© © N O O A W N =

N = o

Internal Value Functions: Leveraging Hidden States
for Efficient Test-Time Scaling in Large Reasoning
Models.

Anonymous Author(s)
Affiliation
Address

email

Abstract

Large Reasoning Models (LRMs) generate extensive hidden states during inference,
which encode rich information about the input context and probabilistically influ-
ence future token predictions. We propose Internal Value Functions (IVF), a novel
approach that leverages these hidden states to approximate state-value functions,
effectively predicting how likely a partial reasoning trajectory will converge to
the correct answer without additional inference steps. Unlike traditional Process
Reward Models (PRMs) that require separate model evaluations, our method en-
ables efficient implementation of several test-time scaling techniques by extracting
predictive signals from intermediate representations computed during the forward
pass. Experimental results on challenging reasoning benchmarks demonstrate
that IVF achieves comparable or better performance than external PRMs while
significantly reducing computational overhead.

1 Introduction and Related Works.

Large Language Models (LLMs) have demonstrated remarkable reasoning capabilities through chain-
of-thought (CoT) prompting Wei et al.| (2022)). |Snell et al.| (2024) show that Process Reward Models
(PRMs) (Lightman et al.| 2023)) can further improve LLMs performance on complex reasoning tasks
Wang et al.[(2023)); |Liu et al.| (2024)); Zhang et al.| (2025b) by guiding the generation process with
search. Recently, Large Reasoning Models (LRMs) (Guo et al.|(2025a) extends LLMs by introducing
an explicit thinking phase where models can explore, backtrack, and verify their reasoning before
generating final answers. Thus, there is a natural need to develop PRMs for LRMs.

However, traditional PRMs face challenges when applied to LRMs’ long-form reasoning. The
primary difficulty stems from the non-linear nature of LRM thinking, where initial mistakes can
be corrected later in the reasoning process |[Zou et al.| (2025)). While recent works have proposed
specialized PRMs for LRMs |Wang et al.| (2025)); [Zou et al.| (2025), these approaches still rely on
training separate external models and often struggle with the complexity of long-form reasoning
trajectories.

We propose Internal Value Function (IVF), a novel approach that leverages the LRM’s own hidden
states to approximate its state-value function. Our approach is motivated by recent observations that
LRM'’s hidden states can effectively predict model behavior and exhibit strong calibration properties
(Zhang et al.| |2025a). We extend |Guo et al.| (2025b)) who use the hidden states to build light-weight
outcome reward models (ORM) for non-reasoning LL.Ms.

Submitted to NeurIPS 2025 Workshop on Efficient Reasoning. Do not distribute.

32

33

34
35
36
37
38
39

40
41
42
43

44

45
46

47
48
49

50
51
52
53

54
55
56
57

// J - - -7\\\‘\ / V-Quest\on ¢ H\\\,\

n 2] y3 EOS
¢ - On-policy Early-stop
By by hy hy hs hg Rall-out Raoll-out
Thought ¥ 3
[= [= z3 W 2 va
[
comect
Response "'
W Light-weight Adapter A
1 \
' Voo e/ &

\ Va) 'V (V) Vi) / \ ‘\comect /
N Yo/ gV \¥z 3/ \ 3
\\ —= 2 & -2 / \\ = /

Figure 1: Left: Ilustration of our hidden states adapter. V,,, is short for V (yo.,,|x) in equation
The hidden states are simplified - in general, there are multiple layers of hidden states and at each
layer they depend on all previous hidden states through causal self-attention. At the top, an LRM
auto-regressively decodes tokens y. At the bottom, hidden states h of the unfinished completion
are passed to a light-weight adapter that estimates its value, similar to PRMs. Right: The process
of generate training labels for each complete trajectory. The first label is the final outcome, which
is either O or 1. A second label is derived for a partial thought (a.k.a a roll-in) by averaging either
multiple On-policy Roll-outs (continuing the thought) or multiple Early-stop Roll-outs (immediately
closing the thought and forcing the response). See section@ for details.

2 Methods

2.1 Problem Formulation

Consider a generator model (policy) 7 that takes a problem prompt = (1, ..., Z,,) and produces a
completion y = (y1, ..., Ym,), Where each is a sequence of tokens of length m, and m,, respectively.
The completion y is sampled from the conditional distribution 7(y|x). Unless using greedy sampling
(temperature = 0), different calls to the generator with the same prompt will yield different comple-
tions, including varying lengths m,,. The policy 7 encompasses all sampling parameters (temperature,
length limit, top-p, top-k, etc.), ensuring a unique conditional distribution.

In reasoning tasks, we assign a binary reward o(y|x) to each completion: 1 for correct answers and
0 otherwise. Our goal is to predict the "potential" of any partial completion yo.,, for 0 < m < m,
(m = 0 represents the initial state with no completion). Such predictions enable more effective
solution search|Snell et al.|(2024).

2.2 Value Functions

Following [Wang et al.| (2025), we refer to yo.,,, as a roll-in and ¥, 41:m, as a roll-out. We formulate
our PRM using the state-value function [Sutton et al.| (1998):

V(yO:m|I) = Eym,+1:my'\‘77(‘|l‘@yo:m) [T(ym+1:my Y yO:m‘x)] (1)

where @ denotes sequence concatenation. This function represents the expected reward when starting
from prompt x with roll-in yg.,,, and completing the sequence using 7. It effectively measures the
roll-in’s potential to lead to a correct answer.

While it is possible to have different generators for roll-in and roll-out, in this work, we focus on
generating a roll-out with the same policy 7 used for roll-in. The intuition is that a light-weight
adapter taking the roll-in hidden states as input is possible if this input is predictive of the roll-out
hidden states. We call this On-policy Roll-out.

Motivated by recent successes in early-stopping for LRMs (Sui et al.), we also introduce Early-stop
Roll-out. This variant also uses an on-policy generator but forces the partial completion to exit
the thinking phase. Formally, 7gs (| @ yo.,,) matches 7 (:|x & yo.,,) if = contains the closing tag
"</think>", otherwise it samples from 7 (y|z @ yo.,m ® w), where w is a closing phrase:

"\nOkay, I think I have finizshed thinking\n</think>\n\n".

58

59
60
61
62
63

64
65
66
67

68

69
70
71
72
73

74

75
76
77
78
79
80
81
82
83
84

Table 1: Performance of DVTS across different datasets and models. Results with * are taken from
'Wang et al.|(2025). blue and yellow highlight the best and second-best methods in each column,

respectively.

Method AIME-25 HMMT-25 GPQA-Diamond
RIM 58.5 +2.1 36.2 + 3.8 525+7.0
External PRMs:

Qwen2.5-Math-PRM-7B* 389 £ 1.4 242+02 -
MathShepherd-PRM-7B* 419+ 14 239+14 -

VGS 579 £ 2.1 39.1£25 5224+ 14
Our IVFs:

On-policy Roll-out 58.5+22 352 +3.1 529413
Early-stop Roll-out 579+£19 41.2£4.5 548+ 14

2.3 Hidden State Representation

Unlike external PRMs that operate on token outputs ¥.,,, we propose leveraging the generator’s
intermediate hidden states through a lightweight adapter. During generation of y, the model com-
putes hidden states /; 1, h; 2, ..., B m, Tor prompt x and by, 11, Rimg 42, 5 Rimg+m,, € R¢ for
completion y, where ¢ € L indexes layers in a transformer model with L layers and hidden dimension
d.

To manage long generation sequences efficiently, we sample a subset of hidden states. Specifically,
following |Skean et al.| (2025)), we select states from a single middle layer (layer 15 for r1-qwen7b)
and also sample states at fixed intervals (256 tokens by default). With a slight abuse of notation, we
denote the resulting sequence of 7" sampled hidden states as h, ..., hp.

2.4 Adapter Architectures

We extend the simple architecture in|(Guo et al.|(2025b). This model predicts both gating values g;
and rewards 7;:

S (ge o)

[Gt,7e] = Why + b5 gr =0(Gi); Vi = py .
max (), gt €)

While initially used for outcome-based training only, this model readily handles training with
intermediate labels. We further add an intermediate self-attention layer to this model, noting that
experiments with adding more layers and also a different RNN-based model did not improve this
simple baseline. In total, this model has less than 1 million parameters. During training, a binary
cross-entropy loss is computed at each time step with a label.

2.5 Training Methodology

Our training procedure follows Equation [[]with several practical considerations. While ideally we
would collect ground truth values throughout each sequence using Monte Carlo roll-outs, compu-
tational constraints lead us to collect a single ground truth value per training sequence. The data
generation process consists of: 1. sampling 8 full completions per prompt (1,000 prompts in total),
2. creating roll-ins by truncating completions at random points during thinking, 3. generating 8
roll-outs per roll-in, and 4. computing value estimates by averaging roll-out rewards. This process
yields 8000 training sequences, each with two ground truth values: one at sequence end and one from
roll-out averaging. In total, we generate 8000 roll-in samples and 64000 samples for each kind of
roll-out. In contrast, our best baseline Wang et al.|(2025) generate 2.8 million datapoints to train their
1.5B-parameter external PRM.

86
87
88

89
90
91
92

93
94
95
96
97

98

99
100
101
102
103

104
105
106
107
108
109

110

111
112
113

114
115
116
117

Table 2: BoN Diverse Sampling with generator r1-qwen7b across different datasets and PRMs. blue ,
yellow and green highlight the best, second-best and third-best in each column, respectively.

Method AIME-25 HMMT-25 GPQA-Diamond
RIM 50.5+ 3.6 30.2 +£3.8 53.5+19
External PRMs:

Qwen2.5-Math-PRM-7B 51.7 + 3.4 347 +3.9 50.0£1.9
VGS 50.8 £2.5 40.7 £ 3.2 499 +1.5
ReasonFlux-PRM-7B 522 +3.3 34.8 +3.8 499+ 1.8
Our IVFs:

On-policy Roll-out 548 +3.4 33.6 4.4 52.1+1.9
Early-stop Roll-out 51.8£34 36.1 £4.3 54.0 £2.0

3 Experimental Results

Generators: We use deepseek-r1-distill-qwen-7b (Guo et al., 2025a) (rl-qwen7b) as the base
generator. We use a maximum of 16384 tokens for generation and other sampling parameters as
recommended by source, namely temperature = 0.6, top-p = 0.95.

Datasets: We train on 1400 prompts from the DAPO dataset |Yu et al.| (2025), reserving 400 for
validation and test. DAPO, originally designed for reinforcement learning of LRMs, provides high-
quality problems with easily verifiable integer answers. We evaluate on 3 benchmarks: Mathematical
reasoning: AIME25, HMMT25P_-] and Scientific reasoning: GPQA-Diamond (Rein et al., [2024).

Baselines: We compare against various external PRM baselines: MathShepherd-PRM-7B (Wang
et al.,2023), Qwen2.5-Math-PRM-7B (Zhang et al.l 2025b), ReasonFlux-PRM-7B (Zou et al.| 2025)),
DeepSeek-VM-1.5B (VGS) |Wang et al.|(2025). For fair comparison and to highlight the impact of
process-based training, we also compare with a modified version of the ORM of (Guo et al.|(2025b)
(RIM), which differs with our IVFs only by not having intermediate roll-out labels.

3.1 Diverse Verifier Tree Search

Following Wang et al.[(2025)), we evaluate the performance with Diverse Verifier Tree Search (DVTS)
and report Weighted Majority Voting. We use the same algorithm and hyper-parameters as Wang
et al.| (2025) that were optimal for their method. In particular, we run 16 independent beam search
instances per prompt, each instance uses 8 beams and beam width 2, the total budget is therefore 128.
We use bootstrap with 2!° resamples to compute the confidence intervals.

Table [T] presents the DVTS results. Our models outperform VGS. In particular, Early-Stop Roll-out
IVF achieves the best performance on HMMT?25, GPQA and second-best on AIME-25. Strong
performance on GPQA demonstrates good generalization to out-of-distribution scientific reasoning,
despite training on mathematical problems. These results demonstrate that our IVFs can effectively
guide search-based inference, matching or exceeding the performance of external PRMs while using
significantly fewer parameters.

3.2 Diverse Sampling with Best-of-N

We also show that our PRM training can improve the ORM training of RIM by report the Divere
Sampling with Best-of-N performance [Snell et al.| (2024). For each prompt, we generate 128
completions and perform bootstrap to evaluate Bo128 performance (Huang et al.| 2025)).

The results in Table 2] demonstrate process-based training can outperform outcome-based training
(RIM) even when the search algorithm only requires the full trajectory score. Second, our light-weight
IVFs again achieve comparable or better performance than billion-parameter external PRMs. In
particular, Early-stop Roll-out IVF are in the top 3 methods in each dataset.

"https://maa.org/maa-invitational-competitions/and https://www.hmmt.org

https://maa.org/maa-invitational-competitions
https://www.hmmt.org

118

119
120
121

122
123

124
125
126

127
128
129

130
131
132

133
134
135

136
137
138

139
140

141
142
143

144
145

146
147
148

149
150
151

152
153
154

155
156
157

158
159
160

161
162
163

164
165

References

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025a.

Jizhou Guo, Zhaomin Wu, and Philip S Yu. Reward inside the model: A lightweight hidden-state
reward model for llm’s best-of-n sampling. arXiv preprint arXiv:2505.12225, 2025b.

Audrey Huang, Adam Block, Qinghua Liu, Nan Jiang, Akshay Krishnamurthy, and Dylan J Foster.
Is best-of-n the best of them? coverage, scaling, and optimality in inference-time alignment. arXiv
preprint arXiv:2503.21878, 2025.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Jujie He, Chaojie Wang, Shuicheng Yan, Yang
Liu, and Yahui Zhou. Skywork-reward: Bag of tricks for reward modeling in llms. arXiv preprint
arXiv:2410.18451, 2024.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpga: A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling, 2024.

Oscar Skean, Md Rifat Arefin, Dan Zhao, Niket Patel, Jalal Naghiyev, Yann LeCun, and Ravid
Shwartz-Ziv. Layer by layer: Uncovering hidden representations in language models. arXiv
preprint arXiv:2502.02013, 2025.

Charlie Snell, Jaechoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Shaochen Zhong, Hanjie Chen, et al. Stop overthinking: A survey on efficient
reasoning for large language models, 2025. URL https://arxiv. org/abs/2503.16419.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Kaiwen Wang, Jin Peng Zhou, Jonathan Chang, Zhaolin Gao, Nathan Kallus, Kianté Brantley,
and Wen Sun. Value-guided search for efficient chain-of-thought reasoning. arXiv preprint
arXiv:2505.17373, 2025.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
Math-shepherd: Verify and reinforce llms step-by-step without human annotations. arXiv preprint
arXiv:2312.08935, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source 1lm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025.

Angqi Zhang, Yulin Chen, Jane Pan, Chen Zhao, Aurojit Panda, Jinyang Li, and He He. Reasoning
models know when they’re right: Probing hidden states for self-verification. arXiv preprint
arXiv:2504.05419, 2025a.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301, 2025b.

Jiaru Zou, Ling Yang, Jingwen Gu, Jiahao Qiu, Ke Shen, Jingrui He, and Mengdi Wang. Reasonflux-
prm: Trajectory-aware prms for long chain-of-thought reasoning in llms. arXiv preprint
arXiv:2506.18896, 2025.

	Introduction and Related Works.
	Methods
	Problem Formulation
	Value Functions
	Hidden State Representation
	Adapter Architectures
	Training Methodology

	Experimental Results
	Diverse Verifier Tree Search
	Diverse Sampling with Best-of-N

