HSM: Hierarchical Scene Motifs for Multi-Scale Indoor Scene Generation
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Figure 1. Overview. Given a room description and optional room boundary as input, HSM decomposes indoor scenes hierarchically and
identifies valid support regions (highlighted in pink boxes) at each level of the hierarchy. The system then populates these regions by
generating and optimizing object arrangements in a unified manner across scales, generating scenes with dense object arrangements.

Abstract

Despite advances in indoor 3D scene layout genera-
tion, synthesizing scenes with dense object arrangements
remains challenging. Existing methods focus on large fur-
niture while neglecting smaller objects, resulting in unreal-
istically empty scenes. Those that place small objects typi-
cally do not honor arrangement specifications, resulting in
largely random placement not following the text descrip-
tion. We present Hierarchical Scene Motifs (HSM): a hier-
archical framework for indoor scene generation with dense
object arrangements across spatial scales. Indoor scenes
are inherently hierarchical, with surfaces supporting ob-
jects at different scales, from large furniture on floors to
smaller objects on tables and shelves. HSM embraces this
hierarchy and exploits recurring cross-scale spatial pat-
terns to generate complex and realistic scenes in a unified
manner. Our experiments show that HSM outperforms ex-
isting methods by generating scenes that better conform to
user input across room types and spatial configurations.

1. Introduction

Digital 3D indoor scenes are widely used in domains such
as gaming, interior design, virtual training, and simula-
tion for embodied Al and robotics. Consequently, efficient
and controllable generation of realistic indoor scenes has
been a long-standing research problem. While recent ad-
vances have improved scene synthesis through various ap-

proaches, most efforts have focused on arranging large fur-
niture pieces, with less attention given to arrangement of
smaller objects, such as computer peripherals and place set-
tings. These objects are often treated as an afterthought,
placed randomly or based on predefined rules, limiting re-
alism of the generated scenes and downstream applications.

Small objects present a unique challenge in scene gen-
eration due to their dependence on larger furniture for sup-
port. For instance, a computer monitor is typically placed
on a desk, while books are arranged on shelves. These ob-
jects must be positioned to respect the physical constraints
of their supporting furniture while adhering to user specifi-
cations. However, existing methods rarely capture this hier-
archical dependency, leading to sparse and unrealistic small
object placements. In addition, the lack of large-scale scene
datasets that encompass both furniture-level and small ob-
ject arrangements makes it non-trivial to train models capa-
ble of generating complex hierarchical scenes.

In this work, we introduce Hierarchical Scene Motifs
(HSM), a hierarchical approach to generating indoor scenes
with densely populated objects. We employ a unified ap-
proach to placing objects, guided by both text-explicit and
implicit relationships. This spans scales from room-level
furniture layouts to the placement of small objects on fur-
niture. At each level, HSM first identifies valid support re-
gions (i.e., regions in which objects can be placed) and then
generates compositional object arrangements within them.
This transforms the scene generation problem into equiv-
alent subproblems of arranging objects on surfaces, while
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ensuring that the generated scene aligns with user intent.
Our key insight is that object arrangements in indoor
scenes exhibit recurring spatial patterns across scales. For
instance, dining chairs surrounding a circular table and
place settings arranged around a centerpiece follow a com-
mon circular pattern. We refer to such spatial patterns as
motifs — fundamental and reusable object placement struc-
tures that are ubiquitous in indoor environments. These mo-
tifs can be efficiently learned from a few examples and ap-
plied across different scales to generate realistic and coher-
ent object arrangements. By composing these motifs into
scene motifs, we enable the generation of complex arrange-
ments across the scene hierarchy under a unified frame-
work, facilitating structured and scalable scene generation.
We demonstrate that HSM generates realistic indoor
scenes with dense object arrangements that align with user
expectations and adhere to physical constraints. In particu-
lar, our method excels at plausible and text-consistent small
object placement, producing coherent and detailed arrange-
ments that enhance scene realism (e.g. neatly stacked books
on shelves and well-organized stationery and accessories
on desks). We evaluate HSM against state-of-the-art scene
generation methods and show that it more effectively han-
dles complex object arrangements, generating scenes with
more realistic object placements and hierarchical structures.

Our results highlight the importance of considering hierar-

chical relationships in indoor scenes and demonstrate that

scene motifs are a powerful mechanism for generating high-
quality scenes. In summary:

e We present HSM, a hierarchical framework for indoor
scene generation that identifies support regions and gener-
ates structured object arrangements across different scales
in a unified manner, producing realistic scenes.

* We introduce scene motifs, compositional structures that
capture recurring spatial patterns in indoor environments,
enabling the generation of complex arrangements.

* We show HSM produces realistic scenes with dense ob-
ject arrangements that adhere to physical constraints and
better align with user intent compared to prior work.

2. Related Work

Indoor scene generation. Early approaches primarily re-
lied on rule-based [8, 9, 36, 49, 56, 80] or data-driven
[7, 16, 17, 20, 26, 32, 34, 55, 61, 92] methods. The advent
of deep learning led to a shift towards learning-based meth-
ods [12, 27, 38-40, 50-52, 54, 59, 65, 69, 71, 74,76, 78, 81,
84, 85, 88, 89, 94]. These methods take various forms of in-
put, including text descriptions, scene graphs, and images,
to generate 3D scenes. Of particular interest are methods
that generate scenes from text [40, 69, 84, 85], with re-
cent works increasingly incorporating large language mod-
els (LLMs) into the process [3, 5,6, 11, 13, 15,21, 28, 42—
44, 46, 47, 63, 64, 66, 70, 75,77, 79, 82, 83]. While these

methods enable text-conditioned scene generation, most
focus solely on arranging large furniture, neglecting the
small objects that are ubiquitous in indoor environments.
More recent works have begun integrating small objects
into the scene generation process [13, 21, 24, 30, 42, 43,
45, 46, 53, 57,75, 77, 83, 91, 93, 95]. Additionally, some
methods attempt to place small objects in existing scenes
[1, 29, 48, 87]. However, these methods often treat small
objects in a simplified or specialized manner, such as us-
ing random placement. This limits both the diversity and
controllability of their arrangements. Our work introduces
a unified hierarchical framework for scene generation that
conditions object placement on precise language descrip-
tions, capturing object relationships at all scales.
Hierarchical scene generation. Exploiting the hierarchi-
cal nature of scene generation has been studied for many
years [13, 22, 38, 43, 50, 63, 66, 72, 85, 86]. Among re-
cent works, Architect [75] uses a parallel approach to gen-
erate large and small objects but relies on 2D inpainting and
thus suffers from 3D inconsistencies. Furthermore, Archi-
tect does not generate scenes with precise control over ob-
ject arrangements. SceneFunctioner [44] groups objects and
parses relationships within each group, similar to HSM, but
their approach realizes relationships using LLM-predicted
anchor rules rather than recurring motifs and does not han-
dle small objects. While most such papers primarily capture
the semantic hierarchy of objects in scenes, we further cap-
ture the repetition of object relationships at each scale, in
that small objects can be functionally and spatially arranged
equivalently to large objects.

Support region prediction. To place small objects in
scenes, it is first beneficial to determine suitable place-
ment regions. Various methods have been proposed to pre-
dict support surfaces in indoor environments from 2D im-
ages [23, 25, 58, 60, 62, 77]. While these methods are
effective, extending them to synthetic 3D scenes is non-
trivial, as they rely on sight lines to surface geometry, ne-
cessitating camera viewpoint selection and introducing oc-
clusion issues. In contrast, our approach employs geomet-
ric reasoning-based support region extraction to identify
valid support surfaces on objects, enabling dense and pre-
cise small object arrangements in generated scenes.

3. Method

Given a text description 7" of an indoor scene and an op-
tional room boundary as a list of vertices as input, HSM
generates the scene iteratively through a unified hierarchi-
cal framework, as shown in Fig. 2. It first uses a vision
language models (VLM) to extract a room type and decom-
pose 7' into a list of required objects at each scale (Sec. 3.2).
The scene is then constructed through three key steps at
each hierarchical level: support region extraction (Sec. 3.3),
scene motif generation (Sec. 3.4), and layout optimization
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Figure 2. HSM framework overview. Given an input text description and an optional room boundary, HSM decomposes the input into

requirements at different scales, and generates the scene through

a unified three-stage framework: 1) Extract support regions for object

placements; 2) Generate appropriate scene motifs for each region; and 3) Optimize scene motif placements within each region. These steps
are repeated across scales to generate a scene that aligns to the input with dense small object placements.

(Sec. 3.5). These steps are iteratively applied to an initially
empty scene, first placing room-level furniture and then ar-
ranging small objects on furniture surfaces. After placing
the initial objects, if the occupancy is below a threshold .
and the number of iterations below tj,;, a VLM is prompted
for additional objects to add to the scene beyond the in-
put description, conditioned based on the predicted room
type. Throughout this process, HSM leverages a library of
learned motifs to compose complex spatial relationships as
scene motifs (Sec. 3.1), which are instantiated to produce
physically valid object arrangements in the scene.

3.1. Scene Motifs

Inspired by SceneMotifCoder (SMC) [67], we define a mo-
tif as an atomic spatial pattern between objects that can be
extracted from a few examples and used as a template for
generating new arrangements. For instance, by analyzing
arrangements such as “a stack of books” and “a stack of
plates”, we can learn a stack motif that captures the verti-
cal alignment pattern and apply it to new objects to generate
novel arrangements. Such motifs are applicable across dif-
ferent scales, from room-scale furniture to small objects.
We extend this concept to capture more complex ar-
rangement structures through scene motifs. A scene motif is
a composition of one or more learned motifs that represents
a set of spatial relationships between objects. For exam-
ple, a scene motif for a desk setup may consist of a stack
motif for the books on the desk, a left_of motif for plac-
ing a lamp to the left of the books, and an in_front motif
for positioning a laptop in front of the books. By leverag-
ing these compositions, scene motifs dynamically capture a
broader range of spatial relationships, enabling the genera-
tion of more complex and diverse object arrangements. We

describe the generation process of scene motifs in Sec. 3.4.

As in SMC, motifs are implemented as visual programs
that encode spatial relationships between objects using pro-
grammatic constructs. Each motif is defined as a Python
function that takes specific arguments to generate object ar-
rangements when executed. For example, a stack motif
may be implemented as a function that iteratively stacks ob-
jects vertically using a for loop, with parameters for count
and object type (e.g., stack(4, book) to generate “a stack
of four books”). HSM assumes a pre-learned library of mo-
tifs exists, and uses it to dynamically composes scene mo-
tifs. See Appendix A.1 for more details.

3.2. Input Description Requirement Decomposition

Given the input text description, HSM first uses a VLM to
extract the room type and an initial list of objects to include
in the scene. Objects are grouped by the VLM according
to their supporting architectural elements or objects. This
breaks the generation task into smaller, more manageable
subproblems that can be addressed within a unified frame-
work while minimizing the risk of losing details in subse-
quent steps (see Fig. 2). For each object, we extract its
quantity, appearance, and dimensions from the input de-
scription, inferring plausible values when unspecified. If
the input lacks a room boundary, we prompt the VLM to
generate one including door, window placement and room
height. See Appendix D for the VLM prompts used.

3.3. Support Region Extraction

To place objects, we first identify suitable placement areas,
referred to as support regions S. Support regions are sur-
faces capable of accommodating object placement. At the
room level, these include the floor, walls, and ceiling, while
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Figure 3. Scene motif generation process. An input description
is first decomposed into a hierarchy of motifs. We then retrieve the
corresponding 3D assets and generate the scene motifs iteratively,
starting from the innermost motif (on_each_side) and expanding
to the outermost motif of the hierarchy (in_front_of). The gen-
erated scene motif is visually validated with a VLM.

at the furniture level, these correspond to horizontal sur-
faces such as tabletops and shelves. We parametrize each
s; € S by a sub-mesh and height clearance h,;. Wall sup-
port regions are extracted by projecting scene motifs within
twan onto the wall to exclude blocked areas.

While room-level support regions can be extracted from
the room boundary, furniture-level support regions require
more complex analysis due to the geometric intricacies of
furniture surfaces (e.g., multi-level shelves). We first iden-
tify horizontal and vertical surfaces on a furniture mesh with
n vertices and p triangle faces F' € {1,...,n}P*3, param-
eterizing each surface as a mesh subset of F'. Inspired by
[33], we cluster F' into planar surfaces by seeding each clus-
ter c; with the largest unclustered f;, by area and adding
fitoc; = {jx | E = 1,...,]|c;|} if its normal is in the
same direction as the normals of the first triangle and adja-
cent triangle. Formally, we check if n; - nj, > fhorm and
N " Nj,y = tagj, Where n; is the normal of f; and f;,, shares
an edge with f;. While building up a cluster, we traverse
adjacent faces f; by area (from largest to smallest).

We identify horizontal and vertical surfaces by fitting a

plane to each c; and thresholding the vertical component of
the normal. To ensure functional utility, we compute h; be-
tween horizontal surfaces and discard those which have low
clearance (h; < tceqr). For top surfaces without a ceiling,
we assign a default clearance of hyp, in order to put a rea-
sonable limit on the size of small objects placed on top of
furniture. Finally, horizontal surfaces are split by intersect-
ing vertical surfaces thicker than g, ensuring continuity
within each region. Fig. 4 illustrates this process for a shelf
unit. See Appendix A.2 for implementation details.

3.4. Scene Motif Generation

We populate S by generating scene motifs M. Given the
objects O; selected for each m; € M and the overall room
description, HSM prompts a VLM to produce a natural lan-
guage description of the object layout. The VLM then uses
this description to group objects into M based on spatial
and functional relationships. For example, given the de-
scription, “a room with six chairs around a table and a sofa
facing a TV,” in the floor support region, the system groups
the chairs around the table and the sofa facing the TV.

Each O; is decomposed into a sequence of one or more
motifs m;y that capture the spatial relationships between
objects. We first use a VLM to identify a primary motif
that serves as the base object arrangement, relative to which
the rest of the objects in O; can be placed. Fig. 3 demon-
strates a place setting example, in which the utensil-plate
arrangement forms the primary motif, with the cup posi-
tioned relative to it. The VLM then predicts an arrangement
of the remaining objects around this primary motif based
on their spatial and functional relationships. The result is
a hierarchical sequence of motifs that define the object ar-
rangements within m;, validated by the VLM against the
input description to ensure completeness and coherence. If
validation fails, the reason is included in retry attempts.

The scene motif is instantiated by creating the primary
motif and progressively traversing the hierarchy to model
additional objects. We first retrieve a suitable 3D mesh for
each object from a database based on its category, appear-
ance description, and dimensions (see Appendix A.4 for de-
tails on the retrieval process). For each motif, we use a
VLM to select a matching program from a pre-learned li-
brary of motifs and generate an appropriate function call to
instantiate it. This function is then executed to generate an
object arrangement using the retrieved meshes. The result-
ing arrangement is subsequently used as input for the next
motif in the hierarchy, iteratively constructing the scene mo-
tif until all objects are placed. To ensure physical plausibil-
ity between objects, we apply the same spatial optimization
used in SMC—resolve collisions, move objects closer, and
simulate gravity—while respecting the hierarchy. Motifs
are treated as single units during optimization.

To ensure the generated scene motif aligns with the in-
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put description, we employ a verification process after its
generation. We generate top-down and front orthographic
projections of the scene motif and prompt a VLM to vali-
date the arrangement against the input description based on
these projections. If validation fails, the failure reason is
used to guide the VLM in retrying the generation process.

3.5. Layout Optimization

The final step in populating a support region is placing the
generated scene motifs within it. This is achieved through a
three-stage process. In the first stage, we provide an orthog-
onal projection of the support region, the bounding boxes of
the scene motifs, and the sub-scene description to a VLM,
prompting it to suggest initial placements and determine
whether the scene motifs should be wall-aligned. The VLM
is instructed to consider both explicit constraints from the
input description and implicit constraints derived from com-
mon arrangements and usage patterns to generate a reason-
able initial layout. The second stage refines the layout us-
ing an optimization solver. Inspired by Holodeck [83], we
employ a grid-based depth-first search (DFS) solver. Start-
ing with the scene motif that has the largest footprint, the
solver iteratively refines placements by enforcing the fol-
lowing constraints: 1) scene motifs must be placed within
the support region, 2) wall-aligned scene motifs must have
their back against a wall and face into the room, and 3) there
should be no overlap between scene motifs. The solver
returns the first valid layout or otherwise the initial place-
ment if a set time limit is exceeded. Finally, we apply a
scene-level spatial optimizer to refine placements by elimi-
nating mesh collisions and ensuring valid support. For each
scene motif, we resolve collisions and support issues using
relationship-aware rules and raycasting, making minimal

adjustments while preserving hierarchy and layout. We pro-
vide the details for the layout optimization in Appendix A.3.

These three steps — support region extraction, scene mo-
tif generation, and layout optimization — are repeated at
each hierarchy level, from room-scale furniture arrange-
ments to fine-grained small object placements on furniture
surfaces. This unified framework ensures a structured and
efficient generation process, preserving spatial coherence
and physical validity across scales to produce complex in-
door scenes with realistic object arrangements.

4. Experimental Setup
4.1. Scene Generation

We evaluate HSM on the task of text-conditioned indoor
scene generation using 3D assets from the Habitat Synthetic
Scenes Dataset (HSSD-200) [35]. We select HSSD as it
comprises 211 synthetic indoor scenes with a diverse col-
lection of high-quality 3D assets — both furniture and small
objects — making it well-suited for learning motifs and re-
trieving objects. We use gpt-40-2024-08-06 [2] for all VLM
usage. For our experiments, we set toec = 0.3 and tjer = 2
for floor support region, with ¢, = 0.5 and ¢, = 1 for the
others, tyan = 1.5 m for wall projection.

Baselines. We compare HSM against four recent scene
generation methods: LayoutGPT [14], InstructScene [40],
LayoutVLM [64] and Holodeck [83]. LayoutGPT is the
first to leverage an LLM for indoor scene generation. It
uses scenes from the 3D-FRONT dataset [18, 19] as in-
context examples and prompts an LLM to generate layouts
in CSS format. InstructScene employs a graph diffusion
model with a semantic scene graph to generate 3D object
layouts from text descriptions. LayoutVLM is a framework
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that uses VLM with differentiable optimization to gener-
ate 3D object layouts from text descriptions. Holodeck is
a comprehensive system that integrates LLM-based gener-
ation with optimization steps to produce room boundaries
and object placements for embodied Al simulations. We
follow the original implementations of these methods and
use their respective object databases for object retrieval:
3D-FRONT [18, 19] for LayoutGPT and InstructScene, and
Objaverse [10] for LayoutVLM and Holodeck. Since only
Holodeck can generate architectural elements, we provide a
standardized 6 m x 6 m square floor plan with walls as input
for the other methods to ensure fair comparison.

Input Text Descriptions. For all methods, we use the first
100 text descriptions from SceneEval-500, a dataset intro-
duced by SceneEval [68], a recent framework for evaluat-
ing text-to-indoor scene generation methods. The descrip-
tions vary in complexity (40 easy, 40 medium, 20 hard)
and encompass a wide range of scene types and object ar-
rangements. Each scene description is paired with human-
annotated ground truth scene properties (e.g., object counts,
attributes, and spatial relationships) to assess how well the
text match the generated scenes.

Metrics. We use four fidelity metrics from SceneEval to
assess how well the generated scenes align with the in-
put text description: Object Count (CNT), Object Attribute
(ATR), Object-Object Relationship (OOR), and Object-
Architecture Relationship (OAR), using annotations from
SceneEval-100 as ground truth. To evaluate object place-
ment, we use five plausibility metrics capturing implicit

human expectations: Object Collision (COL), Object Sup-
port (SUP), Scene Navigability (NAV), Object Accessibil-
ity (ACC), and Object Out-of-Bound (OOB).

We also conduct a user perceptual study to compare
generated scenes from HSM and Holodeck. We select
Holodeck as the baseline for comparison due to its strong
generation performance and ability to place small objects.
The study consists of two parts: scene-level evaluation and
small object-level evaluation. At the scene level, we ran-
domly select 25 scene pairs generated by each method for
the same input description. Given top-down renderings,
participants assess which scene better aligns with the input
text descriptions (Fidelity) and exhibits more physically re-
alistic object placements (Plausibility). At the small object
level, we randomly select 30 pairs of furniture populated
with small objects and provide close-up renderings. Each
pair originates from the same scene description, and partic-
ipants evaluate the placements based on fidelity and plausi-
bility. The study was conducted with 25 participants, and
we report the percentage of participant preferences for each
method across both evaluation criteria and levels. See Ap-
pendix C for the user study instructions.

We also evaluate alignment between generated scenes
and input descriptions by rendering top-down views and
computing text-image similarity using BLIP-2 [37], Long-
CLIP [90] and VQAScore [41]. Similarly, we report align-
ment between small object arrangements and the corre-
sponding text descriptions using the same metrics and the
set of 30 populated furniture from the user study. For meth-



Text-Image Score SceneEval Fidelity SceneEval Plausbility Avg. #Obj

1+ BLIP 1 CLIP 1 VQA 1 CNTy 1 ATRy 1 OORy 1 OARy | COL,g | COL.g 1 SUPy 1 NAVy 4 ACCy | OOBy — ber Scene

LayoutGPT 0.0613  0.1670  0.2964 19.54 18.98 2.87 5.24 12.96 30.00 28.24 100.00 47.29 73.11 5.17
InstructScene  0.0845  0.1681  0.4082 25.48 2226 11.17 10.48 51.18 84.00 75.09 99.53 7730 2292 8.07
LayoutVLM 0.0857  0.1612  0.3268 41.19 2226 8.60 23.29 36.09 69.00 67.96 98.75 8591 4.14 11.36
Holodeck 0.1230  0.1820  0.5549 44.64 39.42 20.92 49.60 17.32 73.00 62.12 99.45 90.55 1.30 24.71
HSM (ours) 0.1748  0.1841  0.5627 61.30 59.49 40.40 70.28 16.42 61.00 85.44 98.97 86.80 213 20.65

Table 1. Evaluation with text-image scores and SceneEval metrics. Overall, HSM outperforms prior work along metrics measuring the
fidelity of object placements relative to the input text (Text-Image Score and SceneEval Fidelity metrics). For plausibility metrics, HSM
has the highest support rates. LayoutGPT and InstructScene have better collision and navigation but that is due to placing far fewer objects
(last column), most of which are out of the scene (OOB). Bold indicates highest results, underlined denotes second highest.

ods that do not generate small objects, we select the best-
matching furniture available for evaluation. The score is set
to 0 if no matching furniture of the same category is found.

4.2. Support Region Extraction

As support region extraction from 3D furniture meshes is
a key component of our approach and an essential step for
placing small objects, we evaluate this step in isolation. To
this end, we manually annotate 100 furniture items (e.g., ta-
bles, shelves, sofas) from the HSSD-200 dataset [35] with
ground truth support regions. Each annotated region is rep-
resented by a set of faces defining the support surface and
its height clearance. A single furniture piece may contain
multiple support regions of varying shapes and sizes (e.g.,
as in Fig. 4). The 100 objects we annotated have a total of
529 regions, with an average of five regions per object. See
the Appendix B for details on the annotation process.
Metrics. We evaluate the extracted support regions against
ground truth annotations using two metrics: Intersection
over Union (IoU) of the regions’ volume, measuring the
overlap between predicted and ground truth support re-
gions; and Fl-score, which provides a balanced measure
between precision (accuracy of predicted regions) and recall
(completeness of detected regions) at a threshold of 0.5.
For IoU computation, each ground truth and predicted
support surface is projected onto the horizontal plane to
simplify calculation of overlapping areas. Subsequently,
the intersection volume of the two regions is determined by
multiplying the area of intersection of the projected surfaces
with the overlap of their heights along the vertical axis. To
emphasize the importance of support surface alignment, we
apply a height threshold ¢4, when computing the IoU. If the
vertical distance between ground truth and predicted sur-
faces exceeds t4, the IoU is set to 0. We fix ¢4 to 10 cm
to ensure strict correspondence in support surface height
alignment. The Hungarian algorithm is applied to these loU
values to determine optimal region-region correspondence,
and match predicted and actual support surfaces.
Baselines. We compare our support region extraction
approach against a baseline which only predicts support
regions on the top surface of an object, thus matching
Holodeck [83]’s ray casting approach for object placement.

Level Method 1 Fidelitygq, 1 Plausibilityq,
Seene level Holodeck 2336 30.24
HSM (ours)  76.64 69.76
, Holodeck 18.40 26.80
Small objectlevel - v ours)  81.60 73.20

Table 2. User study results. Holodeck [83] compared to HSM at
scene and small object levels. HSM is preferred at both levels.

T BLIP 1 CLIP 1 VQA
LayoutGPT 0.0742  0.0144  0.1246
InstructScene 0.1129 0.0413 0.1272
LayoutVLM 0.1432  0.0808  0.1402
Holodeck 0.2183  0.1250  0.1702
HSM (ours) 0.2497  0.1582  0.1732

Table 3. Evaluation on small object placements. HSM outper-
forms prior work across all metrics.

5. Results
5.1. Scene Generation

Fig. 5 presents generated scenes from HSM and the base-
lines, while Tab. 1 reports the quantitative evaluation re-
sults. HSM outperforms the baselines as measured by text-
image score and SceneEval fidelity metrics, demonstrating
better alignment between generated scenes and input de-
scriptions. Qualitative results further highlight HSM ’s abil-
ity to capture precise requirements specified in the input.
For example, HSM is the only method that accurately gen-
erates a small table next to a loveseat with a coffee table
in front in the first row, and two wall sconces flanking a
mirror in the third row. In contrast, LayoutGPT frequently
places objects outside the room. InstructScene and Lay-
outVLM also place objects outside room boundaries, and
exhibit limited object variety and layout diversity. Addi-
tional analyses are in the supplement: computational cost
and runtime breakdown (Appendix A.6), breakdown of re-
sults by difficulty (Tab. 5), and evaluation of HSM using an
open-source VLM (Appendix A.7).

Tab. 3 shows that HSM outperform prior work on small
object placements. Results from our user study (Tab. 2) fur-
ther demonstrate that HSM is preferred at both the scene
and small object levels in fidelity and plausibility. While



SceneEval Fidelity SceneEval Plausbility Avg. #0bj

1 CNTy, 1t ATRy, 1 OORy 1 OARy | COL,y | COL.y 71 SUPy 1 NAVy 1 ACCy | OOBg — PerScene

HSM (ours) 61.30 59.49 40.40 70.28 16.42 61.00 85.44 98.97 86.80 2.13 20.65
- w/o scene motifs 54.79 53.28 32.66 50.20 24.12 87.00 87.40 97.15 84.78 226 28.81
- w/o scene spatial optimizer 55.94 60.95 30.66 61.85 25.73 74.00 83.98 98.37 87.70 2.95 22.04
- w/o DFS solver 52.87 49.64 26.36 54.22 28.96 75.00 75.83 98.78 73.34 12.76 19.20

Table 4. Ablation study. Ablations of HSM generate scenes with lower fidelity. Removing scene motifs reduces fidelity, as the VLM
must handle individual object placement rather than leveraging grouped structures. Disabling the spatial optimizer reduces plausibility
with higher COL. Disabling the DFS solver causes the largest drop across most metrics with lower fidelity and reduced plausibility due to
invalid object placements outside support regions. Bold indicates highest results, underlined denotes second highest.

Holodeck Ours

- E 5
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- a
filled with
small sculptures.

.. a large bookshelf
containing books
and lines
the wall.

.. there is

on the right side of
the desk and o
wallet on the left
side.

Figure 6. Qualitative comparison of object placements. Each
row shows close-up views of object arrangements from the in-
put description. HSM better follows the spatial relationships and
placement instructions specified in the input text.

Input
Mesh

Output
Support
Regions i

Figure 7. Support region extraction examples. Colored boxes
are extracted support regions for accurately placing smaller items.

Holodeck can generate small objects, it only considers the
top surfaces of furniture items, leaving interiors unrealis-
tically empty (as shown in Fig. 6). In contrast, HSM’s
support region analysis identifies valid placement regions
across all object surfaces, enabling denser and more real-
istic small object arrangements. By leveraging a hierarchi-
cal approach, HSM produces more structured and realistic

object placements across all scales within a unified frame-
work. See Fig. 10 and Fig. 11 for more qualitative results.

5.2. Support Region Extraction

Fig. 7 shows examples of extracted support regions. HSM
achieves an average loU of 60.27% and F1-score of 48.54%
against ground truth annotations. In contrast, the base-
line that considers only top surfaces performs significantly
worse, with an IoU of 32.54% and an F1-score of 16.80%.

This demonstrates that HSM more effectively identifies
valid support regions within furniture items, which is essen-
tial for accurate small object placement in scenes.

5.3. Ablation

To evaluate the contribution of individual components, we
ablate key elements of HSM: 1) w/o scene motif — re-
moving scene motifs and treating all objects as individual
pieces, 2) w/o scene spatial optimizer — removing scene
spatial optimization and directly using DFS solver positions
to place scene motifs, and 3) w/o DFS solver — removing
DEFS solver and directly using VLM-provided positions to
place scene motifs. Tab. 4 shows that removing any compo-
nent results in worse performance. See Appendix A.5 for a
detailed analysis and qualitative comparison.

6. Conclusion

We presented Hierarchical Scene Motifs (HSM), a hierar-
chical framework for indoor 3D scene generation that pro-
duces dense object arrangements across spatial scales. Our
approach models indoor scenes as a hierarchy of support
regions, each to be populated with objects. By leveraging
scene motifs, HSM generates object arrangements at multi-
ple scales, from room-level furniture layouts to fine-grained
small object placements, exploiting recurring spatial pat-
terns. We believe HSM’s unified hierarchical framework
represents a significant step toward generating densely pop-
ulated and realistic indoor environments.

Acknowledgments. This work was funded in part by
the Sony Research Award Program, a CIFAR Al Chair, a
Canada Research Chair, NSERC DG, and enabled by sup-
port from Digital Research Alliance. We thank Jiayi Liu,
Weikun Peng, and Qirui Wu for helpful discussions.


https://alliancecan.ca/

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

Ahmed Abdelreheem, Filippo Aleotti, Jamie Watson, Za-
war Qureshi, Abdelrahman Eldesokey, Peter Wonka, Gabriel
Brostow, Sara Vicente, and Guillermo Garcia-Hernando.
Placelt3D: Language-guided object placement in real 3D
scenes. arXiv:2505.05288, 2025. 2

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ah-
mad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida,
Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al.
GPT-4 technical report. arXiv preprint arXiv:2303.08774,
2023. 5

Rio Aguina-Kang, Maxim Gumin, Do Heon Han, Stew-
art Morris, Seung Jean Yoo, Aditya Ganeshan, R Kenny
Jones, Qiuhong Anna Wei, Kailiang Fu, and Daniel Ritchie.
Open-Universe indoor scene generation using LLM program
synthesis and uncurated object databases. arXiv preprint
arXiv:2403.09675, 2024. 2

Shuai Bai, Yuxuan Cai, Ruizhe Chen, Keqin Chen, Xionghui
Chen, Zesen Cheng, Lianghao Deng, Wei Ding, Chang Gao,
Chunjiang Ge, Wenbin Ge, Zhifang Guo, Qidong Huang,
Jie Huang, Fei Huang, Binyuan Hui, Shutong Jiang, Zhao-
hai Li, Mingsheng Li, Mei Li, Kaixin Li, Zicheng Lin, Jun-
yang Lin, Xuejing Liu, Jiawei Liu, Chenglong Liu, Yang Liu,
Dayiheng Liu, Shixuan Liu, Dunjie Lu, Ruilin Luo, Chenxu
Lv, Rui Men, Lingchen Meng, Xuancheng Ren, Xingzhang
Ren, Sibo Song, Yuchong Sun, Jun Tang, Jianhong Tu, Jian-
giang Wan, Peng Wang, Pengfei Wang, Qiuyue Wang, Yux-
uan Wang, Tianbao Xie, Yiheng Xu, Haiyang Xu, Jin Xu,
Zhibo Yang, Mingkun Yang, Jianxin Yang, An Yang, Bowen
Yu, Fei Zhang, Hang Zhang, Xi Zhang, Bo Zheng, Humen
Zhong, Jingren Zhou, Fan Zhou, Jing Zhou, Yuanzhi Zhu,
and Ke Zhu. Qwen3-VL Technical Report. arXiv preprint
arXiv:2511.21631,2025. 16

Tongyuan Bai, Wangyuanfan Bai, Dong Chen, Tieru Wu,
Manyi Li, and Rui Ma. FreeScene: Mixed graph diffusion for
3D scene synthesis from free prompts. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 5893-5903, 2025. 2

Ata Celen, Guo Han, Konrad Schindler, Luc Van Gool, Iro
Armeni, Anton Obukhov, and Xi Wang. I-Design: Person-
alized LLM interior designer. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 217—
234. Springer, 2024. 2

Angel Chang, Manolis Savva, and Christopher D Manning.
Learning spatial knowledge for text to 3D scene generation.
In Proceedings of the 2014 conference on empirical methods
in natural language processing (EMNLP), pages 2028-2038,
2014. 2

Bob Coyne and Richard Sproat. WordsEye: An automatic
text-to-scene conversion system. In Proceedings of the 28th
Annual Conference on Computer Graphics and Interactive
Techniques, pages 487-496, 2001. 2

Matt Deitke, Eli VanderBilt, Alvaro Herrasti, Luca Weihs,
Kiana Ehsani, Jordi Salvador, Winson Han, Eric Kolve,
Aniruddha Kembhavi, and Roozbeh Mottaghi. ProcTHOR:
Large-scale embodied Al using procedural generation. In

(10]

(11]

(12]

(13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

Advances in Neural Information Processing Systems, pages
5982-5994, 2022. 2

Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs,
Oscar Michel, Eli VanderBilt, Ludwig Schmidt, Kiana
Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse:
A universe of annotated 3D objects. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 13142-13153, 2023. 6

Wei Deng, Mengshi Qi, and Huadong Ma. Global-local tree
search in vlms for 3D indoor scene generation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 8975-8984, 2025. 2

Helisa Dhamo, Fabian Manhardt, Nassir Navab, and Fed-
erico Tombari. Graph-to-3D: End-to-end generation and ma-
nipulation of 3D scenes using scene graphs. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 16352-16361, 2021. 2

Wengqi Dong, Bangbang Yang, Zesong Yang, Yuan Li, Tao
Hu, Hujun Bao, Yuewen Ma, and Zhaopeng Cui. HiScene:
creating hierarchical 3D scenes with isometric view genera-
tion. arXiv preprint arXiv:2504.13072, 2025. 2

Weixi Feng, Wanrong Zhu, Tsu-jui Fu, Varun Jampani, Ar-
jun Akula, Xuehai He, Sugato Basu, Xin Eric Wang, and
William Yang Wang. LayoutGPT: Compositional visual
planning and generation with large language models. In
Advances in Neural Information Processing Systems, pages
18225-18250, 2023. 5

Weitao Feng, Hang Zhou, Jing Liao, Li Cheng, and Wenbo
Zhou. CasaGPT: cuboid arrangement and scene assembly
for interior design. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
29173-29182, 2025. 2

Matthew Fisher, Daniel Ritchie, Manolis Savva, Thomas
Funkhouser, and Pat Hanrahan. Example-based synthesis
of 3D object arrangements. ACM Transactions on Graph-
ics (TOG), 31(6):1-11, 2012. 2

Matthew Fisher, Manolis Savva, Yangyan Li, Pat Hanrahan,
and Matthias NieBner. Activity-centric scene synthesis for
functional 3D scene modeling. ACM Transactions on Graph-
ics (TOG), 34(6):1-13, 2015. 2

Huan Fu, Bowen Cai, Lin Gao, Ling-Xiao Zhang, Jiaming
Wang, Cao Li, Qixun Zeng, Chengyue Sun, Rongfei Jia,
Bingiang Zhao, et al. 3D-FRONT: 3D furnished rooms
with layouts and semantics. In Proceedings of the IEEE In-
ternational Conference on Computer Vision (ICCV), pages
10913-10922, 2021. 5, 6

Huan Fu, Rongfei Jia, Lin Gao, Mingming Gong, Bingiang
Zhao, Steve Maybank, and Dacheng Tao. 3D-FUTURE: 3D
furniture shape with texture. International Journal of Com-
puter Vision (1JCV), 129:3313-3337, 2021. 5,6

Qiang Fu, Xiaowu Chen, Xiaotian Wang, Sijia Wen, Bin
Zhou, and Hongbo Fu. Adaptive synthesis of indoor scenes
via activity-associated object relation graphs. ACM Transac-
tions on Graphics (TOG), 36(6):1-13,2017. 2

Rao Fu, Zehao Wen, Zichen Liu, and Srinath Sridhar. Any-
Home: Open-vocabulary generation of structured and tex-
tured 3D homes. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 52-70, 2024. 2



(22]

(23]

(24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

Lin Gao, Jia-Mu Sun, Kaichun Mo, Yu-Kun Lai, Leonidas J
Guibas, and Jie Yang. SceneHGN: Hierarchical graph net-
works for 3D indoor scene generation with fine-grained ge-
ometry. I[EEE Transactions on Pattern Analysis and Machine
Intelligence, 45(7):8902-8919, 2023. 2

Yunhao Ge, Hong-Xing Yu, Cheng Zhao, Yuliang Guo,
Xinyu Huang, Liu Ren, Laurent Itti, and Jiajun Wu. 3D
copy-paste: Physically plausible object insertion for monoc-
ular 3D detection. Advances in Neural Information Process-
ing Systems, 36, 2024. 2

Zeqi Gu, Yin Cui, Zhaoshuo Li, Fangyin Wei, Yunhao
Ge, Jinwei Gu, Ming-Yu Liu, Abe Davis, and Yifan Ding.
ArtiScene: Language-driven artistic 3D scene generation
through image intermediary. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2891-2901, 2025. 2

Ruiqi Guo and Derek Hoiem. Support surface prediction
in indoor scenes. In Proceedings of the IEEE international
conference on computer vision, pages 2144-2151, 2013. 2
Paul Henderson, Kartic Subr, and Vittorio Ferrari. Automatic
generation of constrained furniture layouts. arXiv preprint
arXiv:1711.10939, 2017. 2

Siyi Hu, Diego Martin Arroyo, Stephanie Debats, Fabian
Manhardt, Luca Carlone, and Federico Tombari. Mixed
diffusion for 3D indoor scene synthesis. arXiv preprint
arXiv:2405.21066, 2024. 2

Ziniu Hu, Ahmet Iscen, Aashi Jain, Thomas Kipf, Yisong
Yue, David A Ross, Cordelia Schmid, and Alireza Fathi.
SceneCraft: An LLM agent for synthesizing 3D scenes as
Blender code. In Proceedings of the International Con-
ference on Machine Learning (ICML), pages 19252-19282,
2024. 2

Ian Huang, Yanan Bao, Karen Truong, Howard Zhou,
Cordelia Schmid, Leonidas Guibas, and Alireza Fathi. Fire-
place: Geometric refinements of LLM common sense rea-
soning for 3D object placement. In Proceedings of the
Computer Vision and Pattern Recognition Conference, pages
13466-13476, 2025. 2

Rui Huang, Guangyao Zhai, Zuria Bauer, Marc Pollefeys,
Federico Tombari, Leonidas Guibas, Gao Huang, and Fran-
cis Engelmann. Video perception models for 3D scene syn-
thesis. arXiv preprint arXiv:2506.20601, 2025. 2

Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade
Gordon, Nicholas Carlini, Rohan Taori, Achal Dave,
Vaishaal Shankar, Hongseok Namkoong, John Miller, Han-
naneh Hajishirzi, Ali Farhadi, and Ludwig Schmidt. Open-
CLIP, 2021. 15

Yun Jiang, Marcus Lim, and Ashutosh Saxena. Learning ob-
ject arrangements in 3D scenes using human context. arXiv
preprint arXiv:1206.6462, 2012. 2

Andrej Karpathy, Stephen Miller, and Li Fei-Fei. Object
discovery in 3D scenes via shape analysis. In Proceedings
of the International Conference on Robotics and Automation
(ICRA), pages 2088-2095. IEEE, 2013. 4

Mohammad Keshavarzi, Aakash Parikh, Xiyu Zhai, Melody
Mao, Luisa Caldas, and Allen Y Yang. SceneGen: Genera-
tive contextual scene augmentation using scene graph priors.
arXiv preprint arXiv:2009.12395, 2020. 2

(35]

(36]

(37]

(38]

(39]

(40]

(41]

(42]

[43]

(44]

[45]

[40]

(47]

Mukul Khanna, Yongsen Mao, Hanxiao Jiang, Sanjay
Haresh, Brennan Shacklett, Dhruv Batra, Alexander Clegg,
Eric Undersander, Angel X Chang, and Manolis Savva.
Habitat synthetic scenes dataset (HSSD-200): An analysis
of 3D scene scale and realism tradeoffs for ObjectGoal nav-
igation. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 16384—
16393, 2024. 5,7, 13, 16

Kari Anne Hgier Kjglaas. Automatic furniture population of
large architectural models. PhD thesis, Massachusetts Insti-
tute of Technology, 2000. 2

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
BLIP-2: Bootstrapping language-image pre-training with
frozen image encoders and large language models. In In-
ternational conference on machine learning, pages 19730-
19742. PMLR, 2023. 6

Manyi Li, Akshay Gadi Patil, Kai Xu, Siddhartha Chaudhuri,
Owais Khan, Ariel Shamir, Changhe Tu, Baoquan Chen,
Daniel Cohen-Or, and Hao Zhang. GRAINS: Generative re-
cursive autoencoders for indoor scenes. ACM Transactions
on Graphics (TOG), 38(2):1-16, 2019. 2

Yijie Li, Pengfei Xu, Junquan Ren, Zefan Shao, and Hui
Huang. GLTScene: Global-to-local transformers for indoor
scene synthesis with general room boundaries. In Computer
Graphics Forum, page €15236. Wiley Online Library, 2024.

Chenguo Lin and Yadong Mu. InstructScene: Instruction-
driven 3D indoor scene synthesis with semantic graph prior.
In Proceedings of the International Conference on Learning
Representations (ICLR), 2024. 2, 5

Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia,
Graham Neubig, Pengchuan Zhang, and Deva Ramanan.
Evaluating text-to-visual generation with image-to-text gen-
eration. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 366—384. Springer, 2024. 6

Lu Ling, Chen-Hsuan Lin, Tsung-Yi Lin, Yifan Ding, Yu
Zeng, Yichen Sheng, Yunhao Ge, Ming-Yu Liu, Aniket Bera,
and Zhaoshuo Li. Scenethesis: A language and vision
agentic framework for 3D scene generation. arXiv preprint
arXiv:2505.02836, 2025. 2

Gabrielle Littlefair, Niladri Shekhar Dutt, and Niloy J Mitra.
FlairGPT: Repurposing LLMs for interior designs. In Com-
puter Graphics Forum, page ¢70036. Wiley Online Library,
2025. 2

Jia-Hong Liu, Shao-Kui Zhang, Tianqi Zhang, Jia-Tong
Zhang, and Song-Hai Zhang. SceneFunctioner: Tailoring
large language model for function-oriented interactive scene
synthesis, 2025. 2

Xinhang Liu, Yu-Wing Tai, and Chi-Keung Tang. Agen-
tic 3D scene generation with spatially contextualized VLMs.
arXiv preprint arXiv:2505.20129, 2025. 2

Xinhang Liu, Chi-Keung Tang, and Yu-Wing Tai. World-
Craft: Photo-realistic 3D world creation and customization
via LLM agents. arXiv preprint arXiv:2502.15601, 2025. 2

Rui Ma, Akshay Gadi Patil, Matthew Fisher, Manyi Li,
Soren Pirk, Binh-Son Hua, Sai-Kit Yeung, Xin Tong,
Leonidas Guibas, and Hao Zhang. Language-driven synthe-
sis of 3D scenes from scene databases. ACM Transactions
on Graphics (TOG), 37(6):1-16, 2018. 2



(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

Lucas Majerowicz, Ariel Shamir, Alla Sheffer, and Hol-
ger H Hoos. Filling your shelves: Synthesizing diverse style-
preserving artifact arrangements. /[EEE transactions on visu-
alization and computer graphics, 20(11):1507-1518, 2013.
2

Paul Merrell, Eric Schkufza, Zeyang Li, Maneesh Agrawala,
and Vladlen Koltun. Interactive furniture layout using in-
terior design guidelines. ACM transactions on graphics
(TOG), 30(4):1-10, 2011. 2

Wenjie Min, Wenming Wu, Gaofeng Zhang, and Liping
Zheng. FuncScene: Function-centric indoor scene synthesis
via a variational autoencoder framework. Computer Aided
Geometric Design, 111:102319, 2024. 2

Wamiq Reyaz Para, Paul Guerrero, Niloy Mitra, and Peter
Wonka. COFS: Controllable furniture layout synthesis. In
ACM SIGGRAPH 2023 Conference Proceedings, pages 1—
11, 2023.

Despoina Paschalidou, Amlan Kar, Maria Shugrina, Karsten
Kreis, Andreas Geiger, and Sanja Fidler. ATISS: Autoregres-
sive transformers for indoor scene synthesis. In Advances
in Neural Information Processing Systems, pages 12013—
12026, 2021. 2

Nicholas Ezra Pfaff, Hongkai Dai, Sergey Zakharov, Shun
Iwase, and Russ Tedrake. Steerable scene generation with
post training and inference-time search. In Proceedings of
The 8th Conference on Robot Learning, pages 1690—1702.
PMLR, 2025. 2

Pulak Purkait, Christopher Zach, and Ian Reid. SG-VAE:
Scene grammar variational autoencoder to generate new in-
door scenes. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 155-171. Springer, 2020. 2
Siyuan Qi, Yixin Zhu, Siyuan Huang, Chenfanfu Jiang, and
Song-Chun Zhu. Human-centric indoor scene synthesis us-
ing stochastic grammar. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
5899-5908, 2018. 2

Alexander Raistrick, Lingjie Mei, Karhan Kayan, David
Yan, Yiming Zuo, Beining Han, Hongyu Wen, Meenal
Parakh, Stamatis Alexandropoulos, Lahav Lipson, et al. In-
finigen Indoors: Photorealistic indoor scenes using proce-
dural generation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
21783-21794,2024. 2

Xingjian Ran, Yixuan Li, Linning Xu, Mulin Yu, and
Bo Dai. Direct numerical layout generation for 3D in-
door scene synthesis via spatial reasoning. arXiv preprint
arXiv:2506.05341, 2025. 2

Zhile Ren and Erik B Sudderth. 3D object detection with
latent support surfaces. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
937-946, 2018. 2

Daniel Ritchie, Kai Wang, and Yu-an Lin. Fast and flexi-
ble indoor scene synthesis via deep convolutional generative
models. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 6175—
6183, 2019. 2

Denys Rozumnyi, Stefan Popov, Kevis-kokitsi Maninis,
Matthias Niessner, and Vittorio Ferrari. Estimating generic

(61]

[62]

(63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

3D room structures from 2D annotations. In Advances
in Neural Information Processing Systems, pages 37786—
37798. Curran Associates, Inc., 2023. 2

Manolis Savva, Angel X Chang, Pat Hanrahan, Matthew
Fisher, and Matthias NieBner. PiGraphs: Learning inter-
action snapshots from observations. ACM Transactions on
Graphics (TOG), 35(4):1-12, 2016. 2

Sinisa Stekovic, Shreyas Hampali, Mahdi Rad, Sayan Deb
Sarkar, Friedrich Fraundorfer, and Vincent Lepetit. General
3D room layout from a single view by render-and-compare.
In Computer Vision—-ECCV 2020: 16th European Confer-
ence, Glasgow, UK, August 23-28, 2020, Proceedings, Part
XVI 16, pages 187-203. Springer, 2020. 2

Chong Su, Yingbin Fu, Zheyuan Hu, Jing Yang, Param
Hanji, Shaojun Wang, Xuan Zhao, Cengiz Oztireli, and
Fangcheng Zhong. CHOrD: Generation of collision-free,
house-scale, and organized digital twins for 3D indoor
scenes with controllable floor plans and optimal layouts.
arXiv preprint arXiv:2503.11958, 2025. 2

Fan-Yun Sun, Weiyu Liu, Siyi Gu, Dylan Lim, Goutam Bhat,
Federico Tombari, Manling Li, Nick Haber, and Jiajun Wu.
LayoutVLM: Differentiable optimization of 3D layout via
vision-language models. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 29469-29478, 2025. 2, 5

Qi Sun, Hang Zhou, Wengang Zhou, Li Li, and Hougiang
Li. Forest2Seq: Revitalizing order prior for sequential indoor
scene synthesis. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 251-268, 2024. 2
Weilin Sun, Xinran Li, Manyi Li, Kai Xu, Xiangxu Meng,
and Lei Meng. Hierarchically-structured open-vocabulary
indoor scene synthesis with pre-trained large language
model. In Association for the Advancement of Artificial In-
telligence (AAAI), pages 7122-7130, 2025. 2

Hou In Ivan Tam, Hou In Derek Pun, Austin T. Wang,
Angel X. Chang, and Manolis Savva. SceneMotifCoder:
Example-driven Visual Program Learning for Generating 3D
Object Arrangements. In Proceedings of the International
Conference on 3D Vision (3DV), 2025. 3, 13

Hou In Ivan Tam, Hou In Derek Pun, Austin T. Wang, An-
gel X. Chang, and Manolis Savva. SceneEval: Evaluating
semantic coherence in text-conditioned 3D indoor scene syn-
thesis. In Proc. of the Winter Conference on Applications of
Computer Vision (WACV), 2026. 6, 15, 16

Jiapeng Tang, Yinyu Nie, Lev Markhasin, Angela Dai, Justus
Thies, and Matthias NieBner. DiffuScene: Denoising diffu-
sion models for generative indoor scene synthesis. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 20507-20518, 2024. 2
Can Wang, Hongliang Zhong, Menglei Chai, Mingming He,
Dongdong Chen, and Jing Liao. Chat2Layout: Interactive
3D Furniture Layout with a Multimodal LLM. [EEE trans-
actions on visualization and computer graphics, PP, 2024.
2

Kai Wang, Manolis Savva, Angel X Chang, and Daniel
Ritchie. Deep convolutional priors for indoor scene syn-
thesis. ACM Transactions on Graphics (TOG), 37(4):1-14,
2018. 2



[72]

(73]

[74]

[75]

[76]

(771

(78]

[79]

(80]

[81]

[82]

(83]

Kai Wang, Yu-An Lin, Ben Weissmann, Manolis Savva, An-
gel X Chang, and Daniel Ritchie. PlanIT: Planning and in-
stantiating indoor scenes with relation graph and spatial prior
networks. ACM Transactions on Graphics (TOG), 38(4):1-
15,2019. 2

Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long
Cui, Xingguang Wei, Zhaoyang Liu, Linglin Jing, Shenglong
Ye, Jie Shao, et al. InternVL3.5: Advancing Open-Source
Multimodal Models in Versatility, Reasoning, and Efficiency
. arXiv preprint arXiv:2508.18265, 2025. 16

Xinpeng Wang, Chandan Yeshwanth, and Matthias Nief3ner.
Sceneformer: Indoor scene generation with transformers. In
Proceedings of the International Conference on 3D Vision
(3DV), pages 106-115. IEEE, 2021. 2

Yian Wang, Xiaowen Qiu, Jiageng Liu, Zhehuan Chen, Jit-
ing Cai, Yufei Wang, Tsun-Hsuan Wang, Zhou Xian, and
Chuang Gan. Architect: Generating vivid and interactive 3D
scenes with hierarchical 2D inpainting. In Advances in Neu-
ral Information Processing Systems, pages 67575-67603,
2024. 2

Yao Wei, Martin Renqiang Min, George Vosselman, Li Er-
ran Li, and Michael Ying Yang. Planner3D: LLM-enhanced
graph prior meets 3D indoor scene explicit regularization.
IEEE transactions on pattern analysis and machine intelli-
gence, 2025. 2

Qirui Wu, Denys Iliash, Daniel Ritchie, Manolis Savva, and
Angel X Chang. Diorama: Unleashing zero-shot single-view
3d indoor scene modeling. In Proceedings of the IEEE In-
ternational Conference on Computer Vision (ICCV), pages
8896-8907, 2025. 2

Zijie Wu, Mingtao Feng, Yaonan Wang, He Xie, Weisheng
Dong, Bo Miao, and Ajmal Mian. External knowledge en-
hanced 3D scene generation from sketch. In Proceedings
of the European Conference on Computer Vision (ECCV),
pages 286-304. Springer, 2025. 2

Xiao Xia, Dan Zhang, Zibo Liao, Zhenyu Hou, Tianrui Sun,
Jing Li, Ling Fu, and Yuxiao Dong. SceneGenAgent: Pre-
cise industrial scene generation with coding agent. In Pro-
ceedings of the 63rd Annual Meeting of the Association for
Computational Linguistics, pages 17847-17875, 2025. 2
Ken Xu, James Stewart, and Eugene Fiume. Constraint-
based automatic placement for scene composition. In Graph-
ics Interface, pages 25-34. Citeseer, 2002. 2

Yandan Yang, Baoxiong Jia, Peiyuan Zhi, and Siyuan
Huang. PhyScene: Physically interactable 3D scene synthe-
sis for embodied Al In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
16262-16272,2024. 2

Yixuan Yang, Junru Lu, Zixiang Zhao, Zhen Luo, James JQ
Yu, Victor Sanchez, and Feng Zheng. LLplace: The 3D in-
door scene layout generation and editing via large language
model. arXiv preprint arXiv:2406.03866, 2024. 2

Yue Yang, Fan-Yun Sun, Luca Weihs, Eli VanderBilt, Alvaro
Herrasti, Winson Han, Jiajun Wu, Nick Haber, Ranjay Kr-
ishna, Lingjie Liu, et al. Holodeck: Language guided genera-
tion of 3D embodied Al environments. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 16277-16287, 2024. 2,5, 7

[84]

(85]

[86]

(87]

(88]

(89]

[90]

[91]

(92]

(93]

(94]

[95]

Zhifei Yang, Keyang Lu, Chao Zhang, Jiaxing Qi, Hanqi
Jiang, Ruifei Ma, Shenglin Yin, Yifan Xu, Mingzhe Xing,
Zhen Xiao, et al. MMGDreamer: Mixed-modality graph for
geometry-controllable 3D indoor scene generation. In Asso-
ciation for the Advancement of Artificial Intelligence (AAAI),
2025. 2

Zhaoda Ye, Yang Liu, and Yuxin Peng. MAAN: Memory-
augmented auto-regressive network for text-driven 3D in-
door scene generation. [EEE Transactions on Multimedia,
2024. 2

Lap Fai Yu, Sai Kit Yeung, Chi Keung Tang, Demetri Ter-
zopoulos, Tony F Chan, and Stanley J Osher. Make it
Home: Automatic optimization of furniture arrangement.
ACM Transactions on Graphics (TOG), 30(4), 2011. 2
Lap-Fai Yu, Sai-Kit Yeung, and Demetri Terzopoulos. The
ClutterPalette: An interactive tool for detailing indoor
scenes. IEEE transactions on visualization and computer
graphics, 22(2):1138-1148, 2015. 2

Guangyao Zhai, Evin Pmar Ornek, Shun-Cheng Wu,
Yan Di, Federico Tombari, Nassir Navab, and Benjamin
Busam. CommonScenes: Generating commonsense 3D in-
door scenes with scene graphs. In Advances in Neural Infor-
mation Processing Systems, pages 30026-30038, 2023. 2
Guangyao Zhai, Evin Pinar Ornek, Dave Zhenyu Chen, Ruo-
tong Liao, Yan Di, Nassir Navab, Federico Tombari, and
Benjamin Busam. EchoScene: Indoor scene generation via
information echo over scene graph diffusion. In Proceedings
of the European Conference on Computer Vision (ECCV),
pages 167-184, 2024. 2

Beichen Zhang, Pan Zhang, Xiaoyi Dong, Yuhang Zang, and
Jiaqi Wang. Long-CLIP: Unlocking the long-text capability
of CLIP. In Proceedings of the European Conference on
Computer Vision (ECCV), page 310-325, 2024. 6

Suiyun Zhang, Zhizhong Han, Yu-Kun Lai, Matthias
Zwicker, and Hui Zhang. Active arrangement of small ob-
jects in 3D indoor scenes. IEEE transactions on visualization
and computer graphics, 27(4):2250-2264, 2019. 2
Shao-Kui Zhang, Yi-Xiao Li, Yu He, Yong-Liang Yang, and
Song-Hai Zhang. MageAdd: Real-time interaction simula-
tion for scene synthesis. In Proceedings of the 29th ACM
International Conference on Multimedia, pages 965-973,
2021. 2

Shao-Kui Zhang, Jia-Hong Liu, Yike Li, Tianyi Xiong, Ke-
Xin Ren, Hongbo Fu, and Song-Hai Zhang. Automatic gen-
eration of commercial scenes. In Proceedings of the 31st
ACM International Conference on Multimedia, pages 1137—
1147,2023. 2

Zaiwei Zhang, Zhenpei Yang, Chongyang Ma, Linjie Luo,
Alexander Huth, Etienne Vouga, and Qixing Huang. Deep
generative modeling for scene synthesis via hybrid represen-
tations. ACM Transactions on Graphics (TOG), 39(2):1-21,
2020. 2

Mengqi Zhou, Xipeng Wang, Yuxi Wang, and Zhaoxiang
Zhang. RoomCraft: Controllable and complete 3D indoor
scene generation. arXiv preprint arXiv:2506.22291, 2025. 2



	. Introduction
	. Related Work
	. Method
	. Scene Motifs
	. Input Description Requirement Decomposition
	. Support Region Extraction
	. Scene Motif Generation
	. Layout Optimization

	. Experimental Setup
	. Scene Generation
	. Support Region Extraction

	. Results
	. Scene Generation
	. Support Region Extraction
	. Ablation

	. Conclusion
	. HSM Details
	. Motif Library
	. Support Region Extraction
	. Layout Optimization
	DFS Solver
	Scene Spatial Optimization

	. Asset Retrieval
	. Additional Quantitative Analysis
	. Computational Cost and Runtime Analysis
	. Open Source VLM
	. Limitations and Future Work

	. Support Region Dataset Details
	. User Study Instructions
	. Overall Description of the Study
	. Instructions for Scene-level Evaluation
	. Instructions for Object-level Evaluation

	. VLM Prompts
	. Scene Motif Prompts
	Scene Motif Hierarchy Decomposition
	Scene Motif Generation

	. Scene Level Prompts
	. Furniture Level Prompts
	. Small Object Level Prompts


