
Internal Value Functions: Leveraging Hidden States
for Efficient Test-Time Scaling in Large Reasoning

Models.

Anonymous Author(s)
Affiliation
Address
email

Abstract

Large Reasoning Models (LRMs) generate extensive hidden states during inference,1

which encode rich information about the input context and probabilistically influ-2

ence future token predictions. We propose Internal Value Functions (IVF), a novel3

approach that leverages these hidden states to approximate state-value functions,4

effectively predicting how likely a partial reasoning trajectory will converge to5

the correct answer without additional inference steps. Unlike traditional Process6

Reward Models (PRMs) that require separate model evaluations, our method en-7

ables efficient implementation of several test-time scaling techniques by extracting8

predictive signals from intermediate representations computed during the forward9

pass. Experimental results on challenging reasoning benchmarks demonstrate10

that IVF achieves comparable or better performance than external PRMs while11

significantly reducing computational overhead.12

1 Introduction and Related Works.13

Large Language Models (LLMs) have demonstrated remarkable reasoning capabilities through chain-14

of-thought (CoT) prompting Wei et al. (2022). Snell et al. (2024) show that Process Reward Models15

(PRMs) (Lightman et al., 2023) can further improve LLMs performance on complex reasoning tasks16

Wang et al. (2023); Liu et al. (2024); Zhang et al. (2025b) by guiding the generation process with17

search. Recently, Large Reasoning Models (LRMs) Guo et al. (2025a) extends LLMs by introducing18

an explicit thinking phase where models can explore, backtrack, and verify their reasoning before19

generating final answers. Thus, there is a natural need to develop PRMs for LRMs.20

However, traditional PRMs face challenges when applied to LRMs’ long-form reasoning. The21

primary difficulty stems from the non-linear nature of LRM thinking, where initial mistakes can22

be corrected later in the reasoning process Zou et al. (2025). While recent works have proposed23

specialized PRMs for LRMs Wang et al. (2025); Zou et al. (2025), these approaches still rely on24

training separate external models and often struggle with the complexity of long-form reasoning25

trajectories.26

We propose Internal Value Function (IVF), a novel approach that leverages the LRM’s own hidden27

states to approximate its state-value function. Our approach is motivated by recent observations that28

LRM’s hidden states can effectively predict model behavior and exhibit strong calibration properties29

(Zhang et al., 2025a). We extend Guo et al. (2025b) who use the hidden states to build light-weight30

outcome reward models (ORM) for non-reasoning LLMs.31
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Figure 1: Left: Illustration of our hidden states adapter. Vm is short for V (y0:m|x) in equation 1.
The hidden states are simplified - in general, there are multiple layers of hidden states and at each
layer they depend on all previous hidden states through causal self-attention. At the top, an LRM
auto-regressively decodes tokens y. At the bottom, hidden states h of the unfinished completion
are passed to a light-weight adapter that estimates its value, similar to PRMs. Right: The process
of generate training labels for each complete trajectory. The first label is the final outcome, which
is either 0 or 1. A second label is derived for a partial thought (a.k.a a roll-in) by averaging either
multiple On-policy Roll-outs (continuing the thought) or multiple Early-stop Roll-outs (immediately
closing the thought and forcing the response). See section 2 for details.

2 Methods32

2.1 Problem Formulation33

Consider a generator model (policy) π that takes a problem prompt x = (x1, ..., xmx
) and produces a34

completion y = (y1, ..., ymy
), where each is a sequence of tokens of length mx and my respectively.35

The completion y is sampled from the conditional distribution π(y|x). Unless using greedy sampling36

(temperature = 0), different calls to the generator with the same prompt will yield different comple-37

tions, including varying lengths my . The policy π encompasses all sampling parameters (temperature,38

length limit, top-p, top-k, etc.), ensuring a unique conditional distribution.39

In reasoning tasks, we assign a binary reward o(y|x) to each completion: 1 for correct answers and40

0 otherwise. Our goal is to predict the "potential" of any partial completion y0:m for 0 ≤ m ≤ my41

(m = 0 represents the initial state with no completion). Such predictions enable more effective42

solution search Snell et al. (2024).43

2.2 Value Functions44

Following Wang et al. (2025), we refer to y0:m as a roll-in and ym+1:my
as a roll-out. We formulate45

our PRM using the state-value function Sutton et al. (1998):46

V (y0:m|x) = Eym+1:my∼π(·|x⊕y0:m)[r(ym+1:my
⊕ y0:m|x)] (1)

where ⊕ denotes sequence concatenation. This function represents the expected reward when starting47

from prompt x with roll-in y0:m and completing the sequence using π. It effectively measures the48

roll-in’s potential to lead to a correct answer.49

While it is possible to have different generators for roll-in and roll-out, in this work, we focus on50

generating a roll-out with the same policy π used for roll-in. The intuition is that a light-weight51

adapter taking the roll-in hidden states as input is possible if this input is predictive of the roll-out52

hidden states. We call this On-policy Roll-out.53

Motivated by recent successes in early-stopping for LRMs (Sui et al.), we also introduce Early-stop54

Roll-out. This variant also uses an on-policy generator but forces the partial completion to exit55

the thinking phase. Formally, πES(·|x⊕ y0:m) matches π(·|x⊕ y0:m) if x contains the closing tag56

"</think>", otherwise it samples from π(y|x⊕ y0:m ⊕ w), where w is a closing phrase:57

"\nOkay, I think I have finished thinking\n</think>\n\n".
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Table 1: Performance of DVTS across different datasets and models. Results with * are taken from
Wang et al. (2025). blue and yellow highlight the best and second-best methods in each column,
respectively.

Method AIME-25 HMMT-25 GPQA-Diamond

RIM 58.5 ± 2.1 36.2 ± 3.8 52.5 ± 7.0

External PRMs:
Qwen2.5-Math-PRM-7B* 38.9 ± 1.4 24.2 ± 0.2 -
MathShepherd-PRM-7B* 41.9 ± 1.4 23.9 ± 1.4 -
VGS 57.9 ± 2.1 39.1 ± 2.5 52.2 ± 1.4

Our IVFs:
On-policy Roll-out 58.5 ± 2.2 35.2 ± 3.1 52.9 ± 1.3
Early-stop Roll-out 57.9 ± 1.9 41.2 ± 4.5 54.8 ± 1.4

2.3 Hidden State Representation58

Unlike external PRMs that operate on token outputs y0:m, we propose leveraging the generator’s59

intermediate hidden states through a lightweight adapter. During generation of y, the model com-60

putes hidden states hi,1, hi,2, ..., hi,mx
for prompt x and hi,mx+1, hi,mx+2, ..., hi,mx+my

∈ Rd for61

completion y, where i ∈ L indexes layers in a transformer model with L layers and hidden dimension62

d.63

To manage long generation sequences efficiently, we sample a subset of hidden states. Specifically,64

following Skean et al. (2025), we select states from a single middle layer (layer 15 for r1-qwen7b)65

and also sample states at fixed intervals (256 tokens by default). With a slight abuse of notation, we66

denote the resulting sequence of T sampled hidden states as h1, ..., hT .67

2.4 Adapter Architectures68

We extend the simple architecture in Guo et al. (2025b). This model predicts both gating values g̃t
and rewards rt:

[g̃t, rt] = Wht + b; gt = σ(g̃t); Vt′ =

∑t′

t=1(gt · rt)
max(

∑t′

t=1 gt, ϵ)
.

While initially used for outcome-based training only, this model readily handles training with69

intermediate labels. We further add an intermediate self-attention layer to this model, noting that70

experiments with adding more layers and also a different RNN-based model did not improve this71

simple baseline. In total, this model has less than 1 million parameters. During training, a binary72

cross-entropy loss is computed at each time step with a label.73

2.5 Training Methodology74

Our training procedure follows Equation 1 with several practical considerations. While ideally we75

would collect ground truth values throughout each sequence using Monte Carlo roll-outs, compu-76

tational constraints lead us to collect a single ground truth value per training sequence. The data77

generation process consists of: 1. sampling 8 full completions per prompt (1,000 prompts in total),78

2. creating roll-ins by truncating completions at random points during thinking, 3. generating 879

roll-outs per roll-in, and 4. computing value estimates by averaging roll-out rewards. This process80

yields 8000 training sequences, each with two ground truth values: one at sequence end and one from81

roll-out averaging. In total, we generate 8000 roll-in samples and 64000 samples for each kind of82

roll-out. In contrast, our best baseline Wang et al. (2025) generate 2.8 million datapoints to train their83

1.5B-parameter external PRM.84
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Table 2: BoN Diverse Sampling with generator r1-qwen7b across different datasets and PRMs. blue ,
yellow and green highlight the best, second-best and third-best in each column, respectively.

Method AIME-25 HMMT-25 GPQA-Diamond

RIM 50.5 ± 3.6 30.2 ± 3.8 53.5 ± 1.9

External PRMs:
Qwen2.5-Math-PRM-7B 51.7 ± 3.4 34.7 ± 3.9 50.0 ± 1.9
VGS 50.8 ± 2.5 40.7 ± 3.2 49.9 ± 1.5
ReasonFlux-PRM-7B 52.2 ± 3.3 34.8 ± 3.8 49.9 ± 1.8

Our IVFs:
On-policy Roll-out 54.8 ± 3.4 33.6 ± 4.4 52.1 ± 1.9
Early-stop Roll-out 51.8 ± 3.4 36.1 ± 4.3 54.0 ± 2.0

3 Experimental Results85

Generators: We use deepseek-r1-distill-qwen-7b (Guo et al., 2025a) (r1-qwen7b) as the base86

generator. We use a maximum of 16384 tokens for generation and other sampling parameters as87

recommended by source, namely temperature = 0.6, top-p = 0.95.88

Datasets: We train on 1400 prompts from the DAPO dataset Yu et al. (2025), reserving 400 for89

validation and test. DAPO, originally designed for reinforcement learning of LRMs, provides high-90

quality problems with easily verifiable integer answers. We evaluate on 3 benchmarks: Mathematical91

reasoning: AIME25, HMMT251 and Scientific reasoning: GPQA-Diamond (Rein et al., 2024).92

Baselines: We compare against various external PRM baselines: MathShepherd-PRM-7B (Wang93

et al., 2023), Qwen2.5-Math-PRM-7B (Zhang et al., 2025b), ReasonFlux-PRM-7B (Zou et al., 2025),94

DeepSeek-VM-1.5B (VGS) Wang et al. (2025). For fair comparison and to highlight the impact of95

process-based training, we also compare with a modified version of the ORM of Guo et al. (2025b)96

(RIM), which differs with our IVFs only by not having intermediate roll-out labels.97

3.1 Diverse Verifier Tree Search98

Following Wang et al. (2025), we evaluate the performance with Diverse Verifier Tree Search (DVTS)99

and report Weighted Majority Voting. We use the same algorithm and hyper-parameters as Wang100

et al. (2025) that were optimal for their method. In particular, we run 16 independent beam search101

instances per prompt, each instance uses 8 beams and beam width 2, the total budget is therefore 128.102

We use bootstrap with 215 resamples to compute the confidence intervals.103

Table 1 presents the DVTS results. Our models outperform VGS. In particular, Early-Stop Roll-out104

IVF achieves the best performance on HMMT25, GPQA and second-best on AIME-25. Strong105

performance on GPQA demonstrates good generalization to out-of-distribution scientific reasoning,106

despite training on mathematical problems. These results demonstrate that our IVFs can effectively107

guide search-based inference, matching or exceeding the performance of external PRMs while using108

significantly fewer parameters.109

3.2 Diverse Sampling with Best-of-N110

We also show that our PRM training can improve the ORM training of RIM by report the Divere111

Sampling with Best-of-N performance Snell et al. (2024). For each prompt, we generate 128112

completions and perform bootstrap to evaluate Bo128 performance (Huang et al., 2025).113

The results in Table 2 demonstrate process-based training can outperform outcome-based training114

(RIM) even when the search algorithm only requires the full trajectory score. Second, our light-weight115

IVFs again achieve comparable or better performance than billion-parameter external PRMs. In116

particular, Early-stop Roll-out IVF are in the top 3 methods in each dataset.117

1https://maa.org/maa-invitational-competitions and https://www.hmmt.org
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