
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CAN WATERMARKS BE USED TO DETECT LLM IP IN-
FRINGEMENT FOR FREE?

Anonymous authors
Paper under double-blind review

ABSTRACT

The powerful capabilities of LLMs stem from their rich training data and high-
quality labeled datasets, making the training of strong LLMs a resource-intensive
process, which elevates the importance of IP protection for such LLMs. Compared
to gathering high-quality labeled data, directly sampling outputs from these fully
trained LLMs as training data presents a more cost-effective approach. This prac-
tice—where a suspect model is fine-tuned using high-quality data derived from
these LLMs, thereby gaining capabilities similar to the target model—can be seen
as a form of IP infringement against the original LLM. In recent years, LLM wa-
termarks have been proposed and used to detect whether a text is AI-generated.
Intuitively, if data sampled from a watermarked LLM is used for training, the
resulting model would also be influenced by this watermark. This raises the ques-
tion: can we directly use such watermarks to detect IP infringement of LLMs?
In this paper, we explore the potential of LLM watermarks for detecting model
infringement. We find that there are two issues with direct detection: (1) The
queries used to sample output from the suspect LLM have a significant impact on
detectability. (2) The watermark that is easily learned by LLMs exhibits instability
regarding the watermark’s hash key during detection. To address these issues, we
propose LIDet, a detection method that leverages available anchor LLMs to select
suitable queries for sampling from the suspect LLM. Additionally, it adapts the de-
tection threshold to mitigate detection failures caused by different hash keys. To
demonstrate the effectiveness of this approach, we construct a challenging model
set containing multiple suspect LLMs on which direct detection methods struggle
to yield effective results. Our method achieves over 90% accuracy in distinguish-
ing between infringing and clean models, demonstrating the feasibility of using
LLM watermarks to detect LLM IP infringement.

Law
Stealer

Detector
Source LLM

Math

Code
Sure! Here is a nested loop that … 

Watermarking

green tokens

Natalia sold 48 clips in April … 

watermarked responses from Source LLM

+

collected dataset for tuning

Fine-tuning

Base LLM Suspect LLM

API

Stage 1
Query Selection

Providing

domain specific queries

selected queries

candidate queries

anchor LLMs 

Which query is better for 

detecting watermarks?

Infringement!

API

M
o

d
e
l 

S
te

a
li

n
g

sampled text
(w/ watermark)

anchor data
(w/o watermark)

Stage 2
Adaptive Detection

𝒛 > 𝒛𝒕𝒉?

Infringement Detection

Figure 1: Overview of LLM IP infringement and its detection with decoding-based LLM water-
marks. The Stealer aims to steal the source LLM by sampling with its queries and using them to
tune its base LLM. While the Detector aims to detect whether a suspect LLM tuned with data sam-
pled from the source LLM. It can access an API provided by the Stealer but does not know the base
LLM and the dataset for tuning. To this end, a detection method including selecting proper queries
for sampling the suspect LLM and adaptive detection with anchor data is proposed to detect IP in-
fringement better.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1 INTRODUCTION

With the development of large language models (LLMs) and the increased scale of both model
parameters and training data, substantial investments and costs have been introduced for collecting
data and training the models (OpenAI, 2021; Achiam et al., 2023). Although model owners typically
offer only public APIs to protect their intellectual property (IP), these models remain vulnerable:
stealers can query the model’s APIs to obtain high-quality data and finetune their own model with
such queried data (Chiang et al., 2023; Taori et al., 2023). As a result, stealers can obtain models that
perform similarly to the source LLMs in general or specialized tasks, thereby stealing the capabilities
of the source LLMs and introducing IP Infringement.

To address it, a key step is to detect model IP infringement. Despite this problem having been
explored in the traditional classification tasks (Tramèr et al., 2016; Jia et al., 2021; Lukas et al.,
2021; Cos, 2022), IP infringement for LLMs faces two challenges. First, LLMs are designed as
foundation models for diverse tasks, meaning stealers can sample data from any domain, making it
difficult to determine the specific data used by the stealer. Second, the stolen data is typically used to
fine-tune an existing base model rather than train a model from scratch. This introduces additional
complexity in detecting model infringement, as the fine-tuned model retains the characteristics of
both the original model and the new data.

An intuitive approach for model IP infringement detection is to inject a special distribution into
the source model’s output, such that a suspect model trained on this data would learn a special
distribution, which can be used for detection, which is also known as watermarking (He et al.,
2022a; Zhao et al., 2022; 2023; He et al., 2022b). Recently, watermarking has mainly been applied
to detect a particular text generated by a specific LLM by injecting watermarks into the output during
inference (Kirchenbauer et al., 2023; Zhao et al., 2024; Kirchenbauer et al., 2024a; Kuditipudi et al.,
2024). This watermarking technique works by dividing the vocabulary into a “green list” and a “red
list”, and adding bias to the logits of different tokens. This increases the frequency of tokens from
the green list in the output text so that the watermarked text can be detected with a fixed threshold
of z-score from a z-test of the green ratio. Since watermarks can change the distribution of output, a
natural question emerges: “Could such watermarks be used to detect LLM model infringement for
free?”

In this paper, we propose a watermark-based LLM model infringement detection algorithm,
LIDet (LLM Infringement Detection). Our journey begins by identifying the key challenges of
using LLM watermarks for model infringement detection, compared to detecting generated text.

The first challenge is attenuation of watermark detectability caused by domain mismatch between
training and detection. As LLMs are foundation models designed for diverse domains, stealers can
extract data from arbitrary domains to fine-tune their suspect models, such as code generation and
mathematics. The stealer can avoid being identified by accessing the API of the target model using
anonymous accounts. Consequently, the detector is unaware of the specific domain data used by
the stealer. Thus, the detector needs to construct detection data. However, if the detection data has
a large distribution mismatch with the training data, it leads to an attenuation in the frequency of
watermarked tokens in the text, weakening detection capability, as shown in Figure 2a.

The second challenge is the guarantee of watermark learnability results in a green ratio mismatch,
leading to the failure of watermark detection for some hash keys. Unlike watermarking for detecting
generated text, where the watermark is directly injected, watermarking for suspect LLM infringe-
ment detection involves the watermark being learned through the training process on unknown sam-
pled data. The detectability of the watermark in the suspect model is thus highly dependent on its
learnability. To ensure the watermark embedded in the source model is also learned by the suspect
model, careful design of the watermarking algorithm is essential. While text watermarking typically
uses high n-gram lengths (e.g., 4) to ensure robustness against reverse engineering (Kirchenbauer
et al., 2024b), this reduces the learnability of the watermark (Gu et al., 2024a), as also shown by
our experiments in Figure 2b. To address this, an intuitive approach to improve the learnability
of the text watermark is to decrease the n-gram length, for example, setting it to 1. However, this
introduces another problem: using a low n-gram length causes the actual green ratio to be heav-
ily influenced by the random hash key, as shown in Figure 2c. This mismatch between the actual
green ratio and the preset green ratio for partitioning the green list makes the z-score-based detec-
tion with a fixed threshold fail, which means that even with a valid text watermarking scheme like

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

same queryi.i.d query OOD query

queries for sampling suspect LLM

0
1
2
3
4
5

z-
sc

or
e

(a) Queries for detection. Same &
i.i.d queries are in-domain while
OOD queries are out-of-domain
queries of queries for tuning.

1 2 3 4
n for watermark injection

0
1
2
3
4
5

z-
sc

or
e

(b) Hyper-parameter n of KGW
watermark: the hash for green list
is calculated with a hash key and
previous n tokens’ ids.

0.24 0.25 0.26 0.27
green ratio

0

5

10

15

20

fre
qu

en
cy

n=1
n=4

(c) Histogram of actual green ra-
tios of KGW watermark with 100
random hash keys.

Figure 2: (a) and (b) show z-scores of text sampled from the suspect LLM tuned with KGW-
watermarked data. A higher z-score represents more watermarked green tokens in the suspect LLM,
indicating better learnability of watermarks and detectability of suspect LLMs. (c) demonstrates
greater n leads to the actual green ratio being unstable from the preset green ratio 0.25.

KGW (Kirchenbauer et al., 2023), the watermark may be detectable with some hash keys but not
with others.

To address these challenges, our proposed method, LIDet, contains two designs as briefly demon-
strated in Figure 1: (1) To mitigate the attenuation of detectability introduced by mismatched train-
ing and detection domains, we apply several anchor LLMs (which can be different from the suspect
LLM) to help select such queries which are more likely to sample texts containing more diverse and
evenly distributed tokens. Compared with those queries that bring texts with highly repetitive or
centrally distributed tokens, these queries could get responses containing effectively watermarked
tokens with higher probability. (2) To solve the mismatched green ratio brought by watermarks with
a low n for better learnability, we replace the fixed threshold of z-score-based detection with an
adaptive threshold by estimating an actual green ratio from pre-generated anchor data. Meanwhile,
we take the cross-model generalization into account during query selection to ensure the green ratio
of anchor data generated by anchor LLMs can be closer to the natural green ratio of un-watermarked
text. Therefore, the reference green ratio can help better discriminate between the infringed suspect
LM and the clean one.

We conduct experiments on a black-box scenario from the detector’s perspective with LLM water-
marks such as KGW (Kirchenbauer et al., 2023) and Unigram (Zhao et al., 2024), as well as different
source LLMs, suspect LLMs, and datasets for tuning suspect LLMs. Results reveal that our proposed
detection method increases the reliability of discriminating against unauthorized distilling of source
LLMs and further demonstrate successful cases of using LLM watermarks for defending against
LLM’s model infringement. Specifically, our method achieves the detection accuracy of over 90%
in the cross-domain detection on a challenging model set containing suspect LLMs with multiple
settings while the vanilla detection struggles to provide effective results.

Our contributions can be summarized as follows:
• We explore the feasibility of using existing LLM watermarks to detect model infringement

and analyze the limitations of vanilla detection methods in this task.

• We propose a simple yet effective detection method, LIDet, to enhance LLM model in-
fringement detection, significantly improving the detectability of model infringement.

• Through extensive experiments under realistic threat models, we demonstrate that LLM
watermarks with our proposed detection methods, can effectively detect model infringe-
ment and thus protect the copyright of source LLMs.

2 BACKGROUND & PRELIMINARY

2.1 LLM WATERMARKS AND DETECTION

KGW. KGW (Kirchenbauer et al., 2023) modifies the frequency of certain tokens in the generated
text by adding a bias to the logits of specific tokens during LLM decoding. Specifically, during
each decoding step, KGW randomly divides the tokenizer’s vocabulary table into a green list and

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

a red list based on a predefined green list ratio γ and hash key ξ using a hash function applied to
the preceding n tokens: fhash(ξ, x−1, ..., x−n). Logits of tokens in the green list are increased by a
fixed hyperparameter δ, thus raising the probability that these green tokens will be sampled during
decoding. Detection of KGW works by statistically analyzing the proportion of green list tokens
in the target text (with |T | tokens in total). After determining the number of green tokens |sG|
in the target text, a z-test is performed to compute the z-score or p-value to evaluate whether the
proportion of green tokens |sG|/|T | significantly exceeds the preset green ratio γ0: z = (|sG| −
γ0|T |)/

√
γ0(1− γ0)|T |. Typically, if the z-score exceeds a predetermined threshold α (such as

4.0), the text is considered to be watermarked.

Unigram. The generation and detection of the Unigram (Zhao et al., 2024) watermark are similar
to KGW. The key difference is that Unigram does not use the preceding n tokens to compute the
hash function; instead, it divides the green list solely based on the hash key ξ. As a result, the green
list of Unigram is static. Compared to KGW (n ≥ 1), Unigram (n = 0) significantly enhances the
robustness and detectability of the text watermark. However, this also increases the influence of the
hash key on green tokens, making the actual green ratio deviate from the preset green ratio γ.

2.2 PROBLEM STATEMENT

The process of LLM model stealing and infringement detection can be divided into the following
stages as illustrated in Figure 1: (1) The stealer constructs a query set QT intended for fine-tuning
their base model. By accessing the source LLM’s API, they sample the corresponding responses
RT from the query set, thus creating a dataset DT for instruction fine-tuning. (2) The stealer applies
the constructed training dataset DT to fine-tune their own base model, resulting in a suspect LLM
θsuspect. They then provide the API of the suspect LLM. (3) The detector accesses the API of the
suspect LLM θsuspect and uses a series of queries QD to sample output text RDfrom the suspect
LLM’s API. (4) The detector analyzes the concatenated output text RD from the suspect LLM
θsuspect to check for the presence of the source LLM’s watermark, thereby determining whether the
suspect LLM is fine-tuned using data sampled from the source LLM.

2.3 THREAT MODEL

We consider two opposing roles in the task: the Detector (the owner of the source LLM and the
entity responsible for detecting infringement) and the Stealer (the owner of the suspect LLM).

Stealer. The Stealer is the owner of the suspect LLM, who attempts to steal the capabilities of the
source LLM by fine-tuning their base model using data sampled from the source LLM. The Stealer
can only sample data through the source LLM’s API but has the flexibility to choose any query for
sampling. We consider the realistic scenarios where the Stealer can use different IPs and anonymous
accounts to query the source LLM so that the detector can not know what data are queried. In the
context of stealing a target LLM, we treat this fine-tuning as the last training operation of the suspect
LLM. The Stealer would also not try to paraphrase the sampled text considering the paraphrasing
will change the stealing target from the source LLM to the paraphrasing model. After fine-tuning,
the Stealer provides the API of the suspect LLM to the public, without revealing the model structure
or training data.

Detector. The Detector is the owner of the source LLM and aims to determine whether the suspect
LLM has infringed upon the source model. The Detector has full knowledge of the source LLM,
including model weights and watermarking configurations. However, during detection, the Detector
can only access the suspect LLM’s API and is unaware of its model structure or the data used for
training. The Detector must rely solely on the output text generated by the suspect LLM to determine
if it has infringed upon the source LLM.

3 METHODOLOGY

The difference between the directly injected text watermark and the learning-based LLM’s model
watermark brings two challenges that hurt the effectiveness of detecting infringing suspect LLMs:
(1) The scenario where the detector can not get training data of the suspect LLM means there is a
domain mismatch between training and detection data, resulting in the attenuation of watermark

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Detection
Query

Watermark
w/ watermark w/o watermark

z-score p-value z-score p-value

Training Query
Unigram 27.6 1.4e-167 0.731 2.3e-1

KGW 5.61 1.04e-8 0.406 3.4e-1

i.i.d Query
Unigram 24.6 4.9e-134 0.534 3.0e-1

KGW 5.12 1.5e-7 -0.281 6.1e-1

OOD Query
Unigram 11.2 3.5e-29 -3.67 9.9e-1

KGW 1.21 1.1e-1 -1.79 9.6e-1

Table 1: Detectability of suspect models with different queries. A higher z-score or a lower p-value
indicates that the suspect LLM is more likely to be watermarked.

0 2500 5000 7500 10000 12500 15000 17500 20000
# Generated Token

0

2

4

6

8

10

z-
sc

or
e

query set 1
query set 2
query set 3
query set 4

(a) Unigram-watermarked suspect LLM.

0 2500 5000 7500 10000 12500 15000 17500 20000
# Generated Token

1

0

1

2

3

4

5

z-
sc

or
e

query set 1
query set 2
query set 3
query set 4

(b) KGW-watermarked suspect LLM.

Figure 3: Z-scores of generated text sampled with different out-of-domain query sets.
detectability. (2) The demand for learnable watermarks limits the n of watermarks to small, leading
to green ratio mismatch between the actual one and the preset one, which further causes failed
detection. We first discuss these two challenges and then introduce our LIDet for reliable detection
to address them.

3.1 ATTENUATION OF WATERMARKS DETECTABILITY IN DOMAIN MISMATCH

The detection of a suspect LLM involves two key steps: sampling text from the suspect LLM for
detection, and detecting the watermark in the text. In this case, an important consideration is to
check if the watermark is detectable under the threat model, i.e. whether watermarks of suspect
LLMs can be detected without knowledge of the training data. To answer this question, we conduct a
preliminary experiment to first fine-tune a suspect LLM with coding data (Luo et al., 2024) sampled
from the source LLM. Then three different query sets are applied to sample text from the tuned
suspect LLM: the same queries for training the suspect model (the first-row of Table 1), queries
different from training queries but in the same domain (also coding queries, the second-row of
Table 1), and the out of domain queries (general queries sampled from Alpaca (Taori et al., 2023),
the third-row of Table 1).

Results from Table 1 reveal that the detectability of LLM watermarks attenuates along with the in-
crease of difference between detection queries and training queries. The z-score of the sampled text
is significantly lower compared to when the detector knows the suspect LLM’s training queries, in-
dicating a reduced detection capability. Intuitively, this occurs because the watermark in the suspect
LLM is learned from the training data, so the closer the sampled text is to the training data during
detection, the better the detection performance.

Figure 3 further illustrates the detectability of different out-of-domain detection queries. It indicates
that though the detected texts are all sampled with general query sets, the detectability of these
cases varies. The curve of text sampled with less-detectable queries (e.g. query set 1 of Figure 3b)
shows that the z-score sometimes significantly drops while the number of tokens increases, which
demonstrates that some queries make negative contributions to detecting watermarks. In contrast,
query sets such as 2 and 3 from Figure 3b still demonstrate enough z-scores for watermark detection.
We find that those queries causing z-score dropping usually have low diversity responses in tokens,
which are short in length or have high repetition tokens, thus leading to a bad detection. Therefore,
it is crucial to screen out unhelpful queries from an out-of-domain general query set to detect LLM
infringement without in-domain queries.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Watermark
w/ watermark w/o watermark

z-score p-value z-score p-value
Unigram n=0 24.6 4.9e-134 0.534 3.0e-1

KGW

n=1 5.12 1.5e-7 -0.281 6.1e-1
n=2 2.11 1.7e-2 -0.196 5.8e-1
n=3 1.15 1.3e-1 0.056 4.8e-1
n=4 0.20 4.2e-1 -0.061 5.2e-1

Table 2: Learnability of watermarks with different n. A higher z-score or a lower p-value indicates
that the watermark is more learnable during the tuning process of the suspect LLM.

0 1 2 3 4
n of watermarks

0.20

0.22

0.24

0.26

0.28

0.30

0.32

gr
ee

n 
ra

tio

(a) Distribution of actual green ratio
with γ = 0.25 with varies hash keys.

0 2500 5000 7500 10000 12500 15000 17500 20000
# Generated Token

5

10

15

20

25

30

z-
sc

or
e

w/o watermark
w/ watermark
Adaptive Threshold
Fixed Threshold

(b) z-scores with a higher green ratio.

0 2500 5000 7500 10000 12500 15000 17500 20000
# Generated Token

8

6

4

2

0

2

4

z-
sc

or
e

w/o watermark
w/ watermark
Adaptive Threshold
Fixed Threshold

(c) z-scores with a lower green ratio.

Figure 4: A small n can lead to failed detection. (a) a small n makes the actual green ratio deviate
from the set of 0.25. (b) z-score of unwatermarked text easily surpasses the fixed threshold when the
actual green ratio is higher than γ. (c) z-score of watermarked text is smaller than the fixed threshold
when the actual green ratio is lower than γ.

3.2 GREEN RATIO MISMATCH OF LEARNABLE WATERMARKS

The learnability of LLM watermarks decides whether watermarks of source LLMs’ outputs can be
transferred to the suspect LLM during fine-tuning. Obviously, the learnability of watermarks is
highly related to the hyper-parameter n in KGW. As shown in Table 2, a watermark with a greater
n results in a smaller z-score and higher p-value, which means it is less learnable for suspect LLMs.
Intuitively, when the watermark is transferred from the source LLM to the suspect LLM, the suspect
LLM essentially learns the distribution shift introduced by the n-gram-based watermark. When n
increases, the distribution of n-grams in the training data becomes more dispersed, making it more
difficult for the suspect LLM to sufficiently learn the n-gram watermark with the same amount of
training data. This implies that smaller values of n (n = 0, 1) are more effective for detecting model
infringement, as they make it easier for the watermark to be learned and subsequently detected.

However, the learnable watermark with small n leads to another problem: the partition of the green
list is rather sensitive to the random hash key ξ. Figure 4a illustrates the distribution of the actual
green ratio of unwatermarked texts with random hash keys, which reveals that watermarks with
small n can result in a mismatch between the actual green ratio and the preset green ratio γ during
partition. Considering that the calculation of the z-score for detection is dependent on the green ratio
γ, such a mismatch could be disastrous for watermark detection. When the actual green ratio is lower
than the set γ, the calculated z-score will be lower than the actual value. In this case, the z-score of
text with the watermark might fall below the detection threshold, leading to a higher false negative
rate (as shown in Figure 4c). Conversely, when the actual green ratio is higher than the set γ, the
calculated z-score will be higher than the actual value. This can result in even non-watermarked text
having a z-score above the detection threshold (as shown in Figure 4b), thereby increasing the false
positive rate.

These results highlight a trade-off between the learnability of LLM watermarks and the stability
of the green ratio with respect to the hyper-parameter n when detecting model infringement. To
ensure the watermark’s learnability and detectability together, it is crucial to replace the original
fixed threshold of z-scores with an adaptive threshold which can compensate for the instability of
the actual green ratio brought by the small n.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.3 LIDET: RELIABLE DETECTION FOR LLM INFRINGEMENT

Our proposed LIDet includes two key stages: (1) selecting queries for sampling detection text from
the suspect LLM with the help of a set of anchor LLMs, and (2) detecting watermarks from the
detection text with an adaptive threshold of z-score. We address the challenge introduced by domain
mismatch by selecting queries that can promote responses with diverse and frequency-balanced to-
kens, regarded as the principle of token entropy. Besides, we mitigate the problem caused by mis-
matched green ratios via selecting cross-model generalizable queries and detecting the watermark
with an adaptive threshold to fill in the z-score gap by estimating the actual green ratio.

Anchoring Treated Query Selection. The queries are selected by two principles: (1) the token
entropy of their responses, and (2) their cross-model generalizability. To identify the property of
each candidate query, we introduce a set of anchor LLMs {θanchor}M first. These anchor LLMs are
used to help select a proper query set QD from all candidates Q = {q1, q2, ..., qK}. By sampling
responded text with all K candidate queries from M anchor LLMs, a set of anchor responses RD is
constructed:

RD =

M⋃
m=1

K⋃
k=1

θm
anchor(qk ∈ Q) = {r11, ..., rmk , ..., rMK } (1)

Based on the anchor responses, we define the token entropy H of the response for each query qk
as the frequency balance degree of contained tokens across all anchor LLMs, shown in equation 2,
where τ refers to tokens in the corresponding response rmk and P (τ) stands for the frequency of
token τ . Query with a higher H usually can promote a response containing more tokens and the
distribution of tokens is more even, making it more likely to include watermarked tokens.

H(qk) = −Em=1,...,M

 ∑
τ∈rm

k

P (τ) logP (τ)

 (2)

Then we introduce the concept of the cross-model generalizability η of queries. Specifically, η of
query qk is defined as the negative variance of the statistical green ratio γm

k of the corresponding
response rmk sampled from all m anchor LLMs, as demonstrated in equation 3. The green ratio γm

k
of response γm

k is calculated by the number of green tokens |sG|mk and the number of all tokens |rmk |.
A higher η indicates the green ratio of the response sampled from different anchor LLMs is closer,
which means that the corresponding query is more likely to produce texts with similar green ratios
across various LLMs. Therefore, we could avoid queries that yield significantly different green
ratios when sampled from different models by selecting queries with smaller η, thus providing a
better estimation of the actual green ratio of the suspect LLM in the next stage.

η(qk) = −Varm=1,...,M (γm
k ), γm

k = |sG|mk /|rmk | (3)

According to the token entropy H and cross-model generalizability η of all candidate queries, we
select detection queries following the priority score v given in equation 4. Queries with higher token
entropy and higher cross-model generalizability are selected first to sample the suspect LLM to get
detection texts.

v(qk) =
H(qk)−minH(qk)

maxH(qk)−minH(qk)
+

η(qk)−min η(qk)

max η(qk)−min η(qk)
(4)

Detection with Adaptive Threshold. By the above stage of query selection, the query set QD is
built. The texts for watermark detection are sampled from the suspect LLM with QD. Specifically,
we sample corresponding responses from the suspect LLM with each query in QD and then concate-
nate them together for the later detection process. For z-score-based detection, instead of applying
the fixed threshold α, we propose a watermark-adapted threshold zth to correct the mismatch be-
tween the actual green ratio and the preset green rate γ0. The adaptive threshold works by filling in
the gap of z-scores caused by the mismatched actual green ratio. To estimate the actual green ratio,
we collect responses sampled from anchor LLMs with QD as anchor data. The statistical green
ratio µG of the anchor data is treated as an approximation of the actual green ratio.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

zth =
µG − γ0√
γ0(1− γ0)

√
|T |+ α (5)

Then the adaptive threshold can be obtained by equation 5, where |T | is the number of tokens in
the text for detection. Figure 4b and Figure 4c demonstrate the curve of adaptive threshold zth as
well as the fixed threshold α. It is clear that while the actual green ratio mismatches with the green
ratio for partition, α fails to discriminate the watermarked and clean model but zth is successful in
classifying the two models.

In summary, the reliable detection of the suspect model with LIDet contains the following processes:
(1) sample the anchor models with all queries to get corresponding responses; (2) calculate green
ratio γ and token entropy H of the response of each query qk and anchor model θm

anchor; (3) calculate
the priority score v of each query qk following equation 4; (4) sample text from the suspect LLM with
queries of higher priority v and then calculate µG of equation 5 with anchor data (text sampled from
anchor models with the same queries); (5) concatenate the sampled text and then calculate z-score
of all sampled text by z = (|sG| − γ0|T |)/

√
γ0(1− γ0)|T | and calculate zth following equation 5.

If z > zth, then the suspect LLM is considered an infringing model.

Though LIDet requires the detector to sample all anchor LLMs using a query set to obtain the
outputs corresponding to all queries, the resulting query subset and green ratio are applicable to any
suspect LLM. As long as the watermark configuration of the source LLM is determined, there is no
need to re-filter the query subset when detecting new suspect LLMs.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Models & Datasets. We conduct experiments with multiple models and datasets for a more com-
prehensive study on the detectability of LLM watermarks in model infringement scenarios. Specif-
ically, we use Llama-2-chat-7b (Touvron et al., 2023) and Llama-3-Instruct-8b (Meta, 2024) as
source LLMs, and Bloom-7b (Le Scao et al., 2023) and Mistral-Instruct-7b (Jiang et al., 2023) as
the base models for the suspect LLMs. These models differ in structure and vocabulary size. We also
serve Llama-2-chat-7b and Llama-3-Instruct-8b as anchor models of LIDet. For the queries used to
sample fine-tuning data, we select two common domains: code generation (Evol-Instruct-Code (Luo
et al., 2024)) and math problems (GSM8k (Cobbe et al., 2021)). These domains are widely used and
differ from general-purpose tasks, helping to assess detection capabilities with black-box access to
data. During detection, we use queries from Alpaca dataset (Taori et al., 2023) to sample text from
the suspect LLMs, simulating the scenario where the training data is unknown.

Construction of Model Set. Detecting LLM model infringement is a binary classification prob-
lem, so using only the z-score metric might not be sufficient to reflect the effectiveness of detection.
To address this, we construct a model set containing positive samples (trained with watermarked
data) and negative samples (trained with un-watermarked data). Specifically, we train 320 suspect
LLMs based on different configurations, including source LLMs (Llama-2, Llama-3), suspect base
models (Bloom, Mistral), training queries (code, math), and watermark methods (KGW, Unigram,
no watermark) with 10 random hash keys. Among these, 160 are positive samples (w/ watermark)
and 160 are negative samples (w/o watermark). Each positive sample could correspond to a negative
sample with the same source LLM, suspect base model, training query, and hash key.

Baseline & Metrics. We use the vanilla detection method directly as a baseline. Specifically,
vanilla detection applies a fixed z-score for detection and sample texts from the suspect LLM with
randomly selected queries. The metrics include commonly used measures in binary classification
tasks: TPR (True Positive Rate), TNR (True Negative Rate), and ACC (Accuracy). Additionally,
we propose a metric called Detection Successful Rate (DSR). For a set of samples in the model
set (containing one positive sample and its corresponding negative sample), if both samples are
successfully detected, the sample set is considered a successful detection. DSR is the proportion of
all successfully detected sample sets out of all sample sets in the model set.

Details of Watermarking, Training & Detection. Watermarks contains Unigram (n = 0) and
KGW (n = 1) with both γ = 0.25 and δ = 3.0. Training data of suspect models are sampled from

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Watermark Source LLM Method
Suspect LLM

avg.
Bloom Mistral

TPR TNR ACC DSR TPR TNR ACC DSR ACC DSR

Unigram
Llama2

Baseline 0.60 0.70 0.65 0.30 0.55 0.70 0.625 0.25 0.638 0.275
LIDet 0.95 0.90 0.925 0.90 1.0 0.95 0.975 0.95 0.95 0.925

Llama3
Baseline 0.90 0.35 0.625 0.25 0.85 0.30 0.575 0.15 0.60 0.20
LIDet 1.0 0.90 0.95 0.90 1.0 1.0 1.0 1.0 0.975 0.95

KGW
Llama2

Baseline 0.55 0.70 0.625 0.25 0.40 0.70 0.55 0.10 0.588 0.175
LIDet 0.85 0.90 0.875 0.80 0.85 0.85 0.85 0.75 0.863 0.775

Llama3
Baseline 0.70 0.70 0.70 0.40 0.35 0.95 0.65 0.30 0.675 0.35
LIDet 0.90 0.90 0.90 0.80 0.90 0.90 0.90 0.90 0.90 0.85

avg.
Baseline - - 0.65 0.30 - - 0.60 0.20 0.625 0.25
LIDet - - 0.913 0.85 - - 0.931 0.90 0.922 0.875

Table 3: Detection results of all suspect models in the model set with different source models and
base models of suspect LLMs. Queries for detection are all sampled or selected from Alpaca, while
the training data of suspect LLMs are sampled from coding or math domain.

Watermark
Query for
Training

Query for Detection
Alpaca Code Math

TPR TNR ACC DSR TPR TNR ACC DSR TPR TNR ACC DSR

Baseline

Unigram
Code 0.80 0.50 0.65 0.30 0.975 0.65 0.813 0.625 -
Math 0.65 0.525 0.588 0.175 - 0.90 0.75 0.825 0.65

KGW
Code 0.55 0.775 0.663 0.325 1.0 0.775 0.888 0.775 -
Math 0.45 0.75 0.60 0.20 - 0.925 0.675 0.80 0.60

LIDet

Unigram
Code 1.0 0.925 0.963 0.925 1.0 1.0 1.0 1.0 -
Math 0.975 0.95 0.963 0.95 - 1.0 1.0 1.0 1.0

KGW
Code 0.875 0.875 0.875 0.80 1.0 0.975 0.988 0.975 -
Math 0.875 0.90 0.888 0.825 - 1.0 0.95 0.975 0.95

Table 4: Detection results of all suspect models in the model set with different queries for detection.
source models with 5k queries in the code or math dataset. Suspect models are tuned with LoRA (Hu
et al., 2021), with a batch size of 32, epochs of 4, and a constant learning rate of 1 × 10−4. For
detection, we sample text from suspect models until the total number of sampled tokens achieves
20k. The threshold α of z-test detection is set to 4.0 for Unigram and 2.0 for KGW.

4.2 RESULTS

We demonstrate the main detection results of suspect LLMs in the model set in two dimensions.
First, we evaluate the detection results from a dimension of different source LLMs and suspect
LLMs, as shown in Table 3. Then, we assess the detection from a dimension of different training
queries and contrast them with in-domain queries for detection, as shown in Table 4.

Table 3 presents the results of watermark detection on different source and suspect LLMs. Our
method can detect LLMs containing watermarks with an ACC of 92.2% and DSR of 87.5% on
average. In contrast, vanilla detection almost fails to identify watermarked models, with a DSR
of only 25%. Compared to KGW, Unigram demonstrates better detection performance with about
10% higher DSR. Intuitively, the static green list in Unigram helps the suspect LLM learn the token
distribution of the watermark more effectively during training. Generally, our method remarkably
improve the detection performance of LLM infringement, demonstrating that LLM watermarks can
be applied for LLM’s IP protection even in a challenging scenario.

Table 4 shows the impact of different training and detection queries on the detection of suspect mod-
els. The column corresponding to Alpaca represents the out-of-domain detection scenario, while the
columns for Code and Math represent the in-domain detection scenario for suspect models training
with Code and Math data respectively. For the out-of-domain scenario, our method shows remark-
able results where DSR for Unigram surpasses 90% and for KGW surpasses 80% across two training
domains. For the in-domain scenario, our method achieves 100% DSR for Unigram and over 95%
DSR for KGW watermark. In contrast, vanilla detection only has a rather low ACC and DSR, in-
dicating that the green ratio mismatch can still significantly impact watermark detection even in
in-domain scenario.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

4.3 ABLATION STUDY
Watermark Method

Metric
ACC DSR

Unigram

LIDet 0.956 0.938
− adaptive threshold (fixed) 0.583 0.163
− query selection (random) 0.938 0.875
− query selection (η only) 0.963 0.925
− query selection (H only) 0.944 0.913
− query selection (η reverse) 0.90 0.80
− query selection (H reverse) 0.869 0.738

KGW

LIDet 0.881 0.813
− adaptive threshold (fixed) 0.60 0.238
− query selection (random) 0.856 0.725
− query selection (η only) 0.875 0.80
− query selection (H only) 0.888 0.788
− query selection (η reverse) 0.794 0.613
− query selection (H reverse) 0.788 0.575

Table 5: Ablation study on the modification of
threshold and the selection of detection queries.

We conduct ablation studies to illustrate the ef-
fectiveness of each part of LIDet. Results are
shown in Table 5.

Adaptive Threshold. Results demonstrate that
after replacing the adaptive threshold with the
original fixed threshold, the ACC and DSR are
significantly dropped to smaller than 60% and
25% respectively, showing that the adaptive
threshold is the most critical design.

Query Selection. For the impact of query se-
lection, we replace the strategy with random,
higher cross-model generalizability (η only),
higher token entropy (H only), lower cross-
model generalizability (η reverse), and lower
token entropy (H reverse) respectively. Results indicate that both principles of cross-model gen-
eralizability and token entropy are important for selecting proper queries for detection. Especially,
the DSR of reversed selection (η reverse and H reverse) drops over 20% in the worst case, which
demonstrates that inappropriately selected queries may significantly reduce the detectability.

5 RELATED WORKS

Model Infringement. Model infringement which is also known as model imitation or model ex-
traction, aims to steal a target model through its API by training with sampled data (Tramèr et al.,
2016; Orekondy et al., 2019; Wallace et al., 2020). The process of model infringement is similar to
knowledge distillation (Hinton et al., 2015; Gu et al., 2024b) but only has black-box access to the
target model. Both classification models and generative models are vulnerable to such stealing (He
et al., 2021; Krishna et al., 2020; Szyller et al., 2021). Recently, tuning LLMs with data sampled
from strong models such as GPT4 has become a usual way to improve the ability of open-source
LLMs (Taori et al., 2023; Chiang et al., 2023; Luo et al., 2024).

Detection of Model Infringement. The most common way to detect model infringement is the
model watermark (Uchida et al., 2017; Zhang et al., 2018). For language models, watermarks are
usually added to the outputted texts by injecting special words or linguistic features (Cos, 2022; He
et al., 2022a; Zhao et al., 2022; He et al., 2022b). Especially, Zhao et al. (2023) applied a bias-
based logit level watermark for generative language models, but it requires white-box access to the
suspect model to detect special signals from the probability vector. Recently, Sander et al. (2024)
studied the radioactivity of LLM watermarks, providing innovative perspectives to detect LLM wa-
termarks from the suspect model tuned with watermarked texts. While it studies an extensive range
of training and watermarking configurations, some key variables of detecting LLM infringement
such as source/suspect models, hash keys of watermarks, and training/detection queries together
with caused problems are not studied yet. Besides, it also assumes access to the same domain (at
least i.i.d) of training data, which may not align with the practical setting. Therefore, whether wa-
termarks can be used for detecting LLM infringement under a practical threat model has not been
completely solved. We fill these gaps in this paper and provide a targeted method for this task to
demonstrate the success of detection in a more challenging scenario.

6 CONCLUSION

In this paper, we explored the possibility of using existing LLM Watermarks to defend against
Model IP infringement, thereby protecting the copyright of LLM models. Based on the fundamental
differences between watermarking for models and watermarking for text, we propose LIDet for
detecting watermarks from the perspectives of watermark detectability and learnability under black-
box conditions. The evidence shows that even in scenarios where the target model and training set
are unknown, our method can still determine the existence of LLM infringement with a high degree
of accuracy.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Cosine model watermarking against ensemble distillation. 36:9512–9520, Jun. 2022. doi: 10.
1609/aaai.v36i9.21184. URL https://ojs.aaai.org/index.php/AAAI/article/
view/21184.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021. URL
https://arxiv.org/abs/2110.14168.

Chenchen Gu, Xiang Lisa Li, Percy Liang, and Tatsunori Hashimoto. On the learnability of water-
marks for language models. In The Twelfth International Conference on Learning Representa-
tions, 2024a. URL https://openreview.net/forum?id=9k0krNzvlV.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Minillm: Knowledge distillation of large
language models. In ICLR, 2024b. URL https://openreview.net/forum?id=
5h0qf7IBZZ.

Xuanli He, Lingjuan Lyu, Lichao Sun, and Qiongkai Xu. Model extraction and adversarial trans-
ferability, your BERT is vulnerable! In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer,
Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao
Zhou (eds.), Proceedings of the 2021 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, pp. 2006–2012, Online,
June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.161.
URL https://aclanthology.org/2021.naacl-main.161.

Xuanli He, Qiongkai Xu, Lingjuan Lyu, Fangzhao Wu, and Chenguang Wang. Protecting intellec-
tual property of language generation apis with lexical watermark. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 10758–10766, 2022a.

Xuanli He, Qiongkai Xu, Yi Zeng, Lingjuan Lyu, Fangzhao Wu, Jiwei Li, and Ruoxi Jia. CATER:
Intellectual property protection on text generation APIs via conditional watermarks. In Al-
ice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural
Information Processing Systems, 2022b. URL https://openreview.net/forum?id=
L7P3IvsoUXY.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.
URL https://arxiv.org/abs/1503.02531.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2021.

Hengrui Jia, Christopher A. Choquette-Choo, Varun Chandrasekaran, and Nicolas Papernot. En-
tangled watermarks as a defense against model extraction. In 30th USENIX Security Sympo-
sium (USENIX Security 21), pp. 1937–1954. USENIX Association, August 2021. ISBN 978-1-
939133-24-3. URL https://www.usenix.org/conference/usenixsecurity21/
presentation/jia.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

11

https://ojs.aaai.org/index.php/AAAI/article/view/21184
https://ojs.aaai.org/index.php/AAAI/article/view/21184
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2110.14168
https://openreview.net/forum?id=9k0krNzvlV
https://openreview.net/forum?id=5h0qf7IBZZ
https://openreview.net/forum?id=5h0qf7IBZZ
https://aclanthology.org/2021.naacl-main.161
https://openreview.net/forum?id=L7P3IvsoUXY
https://openreview.net/forum?id=L7P3IvsoUXY
https://arxiv.org/abs/1503.02531
https://www.usenix.org/conference/usenixsecurity21/presentation/jia
https://www.usenix.org/conference/usenixsecurity21/presentation/jia


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. In International Conference on Machine Learning, pp.
17061–17084. PMLR, 2023.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Manli Shu, Khalid Saifullah, Kezhi Kong, Kasun
Fernando, Aniruddha Saha, Micah Goldblum, and Tom Goldstein. On the reliability of water-
marks for large language models. In The Twelfth International Conference on Learning Repre-
sentations, 2024a. URL https://openreview.net/forum?id=DEJIDCmWOz.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Manli Shu, Khalid Saifullah, Kezhi Kong, Kasun
Fernando, Aniruddha Saha, Micah Goldblum, and Tom Goldstein. On the reliability of water-
marks for large language models. In The Twelfth International Conference on Learning Repre-
sentations, 2024b. URL https://openreview.net/forum?id=DEJIDCmWOz.

Kalpesh Krishna, Gaurav Singh Tomar, Ankur P. Parikh, Nicolas Papernot, and Mohit Iyyer. Thieves
on sesame street! model extraction of bert-based apis. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=Byl5NREFDr.

Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-free
watermarks for language models. Transactions on Machine Learning Research, 2024. ISSN
2835-8856. URL https://openreview.net/forum?id=FpaCL1MO2C.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-
parameter open-access multilingual language model. 2023.

Nils Lukas, Yuxuan Zhang, and Florian Kerschbaum. Deep neural network fingerprinting by con-
ferrable adversarial examples. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=VqzVhqxkjH1.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=UnUwSIgK5W.

Meta. Introducing meta llama 3: The most capable openly available llm to date, April 2024. URL
https://ai.meta.com/blog/meta-llama-3/.

OpenAI. Chatgpt: A large-scale generative model for open-domain chat. https://github.
com/openai/gpt-3, 2021.

Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Knockoff nets: Stealing functionality of
black-box models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

Tom Sander, Pierre Fernandez, Alain Durmus, Matthijs Douze, and Teddy Furon. Watermarking
makes language models radioactive. In Thirty-eighth Conference on Neural Information Process-
ing Systems, 2024. URL https://arxiv.org/abs/2402.14904.

Sebastian Szyller, Buse Gul Atli, Samuel Marchal, and N. Asokan. Dawn: Dynamic adversarial
watermarking of neural networks. MM ’21, pp. 4417–4425, New York, NY, USA, 2021. Associ-
ation for Computing Machinery. ISBN 9781450386517. doi: 10.1145/3474085.3475591. URL
https://doi.org/10.1145/3474085.3475591.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

12

https://openreview.net/forum?id=DEJIDCmWOz
https://openreview.net/forum?id=DEJIDCmWOz
https://openreview.net/forum?id=Byl5NREFDr
https://openreview.net/forum?id=FpaCL1MO2C
https://openreview.net/forum?id=VqzVhqxkjH1
https://openreview.net/forum?id=UnUwSIgK5W
https://ai.meta.com/blog/meta-llama-3/
https://github.com/openai/gpt-3
https://github.com/openai/gpt-3
https://arxiv.org/abs/2402.14904
https://doi.org/10.1145/3474085.3475591
https://github.com/tatsu-lab/stanford_alpaca


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Stealing ma-
chine learning models via prediction APIs. In 25th USENIX Security Symposium (USENIX
Security 16), pp. 601–618, Austin, TX, August 2016. USENIX Association. ISBN 978-1-
931971-32-4. URL https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/tramer.

Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. Embedding watermarks
into deep neural networks. In Proceedings of the 2017 ACM on International Conference
on Multimedia Retrieval, ICMR ’17, pp. 269–277, New York, NY, USA, 2017. Association
for Computing Machinery. ISBN 9781450347013. doi: 10.1145/3078971.3078974. URL
https://doi.org/10.1145/3078971.3078974.

Eric Wallace, Mitchell Stern, and Dawn Song. Imitation attacks and defenses for black-box ma-
chine translation systems. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.),
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 5531–5546, Online, November 2020. Association for Computational Linguis-
tics. doi: 10.18653/v1/2020.emnlp-main.446. URL https://aclanthology.org/2020.
emnlp-main.446.

Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph. Stoecklin, Heqing Huang, and Ian
Molloy. Protecting intellectual property of deep neural networks with watermarking. In Pro-
ceedings of the 2018 on Asia Conference on Computer and Communications Security, ASIACCS
’18, pp. 159–172, New York, NY, USA, 2018. Association for Computing Machinery. ISBN
9781450355766. doi: 10.1145/3196494.3196550. URL https://doi.org/10.1145/
3196494.3196550.

Xuandong Zhao, Lei Li, and Yu-Xiang Wang. Distillation-resistant watermarking for model protec-
tion in NLP. In Findings of the Association for Computational Linguistics: EMNLP 2022, Abu
Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics. URL
https://aclanthology.org/2022.findings-emnlp.370.

Xuandong Zhao, Yu-Xiang Wang, and Lei Li. Protecting language generation models via invisible
watermarking. In International Conference on Machine Learning, pp. 42187–42199. PMLR,
2023.

Xuandong Zhao, Prabhanjan Vijendra Ananth, Lei Li, and Yu-Xiang Wang. Provable robust water-
marking for AI-generated text. In The Twelfth International Conference on Learning Representa-
tions, 2024. URL https://openreview.net/forum?id=SsmT8aO45L.

13

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/tramer
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/tramer
https://doi.org/10.1145/3078971.3078974
https://aclanthology.org/2020.emnlp-main.446
https://aclanthology.org/2020.emnlp-main.446
https://doi.org/10.1145/3196494.3196550
https://doi.org/10.1145/3196494.3196550
https://aclanthology.org/2022.findings-emnlp.370
https://openreview.net/forum?id=SsmT8aO45L


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A DETAILS OF EXPERIMENTS

A.1 EXPERIMENTS IN SECTION 3.1

In section 3.1, we evaluate the detectability of suspect LLMs when the queries for detection and
queries for training are different. Specifically, we first sample responses from the source LLM,
Llama-2-7b-chat, watermark-injected by Unigram or KGW (n=1), with 5k queries from Evol-
Instruct-Code. Then we train the Bloom-7b on the sampled data, resulting in a suspect LLM. Then
we respectively use (1) the same queries from the training data, (2) other queries from Evol-Instruct-
Code, and (3) the Alpaca dataset to sample responses from the suspect LLM. The training configu-
ration is the same as 4.1. We collect the responses and concatenate them together for each condition
until the total length reaches 20k. Then these texts are used for z-texting and the z-score and p-value
are obtained. In contrast, suspect LLM without watermarks is trained from the un-watermarked
sampled data from Llama-2-7b-chat with the same training queries. For results of out-of-domain
detection, we sample queries from the Alpaca dataset with different seeds.

A.2 EXPERIMENTS IN SECTION 3.2

In section 3.2, we control the training data and detection data as i.i.d domain, i.e. both training data
and detection data are sampled with queries from Evol-Instruct-Code but are not the same, to better
demonstrate the impact of n. For the experiments in 4a, we randomly choose 100 different hash
keys, and then follow the partition of the green list in KGW to calculate the actual green ratio in 100
sampled responses from Alpaca’s queries with Llama-2-7b-chat. For the experiments in 4b and 4c,
the detection texts are sampled from Alpaca, to demonstrate the results of detection in a mismatched
green ratio scenario.

A.3 DETAILS OF CONSTRUCTION OF MODEL SET

The model set in 4.1 is constructed by training the base LLM with data sampled from the source
LLM with queries. Specifically, we first sample two source LLM: Llama-2-7b-chat and Llama-3-
8b-Instruct with queries sampled from Evol-Instruct-Code and GSM8k respectively. For positive
samples, we add KGW and Unigram with 10 random hash keys when processing the data sampling.
For negative samples, we do not add any watermark to the response. Then we obtain 2×2×2×10 =
80 (source LLM, dataset, watermarks, and hash keys) watermarked datasets and 2 × 2 = 4 clean
datasets. Next, we apply the datasets to train suspect models, where the base LLMs contain Bloom-
7b and Mistral-7b-Instruct. Then the model set of positive samples contains 80 × 2 = 160 (2 base
suspect LLM) models. To align the size with it, we individually train 20 models on the clean dataset
for these 2 base models and result in 4 × 2 × 20 = 160 negative samples. Thus, the total size of
the model set is 320 with 160 positive samples (infringing suspect LLM) and 160 negative samples
(clean LLM). Further more, each positive sample is correspond to a negative sample with the same
source model, data domain and suspect model, to assess the set-wise DSR metric in experiments.

B DISCUSSION

B.1 GREEN RATIO MISMATCH

B.1.1 GREEN RATIO ACROSS HASH KEYS

To show the influence of different hash keys, we demonstrate examples of the actual green ratio
of watermark detection calculated by 100 responses sampled from a negative sample in the model
set. Figure 5 demonstrates the Unigram partition and Figure 6 presents the KGW (n=1) partition.
It has shown that the actual green ratio varies across all 10 hash keys used to build the model set.
In other words, the problem of mismatched green ratio is very common in the model set. Besides,
we calculate the green ratio from the anchor data generated with the same queries sampled from
Llama-2-7b-chat. As shown in the figures, the green ratio of anchor data is much more close to the
actual green ratio.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8 9 10
Different Hash Keys

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

gr
ee

n 
ra

tio

preset
actual
anchor

Figure 5: Green ratio of presented γ0, the actual ratio from an un-watermarked suspect LLM, and
the ratio of anchor data with different hash keys for Unigram.

1 2 3 4 5 6 7 8 9 10
Different Hash Keys

0.20

0.22

0.24

0.26

0.28

0.30

gr
ee

n 
ra

tio

preset
actual
anchor

Figure 6: Green ratio of presented γ0, the actual ratio from an un-watermarked suspect LLM, and
the ratio of anchor data with different hash keys for KGW.

B.2 IMPACT OF GREEN RATIO MISMATCH ON DETECTION

Figure 7 shows the DSR of suspect LLMs under different hash keys for Unigram watermarks. The
results indicate that the vanilla detection method is heavily influenced by the hash key and struggles
to detect watermarks in the suspect LLM across all these hash keys, aligned with the discussion
in Section 3.2. In contrast, our method demonstrates more stable detection performance across
different hash keys and is significantly better at detecting watermarks in the suspect LLM.

B.2.1 TOKEN ENTROPY

The token entropy H is influenced by the length of the generated responses as well as the diversity of
tokens, as shown in examples in Table 6 and Table 7. If a response contains more number of tokens,
the token entropy is higher. Intuitively, these texts are more helpful for detecting watermarks learned
by the suspect LLM considering that they are more likely to contain the watermarked tokens when
the detection and training data are mismatched in domain. Table 6 and Table 7 also demonstrate
that the token entropy obtained from the anchor model (Llama-2-7b-chat) and the suspect model
(Mistral-7b-Instruct) is rather close (due to the general ability of LLMs), indicating the feasibility
of applying token entropy calculate from anchor LLMs to approximate the possible responses from
the suspect LLM.

C VISUALIZATION CASES OF DETECTION

Figure 8 shows visualization cases of detecting suspect LLMs in the model set. These figures in-
dicate that even though there is a gap between z-scores of positive samples (w/ watermark) and
negative samples (w/o watermark), the fixed threshold can not distinguish them properly. The main
reason is that the mismatched green ratio makes z-scores of positive samples or negative samples

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

anchor LLM
query What new technology is currently being developed to improve the healthcare system?
response As a helpful assistant, I’m glad you asked! There are several new technologies currently being developed to improve the healthcare system.

Here are some of the most promising ones: 1. Artificial Intelligence (AI): AI has already made significant inroads in various industries, and
healthcare is no exception. AI algorithms can help doctors analyze medical images, diagnose diseases, and develop personalized treatment
plans. For instance, IBM’s Watson for Oncology is an AI-powered platform that helps oncologists identify the best treatment options for
cancer patients based on their individual characteristics and medical history. 2. Telemedicine: With the rise of telemedicine, patients can now
consult doctors remotely through video conferencing or other digital channels. This can be especially useful for people living in rural areas or
those with mobility issues. Telemedicine also helps reduce hospital readmission rates by enabling doctors to monitor patients’ conditions more
closely after they leave the hospital. 3. Wearable devices: Wearable devices like smartwatches and fitness trackers are becoming increasingly
popular as people seek to monitor their health outside of traditional clinical settings. These devices can track vital signs, such as heart rate
and blood pressure, and provide real-time feedback to help patients manage chronic conditions like diabetes or hypertension. 4. Blockchain:
Blockchain technology has the potential to revolutionize healthcare by securing patient data and ensuring its integrity. By using blockchain,
doctors and hospitals can securely share patient information without compromising privacy or security. This can help prevent medical errors
and enhance the overall quality of care. 5. 3D printing: 3D printing is being used to create customized prosthetics, implants, and even organs.
This technology has the potential to transform organ transplantation and repair surgery, making it possible to create bespoke implants that fit
each patient’s unique anatomy. 6. Gene editing: The emergence of gene editing tools like CRISPR has raised the possibility of treating genetic
disorders at their source. By editing genes to correct mutations, researchers hope to develop treatments for diseases like sickle cell anemia and
cystic fibrosis. 7. Robotics: Robots are being used to assist with ...

token entropy 5.432
query Provide the answer to the equation. 7 + 6
response Of course! The answer to the equation 7 + 6 is 13.
token entropy 2.707

Table 6: An example of queries with a high and low token entropy of the anchor LLM.

suspect LLM
query What new technology is currently being developed to improve the healthcare system?
response Certainly! There are several emerging technologies that have the potential to significantly impact the healthcare industry: 1. Telemedicine

and Virtual Care: With the rise of remote work and social distancing measures, telemedicine has become increasingly popular as a way
to provide medical services remotely. Virtual care platforms allow patients to consult with doctors and receive diagnoses, treatments, and
follow-up care via video conference or phone calls. This can save time and resources while ensuring that patients receive high-quality care.
2. AI and Machine Learning: Artificial intelligence (AI) and machine learning algorithms are being developed to help diagnose diseases,
develop personalized treatment plans, and even predict patient outcomes. These tools can analyze large amounts of data from electronic health
records, laboratory tests, and other sources to identify patterns and make accurate predictions. They can also help doctors and nurses identify
potential complications early on and take appropriate preventative measures. 3. Wearable Devices: Wearable devices such as smartwatches,
fitness trackers, and sensors are becoming more sophisticated and integrated into healthcare systems. These devices can monitor vital signs,
track physical activity levels, and even detect early warning signs of chronic conditions like diabetes or heart disease. By providing real-
time data, these devices enable healthcare providers to intervene earlier and prevent complications. 4. Gene Editing: CRISPR gene editing
technology has revolutionized the field of genetics, allowing researchers to make precise changes to DNA sequences. This technology has
enormous potential in healthcare, particularly in the areas of genetic disorders and cancer therapy. It could potentially cure genetic diseases,
prevent inherited conditions, and even reverse aging. 5. Blockchain Technology: Blockchain technology is being explored for its potential
applications in healthcare. It offers a secure, decentralized platform for sharing sensitive medical information, reducing fraud, and improving
interoperability between different healthcare systems. This could lead to better coordination between doctors, hospitals, and insurers, resulting
in more efficient and effective care delivery. 6. Nanotechnology: Nanotechnology refers to the manipulation of materials at the nanoscale
level (less than 100 nanometers). Its applications in healthcare include drug delivery systems that target specific cells or tissues, biosensors
that detect diseases or monitor medication adherence, and even prosthetic limbs that can mimic natural movements. These innovations could
revolutionize how we approach various health challenges, including cancer, diabetes ...

token entropy 5.434
query Provide the answer to the equation. 7 + 6
response Of course! The sum of 7 and 6 is: 13
token entropy 2.686

Table 7: An example of queries with a high and low token entropy of the suspect LLM.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Key 1 Key 2 Key 3 Key 4 Key 5
Different Hash Keys

0.00

0.25

0.50

0.75

1.00

De
te

ct
io

n 
Se

cc
es

sf
ul

 R
at

e

ours
Vanilla

Figure 7: DSR of detection of suspect LLMs when the hash key for the Unigram watermark is
different.

0 2500 5000 7500 10000 12500 15000 17500 20000
# Generated Token

5

0

5

10

15

z-
sc

or
e

w/o watermark
w/ watermark
Adaptive Threshold
Fixed Threshold

(a)

0 2500 5000 7500 10000 12500 15000 17500 20000
# Generated Token

5

10

15

20

25
z-

sc
or

e
w/o watermark
w/ watermark
Adaptive Threshold
Fixed Threshold

(b)

0 2500 5000 7500 10000 12500 15000 17500 20000
# Generated Token

10

8

6

4

2

0

2

4

z-
sc

or
e w/o watermark

w/ watermark
Adaptive Threshold
Fixed Threshold

(c)

0 2500 5000 7500 10000 12500 15000 17500 20000
# Generated Token

5

4

3

2

1

0

1

2

z-
sc

or
e

w/o watermark
w/ watermark
Adaptive Threshold
Fixed Threshold

(d)

0 2500 5000 7500 10000 12500 15000 17500 20000
# Generated Token

2

4

6

8

10

z-
sc

or
e

w/o watermark
w/ watermark
Adaptive Threshold
Fixed Threshold

(e)

0 2500 5000 7500 10000 12500 15000 17500 20000
# Generated Token

2

1

0

1

2

3

z-
sc

or
e

w/o watermark
w/ watermark
Adaptive Threshold
Fixed Threshold

(f)

0 2500 5000 7500 10000 12500 15000 17500 20000
# Generated Token

4

3

2

1

0

1

2

z-
sc

or
e

w/o watermark
w/ watermark
Adaptive Threshold
Fixed Threshold

(g)

0 2500 5000 7500 10000 12500 15000 17500 20000
# Generated Token

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

z-
sc

or
e

w/o watermark
w/ watermark
Adaptive Threshold
Fixed Threshold

(h)

0 2500 5000 7500 10000 12500 15000 17500 20000
# Generated Token

2

1

0

1

2

z-
sc

or
e

w/o watermark
w/ watermark
Adaptive Threshold
Fixed Threshold

(i)

Figure 8: Cases of detection with the adaptive threshold.

deviate from the expected value. In contrast, the adaptive threshold successfully discriminates them
in these cases because it takes the mismatched green ratio into account by estimating the actual ratio
with anchor data.

D LIMITATIONS

In this work, we mainly focus on the factor of LLM infringement detection of source LLMs, suspect
LLMs, and domains of training/detection queries. Other factors such as training configurations
(e.g. data size, learning rate, and adapters) and watermarking configurations (e.g. more kinds of

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

watermarks and watermark strength δ) are not been exploited. Considering that related works such
as Gu et al. (2024a) and Sander et al. (2024) have studied the impact of these factors on the hard-
label distillation of LLMs, the influence of these factors is clear enough. For instance, if the Stealer
tunes their models with full-parameter training instead of LoRA, or with more sampled data, the
successful rate of detection will certainly increase.

Besides, we do not consider the robustness of watermark detection when facing paraphrase attacks,
mixed-data tuning, or further training in this paper. In the case of ”model stealing”, the Stealer
aims to targetedly imitate the source LLM while also improving their own models. Anyway, it is
an important concern to detect model infringement with higher robustness and we leave this as the
future work.

18


	Introduction
	Background & Preliminary
	LLM Watermarks and Detection
	Problem Statement
	Threat Model

	Methodology
	Attenuation of Watermarks Detectability in Domain Mismatch
	Green Ratio Mismatch of Learnable Watermarks
	LIDet: Reliable Detection for LLM Infringement

	Experiments
	Experimental Settings
	Results
	Ablation Study

	Related Works
	Conclusion
	Details of Experiments
	Experiments in Section 3.1
	Experiments in Section 3.2
	Details of Construction of Model Set

	Discussion
	Green Ratio Mismatch
	Green Ratio across Hash Keys

	Impact of Green Ratio Mismatch on Detection
	Token Entropy


	Visualization Cases of Detection
	Limitations

