level representation space. The MIL pooling filter
module takes the feature matrix FX and aggregates the extracted feature vectors to obtain a bag level
representation: hX = θfilter(FX) ∈ H where H depends on θfilter. For example, ‘max’ pooling gets
maximum value of each feature over the feature vectors of all instances (H = RJ ) or ‘distribution’
pooling estimates the marginal distribution of each feature over the feature vectors of all instances (H
is a distribution space). In this paper, we analyze the performance of 5 different MIL pooling filters
(see Sec. 2.1) on 5 different MIL tasks. The last stage is a bag level representation transformation
module θtransform : H → Y . The bag level representation transformation module transforms bag level
representation into predicted bag label: Ŷ = θtransform(hX).

We use neural networks to implement θfeature and θtransform so that we can fully parameterize the learning
process. For θfilter, we use different filters, some of which also incorporate trainable components
parameterized by neural networks. This system of neural networks is end-to-end trainable.

2.1 MIL POOLING FILTERS

An MIL pooling filter obtains a bag level representation by aggregating instance level representations.
As a key component of an MIL model, the pooling filter provides the MIL model with two essential
properties of MIL paradigm necessitated by set definition (note that a bag is nothing but a set). First,
output of the model must be permutation-invariant, i.e. the model must produce the same output
regardless of ordering of elements in the set. Second, the model must accept sets with variable sizes
as input. These two properties are incorporated in our neural network models with the proper choice
of the MIL pooling filters. Visual summary of pooling filters used in this paper is given in Figure 2.
A simple controlled toy example is also given in Supp. D to emphasize the advantages of distribution
based pooling filters over point estimate based ones.

2.1.1 POINT ESTIMATE BASED POOLING FILTERS

Given a feature matrix FX = [f jxi |f
j
xi ∈ R, i = 1, 2, · · · , N and j = 1, 2, · · · , J ] obtained from a

bag X = {x1, x2, · · · , xN}. The pooling filter aggregates the feature vectors of the N instances in
the bag X and obtains a bag level representation hX = [hjX | h

j
X ∈ R, j = 1, 2, · · · , J ] ∈ H where

H = RJ . For ‘max’, ‘mean’ and ‘attention’ pooling, the values hjX are:

• Max pooling: hjX = maxNi=1 f
j
xi ∀j=1,2,··· ,J .

• Mean pooling: hjX = 1
N

∑N
i=1 f

j
xi ∀j=1,2,··· ,J .
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Figure 2: MIL pooling filters. The feature matrix FX obtained from the bag X = {x1, x2, x3, x4}
contains 4 feature vectors fx1

,fx2
,fx3

and fx4
. Each feature vector consists of 4 features highlighted

with different colors. Moreover, attention weights of the instances are given in [wi]. Outputs
of different MIL pooling filters are shown. Note that the difference between ‘distribution’ and
‘distribution with attention’ (‘dist w att’) pooling is more visible for the 3rd feature in purple.

• Attention pooling (Ilse et al., 2018): hjX =
∑N
i=1 wif

j
xi ∀j=1,2,··· ,J . Each instance

has an attention weight wi obtained from a neural network module W such that
wi =

exp{W(fxi )}∑N
t=1 exp{W(fxt )}

∀i=1,2,··· ,N . Note that instances’ weights sum up to 1.

2.1.2 DISTRIBUTION BASED POOLING FILTERS

While point estimate based pooling filters only summarize the extracted features by calculating
point statistics, full information in the extracted features theoretically can be captured by estimating
the joint distribution. However, it is computationally intractable. On the other hand, in order to
capture as much information as possible, marginal distributions of extracted features can be estimated.
Indeed, distribution based pooling filters obtain a bag level representation by estimating the marginal
distribution of each extracted feature. Distribution based pooling filters have a notable advantage
that they enable θtransform module to fully utilize the information in shape of the distributions rather
than looking at the point estimates as in ‘max’, ‘mean’ and ‘attention’ pooling. Moreover, the point
estimates obtained by point estimate based pooling filters, in principle, can be fully recovered from
the estimated marginal distributions obtained by distribution based pooling filters (see Sec. 2.2).

Distribution pooling (Oner et al., 2020): Given a feature matrix FX = [f jxi |f
j
xi ∈ R, i =

1, 2, · · · , N and j = 1, 2, · · · , J ] obtained from a bag X = {x1, x2, · · · , xN}, its bag level
representation is obtained by estimating the marginal distribution of each extracted feature. Let
p̃jX : R → R+ ∪ {0} be the estimated marginal distribution of jth extracted feature and p̃jX ∈ P
where P is the set of all possible marginal distributions. p̃jX is calculated by using kernel density
estimation (Parzen, 1962), which employs a Gaussian kernel with standard deviation σ, as shown
in the Eq. 1. Hence, the bag level representation hX = [p̃jX |p̃

j
X ∈ P, j = 1, 2, · · · , J ] ∈ H where

H = PJ . Note that the estimated marginal distributions are uniformly binned during training neural
network models for computational purposes.

p̃jX(v) =
1

N

N∑
i=1

1√
2πσ2

e−
1

2σ2
(v−fjxi)

2

∀j=1,2,··· ,J (1)

Distribution with attention pooling: We have extended ‘distribution’ pooling as in Eq. 2 by incor-
porating an attention mechanism in θfilter module. While all of the instances contribute equally to
estimate the distribution (with a weight of 1/N , see Eq. 1) in ‘distribution’ pooling, each instance
xi ∈ X , in this method, has an attention based weight wi obtained from a neural network module
W such that wi =

exp{W(fxi )}∑N
t=1 exp{W(fxt )}

∀i=1,2,··· ,N . Note that instances’ weights sum up to 1. Our
motivation in associating an attention weight with each instance in a bag is that all instances may not
contribute equally to the bag label. In such cases, it is important to prioritize some of the instances
inside the bag while obtaining the bag level representation. For example, in positive vs negative
bag classification task (see Sec. 2.3), even one ‘positive’ instance makes a bag ‘positive’ and it is
crucial to capture this instance while obtaining bag level representation. This can easily be achieved
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in our ‘distribution with attention’ pooling filter by assigning high attention weight to that instance.
Similarly, bag level representation hX = [p̃jX |p̃

j
X ∈ P, j = 1, 2, · · · , J ] ∈ H whereH = PJ .

p̃jX(v) =

N∑
i=1

wi
1√

2πσ2
e−

1
2σ2

(v−fjxi)
2

∀j=1,2,··· ,J (2)

2.2 THEORETICAL ANALYSIS OF MIL POOLING FILTERS

This section is reserved to theoretically show that distribution based pooling filters are superior to
their point estimate based counterparts in terms of amount of information captured while obtaining
bag level representations from extracted features.

Proposition 1 Given two feature matrices obtained from bags Xa = {x(a)1 , x
(a)
2 , · · · , x(a)N } and

Xb = {x(b)1 , x
(b)
2 , · · · , x(b)N };

• FXa = [f j
x
(a)
i

|f j
x
(a)
i

∈ R, f j
x
(a)
i

6= f j
x
(a)
u

∀i 6=u, i, u = 1, 2, · · · , N and j = 1, 2, · · · , J ]

• FXb = [f j
x
(b)
i

|f j
x
(b)
i

∈ R, f j
x
(b)
i

6= f j
x
(b)
u

∀i 6=u, i, u = 1, 2, · · · , N and j = 1, 2, · · · , J ]

and two pooling filters; ‘max’ pooling filter θmaxfilter and ‘distribution’ pooling filter θdistfilter . Let maxhXa
and maxhXb be bag level representations obtained by θmaxfilter from FXa and FXb , respectively. Sim-
ilarly, let disthXa and disthXb be bag level representations obtained by θdistfilter from FXa and FXb ,
respectively. If maxhXa 6= maxhXb , then disthXa 6= disthXb .

In Proposition 1, we showed that given two feature matrices, whenever ‘max’ pooling filter produces
two different representations, so does ‘distribution’ pooling filter. This proposition states that, for
example, given two bags from different classes and the corresponding feature matrices satisfying the
conditions of Proposition 1, if ‘max’ pooling filter produces two different bag level representations,
then ‘distribution’ pooling filter also produces two different bag level representations. In other
words, whenever two bags from different classes are discriminated by ‘max’ pooling, they are also
discriminated by ‘distribution’ pooling. However, converse of the Proposition 1 is not true. Given
two different bag level representations obtained by ‘distribution’ pooling filter does not guarantee
that bag level representations obtained by ‘max’ pooling filter are different since the feature matrices
may still have the same maximum feature values for both of the bags. That is, there are cases that two
bags from different classes are discriminated by ‘distribution’ pooling, but they are not discriminated
by ‘max’ pooling. Hence, we conclude that ‘distribution’ pooling filter is superior to ‘max’ pooling
filter in terms of amount of information captured in bag level representations.

Proposition 2 Given a feature matrix FX = [f jxi |f
j
xi ∈ R, i = 1, 2, · · · , N and j =

1, 2, · · · , J ] obtained from a bag X = {x1, x2, · · · , xN}, ‘mean’ pooling filter θmeanfilter and ‘dis-
tribution’ pooling filter θdistfilter . Let meanhX = [meanh

j
X | meanh

j
X ∈ R, j = 1, 2, · · · , J ] and

disthX = [p̃jX |p̃
j
X ∈ P, j = 1, 2, · · · , J ] be bag level representations obtained from FX by θmeanfilter

and θdistfilter , respectively. Then, meanh
j
X = E[V j ] ∀j=1,2,··· ,J where V j ∼ p̃jX . Note that P is the set

of all possible marginal distributions.

Proposition 3 Given a feature matrix FX = [f jxi |f
j
xi ∈ R, i = 1, 2, · · · , N and j = 1, 2, · · · , J ]

obtained from a bag X = {x1, x2, · · · , xN}, ‘attention’ pooling filter θattfilter with attention
weights wi > 0 ∀i,

∑N
i=1 wi = 1 and ‘distribution’ pooling filter θdistfilter . Let atthX =

[atth
j
X | atth

j
X ∈ R, j = 1, 2, · · · , J ] be bag level representation obtained from FX by θattfilter.

If attention weights are accessible, then atth
j
X = N × E[V j ] ∀j=1,2,··· ,J where V j ∼ p̃jX and

disthX = [p̃jX |p̃
j
X ∈ P, j = 1, 2, · · · , J ] is the bag level representation obtained by θdistfilter from

GX = [gjxi |g
j
xi = wif

j
xi ∈ R, i = 1, 2, · · · , N and j = 1, 2, · · · , J ]. Note that P is the set

of all possible marginal distributions.
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Similarly, we proved that given a feature matrix, representations obtained by ‘mean’ and ‘attention’
pooling filters (given attention weights are accessible) can be fully recovered from representation
obtained by ‘distribution’ pooling filter in Proposition 2 and 3, respectively. Moreover, we know that
the converse of these propositions are not true since it is possible to obtain the same point estimates
from two different distributions. For example, two different feature distributions obtained by ‘distri-
bution’ pooling filter may have the same mean and ‘mean’ pooling filter cannot discriminate them.
Hence, we conclude that ‘distribution’ pooling filters are superior to point estimate based pooling
filters in terms of amount of information contained inside bag level representations. Furthermore,
from Propositions A.1 and A.2 in Supp. A, we inferred that ‘distribution with attention’ pooling is
superior to ‘distribution’ pooling and ‘attention’ pooling is superior to ‘mean’ pooling, respectively.
Note that bag level representations containing more information helps to improve the performance on
the task at hand.

2.3 MIL TASKS

Positive vs negative bag classification: This is the classical MIL task most commonly referred in
the literature (Dietterich et al., 1997; Maron & Lozano-Pérez, 1998). In this task, each bag X =
{xi|xi ∈ I, i = 1, 2, · · · , N} has a bag label Y = maxNi=1{yi} ∈ {0 : negative, 1 : positive}. A
bag is called ‘0:negative’ if and only if all instances inside the bag are ‘0:negative’, otherwise the bag
is called ‘1:positive’. Note that each instance xi has a label yi ∈ {0 : negative, 1 : positive}.
Unique class count classification: This is one of the recently introduced tasks in MIL (Oner et al.,
2020). In this task, each bag X = {xi|xi ∈ I, i = 1, 2, · · · , N} has a unique class count (ucc) label
Y = |{yi|yi ∈ {1, 2, · · · , L}, i = 1, 2, · · · , N}| ∈ {1 : ucc1, 2 : ucc2, · · · , L : uccL}. Unique
class count is defined as the number of unique classes that all instances in the bag X belong to.

MIL multi-class classification: Each bag X = {xi|xi ∈ I, i = 1, 2, · · · , N} has a bag label
Y ∈ {0, 1}K . Label vector Y is a one-hot vector consisting of K classes.

MIL multi-task classification: Each bag X = {xi|xi ∈ I, i = 1, 2, · · · , N} has a bag label
Y ∈ {0, 1}K . Label vector Y is a binary vector consisting of K classes, which may not be mutually
exclusive, Y = [Y k|Y k ∈ {0, 1}, k = 1, 2, · · · ,K].

Regression: Each bag X = {xi|xi ∈ I, i = 1, 2, · · · , N} has a bag label Y ∈ R.

3 RELATED WORK

MIL was first introduced in (Dietterich et al., 1997; Maron & Lozano-Pérez, 1998) as positive vs
negative bag classification task for drug activity prediction. After that different versions of MIL tasks
emerged: unique class count prediction (Oner et al., 2020), multi-class classification (Feng & Zhou,
2017), multi-task classification (Yang et al., 2016) or regression (Zhang et al., 2018). In order to solve
these tasks, different MIL methods were derived with different assumptions (Gärtner et al., 2002;
Zhang & Goldman, 2002; Chen et al., 2006; Foulds, 2008; Zhang & Zhou, 2009; Zhou et al., 2009;
Ramon & De Raedt, 2000; Zhou & Zhang, 2002; Zhang & Zhou, 2004), which are reviewed in detail
in (Foulds & Frank, 2010). However, recently there has been a massive shift towards to use neural
networks in MIL setup to exploit the power of deep learning (Wu et al., 2015; Wang et al., 2018).

MIL methods were used for many different applications such as, image annotation / categorization /
retrieval (Chen & Wang, 2004; Zhang et al., 2002; Tang et al., 2010), text categorization (Andrews
et al., 2003; Settles et al., 2008), spam detection (Jorgensen et al., 2008), medical image process-
ing (Dundar et al., 2007; Quellec et al., 2017), face/object detection (Zhang et al., 2006; Felzenszwalb
et al., 2010), object tracking (Babenko et al., 2011), defenses against adversarial attacks (Kou et al.,
2020). Another related area is set classification, which is the same thing with bag classification in
MIL since a bag is a set of instances. Recently, there are a few deep learning based studies in this
area (Zaheer et al., 2017; Rezatofighi et al., 2017; Kuncheva et al., 2017). In ‘Deep Sets’ (Zaheer
et al., 2017), for example, the general form of permutation invariant set functions on a set is defined.

Lastly, different types of MIL pooling filters are used to combine extracted features of instances
inside the bags, such as ‘max’ pooling (Wang et al., 2018; Wu et al., 2015; Feng & Zhou, 2017),
‘mean’ pooling (Wang et al., 2018; 2019) or ‘log-sum-exp’ pooling (Ramon & De Raedt, 2000).
Although these filters have been widely used in the literature, recently there are new kinds of MIL
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Table 1: MIL tasks are summarized by their bag labels for each kind of image and loss functions used
during training. For example, in +ve/-ve bag classification task, bag labels are 2-bit one-hot vectors
such that ‘10’: -ve bag (fully normal image) and ‘01’: +ve bag (fully metastases or boundary image).

bag label (Y)

+ve/-ve ucc 3-class 2-task % metastases
(one-hot) (one-hot) (one-hot) (binary) (real-valued)

Fully normal 10 10 100 1,0 0.0
Fully metastases 01 10 010 0,1 1.0
Boundary 01 01 001 1,1 0.0 < Y < 1.0

Loss CCE CCE CCE BCE L1

CCE: Categorical Cross Entropy (PyTorch, b), BCE: Binary Cross Entropy (PyTorch, a)

Table 2: Top: Test set performances of MIL models in 5 different MIL tasks formulated on the lymph
node metastases dataset. Bottom: Pairwise statistical test results are presented as color coded maps
obtained by thresholding p-values at different significance levels. Best models are highlighted in bold.
dist w att: ‘distribution with attention’ pooling

+ve/-ve ucc 3-class 2-task (accuracy) % metastases

(accuracy) (accuracy) (accuracy) normal (N) metastases (M) (absolute error)

distribution 0.8193 0.8628 0.7473 0.8533 0.8383 0.1906
dist w att 0.9117 0.8709 0.7405 0.8696 0.8723 0.1671
mean 0.8139 0.6413 0.6780 0.8913 0.8438 0.2426
attention 0.8804 0.6957 0.7188 0.8927 0.8614 0.3264
max 0.7636 0.7582 0.6712 0.8356 0.8111 0.2223
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pooling filters as well, such as ‘distribution’ pooling (Oner et al., 2020), ‘attention’ pooling (Ilse
et al., 2018; Lee et al., 2019; Wang et al., 2019) or ‘sort’ pooling (Lu et al., 2015; Zhang et al., 2020).
We have also extended ‘distribution’ pooling to ‘distribution with attention’ pooling by incorporating
an attention mechanism into it in this paper.

4 EXPERIMENTS

4.1 ANALYSIS OF DIFFERENT MIL POOLING FILTERS IN DIFFERENT MIL TASKS

The objective of this experiment is to investigate the effect of MIL pooling filters on the performance
of an MIL model in a real world MIL task. We designed a neural network based MIL framework
with the same structure in Sec. 2. We used ResNet18 (He et al., 2016) architecture without batch
normalization as feature extractor module, θfeature, and a three layer multi-layer-perceptron as bag
level representation transformation module, θtransform. We tested this framework with 5 different MIL
pooling filters in θfilter module on 5 different MIL tasks formulated on the lymph node metastases
dataset. Hence, we had 25 different models sharing the same architecture in θfeature module. Note that
the code was made publicly available at: https://bit.ly/mil_pooling_filters

The lymph node metastases dataset is adapted from Oner et al. (2020) and has training, validation
and test sets (Supp. B.1 for details). The dataset consists of images cropped from histopathology
slides of lymph node sections (Bejnordi et al., 2017) and has corresponding ground truth metastases
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segmentation masks. There are three types of images in this dataset: fully normal - all cells are normal,
fully metastases - all cells are metastases and boundary - mixture of normal and metastases cells.
Similar to Sec. 2.3, we formulated five different MIL tasks on this dataset: positive vs negative bag
classification (+ve/-ve: predict whether an image contains metastases cells or not); unique class count
prediction (ucc: predict how many types of cells exist in an image), multi-class classification (3-class:
predict whether an image is fully normal, fully metastases or boundary), multi-task classification
(2-task: 1st task - predict whether an image contains normal cells or not, 2nd task - predict whether
an image contains metastases cells or not) and regression (% metastases: predict percentage of
metastases pixels inside an image). The tasks are summarized by their bag labels for each kind of
image and loss functions used during training in Table 1.

On each task, we trained five different models with MIL pooling filters defined in Sec. 2.1, namely
‘max’, ‘mean’, ‘attention’, ‘distribution’ and ‘distribution with attention’ pooling. Each model was
randomly initialized and trained end-to-end with early-stopping criteria on validation set performance.
Once we obtained the best models, we checked performances of the models on hold-out test set
(Supp. B.2 for details). The results are summarized in Table 2 together with used performance metrics
for each task (Supp. B.3 for details). Note that we presented the performances of two tasks separately
for multi-task setup. Furthermore, we have conducted statistical tests for comparing the performance
of different models in each task. For classification tasks, we used McNemar’s test (Everitt, 1977)
since all the models were trained on the same training set and tested on the same hold-out test set as
suggested in Dietterich (1998). On the other hand, we used paired t-test (Hsu & Lachenbruch, 2005)
on the absolute error values obtained for each sample in the test set to compare models in regression
task. Results of the pairwise statistical tests for each task are also presented at the bottom of Table 2
with color coded maps obtained by thresholding p-values at different significance levels.

We observed that while the performance of our framework in a particular MIL task is different for
different MIL pooling filters, the performance of our framework with a specific MIL pooling filter
also changes from task to task. Furthermore, there is no one single MIL pooling filter performing
best for all of the MIL tasks; however, ‘distribution with attention’ pooling filter, consistent with our
theoretical analyses, is among the best performing pooling filters in all of the tasks, except ‘normal’
task in multi-task setup, in which ‘mean’ and ‘attention’ pooling perform better. Hence, ‘distribution
with attention’ pooling filter seems to be a good candidate for all of the tasks.

4.2 PERFORMANCE COMPARISON ON CLASSICAL MIL DATASETS

The performance of our neural network model with ‘distribution’ pooling filter (Distribution-Net) is
compared with the performance of the best MIL methods in positive vs negative bag classification
task on 5 classical MIL datasets: drug activity prediction datasets MUSK1 and MUSK2 (Dietterich
et al., 1997) and animal image annotation datasets FOX, TIGER and ELEPHANT (Andrews et al.,
2003). (See Supp. C for details of models and datasets.)

We used 10-fold cross validation and repeated each experiment 5 times. For each dataset, we have
declared the mean of classification accuracies (± standard error). We compared the performance of
Distribution-Net with the performance of state-of-the-art MIL methods on classical MIL datasets
in Table 3. While first part of the table contains methods utilizing traditional machine learning
techniques (Andrews et al., 2003; Gärtner et al., 2002; Zhang & Goldman, 2002; Zhou et al., 2009;
Wei et al., 2016), second part of the table accommodates methods employing neural networks (Wang
et al., 2018; Ilse et al., 2018). The last part of the table shows the performance of our Distribution-Net,
which outperformed all other methods on all datasets. Neural network based models generally
outperformed the traditional machine learning based models. Furthermore, our Distribution-Net
performed even better than other neural network based models (Wang et al., 2018; Ilse et al., 2018).
Prominent difference between the models are the pooling filters. While other models employed point
estimate based pooling filters (Wang et al., 2018; Ilse et al., 2018), Distribution-Net had ‘distribution’
pooling filter. It seems that Distribution-Net utilized the full distribution information captured by
‘distribution’ pooling filter over other models.
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Table 3: Performances of different MIL methods on classical MIL datasets. First part: methods
utilizing traditional machine learning techniques. Second part: methods employing neural networks.
Last part: our own model with ‘distribution’ pooling filter (Distribution-Net). [1] (Andrews et al.,
2003), [2] (Gärtner et al., 2002), [3] (Zhang & Goldman, 2002), [4] (Zhou et al., 2009), [5] (Wei
et al., 2016), [6] (Wang et al., 2018), [7] (Ilse et al., 2018).

METHOD MUSK1 MUSK2 FOX TIGER ELEPHANT

mi-SVM [1] 0.874 ± N/A 0.836 ± N/A 0.582 ± N/A 0.784 ± N/A 0.822 ± N/A
MI-SVM [1] 0.779 ± N/A 0.843 ± N/A 0.578 ± N/A 0.840 ± N/A 0.843 ± N/A
MI-Kernel [2] 0.880 ± 0.031 0.893 ± 0.015 0.603 ± 0.028 0.842 ± 0.010 0.843 ± 0.016
EM-DD [3] 0.849 ± 0.044 0.869 ± 0.048 0.609 ± 0.045 0.730 ± 0.043 0.771 ± 0.043
mi-Graph [4] 0.889 ± 0.033 0.903 ± 0.039 0.620 ± 0.044 0.860 ± 0.037 0.869 ± 0.035
miVLAD [5] 0.871 ± 0.043 0.872 ± 0.042 0.620 ± 0.044 0.811 ± 0.039 0.850 ± 0.036
miFV [5] 0.909 ± 0.040 0.884 ± 0.042 0.621 ± 0.049 0.813 ± 0.037 0.852 ± 0.036

mi-Net [6] 0.889 ± 0.039 0.858 ± 0.049 0.613 ± 0.035 0.824 ± 0.034 0.858 ± 0.037
MI-Net [6] 0.887 ± 0.041 0.859 ± 0.046 0.622 ± 0.038 0.830 ± 0.032 0.862 ± 0.034
MI-Net with DS [6] 0.894 ± 0.042 0.874 ± 0.043 0.630 ± 0.037 0.845 ± 0.039 0.872 ± 0.032
MI-Net with RC [6] 0.898 ± 0.043 0.873 ± 0.044 0.619 ± 0.047 0.836 ± 0.037 0.857 ± 0.040
Attention [7] 0.892 ± 0.040 0.858 ± 0.048 0.615 ± 0.043 0.839 ± 0.022 0.868 ± 0.022
Gated-Attention [7] 0.900 ± 0.050 0.863 ± 0.042 0.603 ± 0.029 0.845 ± 0.018 0.857 ± 0.027

Distribution-Net (ours) 0.923 ± 0.071 0.932 ± 0.067 0.680 ± 0.075 0.864 ± 0.054 0.900 ± 0.077

5 CONCLUSION

We theoretically analyzed different MIL pooling filters and experimentally investigated their effects
on the performance of an MIL model in some real world MIL tasks. We showed that distribution based
pooling filters, in principle, are superior to point estimate based counterparts in terms of amount of
information captured while obtaining bag level representations from extracted features. We designed
a neural network based MIL framework and analyzed the performance of our framework with 5
different MIL pooling filters in 5 different MIL tasks formulated on the lymph node metastases dataset.
We observed that while the performance of our framework in a particular task is different for different
pooling filters, the performance of our framework with a specific pooling filter also changes from
task to task. Furthermore, we noticed that although it is not the only one, ‘distribution with attention’
pooling filter is among the best performing pooling filters for almost all tasks. Hence, it seems to be
a good candidate for all MIL tasks. Actually, this is in accordance with our theoretical findings in
Sec. 2.2 that distribution based pooling filters capture richer information than point estimate based
counterparts. Our model with ‘distribution’ pooling also outperformed state-of-the art methods with
different MIL pooling filters on classical MIL datasets. On top of observed superiority of distribution
based pooling filters, in future, we want to explore them with fully trainable hyper-parameters, such
as number of bins and standard deviation.
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A PROOFS OF THE PROPOSITIONS

Lemma A.1 Given two sets R = {ri|ri ∈ R, i = 1, 2, · · · , NR} and S = {sj |sj ∈ R, j =

1, 2, · · · , NS}. Let qR(v) =
∑NR
i=1 e

− 1
2σ2

(v−ri)2 and qS(v) =
∑NS
j=1 e

− 1
2σ2

(v−sj)2 where 0 < σ <

∞. If all ri and sj are different (i.e. ri 6= sj∀i,j), then ∃v ∈ R qR(v) 6= qS(v).

Proof:

Prove by contradiction:

(i) Suppose, for the sake of contradiction, that qR(v) = qS(v) ∀v.

Let Z = R∪S = {r1, r2, · · · , rNR , s1, s2, · · · , sNS} = {z1, z2, · · · , zNZ} where NZ = NR+NS .

Let Φ = [Φu1u2
] where Φu1u2

= e−
1

2σ2
(zu1−zu2)

2

∀u1,u2
.

Then,

Φ



1
1
...
1
−1
−1

...
−1


=


qR(z1)− qS(z1)
qR(z2)− qS(z2)

...
qR(zNZ )− qS(zNZ )

 =


0
0
...
0



This means that Φ is of rank < NZ . Hence, Φ has no inverse.

(ii) However, Φu1u2
is in the form of a Gaussian kernel, which is a positive definite radial basis

function (Schaback, 2007), and all data points constituting Φ are different from each other (i.e.
zu1
6= zu2

∀u1 6=u2
). Therefore, Φ is a positive definite matrix and invertible (Schoenberg, 1938;

Micchelli, 1986; Buhmann, 2010).

Hence, there is a contradiction between (i) and (ii), so ∃v ∈ R qR(v) 6= qS(v).

Lemma A.2 Given two sets R = {ri|ri ∈ R, i = 1, 2, · · · , NR} and S = {sj |sj ∈ R, j =

1, 2, · · · , NS}. Let qR(v) =
∑NR
i=1 e

− 1
2σ2

(v−ri)2 and qS(v) =
∑NS
j=1 e

− 1
2σ2

(v−sj)2 where 0 < σ <

∞. If R 6= S, then ∃v ∈ R qR(v) 6= qS(v).

Proof:

We can write R = Rinter ∪ Rdiff and S = Sinter ∪ Sdiff where Rinter = Sinter = R ∩ S,
Rdiff = R− S and Sdiff = S −R.

Then,

qR(v) =
∑

r∈Rinter

e−
1

2σ2
(v−r)2

︸ ︷︷ ︸
qRinter (v)

+
∑

r∈Rdiff

e−
1

2σ2
(v−r)2

︸ ︷︷ ︸
qRdiff (v)

= qRinter (v) + qRdiff (v)

qS(v) =
∑

s∈Sinter

e−
1

2σ2
(v−s)2

︸ ︷︷ ︸
qSinter (v)

+
∑

s∈Sdiff

e−
1

2σ2
(v−s)2

︸ ︷︷ ︸
qSinter (v)

= qSinter (v) + qSdiff (v)

(i) Rinter = Sinter, so qRinter (v) = qSinter (v) ∀v.
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(ii) Condition of lemma: R 6= S, so Rdiff ∪ Sdiff 6= ∅ and Rdiff ∩ Sdiff = ∅. Therefore, from
Lemma A.1 ∃v ∈ R qRdiff (v) 6= qSdiff (v).

Hence, from (i) and (ii) ∃v ∈ R qR(v) 6= qS(v).

Proposition 1 Given two feature matrices obtained from bags Xa = {x(a)1 , x
(a)
2 , · · · , x(a)N } and

Xb = {x(b)1 , x
(b)
2 , · · · , x(b)N };

• FXa = [f j
x
(a)
i

|f j
x
(a)
i

∈ R, f j
x
(a)
i

6= f j
x
(a)
u

∀i 6=u, i, u = 1, 2, · · · , N and j = 1, 2, · · · , J ]

• FXb = [f j
x
(b)
i

|f j
x
(b)
i

∈ R, f j
x
(b)
i

6= f j
x
(b)
u

∀i 6=u, i, u = 1, 2, · · · , N and j = 1, 2, · · · , J ]

and two pooling filters; ‘max’ pooling filter θmaxfilter and ‘distribution’ pooling filter θdistfilter . Let maxhXa
and maxhXb be bag level representations obtained by θmaxfilter from FXa and FXb , respectively. Sim-
ilarly, let disthXa and disthXb be bag level representations obtained by θdistfilter from FXa and FXb ,
respectively. If maxhXa 6= maxhXb , then disthXa 6= disthXb .

Proof:

Let F j
Xa

and F j
Xb

be jth feature sets for bags Xa and Xb such that F j
Xa

= {f j
x
(a)
1

, f j
x
(a)
2

, · · · , f j
x
(a)
N

}

and F j
Xb

= {f j
x
(b)
1

, f j
x
(b)
2

, · · · , f j
x
(b)
N

}.

(i) For θmaxfilter , bag level representations:

maxhXa = [maxh
j
Xa
| maxhjXa = max(F j

Xa
) ∈ R, j = 1, 2, · · · , J ] ∈ RJ

maxhXb = [maxh
j
Xb
| maxhjXb = max(F j

Xb
) ∈ R, j = 1, 2, · · · , J ] ∈ RJ

Condition of proposition: maxhXa 6= maxhXb , so ∃j maxhjXa 6= maxh
j
Xb

. Thus, ∃j F j
Xa
6= F j

Xb
.

(ii) For θdistfilter , bag level representations:

disthXa =



p̃1Xa(v)
...

p̃jXa(v)
...

p̃JXa(v)

 where p̃jXa(v) =
1

N

N∑
i=1

1√
2πσ2

e
− 1

2σ2

(
v−fj

x
(a)
i

)2

∀j=1,2,··· ,J

We can also re-write p̃jXa(v) as p̃jXa(v) = 1
N

1√
2πσ2

∑
r∈F jXa

e−
1

2σ2
(v−r)2

and

disthXb =



p̃1Xb(v)
...

p̃jXb(v)
...

p̃JXb(v)

 where p̃jXb(v) =
1

N

N∑
i=1

1√
2πσ2

e
− 1

2σ2

(
v−fj

x
(b)
i

)2

∀j=1,2,··· ,J

We can also re-write p̃jXb(v) as p̃jXb(v) = 1
N

1√
2πσ2

∑
s∈F jXb

e−
1

2σ2
(v−s)2
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From (i) and (ii): We know that ∃j F j
Xa
6= F j

Xb
, so by using Lemma A.2 ∃j ∃v p̃jXa(v) 6= p̃jXb(v).

Hence, since ∃j ∃v p̃jXa(v) 6= p̃jXb(v), disthXa 6= disthXb .

Proposition 2 Given a feature matrix FX = [f jxi |f
j
xi ∈ R, i = 1, 2, · · · , N and j =

1, 2, · · · , J ] obtained from a bag X = {x1, x2, · · · , xN}, ‘mean’ pooling filter θmeanfilter and ‘dis-
tribution’ pooling filter θdistfilter . Let meanhX = [meanh

j
X | meanh

j
X ∈ R, j = 1, 2, · · · , J ] and

disthX = [p̃jX |p̃
j
X ∈ P, j = 1, 2, · · · , J ] be bag level representations obtained from FX by θmeanfilter

and θdistfilter , respectively. Then, meanh
j
X = E[V j ] ∀j=1,2,··· ,J where V j ∼ p̃jX . Note that P is the set

of all possible marginal distributions.

Proof:

(i) For θmeanfilter , bag level representation:

meanhX = [meanh
j
X | meanh

j
X ∈ R, j = 1, 2, · · · , J ] ∈ RJ

meanh
j
X = 1

N

∑N
i=1 f

j
xi .

(ii) For θdistfilter , bag level representation:

disthX =


p̃1X(v)

...
p̃jX(v)

...
p̃JX(v)

 where p̃jX(v) =
1

N

N∑
i=1

1√
2πσ2

e−
1

2σ2
(v−fjxi)

2

∀j=1,2,··· ,J

From (i) and (ii): by using definition of expected value:

meanh
j
X =

∫
vp̃jX(v)dv ∀j=1,2,··· ,J

Hence, meanhjX = E[V j ] ∀j=1,2,··· ,J where V j ∼ p̃jX .

Proposition 3 Given a feature matrix FX = [f jxi |f
j
xi ∈ R, i = 1, 2, · · · , N and j = 1, 2, · · · , J ]

obtained from a bag X = {x1, x2, · · · , xN}, ‘attention’ pooling filter θattfilter with attention
weights wi > 0 ∀i,

∑N
i=1 wi = 1 and ‘distribution’ pooling filter θdistfilter . Let atthX =

[atth
j
X | atth

j
X ∈ R, j = 1, 2, · · · , J ] be bag level representation obtained from FX by θattfilter.

If attention weights are accessible, then atth
j
X = N × E[V j ] ∀j=1,2,··· ,J where V j ∼ p̃jX and

disthX = [p̃jX |p̃
j
X ∈ P, j = 1, 2, · · · , J ] is the bag level representation obtained by θdistfilter from

GX = [gjxi |g
j
xi = wif

j
xi ∈ R, i = 1, 2, · · · , N and j = 1, 2, · · · , J ]. Note that P is the set

of all possible marginal distributions.

Proof:

(i) For θattfilter, bag level representation:

atthX = [atth
j
X | atth

j
X ∈ R, j = 1, 2, · · · , J ] ∈ RJ

atth
j
X =

∑N
i=1 wif

j
xi ∀j where attention weight wi > 0 ∀i and

∑N
i=1 wi = 1

We can re-write atth
j
X as:
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atth
j
X = N × 1

N

∑N
i=1 g

j
xi ∀j where gjxi = wif

j
xi

Now it is nothing but ‘mean’ pooling of weighted features multiplied with a scalar, so we can use
Proposition 2 by writing ‘distribution’ pooling in terms of weighted features gjxi = wif

j
xi .

(ii) For θdistfilter , bag level representation:

disthX =


p̃1X(v)

...
p̃jX(v)

...
p̃JX(v)

 where p̃jX(v) =
1

N

N∑
i=1

1√
2πσ2

e−
1

2σ2
(v−gjxi)

2

∀j=1,2,··· ,J

From (i) and (ii): by using definition of expected value:

atth
j
X = N

∫
vp̃jX(v)dv ∀j=1,2,··· ,J

Hence, atthjX = N × E[V j ] ∀j=1,2,··· ,J where V j ∼ p̃jX .

Proposition A.1 Given a feature matrix FX = [f jxi |f
j
xi ∈ R, i = 1, 2, · · · , N and j = 1, 2, · · · , J ]

obtained from a bag X = {x1, x2, · · · , xN}, ‘mean’ pooling filter θmeanfilter and ‘attention’ pooling
filter θattfilter. Let meanhX and atthX be bag level representations obtained from FX by θmeanfilter and θattfilter,
respectively. Then, for attention weights set to 1

N in ‘attention’ pooling filter, meanhX =att hX .

Proof:

(i) For θmeanfilter , bag level representation:

meanhX = [meanh
j
X | meanh

j
X ∈ R, j = 1, 2, · · · , J ] ∈ RJ

meanh
j
X = 1

N

∑N
i=1 f

j
xi

(ii) For θattfilter, bag level representation:

atthX = [atth
j
X | atth

j
X ∈ R, j = 1, 2, · · · , J ] ∈ RJ

atth
j
X =

∑N
i=1 wif

j
xi where attention weight wi > 0 ∀i and

∑N
i=1 wi = 1

From (i) and (ii): For wi = 1
N ∀i, atth

j
X =mean h

j
X ∀j , so atthX =mean hX .

Proposition A.2 Given a feature matrix FX = [f jxi |f
j
xi ∈ R, i = 1, 2, · · · , N and j = 1, 2, · · · , J ]

obtained from a bag X = {x1, x2, · · · , xN}, ‘distribution’ pooling filter θdistfilter and ‘distribution
with attention’ pooling filter θdist w att

filter . Let disthX and dist w atthX be bag level representations
obtained from FX by θdistfilter and θdist w att

filter , respectively. Then, for attention weights set to 1
N in

‘distribution with attention’ pooling filter, disthX = dist w atthX .

Proof:

(i) For θdistfilter , bag level representation:
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disthX =


distp̃

1
X(v)
...

distp̃
j
X(v)
...

distp̃
J
X(v)

 where distp̃
j
X(v) =

1

N

N∑
i=1

1√
2πσ2

e−
1

2σ2
(v−fjxi)

2

∀j=1,2,··· ,J

(ii) For θdist w att
filter , bag level representation:

dist w atthX =


dist w attp̃

1
X(v)

...
dist w attp̃

j
X(v)

...
dist w attp̃

J
X(v)

 where dist w attp̃
j
X(v) =

N∑
i=1

wi
1√

2πσ2
e−

1
2σ2

(v−fjxi)
2

∀j=1,2,··· ,J

Attention weight wi > 0 ∀i and
∑N
i=1 wi = 1

From (i) and (ii): For wi = 1
N ∀i, dist w attp̃

j
X(v) =dist p̃

j
X(v) ∀j , so disthX =dist w att hX .

B EXPERIMENTS ON LYMPH NODE METASTASES DATASET

We investigated the effect of MIL pooling filter on the performance of an MIL model in a particular real
world MIL task. We designed a neural network based MIL framework and analyzed the performance
of our framework with 5 different MIL pooling filters in 5 different MIL tasks formulated on a real
world lymph node metastases dataset.

Code for the experiments was made publicly available at: https://bit.ly/mil_pooling_
filters

B.1 LYMPH NODE METASTASES DATASET

The lymph node metastases dataset is adapted from Oner et al. (2020). The original dataset consists
of 512 × 512 images cropped from histopathology slides of lymph node sections (Bejnordi et al.,
2017) and has corresponding ground truth metastases segmentation masks. There are three types of
images in this dataset: fully normal - all cells are normal, fully metastases - all cells are metastases
and boundary - mixture of normal and metastases cells. Example images of each type are shown in
Figure 3. In order to make a clear distinction between these three types of images, we filtered out the
images with: (i) 0 < percent metastases ≤ 20 and (ii) 80 ≤ percent metastases < 100. Moreover, in
order to obtain a balanced dataset, we dropped some of the images in the test set coming from one
specific slide.

Our dataset is publicly available with this paper. For our dataset, number of images and percent metas-
tases histograms in training, validation and test sets are given in Table 4 and Figure 4, respectively.

Table 4: Lymph node metastases dataset - number of images in training, validation and test sets.

Fully normal Fully metastases Boundary Total

Training 395 228 310 933
Validation 267 190 211 668
Test 277 231 228 736
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(a) Fully normal (b) Fully metastases (c) Boundary

Figure 3: Examples of three types of images in the dataset are shown together with their corresponfing
ground truth metastases masks: (a) fully normal - all cells are normal, (b) fully metastases - all cells
are metastases and (c) boundary - mixture of normal and metastases cells.

(a) Training (b) Validation (c) Test

Figure 4: Percent metastases histograms for training, validation and test sets.

B.2 NEURAL NETWORK ARCHITECTURES AND HYPER-PARAMETERS

We designed a neural network based MIL framework. We used ResNet18 (He et al., 2016) architec-
ture without batch normalization as feature extractor module, θfeature, and a three layer multi-layer-
perceptron as bag level representation transformation module, θtransform. We tested this framework with
5 different MIL pooling filters in θfilter module on 5 different MIL tasks formulated. Hence, we had
25 different models sharing the same architecture in θfeature module. Moreover, all models have the
same hidden layers in θtransform module; however, note that number of input nodes in θtransform module
depends on θfilter and number of output nodes in θtransform module depends on MIL task. Please refer to
the provided code for more details.

During training of the models, each image was treated as a bag. We prepared bags on-the-go during
training by randomly cropping 32 × 32 patches over the images. Each bag was created with 64
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cropped patches (instances). Data augmentation was also applied on the cropped patches. We
used batch size of 32 and extracted 32 features for each instance inside a bag. In the models with
‘distribution’ pooling filter, kernel density estimation with a Gaussian kernel was used to estimate
marginal distributions of extracted features. We used standard deviation of σ = 0.0167 in Gaussian
kernel and 21 bins to sample the estimated distributions. Furthermore, for attention mechanism, we
used the same architecture in (Ilse et al., 2018) in the models with ‘attention’ pooling and ‘distribution
with attention’ pooling filters. We trained models by using ADAM optimizer with a learning rate of
lr = 1e− 4 and L2 regularization on the weights with a weight decay of weight decay = 0.0005.
Each model was randomly initialized and trained end-to-end with early-stopping criteria on validation
set performance. The architecture and list of hyper-parameters used in MIL models are given in
Table 5.

During testing, we created 100 bags from each image and tested with the trained model. Final
prediction for each image in the test set was obtained by averaging 100 predictions.

Table 5: Experiments on lymph node metastases dataset - architecture and list of hyper-parameters
used in the MIL models. ‘dist w att’: ‘distribution with attention’ pooling

input-32x32x3
ResNet18 w/o BN

‘distribution’ / ‘dist w att’ / ‘mean’ / ‘attention’ / ‘max’ pooling
Dropout(0.5)

fc-128 + ReLU
Architecture Dropout(0.5)

fc-32 + ReLU
Dropout(0.5)

fc-2 (+ve/-ve, ucc, 2-task) / fc-3 (3-class) / fc-1 (regression)
softmax (+ve/-ve, ucc, 3-class) / sigmoid (2-task) / None (regression)

image size 512× 512
patch size 32× 32
# instances per bag 64
# features 32
# bins in ‘distribution’ filters 21
σ in Gaussian kernel 0.0167
Optimizer ADAM
Learning rate 1e− 4
L2 regularization weight decay 0.0005
batch size 32

B.3 CONFUSION MATRICES FOR CLASSIFICATION TASKS

Confusion matrices for +ve/-ve bag classification, ucc classification, 3-class classification, metastases
task of 2-task classification and normal task of 2-task classification are given in Figure 5, 6, 7, 8 and
9.

(a) distribution (b) dist w att (c) mean (d) attention (e) max

Figure 5: Confusion matrices for +ve/-ve bag classification.
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(a) distribution (b) dist w att (c) mean (d) attention (e) max

Figure 6: Confusion matrices for ucc classification.

(a) distribution (b) dist w att (c) mean (d) attention (e) max

Figure 7: Confusion matrices for 3-class classification.

(a) distribution (b) dist w att (c) mean (d) attention (e) max

Figure 8: Confusion matrices for metastases task in 2-task classification.

(a) distribution (b) dist w att (c) mean (d) attention (e) max

Figure 9: Confusion matrices for metastases task in 2-task classification.
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C EXPERIMENTS ON CLASSICAL MIL DATASETS

This section compares the performance of our neural network model with ‘distribution’ pooling
filter (Distribution-Net) with the performance of the best MIL methods on classical MIL task of
positive vs negative bag classification on 5 classical MIL datasets: drug activity prediction datasets
MUSK1 and MUSK2 (Dietterich et al., 1997) and animal image annotation datasets FOX, TIGER
and ELEPHANT (Andrews et al., 2003). Summary of classical MIL datasets is given in Table 6.

Table 6: Summary of classical MIL datasets

# bags # instances per bag

positive negative total min max average # features

MUSK1 47 45 92 2 40 5.17 166
MUSK2 39 63 102 1 1044 64.69 166
FOX 100 100 200 2 13 6.6 230
TIGER 100 100 200 1 13 6.1 230
ELEPHANT 100 100 200 2 13 6.96 230

The summary of architectures and hyper-parameters used in MIL models on ‘MUSK’ and ‘Animal’
datasets are given in Table 7 and Table 8, respectively. Note that we used mini-batch training with
bags including equal number of instances. We created bags by sampling from available instances of
each sample (a drug with multiple conformations for ‘MUSK’ datasets and an image with multiple
segments in ‘Animal’ datasets). When the number of available instances of a sample is less than
number of instances required to create a bag we used available instances more than once in a bag. We
have determined number of instances with cross-validation on the validation sets.

Table 7: MUSK datasets - architecture and list of hyper-parameters used in the MIL models.

input-166
fc-64 + ReLU
Dropout(0.5)
fc-32 + ReLU
Dropout(0.5)

fc-32 + Sigmoid
Architecture ‘distribution’ pooling

Dropout(0.5)
fc-64 + ReLU
Dropout(0.5)
fc-32 + ReLU
Dropout(0.5)

fc-2
softmax

# instances per bag 16
# features 32
# bins in ‘distribution’ pooling filters 11
σ in Gaussian kernel 0.1
Optimizer ADAM
Learning rate 5e− 4
L2 regularization weight decay 0.1
batch size 8
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Table 8: Animal datasets - architecture and list of hyper-parameters used in the MIL models.

input-230
fc-256 + ReLU
Dropout(0.5)

fc-128 + ReLU
Dropout(0.5)
fc-64 + ReLU
Dropout(0.5)

fc-32 + Sigmoid
Architecture ‘distribution’ pooling

Dropout(0.5)
fc-384 + ReLU
Dropout(0.5)

fc-192 + ReLU
Dropout(0.5)

fc-2
softmax

# instances per bag 16
# features 32
# bins in ‘distribution’ pooling filters 11
σ in Gaussian kernel 0.1
Optimizer Adam
Learning rate 5e− 6
L2 regularization weight decay 0.1
batch size 8
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The summary of architectures and hyper-parameters used in MIL models of (Wang et al., 2018) and
(Ilse et al., 2018) on ‘MUSK’ and ‘Animal’ datasets are given in Table 9.

Table 9: MUSK and Animal datasets - architecture and list of hyper-parameters used in the MIL
models of (Wang et al., 2018) and (Ilse et al., 2018).

input-166
fc-256 + ReLU

Dropout
fc-128 + ReLU

Dropout
fc-64 + ReLU

Dropout
Architecture ‘max’, ‘mean’, ‘attention’ pooling

fc-1 + Sigmoid

Optimizer SGD
Learning rate 5e− 4 (MUSK1, MUSK2, Fox) / 1e− 4 (Tiger, Elephant)
Momentum 0.9
L2 regularization weight decay 0.03 (MUSK2) / 0.01 (Tiger) / 0.005 (MUSK1, Fox, Elephant)
batch size 1

D DISTRIBUTION POOLING: EXPLOITING THE FULL INFORMATION IN
DISTRIBUTIONS

‘Distribution’ pooling extracts full information of the distribution. However, ‘mean’ and ‘max’
pooling only provide point estimates. This experiment aims to show that ‘distribution’ pooling is
more powerful than point estimators like ‘mean’ and ‘max’ pooling. Let’s have a hypothetical factory
producing metal balls for ball bearings. The factory has three production lines, namely red, green
and blue, and radius of the balls produced in these lines are normally distributed: rred ∼ N (µ =
0.3, σ = 0.02), rgreen ∼ N (µ = 0.5, σ = 0.02) and rblue ∼ N (µ = 0.5, σ = 0.005), as shown in
Figure 10a. Then, our MIL task is to classify bags of metal balls from 3 different production lines, i.e.
3-class MIL classification task.

We generated radius data for 900 bags of metal balls with corresponding production line labels.
There were 300 bags from each production line and each bag had 200 balls. We designed an MIL
framework such that a bag level representation was obtained by using an MIL pooling filter over the
radius values of the balls in a bag. Then, the bag level representation was fed to a linear classifier
to predict the production line label of the bag. List of hyper-parameters used in MIL models is
given in Table 10. We splitted data into training, validation and test sets with 600, 150 and 150
bags, respectively. In each set, there were equal number of bags from each class. We trained MIL
models with ‘distribution’, ‘mean’ and ‘max’ pooling filters on the bags with 10, 50, 100 and 200
balls per bag. All models were trained on the training set with categorical cross-entropy loss and
fine-tuned on the validation set. Loss and accuracy values of the models on the test set are given
in Figure 10b and 10c, respectively. As it is seen in Figure 10c, models with ‘distribution’ pooling
classified all the bags perfectly by exploiting the full information in the radius distribution of balls in
the bags and outperformed the models with ‘mean’ and ‘max’ pooling. While models with ‘mean’
pooling distinguished bags of red line from others, it couldn’t distinguish the bags of green line from
the bags of blue line since their mean radius values were close to each other. For models with ‘max’
pooling, they can distinguish bags of red line from others. For bags from green and blue lines, the
‘max’ polling can distinguish them only when the number of balls inside the bags is big enough.
Moreover, loss of models with ‘distribution’ pooling is much lower than the others, so they are much
more confident in their predictions.

Figure 11 shows test set confusion matrices. Models with ‘distribution’ pooling classified all the
bags perfectly by exploiting the full information in the radius distribution of balls in the bags and
outperformed the models with ‘mean’ and ‘max’ pooling. While models with ‘mean’ pooling
distinguished bags of red line from others, it couldn’t distinguish the bags of green line from the
bags of blue line since their mean radius values were close to each other. For models with ‘max’
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(a) (b) (c)

Figure 10: 3-class MIL classification task: classifying bags of metal balls from 3 different production
lines. (a) Distribution of radius of balls produced in red, green and blue production lines. (b) Loss
and (c) accuracy values of MIL models with ‘distribution’ (dist.) pooling, ‘mean’ pooling and ‘max’
pooling filters on the test set bags with 10, 50, 100 and 200 balls per bag.

Table 10: Classifying bags of metal balls - architecture and list of hyper-parameters used in the MIL
models.

input-1
Architecture ‘mean’ / ‘max’ / ‘distribution’ pooling

fc-3
softmax

# balls per bag 10 / 50 / 100 / 200
# features 1
# bins in ‘distribution’ pooling filters 101
σ in Gaussian kernel 0.005
Optimizer ADAM
Learning rate 1e− 2
L2 regularization weight decay 0.0005
batch size 64
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Figure 11: Confusion matrices for models with ‘distribution’ (dist.) pooling, ‘mean’ pooling and
‘max’ pooling filters on the test set bags with 10, 50, 100 and 200 balls per bag.

pooling, they can distinguish bags of red line from others. For bags from green and blue lines, the
‘max’ polling can distinguish them only when the number of balls inside the bags is big enough.
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