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ABSTRACT

The powerful capabilities of LLMs stem from their rich training data and high-
quality labeled datasets, making the training of strong LLMs a resource-intensive
process, which elevates the importance of IP protection for such LLMs. Compared
to gathering high-quality labeled data, directly sampling outputs from these fully
trained LLMs as training data presents a more cost-effective approach. This prac-
tice—where a suspect model is fine-tuned using high-quality data derived from
these LLMs, thereby gaining capabilities similar to the target model—can be seen
as a form of IP infringement against the original LLM. In recent years, LLM wa-
termarks have been proposed and used to detect whether a text is AI-generated.
Intuitively, if data sampled from a watermarked LLM is used for training, the
resulting model would also be influenced by this watermark. This raises the ques-
tion: can we directly use such watermarks to detect IP infringement of LLMs?
In this paper, we explore the potential of LLM watermarks for detecting model
infringement. We find that there are two issues with direct detection: (1) The
queries used to sample output from the suspect LLM have a significant impact on
detectability. (2) The watermark that is easily learned by LLMs exhibits instability
regarding the watermark’s hash key during detection. To address these issues, we
propose LIDet, a detection method that leverages available anchor LLMs to select
suitable queries for sampling from the suspect LLM. Additionally, it adapts the de-
tection threshold to mitigate detection failures caused by different hash keys. To
demonstrate the effectiveness of this approach, we construct a challenging model
set containing multiple suspect LLMs on which direct detection methods struggle
to yield effective results. Our method achieves over 90% accuracy in distinguish-
ing between infringing and clean models, demonstrating the feasibility of using
LLM watermarks to detect LLM IP infringement.
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Figure 1: Overview of LLM IP infringement and its detection with decoding-based LLM water-
marks. The Stealer aims to steal the source LLM by sampling with its queries and using them to
tune its base LLM. While the Detector aims to detect whether a suspect LLM tuned with data sam-
pled from the source LLM. It can access an API provided by the Stealer but does not know the base
LLM and the dataset for tuning. To this end, a detection method including selecting proper queries
for sampling the suspect LLM and adaptive detection with anchor data is proposed to detect IP in-
fringement better.
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1 INTRODUCTION

With the development of large language models (LLMs) and the increased scale of both model
parameters and training data, substantial investments and costs have been introduced for collecting
data and training the models (OpenAI, 2021; Achiam et al., 2023). Although model owners typically
offer only public APIs to protect their intellectual property (IP), these models remain vulnerable:
stealers can query the model’s APIs to obtain high-quality data and finetune their own model with
such queried data (Chiang et al., 2023; Taori et al., 2023). As a result, stealers can obtain models that
perform similarly to the source LLMs in general or specialized tasks, thereby stealing the capabilities
of the source LLMs and introducing IP Infringement.

To address it, a key step is to detect model IP infringement. Despite this problem having been
explored in the traditional classification tasks (Tramèr et al., 2016; Jia et al., 2021; Lukas et al.,
2021; Cos, 2022), IP infringement for LLMs faces two challenges. First, LLMs are designed as
foundation models for diverse tasks, meaning stealers can sample data from any domain, making it
difficult to determine the specific data used by the stealer. Second, the stolen data is typically used to
fine-tune an existing base model rather than train a model from scratch. This introduces additional
complexity in detecting model infringement, as the fine-tuned model retains the characteristics of
both the original model and the new data.

An intuitive approach for model IP infringement detection is to inject a special distribution into
the source model’s output, such that a suspect model trained on this data would learn a special
distribution, which can be used for detection, which is also known as watermarking (He et al.,
2022a; Zhao et al., 2022; 2023; He et al., 2022b). Recently, watermarking has mainly been applied
to detect a particular text generated by a specific LLM by injecting watermarks into the output during
inference (Kirchenbauer et al., 2023; Zhao et al., 2024; Kirchenbauer et al., 2024a; Kuditipudi et al.,
2024). This watermarking technique works by dividing the vocabulary into a “green list” and a “red
list”, and adding bias to the logits of different tokens. This increases the frequency of tokens from
the green list in the output text so that the watermarked text can be detected with a fixed threshold
of z-score from a z-test of the green ratio. Since watermarks can change the distribution of output, a
natural question emerges: “Could such watermarks be used to detect LLM model infringement for
free?”

In this paper, we propose a watermark-based LLM model infringement detection algorithm,
LIDet (LLM Infringement Detection). Our journey begins by identifying the key challenges of
using LLM watermarks for model infringement detection, compared to detecting generated text.

The first challenge is attenuation of watermark detectability caused by domain mismatch between
training and detection. As LLMs are foundation models designed for diverse domains, stealers can
extract data from arbitrary domains to fine-tune their suspect models, such as code generation and
mathematics. The stealer can avoid being identified by accessing the API of the target model using
anonymous accounts. Consequently, the detector is unaware of the specific domain data used by
the stealer. Thus, the detector needs to construct detection data. However, if the detection data has
a large distribution mismatch with the training data, it leads to an attenuation in the frequency of
watermarked tokens in the text, weakening detection capability, as shown in Figure 2a.

The second challenge is the guarantee of watermark learnability results in a green ratio mismatch,
leading to the failure of watermark detection for some hash keys. Unlike watermarking for detecting
generated text, where the watermark is directly injected, watermarking for suspect LLM infringe-
ment detection involves the watermark being learned through the training process on unknown sam-
pled data. The detectability of the watermark in the suspect model is thus highly dependent on its
learnability. To ensure the watermark embedded in the source model is also learned by the suspect
model, careful design of the watermarking algorithm is essential. While text watermarking typically
uses high n-gram lengths (e.g., 4) to ensure robustness against reverse engineering (Kirchenbauer
et al., 2024b), this reduces the learnability of the watermark (Gu et al., 2024a), as also shown by
our experiments in Figure 2b. To address this, an intuitive approach to improve the learnability
of the text watermark is to decrease the n-gram length, for example, setting it to 1. However, this
introduces another problem: using a low n-gram length causes the actual green ratio to be heav-
ily influenced by the random hash key, as shown in Figure 2c. This mismatch between the actual
green ratio and the preset green ratio for partitioning the green list makes the z-score-based detec-
tion with a fixed threshold fail, which means that even with a valid text watermarking scheme like
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Figure 2: (a) and (b) show z-scores of text sampled from the suspect LLM tuned with KGW-
watermarked data. A higher z-score represents more watermarked green tokens in the suspect LLM,
indicating better learnability of watermarks and detectability of suspect LLMs. (c) demonstrates
greater n leads to the actual green ratio being unstable from the preset green ratio 0.25.

KGW (Kirchenbauer et al., 2023), the watermark may be detectable with some hash keys but not
with others.

To address these challenges, our proposed method, LIDet, contains two designs as briefly demon-
strated in Figure 1: (1) To mitigate the attenuation of detectability introduced by mismatched train-
ing and detection domains, we apply several anchor LLMs (which can be different from the suspect
LLM) to help select such queries which are more likely to sample texts containing more diverse and
evenly distributed tokens. Compared with those queries that bring texts with highly repetitive or
centrally distributed tokens, these queries could get responses containing effectively watermarked
tokens with higher probability. (2) To solve the mismatched green ratio brought by watermarks with
a low n for better learnability, we replace the fixed threshold of z-score-based detection with an
adaptive threshold by estimating an actual green ratio from pre-generated anchor data. Meanwhile,
we take the cross-model generalization into account during query selection to ensure the green ratio
of anchor data generated by anchor LLMs can be closer to the natural green ratio of un-watermarked
text. Therefore, the reference green ratio can help better discriminate between the infringed suspect
LM and the clean one.

We conduct experiments on a black-box scenario from the detector’s perspective with LLM water-
marks such as KGW (Kirchenbauer et al., 2023) and Unigram (Zhao et al., 2024), as well as different
source LLMs, suspect LLMs, and datasets for tuning suspect LLMs. Results reveal that our proposed
detection method increases the reliability of discriminating against unauthorized distilling of source
LLMs and further demonstrate successful cases of using LLM watermarks for defending against
LLM’s model infringement. Specifically, our method achieves the detection accuracy of over 90%
in the cross-domain detection on a challenging model set containing suspect LLMs with multiple
settings while the vanilla detection struggles to provide effective results.

Our contributions can be summarized as follows:
• We explore the feasibility of using existing LLM watermarks to detect model infringement

and analyze the limitations of vanilla detection methods in this task.

• We propose a simple yet effective detection method, LIDet, to enhance LLM model in-
fringement detection, significantly improving the detectability of model infringement.

• Through extensive experiments under realistic threat models, we demonstrate that LLM
watermarks with our proposed detection methods, can effectively detect model infringe-
ment and thus protect the copyright of source LLMs.

2 BACKGROUND & PRELIMINARY

2.1 LLM WATERMARKS AND DETECTION

KGW. KGW (Kirchenbauer et al., 2023) modifies the frequency of certain tokens in the generated
text by adding a bias to the logits of specific tokens during LLM decoding. Specifically, during
each decoding step, KGW randomly divides the tokenizer’s vocabulary table into a green list and
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a red list based on a predefined green list ratio γ and hash key ξ using a hash function applied to
the preceding n tokens: fhash(ξ, x−1, ..., x−n). Logits of tokens in the green list are increased by a
fixed hyperparameter δ, thus raising the probability that these green tokens will be sampled during
decoding. Detection of KGW works by statistically analyzing the proportion of green list tokens
in the target text (with |T | tokens in total). After determining the number of green tokens |sG|
in the target text, a z-test is performed to compute the z-score or p-value to evaluate whether the
proportion of green tokens |sG|/|T | significantly exceeds the preset green ratio γ0: z = (|sG| −
γ0|T |)/

√
γ0(1− γ0)|T |. Typically, if the z-score exceeds a predetermined threshold α (such as

4.0), the text is considered to be watermarked.

Unigram. The generation and detection of the Unigram (Zhao et al., 2024) watermark are similar
to KGW. The key difference is that Unigram does not use the preceding n tokens to compute the
hash function; instead, it divides the green list solely based on the hash key ξ. As a result, the green
list of Unigram is static. Compared to KGW (n ≥ 1), Unigram (n = 0) significantly enhances the
robustness and detectability of the text watermark. However, this also increases the influence of the
hash key on green tokens, making the actual green ratio deviate from the preset green ratio γ.

2.2 PROBLEM STATEMENT

The process of LLM model stealing and infringement detection can be divided into the following
stages as illustrated in Figure 1: (1) The stealer constructs a query set QT intended for fine-tuning
their base model. By accessing the source LLM’s API, they sample the corresponding responses
RT from the query set, thus creating a dataset DT for instruction fine-tuning. (2) The stealer applies
the constructed training dataset DT to fine-tune their own base model, resulting in a suspect LLM
θsuspect. They then provide the API of the suspect LLM. (3) The detector accesses the API of the
suspect LLM θsuspect and uses a series of queries QD to sample output text RDfrom the suspect
LLM’s API. (4) The detector analyzes the concatenated output text RD from the suspect LLM
θsuspect to check for the presence of the source LLM’s watermark, thereby determining whether the
suspect LLM is fine-tuned using data sampled from the source LLM.

2.3 THREAT MODEL

We consider two opposing roles in the task: the Detector (the owner of the source LLM and the
entity responsible for detecting infringement) and the Stealer (the owner of the suspect LLM).

Stealer. The Stealer is the owner of the suspect LLM, who attempts to steal the capabilities of the
source LLM by fine-tuning their base model using data sampled from the source LLM. The Stealer
can only sample data through the source LLM’s API but has the flexibility to choose any query for
sampling. We consider the realistic scenarios where the Stealer can use different IPs and anonymous
accounts to query the source LLM so that the detector can not know what data are queried. In the
context of stealing a target LLM, we treat this fine-tuning as the last training operation of the suspect
LLM. The Stealer would also not try to paraphrase the sampled text considering the paraphrasing
will change the stealing target from the source LLM to the paraphrasing model. After fine-tuning,
the Stealer provides the API of the suspect LLM to the public, without revealing the model structure
or training data.

Detector. The Detector is the owner of the source LLM and aims to determine whether the suspect
LLM has infringed upon the source model. The Detector has full knowledge of the source LLM,
including model weights and watermarking configurations. However, during detection, the Detector
can only access the suspect LLM’s API and is unaware of its model structure or the data used for
training. The Detector must rely solely on the output text generated by the suspect LLM to determine
if it has infringed upon the source LLM.

3 METHODOLOGY

The difference between the directly injected text watermark and the learning-based LLM’s model
watermark brings two challenges that hurt the effectiveness of detecting infringing suspect LLMs:
(1) The scenario where the detector can not get training data of the suspect LLM means there is a
domain mismatch between training and detection data, resulting in the attenuation of watermark
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Detection
Query

Watermark
w/ watermark w/o watermark

z-score p-value z-score p-value

Training Query
Unigram 27.6 1.4e-167 0.731 2.3e-1

KGW 5.61 1.04e-8 0.406 3.4e-1

i.i.d Query
Unigram 24.6 4.9e-134 0.534 3.0e-1

KGW 5.12 1.5e-7 -0.281 6.1e-1

OOD Query
Unigram 11.2 3.5e-29 -3.67 9.9e-1

KGW 1.21 1.1e-1 -1.79 9.6e-1

Table 1: Detectability of suspect models with different queries. A higher z-score or a lower p-value
indicates that the suspect LLM is more likely to be watermarked.
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(a) Unigram-watermarked suspect LLM.
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(b) KGW-watermarked suspect LLM.

Figure 3: Z-scores of generated text sampled with different out-of-domain query sets.
detectability. (2) The demand for learnable watermarks limits the n of watermarks to small, leading
to green ratio mismatch between the actual one and the preset one, which further causes failed
detection. We first discuss these two challenges and then introduce our LIDet for reliable detection
to address them.

3.1 ATTENUATION OF WATERMARKS DETECTABILITY IN DOMAIN MISMATCH

The detection of a suspect LLM involves two key steps: sampling text from the suspect LLM for
detection, and detecting the watermark in the text. In this case, an important consideration is to
check if the watermark is detectable under the threat model, i.e. whether watermarks of suspect
LLMs can be detected without knowledge of the training data. To answer this question, we conduct a
preliminary experiment to first fine-tune a suspect LLM with coding data (Luo et al., 2024) sampled
from the source LLM. Then three different query sets are applied to sample text from the tuned
suspect LLM: the same queries for training the suspect model (the first-row of Table 1), queries
different from training queries but in the same domain (also coding queries, the second-row of
Table 1), and the out of domain queries (general queries sampled from Alpaca (Taori et al., 2023),
the third-row of Table 1).

Results from Table 1 reveal that the detectability of LLM watermarks attenuates along with the in-
crease of difference between detection queries and training queries. The z-score of the sampled text
is significantly lower compared to when the detector knows the suspect LLM’s training queries, in-
dicating a reduced detection capability. Intuitively, this occurs because the watermark in the suspect
LLM is learned from the training data, so the closer the sampled text is to the training data during
detection, the better the detection performance.

Figure 3 further illustrates the detectability of different out-of-domain detection queries. It indicates
that though the detected texts are all sampled with general query sets, the detectability of these
cases varies. The curve of text sampled with less-detectable queries (e.g. query set 1 of Figure 3b)
shows that the z-score sometimes significantly drops while the number of tokens increases, which
demonstrates that some queries make negative contributions to detecting watermarks. In contrast,
query sets such as 2 and 3 from Figure 3b still demonstrate enough z-scores for watermark detection.
We find that those queries causing z-score dropping usually have low diversity responses in tokens,
which are short in length or have high repetition tokens, thus leading to a bad detection. Therefore,
it is crucial to screen out unhelpful queries from an out-of-domain general query set to detect LLM
infringement without in-domain queries.
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Watermark
w/ watermark w/o watermark

z-score p-value z-score p-value
Unigram n=0 24.6 4.9e-134 0.534 3.0e-1

KGW

n=1 5.12 1.5e-7 -0.281 6.1e-1
n=2 2.11 1.7e-2 -0.196 5.8e-1
n=3 1.15 1.3e-1 0.056 4.8e-1
n=4 0.20 4.2e-1 -0.061 5.2e-1

Table 2: Learnability of watermarks with different n. A higher z-score or a lower p-value indicates
that the watermark is more learnable during the tuning process of the suspect LLM.
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(b) z-scores with a higher green ratio.
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(c) z-scores with a lower green ratio.

Figure 4: A small n can lead to failed detection. (a) a small n makes the actual green ratio deviate
from the set of 0.25. (b) z-score of unwatermarked text easily surpasses the fixed threshold when the
actual green ratio is higher than γ. (c) z-score of watermarked text is smaller than the fixed threshold
when the actual green ratio is lower than γ.

3.2 GREEN RATIO MISMATCH OF LEARNABLE WATERMARKS

The learnability of LLM watermarks decides whether watermarks of source LLMs’ outputs can be
transferred to the suspect LLM during fine-tuning. Obviously, the learnability of watermarks is
highly related to the hyper-parameter n in KGW. As shown in Table 2, a watermark with a greater
n results in a smaller z-score and higher p-value, which means it is less learnable for suspect LLMs.
Intuitively, when the watermark is transferred from the source LLM to the suspect LLM, the suspect
LLM essentially learns the distribution shift introduced by the n-gram-based watermark. When n
increases, the distribution of n-grams in the training data becomes more dispersed, making it more
difficult for the suspect LLM to sufficiently learn the n-gram watermark with the same amount of
training data. This implies that smaller values of n (n = 0, 1) are more effective for detecting model
infringement, as they make it easier for the watermark to be learned and subsequently detected.

However, the learnable watermark with small n leads to another problem: the partition of the green
list is rather sensitive to the random hash key ξ. Figure 4a illustrates the distribution of the actual
green ratio of unwatermarked texts with random hash keys, which reveals that watermarks with
small n can result in a mismatch between the actual green ratio and the preset green ratio γ during
partition. Considering that the calculation of the z-score for detection is dependent on the green ratio
γ, such a mismatch could be disastrous for watermark detection. When the actual green ratio is lower
than the set γ, the calculated z-score will be lower than the actual value. In this case, the z-score of
text with the watermark might fall below the detection threshold, leading to a higher false negative
rate (as shown in Figure 4c). Conversely, when the actual green ratio is higher than the set γ, the
calculated z-score will be higher than the actual value. This can result in even non-watermarked text
having a z-score above the detection threshold (as shown in Figure 4b), thereby increasing the false
positive rate.

These results highlight a trade-off between the learnability of LLM watermarks and the stability
of the green ratio with respect to the hyper-parameter n when detecting model infringement. To
ensure the watermark’s learnability and detectability together, it is crucial to replace the original
fixed threshold of z-scores with an adaptive threshold which can compensate for the instability of
the actual green ratio brought by the small n.

6
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3.3 LIDET: RELIABLE DETECTION FOR LLM INFRINGEMENT

Our proposed LIDet includes two key stages: (1) selecting queries for sampling detection text from
the suspect LLM with the help of a set of anchor LLMs, and (2) detecting watermarks from the
detection text with an adaptive threshold of z-score. We address the challenge introduced by domain
mismatch by selecting queries that can promote responses with diverse and frequency-balanced to-
kens, regarded as the principle of token entropy. Besides, we mitigate the problem caused by mis-
matched green ratios via selecting cross-model generalizable queries and detecting the watermark
with an adaptive threshold to fill in the z-score gap by estimating the actual green ratio.

Anchoring Treated Query Selection. The queries are selected by two principles: (1) the token
entropy of their responses, and (2) their cross-model generalizability. To identify the property of
each candidate query, we introduce a set of anchor LLMs {θanchor}M first. These anchor LLMs are
used to help select a proper query set QD from all candidates Q = {q1, q2, ..., qK}. By sampling
responded text with all K candidate queries from M anchor LLMs, a set of anchor responses RD is
constructed:

RD =

M⋃
m=1

K⋃
k=1

θm
anchor(qk ∈ Q) = {r11, ..., rmk , ..., rMK } (1)

Based on the anchor responses, we define the token entropy H of the response for each query qk
as the frequency balance degree of contained tokens across all anchor LLMs, shown in equation 2,
where τ refers to tokens in the corresponding response rmk and P (τ) stands for the frequency of
token τ . Query with a higher H usually can promote a response containing more tokens and the
distribution of tokens is more even, making it more likely to include watermarked tokens.

H(qk) = −Em=1,...,M

 ∑
τ∈rm

k

P (τ) logP (τ)

 (2)

Then we introduce the concept of the cross-model generalizability η of queries. Specifically, η of
query qk is defined as the negative variance of the statistical green ratio γm

k of the corresponding
response rmk sampled from all m anchor LLMs, as demonstrated in equation 3. The green ratio γm

k
of response γm

k is calculated by the number of green tokens |sG|mk and the number of all tokens |rmk |.
A higher η indicates the green ratio of the response sampled from different anchor LLMs is closer,
which means that the corresponding query is more likely to produce texts with similar green ratios
across various LLMs. Therefore, we could avoid queries that yield significantly different green
ratios when sampled from different models by selecting queries with smaller η, thus providing a
better estimation of the actual green ratio of the suspect LLM in the next stage.

η(qk) = −Varm=1,...,M (γm
k ), γm

k = |sG|mk /|rmk | (3)

According to the token entropy H and cross-model generalizability η of all candidate queries, we
select detection queries following the priority score v given in equation 4. Queries with higher token
entropy and higher cross-model generalizability are selected first to sample the suspect LLM to get
detection texts.

v(qk) =
H(qk)−minH(qk)

maxH(qk)−minH(qk)
+

η(qk)−min η(qk)

max η(qk)−min η(qk)
(4)

Detection with Adaptive Threshold. By the above stage of query selection, the query set QD is
built. The texts for watermark detection are sampled from the suspect LLM with QD. Specifically,
we sample corresponding responses from the suspect LLM with each query in QD and then concate-
nate them together for the later detection process. For z-score-based detection, instead of applying
the fixed threshold α, we propose a watermark-adapted threshold zth to correct the mismatch be-
tween the actual green ratio and the preset green rate γ0. The adaptive threshold works by filling in
the gap of z-scores caused by the mismatched actual green ratio. To estimate the actual green ratio,
we collect responses sampled from anchor LLMs with QD as anchor data. The statistical green
ratio µG of the anchor data is treated as an approximation of the actual green ratio.
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zth =
µG − γ0√
γ0(1− γ0)

√
|T |+ α (5)

Then the adaptive threshold can be obtained by equation 5, where |T | is the number of tokens in
the text for detection. Figure 4b and Figure 4c demonstrate the curve of adaptive threshold zth as
well as the fixed threshold α. It is clear that while the actual green ratio mismatches with the green
ratio for partition, α fails to discriminate the watermarked and clean model but zth is successful in
classifying the two models.

In summary, the reliable detection of the suspect model with LIDet contains the following processes:
(1) sample the anchor models with all queries to get corresponding responses; (2) calculate green
ratio γ and token entropy H of the response of each query qk and anchor model θm

anchor; (3) calculate
the priority score v of each query qk following equation 4; (4) sample text from the suspect LLM with
queries of higher priority v and then calculate µG of equation 5 with anchor data (text sampled from
anchor models with the same queries); (5) concatenate the sampled text and then calculate z-score
of all sampled text by z = (|sG| − γ0|T |)/

√
γ0(1− γ0)|T | and calculate zth following equation 5.

If z > zth, then the suspect LLM is considered an infringing model.

Though LIDet requires the detector to sample all anchor LLMs using a query set to obtain the
outputs corresponding to all queries, the resulting query subset and green ratio are applicable to any
suspect LLM. As long as the watermark configuration of the source LLM is determined, there is no
need to re-filter the query subset when detecting new suspect LLMs.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Models & Datasets. We conduct experiments with multiple models and datasets for a more com-
prehensive study on the detectability of LLM watermarks in model infringement scenarios. Specif-
ically, we use Llama-2-chat-7b (Touvron et al., 2023) and Llama-3-Instruct-8b (Meta, 2024) as
source LLMs, and Bloom-7b (Le Scao et al., 2023) and Mistral-Instruct-7b (Jiang et al., 2023) as
the base models for the suspect LLMs. These models differ in structure and vocabulary size. We also
serve Llama-2-chat-7b and Llama-3-Instruct-8b as anchor models of LIDet. For the queries used to
sample fine-tuning data, we select two common domains: code generation (Evol-Instruct-Code (Luo
et al., 2024)) and math problems (GSM8k (Cobbe et al., 2021)). These domains are widely used and
differ from general-purpose tasks, helping to assess detection capabilities with black-box access to
data. During detection, we use queries from Alpaca dataset (Taori et al., 2023) to sample text from
the suspect LLMs, simulating the scenario where the training data is unknown.

Construction of Model Set. Detecting LLM model infringement is a binary classification prob-
lem, so using only the z-score metric might not be sufficient to reflect the effectiveness of detection.
To address this, we construct a model set containing positive samples (trained with watermarked
data) and negative samples (trained with un-watermarked data). Specifically, we train 320 suspect
LLMs based on different configurations, including source LLMs (Llama-2, Llama-3), suspect base
models (Bloom, Mistral), training queries (code, math), and watermark methods (KGW, Unigram,
no watermark) with 10 random hash keys. Among these, 160 are positive samples (w/ watermark)
and 160 are negative samples (w/o watermark). Each positive sample could correspond to a negative
sample with the same source LLM, suspect base model, training query, and hash key.

Baseline & Metrics. We use the vanilla detection method directly as a baseline. Specifically,
vanilla detection applies a fixed z-score for detection and sample texts from the suspect LLM with
randomly selected queries. The metrics include commonly used measures in binary classification
tasks: TPR (True Positive Rate), TNR (True Negative Rate), and ACC (Accuracy). Additionally,
we propose a metric called Detection Successful Rate (DSR). For a set of samples in the model
set (containing one positive sample and its corresponding negative sample), if both samples are
successfully detected, the sample set is considered a successful detection. DSR is the proportion of
all successfully detected sample sets out of all sample sets in the model set.

Details of Watermarking, Training & Detection. Watermarks contains Unigram (n = 0) and
KGW (n = 1) with both γ = 0.25 and δ = 3.0. Training data of suspect models are sampled from
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Watermark Source LLM Method
Suspect LLM

avg.
Bloom Mistral

TPR TNR ACC DSR TPR TNR ACC DSR ACC DSR

Unigram
Llama2

Baseline 0.60 0.70 0.65 0.30 0.55 0.70 0.625 0.25 0.638 0.275
LIDet 0.95 0.90 0.925 0.90 1.0 0.95 0.975 0.95 0.95 0.925

Llama3
Baseline 0.90 0.35 0.625 0.25 0.85 0.30 0.575 0.15 0.60 0.20
LIDet 1.0 0.90 0.95 0.90 1.0 1.0 1.0 1.0 0.975 0.95

KGW
Llama2

Baseline 0.55 0.70 0.625 0.25 0.40 0.70 0.55 0.10 0.588 0.175
LIDet 0.85 0.90 0.875 0.80 0.85 0.85 0.85 0.75 0.863 0.775

Llama3
Baseline 0.70 0.70 0.70 0.40 0.35 0.95 0.65 0.30 0.675 0.35
LIDet 0.90 0.90 0.90 0.80 0.90 0.90 0.90 0.90 0.90 0.85

avg.
Baseline - - 0.65 0.30 - - 0.60 0.20 0.625 0.25
LIDet - - 0.913 0.85 - - 0.931 0.90 0.922 0.875

Table 3: Detection results of all suspect models in the model set with different source models and
base models of suspect LLMs. Queries for detection are all sampled or selected from Alpaca, while
the training data of suspect LLMs are sampled from coding or math domain.

Watermark
Query for
Training

Query for Detection
Alpaca Code Math

TPR TNR ACC DSR TPR TNR ACC DSR TPR TNR ACC DSR

Baseline

Unigram
Code 0.80 0.50 0.65 0.30 0.975 0.65 0.813 0.625 -
Math 0.65 0.525 0.588 0.175 - 0.90 0.75 0.825 0.65

KGW
Code 0.55 0.775 0.663 0.325 1.0 0.775 0.888 0.775 -
Math 0.45 0.75 0.60 0.20 - 0.925 0.675 0.80 0.60

LIDet

Unigram
Code 1.0 0.925 0.963 0.925 1.0 1.0 1.0 1.0 -
Math 0.975 0.95 0.963 0.95 - 1.0 1.0 1.0 1.0

KGW
Code 0.875 0.875 0.875 0.80 1.0 0.975 0.988 0.975 -
Math 0.875 0.90 0.888 0.825 - 1.0 0.95 0.975 0.95

Table 4: Detection results of all suspect models in the model set with different queries for detection.
source models with 5k queries in the code or math dataset. Suspect models are tuned with LoRA (Hu
et al., 2021), with a batch size of 32, epochs of 4, and a constant learning rate of 1 × 10−4. For
detection, we sample text from suspect models until the total number of sampled tokens achieves
20k. The threshold α of z-test detection is set to 4.0 for Unigram and 2.0 for KGW.

4.2 RESULTS

We demonstrate the main detection results of suspect LLMs in the model set in two dimensions.
First, we evaluate the detection results from a dimension of different source LLMs and suspect
LLMs, as shown in Table 3. Then, we assess the detection from a dimension of different training
queries and contrast them with in-domain queries for detection, as shown in Table 4.

Table 3 presents the results of watermark detection on different source and suspect LLMs. Our
method can detect LLMs containing watermarks with an ACC of 92.2% and DSR of 87.5% on
average. In contrast, vanilla detection almost fails to identify watermarked models, with a DSR
of only 25%. Compared to KGW, Unigram demonstrates better detection performance with about
10% higher DSR. Intuitively, the static green list in Unigram helps the suspect LLM learn the token
distribution of the watermark more effectively during training. Generally, our method remarkably
improve the detection performance of LLM infringement, demonstrating that LLM watermarks can
be applied for LLM’s IP protection even in a challenging scenario.

Table 4 shows the impact of different training and detection queries on the detection of suspect mod-
els. The column corresponding to Alpaca represents the out-of-domain detection scenario, while the
columns for Code and Math represent the in-domain detection scenario for suspect models training
with Code and Math data respectively. For the out-of-domain scenario, our method shows remark-
able results where DSR for Unigram surpasses 90% and for KGW surpasses 80% across two training
domains. For the in-domain scenario, our method achieves 100% DSR for Unigram and over 95%
DSR for KGW watermark. In contrast, vanilla detection only has a rather low ACC and DSR, in-
dicating that the green ratio mismatch can still significantly impact watermark detection even in
in-domain scenario.
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4.3 ABLATION STUDY
Watermark Method

Metric
ACC DSR

Unigram

LIDet 0.956 0.938
− adaptive threshold (fixed) 0.583 0.163
− query selection (random) 0.938 0.875
− query selection (η only) 0.963 0.925
− query selection (H only) 0.944 0.913
− query selection (η reverse) 0.90 0.80
− query selection (H reverse) 0.869 0.738

KGW

LIDet 0.881 0.813
− adaptive threshold (fixed) 0.60 0.238
− query selection (random) 0.856 0.725
− query selection (η only) 0.875 0.80
− query selection (H only) 0.888 0.788
− query selection (η reverse) 0.794 0.613
− query selection (H reverse) 0.788 0.575

Table 5: Ablation study on the modification of
threshold and the selection of detection queries.

We conduct ablation studies to illustrate the ef-
fectiveness of each part of LIDet. Results are
shown in Table 5.

Adaptive Threshold. Results demonstrate that
after replacing the adaptive threshold with the
original fixed threshold, the ACC and DSR are
significantly dropped to smaller than 60% and
25% respectively, showing that the adaptive
threshold is the most critical design.

Query Selection. For the impact of query se-
lection, we replace the strategy with random,
higher cross-model generalizability (η only),
higher token entropy (H only), lower cross-
model generalizability (η reverse), and lower
token entropy (H reverse) respectively. Results indicate that both principles of cross-model gen-
eralizability and token entropy are important for selecting proper queries for detection. Especially,
the DSR of reversed selection (η reverse and H reverse) drops over 20% in the worst case, which
demonstrates that inappropriately selected queries may significantly reduce the detectability.

5 RELATED WORKS

Model Infringement. Model infringement which is also known as model imitation or model ex-
traction, aims to steal a target model through its API by training with sampled data (Tramèr et al.,
2016; Orekondy et al., 2019; Wallace et al., 2020). The process of model infringement is similar to
knowledge distillation (Hinton et al., 2015; Gu et al., 2024b) but only has black-box access to the
target model. Both classification models and generative models are vulnerable to such stealing (He
et al., 2021; Krishna et al., 2020; Szyller et al., 2021). Recently, tuning LLMs with data sampled
from strong models such as GPT4 has become a usual way to improve the ability of open-source
LLMs (Taori et al., 2023; Chiang et al., 2023; Luo et al., 2024).

Detection of Model Infringement. The most common way to detect model infringement is the
model watermark (Uchida et al., 2017; Zhang et al., 2018). For language models, watermarks are
usually added to the outputted texts by injecting special words or linguistic features (Cos, 2022; He
et al., 2022a; Zhao et al., 2022; He et al., 2022b). Especially, Zhao et al. (2023) applied a bias-
based logit level watermark for generative language models, but it requires white-box access to the
suspect model to detect special signals from the probability vector. Recently, Sander et al. (2024)
studied the radioactivity of LLM watermarks, providing innovative perspectives to detect LLM wa-
termarks from the suspect model tuned with watermarked texts. While it studies an extensive range
of training and watermarking configurations, some key variables of detecting LLM infringement
such as source/suspect models, hash keys of watermarks, and training/detection queries together
with caused problems are not studied yet. Besides, it also assumes access to the same domain (at
least i.i.d) of training data, which may not align with the practical setting. Therefore, whether wa-
termarks can be used for detecting LLM infringement under a practical threat model has not been
completely solved. We fill these gaps in this paper and provide a targeted method for this task to
demonstrate the success of detection in a more challenging scenario.

6 CONCLUSION

In this paper, we explored the possibility of using existing LLM Watermarks to defend against
Model IP infringement, thereby protecting the copyright of LLM models. Based on the fundamental
differences between watermarking for models and watermarking for text, we propose LIDet for
detecting watermarks from the perspectives of watermark detectability and learnability under black-
box conditions. The evidence shows that even in scenarios where the target model and training set
are unknown, our method can still determine the existence of LLM infringement with a high degree
of accuracy.
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A DETAILS OF EXPERIMENTS

A.1 EXPERIMENTS IN SECTION 3.1

In section 3.1, we evaluate the detectability of suspect LLMs when the queries for detection and
queries for training are different. Specifically, we first sample responses from the source LLM,
Llama-2-7b-chat, watermark-injected by Unigram or KGW (n=1), with 5k queries from Evol-
Instruct-Code. Then we train the Bloom-7b on the sampled data, resulting in a suspect LLM. Then
we respectively use (1) the same queries from the training data, (2) other queries from Evol-Instruct-
Code, and (3) the Alpaca dataset to sample responses from the suspect LLM. The training configu-
ration is the same as 4.1. We collect the responses and concatenate them together for each condition
until the total length reaches 20k. Then these texts are used for z-texting and the z-score and p-value
are obtained. In contrast, suspect LLM without watermarks is trained from the un-watermarked
sampled data from Llama-2-7b-chat with the same training queries. For results of out-of-domain
detection, we sample queries from the Alpaca dataset with different seeds.

A.2 EXPERIMENTS IN SECTION 3.2

In section 3.2, we control the training data and detection data as i.i.d domain, i.e. both training data
and detection data are sampled with queries from Evol-Instruct-Code but are not the same, to better
demonstrate the impact of n. For the experiments in 4a, we randomly choose 100 different hash
keys, and then follow the partition of the green list in KGW to calculate the actual green ratio in 100
sampled responses from Alpaca’s queries with Llama-2-7b-chat. For the experiments in 4b and 4c,
the detection texts are sampled from Alpaca, to demonstrate the results of detection in a mismatched
green ratio scenario.

A.3 DETAILS OF CONSTRUCTION OF MODEL SET

The model set in 4.1 is constructed by training the base LLM with data sampled from the source
LLM with queries. Specifically, we first sample two source LLM: Llama-2-7b-chat and Llama-3-
8b-Instruct with queries sampled from Evol-Instruct-Code and GSM8k respectively. For positive
samples, we add KGW and Unigram with 10 random hash keys when processing the data sampling.
For negative samples, we do not add any watermark to the response. Then we obtain 2×2×2×10 =
80 (source LLM, dataset, watermarks, and hash keys) watermarked datasets and 2 × 2 = 4 clean
datasets. Next, we apply the datasets to train suspect models, where the base LLMs contain Bloom-
7b and Mistral-7b-Instruct. Then the model set of positive samples contains 80 × 2 = 160 (2 base
suspect LLM) models. To align the size with it, we individually train 20 models on the clean dataset
for these 2 base models and result in 4 × 2 × 20 = 160 negative samples. Thus, the total size of
the model set is 320 with 160 positive samples (infringing suspect LLM) and 160 negative samples
(clean LLM). Further more, each positive sample is correspond to a negative sample with the same
source model, data domain and suspect model, to assess the set-wise DSR metric in experiments.

B DISCUSSION

B.1 GREEN RATIO MISMATCH

B.1.1 GREEN RATIO ACROSS HASH KEYS

To show the influence of different hash keys, we demonstrate examples of the actual green ratio
of watermark detection calculated by 100 responses sampled from a negative sample in the model
set. Figure 5 demonstrates the Unigram partition and Figure 6 presents the KGW (n=1) partition.
It has shown that the actual green ratio varies across all 10 hash keys used to build the model set.
In other words, the problem of mismatched green ratio is very common in the model set. Besides,
we calculate the green ratio from the anchor data generated with the same queries sampled from
Llama-2-7b-chat. As shown in the figures, the green ratio of anchor data is much more close to the
actual green ratio.
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Figure 5: Green ratio of presented γ0, the actual ratio from an un-watermarked suspect LLM, and
the ratio of anchor data with different hash keys for Unigram.
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Figure 6: Green ratio of presented γ0, the actual ratio from an un-watermarked suspect LLM, and
the ratio of anchor data with different hash keys for KGW.

B.2 IMPACT OF GREEN RATIO MISMATCH ON DETECTION

Figure 7 shows the DSR of suspect LLMs under different hash keys for Unigram watermarks. The
results indicate that the vanilla detection method is heavily influenced by the hash key and struggles
to detect watermarks in the suspect LLM across all these hash keys, aligned with the discussion
in Section 3.2. In contrast, our method demonstrates more stable detection performance across
different hash keys and is significantly better at detecting watermarks in the suspect LLM.

B.2.1 TOKEN ENTROPY

The token entropy H is influenced by the length of the generated responses as well as the diversity of
tokens, as shown in examples in Table 6 and Table 7. If a response contains more number of tokens,
the token entropy is higher. Intuitively, these texts are more helpful for detecting watermarks learned
by the suspect LLM considering that they are more likely to contain the watermarked tokens when
the detection and training data are mismatched in domain. Table 6 and Table 7 also demonstrate
that the token entropy obtained from the anchor model (Llama-2-7b-chat) and the suspect model
(Mistral-7b-Instruct) is rather close (due to the general ability of LLMs), indicating the feasibility
of applying token entropy calculate from anchor LLMs to approximate the possible responses from
the suspect LLM.

C VISUALIZATION CASES OF DETECTION

Figure 8 shows visualization cases of detecting suspect LLMs in the model set. These figures in-
dicate that even though there is a gap between z-scores of positive samples (w/ watermark) and
negative samples (w/o watermark), the fixed threshold can not distinguish them properly. The main
reason is that the mismatched green ratio makes z-scores of positive samples or negative samples
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anchor LLM
query What new technology is currently being developed to improve the healthcare system?
response As a helpful assistant, I’m glad you asked! There are several new technologies currently being developed to improve the healthcare system.

Here are some of the most promising ones: 1. Artificial Intelligence (AI): AI has already made significant inroads in various industries, and
healthcare is no exception. AI algorithms can help doctors analyze medical images, diagnose diseases, and develop personalized treatment
plans. For instance, IBM’s Watson for Oncology is an AI-powered platform that helps oncologists identify the best treatment options for
cancer patients based on their individual characteristics and medical history. 2. Telemedicine: With the rise of telemedicine, patients can now
consult doctors remotely through video conferencing or other digital channels. This can be especially useful for people living in rural areas or
those with mobility issues. Telemedicine also helps reduce hospital readmission rates by enabling doctors to monitor patients’ conditions more
closely after they leave the hospital. 3. Wearable devices: Wearable devices like smartwatches and fitness trackers are becoming increasingly
popular as people seek to monitor their health outside of traditional clinical settings. These devices can track vital signs, such as heart rate
and blood pressure, and provide real-time feedback to help patients manage chronic conditions like diabetes or hypertension. 4. Blockchain:
Blockchain technology has the potential to revolutionize healthcare by securing patient data and ensuring its integrity. By using blockchain,
doctors and hospitals can securely share patient information without compromising privacy or security. This can help prevent medical errors
and enhance the overall quality of care. 5. 3D printing: 3D printing is being used to create customized prosthetics, implants, and even organs.
This technology has the potential to transform organ transplantation and repair surgery, making it possible to create bespoke implants that fit
each patient’s unique anatomy. 6. Gene editing: The emergence of gene editing tools like CRISPR has raised the possibility of treating genetic
disorders at their source. By editing genes to correct mutations, researchers hope to develop treatments for diseases like sickle cell anemia and
cystic fibrosis. 7. Robotics: Robots are being used to assist with ...

token entropy 5.432
query Provide the answer to the equation. 7 + 6
response Of course! The answer to the equation 7 + 6 is 13.
token entropy 2.707

Table 6: An example of queries with a high and low token entropy of the anchor LLM.

suspect LLM
query What new technology is currently being developed to improve the healthcare system?
response Certainly! There are several emerging technologies that have the potential to significantly impact the healthcare industry: 1. Telemedicine

and Virtual Care: With the rise of remote work and social distancing measures, telemedicine has become increasingly popular as a way
to provide medical services remotely. Virtual care platforms allow patients to consult with doctors and receive diagnoses, treatments, and
follow-up care via video conference or phone calls. This can save time and resources while ensuring that patients receive high-quality care.
2. AI and Machine Learning: Artificial intelligence (AI) and machine learning algorithms are being developed to help diagnose diseases,
develop personalized treatment plans, and even predict patient outcomes. These tools can analyze large amounts of data from electronic health
records, laboratory tests, and other sources to identify patterns and make accurate predictions. They can also help doctors and nurses identify
potential complications early on and take appropriate preventative measures. 3. Wearable Devices: Wearable devices such as smartwatches,
fitness trackers, and sensors are becoming more sophisticated and integrated into healthcare systems. These devices can monitor vital signs,
track physical activity levels, and even detect early warning signs of chronic conditions like diabetes or heart disease. By providing real-
time data, these devices enable healthcare providers to intervene earlier and prevent complications. 4. Gene Editing: CRISPR gene editing
technology has revolutionized the field of genetics, allowing researchers to make precise changes to DNA sequences. This technology has
enormous potential in healthcare, particularly in the areas of genetic disorders and cancer therapy. It could potentially cure genetic diseases,
prevent inherited conditions, and even reverse aging. 5. Blockchain Technology: Blockchain technology is being explored for its potential
applications in healthcare. It offers a secure, decentralized platform for sharing sensitive medical information, reducing fraud, and improving
interoperability between different healthcare systems. This could lead to better coordination between doctors, hospitals, and insurers, resulting
in more efficient and effective care delivery. 6. Nanotechnology: Nanotechnology refers to the manipulation of materials at the nanoscale
level (less than 100 nanometers). Its applications in healthcare include drug delivery systems that target specific cells or tissues, biosensors
that detect diseases or monitor medication adherence, and even prosthetic limbs that can mimic natural movements. These innovations could
revolutionize how we approach various health challenges, including cancer, diabetes ...

token entropy 5.434
query Provide the answer to the equation. 7 + 6
response Of course! The sum of 7 and 6 is: 13
token entropy 2.686

Table 7: An example of queries with a high and low token entropy of the suspect LLM.
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Figure 7: DSR of detection of suspect LLMs when the hash key for the Unigram watermark is
different.
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Figure 8: Cases of detection with the adaptive threshold.

deviate from the expected value. In contrast, the adaptive threshold successfully discriminates them
in these cases because it takes the mismatched green ratio into account by estimating the actual ratio
with anchor data.

D LIMITATIONS

In this work, we mainly focus on the factor of LLM infringement detection of source LLMs, suspect
LLMs, and domains of training/detection queries. Other factors such as training configurations
(e.g. data size, learning rate, and adapters) and watermarking configurations (e.g. more kinds of
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watermarks and watermark strength δ) are not been exploited. Considering that related works such
as Gu et al. (2024a) and Sander et al. (2024) have studied the impact of these factors on the hard-
label distillation of LLMs, the influence of these factors is clear enough. For instance, if the Stealer
tunes their models with full-parameter training instead of LoRA, or with more sampled data, the
successful rate of detection will certainly increase.

Besides, we do not consider the robustness of watermark detection when facing paraphrase attacks,
mixed-data tuning, or further training in this paper. In the case of ”model stealing”, the Stealer
aims to targetedly imitate the source LLM while also improving their own models. Anyway, it is
an important concern to detect model infringement with higher robustness and we leave this as the
future work.
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