
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HUMANEVAL-V: EVALUATING VISUAL UNDER-
STANDING AND REASONING ABILITIES OF LARGE
MULTIMODAL MODELS THROUGH CODING TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Coding tasks have been valuable for evaluating Large Language Models (LLMs),
as they demand the comprehension of high-level instructions, complex reason-
ing, and the implementation of functional programs – core capabilities for ad-
vancing Artificial General Intelligence. Despite the progress in Large Multimodal
Models (LMMs), which extend LLMs with visual perception and understanding
capabilities, there remains a notable lack of coding benchmarks that rigorously
assess these models, particularly in tasks that emphasize visual reasoning. To ad-
dress this gap, we introduce HumanEval-V, a novel and lightweight benchmark
specifically designed to evaluate LMMs’ visual understanding and reasoning ca-
pabilities through code generation tasks. HumanEval-V includes 108 carefully
crafted, entry-level Python coding tasks derived from platforms like CodeForces
and Stack Overflow. Each task is adapted by modifying the context and algo-
rithmic patterns of the original problems, with visual elements redrawn to ensure
distinction from the source, preventing potential data leakage. LMMs are required
to complete the code solution based on the provided visual context and a prede-
fined Python function signature outlining the task requirements. Every task is
equipped with meticulously handcrafted test cases to ensure a thorough and reli-
able evaluation of the model-generated code solutions. We evaluate 19 state-of-
the-art LMMs using HumanEval-V, uncovering significant challenges. Propri-
etary models like GPT-4o achieve only 13% pass@1 and 36.4% pass@10, while
open-weight models with 70B parameters score below 4% pass@1. Ablation stud-
ies further demonstrate the limitations of current LMMs in vision reasoning and
coding abilities. These results highlight key areas for future research to enhance
LMMs’ capabilities.

1 INTRODUCTION

Coding ability is essential for both the development and evaluation of Large Language Models
(LLMs) (Sun et al., 2024). By enabling LLMs to solve complex tasks in a divide-and-conquer man-
ner, coding facilitates more autonomous and efficient interactions with the world (Patil et al., 2023;
Liu et al., 2023b; Schick et al., 2024). As a result, coding tasks serve as a valuable testbed for
advancing research in Artificial General Intelligence (Bubeck et al., 2023). Recently, Large Multi-
modal Models (LMMs) composed of billions of parameters have emerged, with notable examples
such as GPT-4o (OpenAI, 2024) and Claude 3.5 Sonnet (Anthropic, 2024), demonstrating remark-
able capabilities in understanding and reasoning within visual contexts.

While several recent multimodal benchmarks offer evaluations across a wide range of vision-related
tasks (Goyal et al., 2017; Singh et al., 2019; Lu et al., 2022; Liu et al., 2023c; Yue et al., 2024), there
remains a significant gap in benchmarks specifically designed for coding scenarios. These bench-
marks typically involve multiple-choice or open-ended questions based on commonsense reasoning,
neglecting more complex reasoning scenarios like coding. Notably, coding is a valuable form to
assess complex reasoning abilities and has been exploited in various reasoning tasks such as math-
ematical, symbolic, and algorithmic reasoning (Madaan et al., 2022; Gao et al., 2023). It demands
the ability to understand high-level instructions, apply complex logic, and implement functional pro-
grams. Moreover, coding enables a more robust evaluation of reasoning through program execution.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: An example coding task in HumanEval-V that all LMMs evaluated in this work cannot
solve, including GPT-4o and Claude 3.5 Sonnet. Related error analysis can be found in Appendix A.

To address this gap, we introduce HumanEval-V, a novel and lightweight benchmark tailored to
evaluate LMMs in coding scenarios. HumanEval-V consists of 108 manually crafted code gener-
ation tasks sourced from platforms such as CodeForces and Stack Overflow. Each task is adapted
from the source by carefully modifying the original problem’s context and algorithmic patterns as
well as redrawing the visual elements. As an example task shown in Figure 1, each task involves
completing a Python function based on a single image, a function signature, and problem descrip-
tions provided in the comment block. These tasks require reasoning over both visual and textual
contexts to complete a function, with the correctness of the predicted solution assessed using a
reliable set of human-annotated test cases.

HumanEval-V is novel in that it is the first benchmark where visual information plays an es-
sential role in solving coding tasks. For instance, the diagram in Figure 1 not only indicates the
available position options for the function inputs, but also offers important clues for determining
whether two lines intersect, significantly complementing the function signature and problem de-
scriptions. To solve these tasks, models have to accurately understand the nuances of the image,
such as the position of two lines on the circle and tick labels. Moreover, they need the ability to per-
form cross-modal reasoning, integrating visual elements with the structured function signature and
textual problem descriptions cohesively. In contrast to other benchmarks (Li et al., 2024b), which
suggest that visual information has limited impact on coding performance, HumanEval-V ensures
that all coding tasks are unsolvable without the visual context. Textual descriptions in the coding
tasks are minimized to prevent models from relying solely on textual information to infer solutions.

Another appealing characteristic of HumanEval-V is light-weight and easy to test. It mirrors
the difficulty of well-established code generation benchmarks like HumanEval (Chen et al., 2021)
and MBPP (Austin et al., 2021) that target entry-level programmers. The simplicity of evaluation
has been one of the key reasons for the wide adoption of these benchmarks. In HumanEval-V,
each task is formulated in a Python code completion setting like HumanEval and annotated with
a comprehensive suite of test cases in a format of assertion statements, making it easy to execute
and efficient to measure the correctness of the completion. Additionally, the tasks are restricted to
using only common Python libraries, promoting the accessibility without requiring domain-specific
knowledge and avoiding compatibility issues with different library versions. We perform cross-
validation among several annotators to ensure the data integrity.

Through extensive experiments with 19 state-of-the-art LMMs, we have the following key findings:
(1) Even leading proprietary models like GPT-4o achieve only 13% pass@1 on HumanEval-V,
while open-weight models perform much worse, with none of them exceeding 4% pass@1.
HumanEval-V reveals limitations of current LMMs. (2) Proprietary models significantly outper-
form open-weight LMMs, highlighting the challenges in developing more advanced open-weight
models. (3) Current LMMs remain limited in their visual reasoning abilities, as evidenced by the
significant performance gains when provided with human-annotated textual descriptions of the im-
ages. (4) Open-weight LMMs suffer from deteriorated coding performance after integrating the
vision encoder. These findings emphasize the need for future research to enhance LLMs’ visual
reasoning and coding abilities.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 BENCHMARK CONSTRUCTION

As shown in Figure 1, each coding task in HumanEval-V consists of three main components. The
first component is a single image input, denoted as I , which provides the essential visual context
necessary to solve the coding problem. The second component is a Python function signature,
denoted as σ, which specifies the function name, input parameters, and return type, accompanied by
a brief problem description in the comment block. Both the image I and the function signature σ
are formatted into a predefined prompt template, which is then provided to the LMM. The model’s
output, denoted as O, represents the complete Python function generated by the LMM based on σ
and I . The third component is a set of test cases T = {t1, t2, . . . , tn}, which are used to validate
the functional correctness of O through execution. A solution is considered correct if O passes all
test cases, meaning it produces the expected outputs for each ti ∈ T .

Before constructing HumanEval-V, we establish rigorous standards to ensure the quality of the
coding task annotations: (1) the visual context provided must be essential for solving the task, with
all relevant information contained within a single image; (2) the coding task should be largely self-
explanatory through its visual context, requiring minimal textual descriptions; and (3) the coding
task should target entry-level programmers and be solvable using only common Python libraries.

The construction of HumanEval-V follows a collect-adapt-mutate pipeline. First, we collect cod-
ing problems with visual contexts from platforms such as CodeForces and Stack Overflow, iden-
tifying those suitable for adaptation based on the aforementioned standards. (Section 2.1). Next,
we modify the selected problems by adapting their task descriptions and redrawing the visual ele-
ments to ensure they meet our quality requirements. During this stage, we annotate each task with
a function signature (σ), a set of test cases (T ), and a ground truth solution. To further expand the
benchmark, some tasks undergo mutations, generating similar yet distinct versions by introducing
changes to the coding task’s visual patterns while preserving the core context. This iterative process
results in a final set of 108 code generation tasks (Section 2.2). After constructing the benchmark,
we perform rigorous validation to ensure that each coding task aligns with the standards: testing
visual reasoning, preventing data leakage, and maintaining an appropriate entry-level complexity.
Finally, we provide detailed benchmark statistics for reference (Section 2.3).

2.1 DATA COLLECTION AND SCREENING

The coding tasks in HumanEval-V are sourced from prominent Q&A and coding challenge plat-
forms such as Stack Overflow and CodeForces. These platforms offer a diverse range of coding
problems and are also commonly used in the development of well-established benchmarks for code
generation (Yin et al., 2018; Lai et al., 2023; Wang et al., 2023; Li et al., 2023b; Jain et al., 2024;
Wu et al., 2024b). From these sources, we collect a large set of coding problems that incorporate
visual elements in their problem descriptions.

However, the collected problems are unsuitable for direct inclusion in HumanEval-V. In most
cases, the visual context is non-essential for solving the task, with the problem primarily solvable
through rich textual descriptions alone. This makes it challenging to adapt such problems into our
benchmark, which emphasizes visual reasoning abilities. Therefore, we focus on identifying tasks
that already feature high-quality visual elements and present a moderate level of difficulty. After a
thorough screening process, we retain 40 candidate coding tasks out of the thousands reviewed for
further adaptation. A detailed discussion of the challenges encountered during data collection and
screening, along with demonstrating examples, is provided in Appendix C.1.

2.2 CODING TASK ANNOTATION

The annotation process begins by adapting the screened coding problems. For each of the 40 selected
coding tasks, we first identify and summarize the essential context and algorithmic patterns required
to solve the problem. We then create a new coding problem by modifying the context and patterns
of the original problem and redrawing the corresponding images. This is to prevent data leakage
and ensure consistency with the standards of HumanEval-V. Detailed examples of the problem
adaptation can be found in Appendix C.2.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

During adaptation, we ensure that all critical visual information for each coding task is encapsu-
lated within a single image. The coding tasks in HumanEval-V span a variety of visual elements,
including trees, graphs, matrices, maps, grids, flowcharts, and other abstract representations. This
diversity allows for comprehensive testing of the model’s visual reasoning abilities. Next, we define
a Python function signature for each task, beginning with the input and output specifications. To
simplify the Input/Output (I/O) formats, we prioritize basic data structures such as numbers, strings,
lists, and dictionaries. After finalizing the image and I/O definitions, we craft a concise problem
description that directs models to rely primarily on the visual information to complete the Python
function. Once the task definition is completed, we manually construct test cases and implement
a ground truth solution for each coding problem to ensure its validity. To further verify the com-
prehensiveness of the test cases, we perform statement and branch coverage analysis on the ground
truth solution, ensuring that all logical branches and execution paths are thoroughly tested.

Following the initial annotation of the 40 coding tasks, we conduct an additional round of mutation-
based extensions. This process expands the number of coding tasks based on the initial annotations,
by creating similar yet distinct coding tasks. The mutated tasks retain most of the original visual
elements but incorporate different algorithms to solve. For example, we can change the rule of the
coding task in Figure 1 by just considering the situation where the line segments intersect within the
circle, regardless of outside the circle. It is important to note that not all of the 40 tasks are suitable
for mutation. For each suitable task, we create one or two mutations, resulting in a total of 108
coding tasks in HumanEval-V. Examples of the mutation process are provided in Appendix C.3

2.3 QUALITY ASSURANCE AND DATASET STATISTICS

We implement a rigorous quality assurance process to ensure the quality of HumanEval-V. The
annotation team consists of three programmers, each with over four years of Python programming
experience. During each of the data collection, adaptation, and mutation stages, annotators inde-
pendently perform annotations based on pre-defined guidelines. After that, all annotators conduct a
cross-validation process to review and resolve any identified issues. A coding task is only finalized
when consensus is reached among all annotators. Additionally, one annotator maintains consistent
formatting and style across all visual representations and coding tasks. Each annotator dedicates
over 200 hours to the overall benchmark construction process. To validate the reliance on visual
context, we ensure that GPT-4o cannot solve any of the coding tasks without access to the images,
confirming the essential role of visual information. Finally, to facilitate continuous improvement, we
will publish an online data viewer for HumanEval-V after the review period, where the community
can review the dataset and report issues.

Attributes Med Avg Min Max
Image Width (px) 1024 998.2 596 1024
Image Height (px) 709 729.0 216 1024
Textual Token Count 106 111.3 59 230
GT Code Statements 14 16.3 3 44
Test Cases Count 10 9.8 4 16

Table 1: The descriptive statistics for the key at-
tributes of HumanEval-V, showcasing the Me-
dian, Average, Minimum, and Maximum values.

To provide a clearer understanding of our
benchmark, Table 1 presents key statistics for
several dataset attributes. Each coding task in-
cludes a single image input, with the image di-
mensions constrained to a maximum of 1024
pixels in height or width, to prevent overly long
or complex visual contexts. The average image
width and height are 998.2 and 729 pixels, re-
spectively. We also analyze the length of func-
tion signatures using the OpenAI tiktoken1 tok-
enizer. The longest function signature consists
of 230 tokens, while the average token count
is 111.3, demonstrating high succinctness. We

also quantify the complexity of the ground truth (GT) code solutions annotated by human experts.
On average, GT solutions contain 16.3 code statements, encompassing import statements, function
definitions, and the function body, reflecting the relative simplicity of the tasks. Finally, we provide
statistics on the number of test cases used for evaluation, with an average of 9.8 test cases per task.
We ensure the test cases achieve full statement and branch coverage on the GT solutions, guaran-
teeing rigorous testing of the generated code. We also include a detailed list of the I/O types and
module dependencies in Appendix C.4.

1https://github.com/openai/tiktoken

4

https://github.com/openai/tiktoken


216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3 EXPERIMENTAL SETUP

Models: We conduct a comprehensive evaluation of 19 state-of-the-art LMMs to assess the current
progress in visual reasoning and coding capabilities. Our selection includes a representative set
of the most advanced proprietary and open-weight models. Specifically, we evaluate five of the
latest proprietary models: GPT-4o (0513), GPT-4o-mini (0718) (OpenAI, 2024), Gemini 1.5 Pro
(001), Gemini 1.5 Flash (001) (Google, 2024), and Claude 3.5 Sonnet (0620) (Anthropic, 2024).
In addition, we test 14 top-performing open-weight models, selected based on their rankings on
the OpenVLM Leaderboard (Duan et al., 2024). These models span various parameter sizes to
explore the impact of scale on performance in the HumanEval-V benchmark. The open-weight
models include Phi-3-Vision (4.2B) (Microsoft, 2024a), Phi-3.5-Vision (4.2B) (Microsoft, 2024b),
LLaVA-OneVision (8.0B, 73.2B) (Li et al., 2024a), MiniCPM-V 2.5 (8.5B) and 2.6 (8.1B) (Yao
et al., 2024b), InternVL-Chat-V1.5 (26.0B) (Chen et al., 2023), InternVL-2 (4.2B, 8.1B, 25.5B,
40.1B) (OpenGVLab, 2024), and Qwen2-VL (8.3B, 73.4B) (Wang et al., 2024). We deliberately
include different versions within the same model series, such as Phi-3-Vision and Phi-3.5-Vision,
MiniCPM-V 2.5 and 2.6, as well as InternVL-Chat-V1.5 and InternVL-2, to investigate whether
iterative improvements in model development result in enhanced performance on HumanEval-V.
More details of the models can be found in Appendix D.

Figure 2: The prompting template used
for LMMs to generate code solutions.
The {code context} placeholder is for
the corresponding function signature.

Prompting, Hyper-parameters, and Post-processing:
All the LMMs evaluated in our experiments have been
trained on instruction-following or conversational data. To
align with this, we employ a conversational prompt tem-
plate, formatted in Markdown, as illustrated in Figure 2,
to prompt the LMMs to generate code solutions for the
tasks in HumanEval-V. For hyper-parameters, we fol-
low the established practices in code generation bench-
marking (Chen et al., 2021; Austin et al., 2021; Chen et al.,
2022), using two distinct settings. First, we employ greedy
search to generate a single code solution from each LMM,
allowing us to assess the models’ performance in a deter-
ministic setting. Additionally, we sample 20 code solu-
tions using a Top-p sampling method with p = 0.95 and a
relatively high temperature of 0.8. This setting is designed
to explore the likelihood of the models generating correct
solutions when given more opportunities. Given the mod-
erate complexity of the benchmark, we set the maximum
number of new tokens for code generation to 1024. Early

stopping is triggered by “\n```\n”, since the LMMs are instructed to enclose the generated code
within a Markdown code block. We also develop a post-processing pipeline to extract valid code
solutions from the model outputs. This pipeline identifies and extracts the content within the Mark-
down code block and uses an abstract syntax tree parser to detect any generated import statements,
along with class and function definitions. These components are then concatenated to form the final
predicted solution for test-execution-based evaluation.

Evaluation Metrics Following established practices in code generation (Chen et al., 2021; Austin
et al., 2021; Chen et al., 2022), we use the pass@k metric to evaluate the functional correctness of
the generated code solutions. For each coding task, n code samples are generated, and k solutions
are randomly selected from these samples to be tested against ground truth test cases. A task is
considered solved if at least one of the k selected solutions passes all test cases. The pass@k score
is then calculated as the percentage of successfully solved tasks. In our main experiments, we report
pass rate results for k = 1, 10. For greedy search, we set n = 1 to compute pass@1. For sampling-
based evaluation, we set n = 20 to calculate pass@10.

We incorporate a second evaluation metric: Execution Success Rate. This metric measures the
syntactic correctness of the generated code, independent of its functional accuracy. A solution is
considered executable if it can be compiled and run without triggering syntax errors, null pointer
exceptions, or other runtime failures, regardless of passing the test cases. The execution success rate
is calculated as the proportion of executable code samples out of all generated samples.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 EXPERIMENTAL RESULTS

4.1 MAIN EXPERIMENTS

LMMs Params
Exec.
Rate

pass@k

k=1 k=10

Proprietary
GPT-4o 87.9 13.0 36.4
GPT-4o-mini 90.4 6.5 15.4
Claude 3.5 Sonnet 91.8 18.5 25.9
Gemini 1.5 Pro 92.9 10.2 22.2
Gemini 1.5 Flash 92.6 8.3 13.2

Open-Weight

InternVL-2

76.3B 72.8 3.7 12.8
40.1B 66.2 0.0 1.6
25.5B 57.8 0.0 3.2
8.1B 64.6 0.9 2.6
4.2B 76.5 0.0 2.3

Qwen2-VL 73.4B 86.3 3.7 16.0
8.3B 58.1 0.0 1.6

LLaVA-OneVision 73.2B 84.7 1.9 12.4
8.0B 69.6 0.9 1.9

InternVL-Chat-V1.5 25.5B 62.0 0.0 2.1
MiniCPM-V 2.6 8.1B 67.2 0.9 2.2
MiniCPM-V 2.5 8.5B 75.7 0.0 2.3
Phi-3.5-Vision 4.2B 75.0 0.9 1.6
Phi-3-Vision 4.2B 76.1 0.0 2.6

Table 2: Performance of 19 LMMs on HumanEval-V.
Scores are shown as percentages, with the highest values
highlighted in bold. We also include model size (Params)
and code execution success rate (Exec. Rate).

Figure 3: Correlation analysis between
HumanEval-V pass@10 results and
three popular multimodal benchmarks
spanning multidisciplinary abilities.

We evaluate 19 state-of-the-art LMMs on HumanEval-V, with results presented in Table 2. Based
on the results, we have the following key findings:

Current LMMs’ performance is underwhelming on our benchmark: While proprietary mod-
els like GPT-4o and Claude 3.5 Sonnet show the best results, even their highest pass@1 scores
(13% and 18.5% respectively) fall short of expectations. Moreover, there remains a substantial per-
formance gap between proprietary and open-weight models. Open-weight models spanning 4B to
76B parameters exhibit particularly weak performance, with none exceeding a 4% pass@1. This is
surprising given that the coding tasks in our benchmark are designed for entry-level programmers
with simplified problem context. None of the open-weight models with fewer than 70B parameters
achieve more than 4% pass@10. Even the best-performing model, GPT-4o, achieves only 36.4%
pass@10, showing there is much room for improvement. In terms of execution success rate, we
observe a rough correlation with the pass rate. Most LMMs exhibit a high execution success rate,
while smaller-scale open-weight models show lower success rates. Most failed cases are due to com-
mon syntax errors, such as unclosed parentheses, generating code repeatedly without termination, or
encountering list index out-of-range issues. To further investigate, we perform another experiment
increasing the number of samples to evaluate model performance, as detailed in Appendix B.1.

Overfitting leads to hallucination errors in LMMs’ generated solutions: Upon examining many
incorrect solutions produced by the LMMs, we identify a recurring issue: the models tend to gen-
erate solutions based on the context of the original problems rather than the new versions of coding
tasks in our benchmark. For instance, both GPT-4o and Claude 3.5 Sonnet fail to produce correct
solutions for the coding task shown in Figure 1, as they mistakenly assume that the numbers in the
image are arranged in a clockwise order. Furthermore, their solutions rely on the assumption that
the two line segments can only intersect within the circle, which reflects the context of the original

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Models Params
Image Only Desc. Only Image & Desc.

pass@1 pass@10 pass@1 pass@10 pass@1 pass@10

Large Multimodal Models
GPT-4o 13.0 36.4 45.4↑32.4 67.9↑31.6 44.4↑31.5 71.0↑34.6
GPT-4o-mini 6.5 15.4 33.3↑26.9 46.1↑30.7 35.2↑28.7 50.6↑35.2

InternVL-2

76.3B 3.7 12.8 12.0↑8.3 41.1↑28.3 23.2↑19.5 47.9↑35.1
25.5B 0.0 3.2 2.8↑2.8 15.7↑12.5 4.6↑4.6 15.2↑12.0
8.1B 0.9 2.6 3.7↑2.8 10.3↑7.8 5.6↑4.6 12.3↑9.7
4.2B 0.0 2.3 5.6↑5.6 16.2↑13.9 2.8↑2.8 13.0↑10.7

Qwen2-VL 73.4B 3.7 16.0 20.4↑16.7 38.9↑22.9 23.2↑19.5 48.2↑32.2
8.3B 0.0 1.6 5.6↑5.6 13.5↑11.9 3.7↑3.7 16.9↑15.2

MiniCPM-V 2.6 8.1B 0.9 2.2 3.7↑2.8 7.1↑4.8 2.8↑1.9 6.9↑4.6
MiniCPM-V 2.5 8.5B 0.0 2.3 0.9↑0.9 14.6↑12.2 2.8↑2.8 14.2↑11.9
Phi-3.5-Vision 4.2B 0.9 1.6 0.0↓0.9 9.8↑8.2 2.8↑1.9 10.0↑8.3
Phi-3-Vision 4.2B 0.0 2.6 3.7↑3.7 10.0↑7.5 2.8↑2.8 6.8↑4.3

Large Code Language Models
CodeStral 22.2B 18.5 36.8
DSCoder-V2-Lite 15.7B 13.0 37.4
Yi-Coder-Chat 8.8B 25.0 40.2
DSCoder-V1.5 6.9B 13.0 21.5

Table 3: The performance of LMMs and Code LLMs on HumanEval-V using different input
settings. “Image Only” refers to the setting used in the main experiments. “Desc. Only” evaluates
models using annotated descriptions of images instead of the images themselves. “Image & Desc.”
provides both inputs to the models. Scores are presented as percentages. The ↑ and ↓ indicate
performance improvement and degradation over the “Image Only” setting.

problem on the CodeForces platform, rather than our adapted version. We attribute these halluci-
nation errors to that LMMs overfit on the previously seen data. This observation underscores the
necessity of our adaptation process, which aims to minimize data leakage and prevent models from
relying on memorized patterns.

Larger parameter size does not guarantee better performance in open-weight models: While
open-weight LMMs with over 70B parameters show superior results, smaller models (ranging from
4B to 40B parameters) exhibit highly variable performance. For example, Phi-3-Vision (4.2B)
and InternVL-2 (4.2B) achieve pass@10 scores of 2.6% and 2.3%, outperforming larger models
like QwenVL2 (8.3B) and InternVL-2 (40.1B). Notably, iterations of the Phi-Vision (3→3.5) and
MiniCPM-V(2.5→2.6) series do not lead to consistent performance improvements. This inconsis-
tency may be attributed to several factors. One possibility is the varying quality and scale of the
training data used for each model, which can impact their generalization ability.

Our benchmark reveals unique weaknesses in LMMs: Open-weight LMMs, such as Qwen2-
VL (Wang et al., 2024) and InternVL-2 (OpenGVLab, 2024), have demonstrated comparable or even
superior performance to proprietary LMMs on popular multimodal benchmarks like MMMU (Yue
et al., 2024), MathVista (Lu et al., 2023), and MMVet (Yu et al., 2023). However, these models
perform significantly worse on HumanEval-V, suggesting that our benchmark exposes previously
undetected limitations in current LMMs. The three mentioned benchmarks evaluate a broad range
of multidisciplinary abilities, focusing on visual understanding, reasoning, and general knowledge
through formats such as question-answering or multiple-choice questions, using accuracy as the
primary evaluation metric. By contrast, HumanEval-V adopts a unique evaluation approach based
on coding tasks, where visual contexts are tightly integrated with algorithmic patterns, presenting a
distinct challenge that differs from existing benchmarks. To further investigate this discrepancy, we
perform a correlation analysis between HumanEval-V and the three mentioned benchmarks.

We collect the performance results of the 19 evaluated LMMs from the OpenVLM Leader-
board (Duan et al., 2024) as well as from corresponding papers and reports, and compare them
to pass@10 scores on HumanEval-V in a regression plot, shown in Figure 3. For proprietary mod-
els, we observe a rough positive correlation between HumanEval-V and the other benchmarks.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: A coding task that InternVL-2-26B fails to solve with grounded image description.

While many scatter points for our benchmark are concentrated around zero, even though they show
competitive results on the other three benchmarks, highlighting the distinct challenge posed by our
benchmark. A comprehensive analysis of correlations between HumanEval-V and 5 other bench-
marks can be found in Appendix B.2.

4.2 ANALYSING EXPERIMENTS

To investigate the reasons behind the suboptimal performance of current LMMs on HumanEval-V,
we perform analyzing experiments by answering two key research questions.

Q1. Are LMMs Limited by Their Vision Capabilities?

We conduct an ablation study to evaluate whether the limitations in visual understanding contribute
to the underperformance of LMMs. In this study, we manually annotate detailed descriptions for
each image in the coding tasks, ensuring that these descriptions are descriptive rather than instruc-
tive, without revealing any specific algorithms. We design a new prompt template incorporating the
image description to provide LMMs with better-grounded visual context, thereby reducing issues
such as ambiguity and hallucination. Details of the new prompt template and examples of annota-
tions are provided in Appendix B.3. To further assess the quality of our annotations, we also test a
setting where LMMs receive only the image descriptions, without access to the images themselves.
Additionally, we evaluate several top-performing Code LLMs using image descriptions to explore
their potential in HumanEval-V. We present the results in Table 3. Below are the key findings:

(1) The inclusion of image descriptions leads to notable performance gains across all LMMs, with
higher-capability models showing the most significant improvements. For example, GPT-4o exhibits
a 31.5% absolute increase in pass@1. Similarly, large open-weight LMMs demonstrate substantial
improvement, indicating that current models still require enhanced visual understanding capabil-
ities. However, the limited improvement observed in smaller open-weight models suggests that
merely perceiving visual elements is insufficient for solving tasks that require deeper reasoning. We
illustrate this limitation with an example from InternVL-2 (25.5B) shown in Figure 4. The task
requires determining the number of illuminated red segments based on an “OR” operation depicted
in the image. While the model’s solution correctly implements the algorithm, it fails to identify

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

LMMs LLM Decoders
Params HumanEval+ MBPP+

LLM LMM LLM LMM LLM LMM

InternVL-2 Nous-Hermes-2-Yi 34.4B 40.1B 66.5 38.4↓28.1 57.9 47.1↓10.8
InternVL-2 InternLM2-Chat 19.9B 25.5B 65.2 54.9↓10.3 55.4 51.9↓3.5
InternVL-2 InternLM2.5-Chat 7.7B 8.1B 63.4 50.0↓13.4 53.9 52.4↓1.5
InternVL-2 Phi-3-Mini-Instruct 3.8B 4.2B 64.0 57.3↓6.7 57.1 57.1 0.0

Phi-3.5-Vision Phi-3.5-Mini-Instruct 3.8B 4.2B 65.9 51.8↓14.1 52.6 50.4↓2.2
Qwen2-VL Qwen2 7.6B 8.3B 58.5 65.2↑6.7 53.1 43.6↓9.5
LLaVA-OneVision Qwen2 7.6B 8.0B 58.5 59.1↑0.6 53.1 51.6↓1.5
MiniCPM-V 2.6 Qwen2 7.6B 8.1B 58.5 39.6↓18.9 53.1 37.6↓15.5
MiniCPM-V 2.5 Llama-3-Instruct 8.0B 8.5B 55.5 46.3↓9.2 51.9 47.1↓4.8

GPT-4o 86.0 68.7
GPT-4o-mini 84.8 65.7

Table 4: The performance comparison of open-weight LMMs and their corresponding LLM de-
coders on HumanEval+ and MBPP+ benchmarks. Scores are shown as percentages, with ↑ and ↓
indicating performance improvement and degradation of LMMs compared to their LLM decoders.

the segment mappings for each number, as this information is not explicitly provided in the image
description. This example underscores the challenge of integrating visual and textual reasoning in
coding tasks. (2) The “Desc. Only” setting performs comparably to the “Image & Desc.” setting,
underscoring that the annotated image descriptions can effectively capture the key visual informa-
tion to solving the task. (3) The Code LLMs with small-scale parameter sizes perform well on the
tasks when provided with image descriptions alone (i.e., without access to the images). For instance,
Yi-Coder-Chat (8.8B) achieves a 25% pass@1 and a 40.2% pass@10. This highlights the great po-
tential for current open-weight LMMs to further develop their reasoning and coding abilities.

Q2. Are LMMs Limited by Their Coding Abilities?

Open-weight LMMs with parameter sizes ranging from 4B to 40B exhibit surprisingly low per-
formance on HumanEval-V, even when utilizing grounded visual elements through image de-
scriptions. This suggests that open-weight LMMs may suffer from degradation of relevant coding
abilities. So we evaluate the models on a well-established code generation benchmark, EvalPlus Liu
et al. (2023a), to investigate their coding abilities. This benchmark includes two sub-datasets refined
from HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021), both consisting of Python
function completion tasks with problem descriptions and test-execution-based evaluation. Different
from HumanEval-V, these datasets depend exclusively on textual context.

Given that open-weight LMMs typically employ a vision-encoder and language-decoder architec-
ture, we also evaluate their LLM decoders separately to determine whether their coding performance
deteriorates after integrating the vision abilities. The results presented in Table 4 lead to the follow-
ing findings: (1) Open-weight LMMs consistently experience performance degradation on coding
benchmarks compared to their LLM decoders, despite having similar parameter sizes. Among these,
InternVL-2 (40.1B) and MiniCPM-V 2.6 show the most degradation, while InternVL-2 (4.2B) and
LLaVA-OneVision (8B) show the least. (2) Despite this degradation, open-weight LMMs still ex-
hibit relatively strong coding capabilities. Although their performance on EvalPlus does not match
GPT-4o, many of these models produce competitive results, indicating they retain a substantial de-
gree of code generation ability. These results highlight the need for further improvement in the
coding abilities of current open-weight LMMs.

5 RELATED WORK

While numerous benchmarks have been developed to evaluate various capabilities of LMMs, rang-
ing from optical character recognition (OCR) to multidisciplinary knowledge reasoning, few specif-
ically focus on the intersection of visual reasoning and code generation. This section reviews the
current progress of LMM benchmarking and demonstrates how HumanEval-V fills this gap.

OCR and Multidisciplinary Knowledge Abilities: A variety of benchmarks have been devel-
oped to evaluate multidisciplinary capabilities of LMMs. There are popular benchmarks like

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

DocVQA (Mathew et al., 2021), ChartQA (Masry et al., 2022), TextVQA(Singh et al., 2019), OCR-
Bench (Liu et al., 2023d), and OCRVQA (Mishra et al., 2019) assess models’ ability to recognize
and interpret text embedded in visual formats, including documents, charts, and images, often com-
bining these with multiple-choice questions (MCQ) and visual question answering (VQA) tasks.
Meanwhile, benchmarks such as MMMU (Yue et al., 2024), MME (Fu et al., 2023), MMBench (Liu
et al., 2023c), MMVet (Yu et al., 2023), SEEDBench (Li et al., 2023a), MMT-Bench (Ying et al.,
2024), and MMStar (Chen et al., 2024) test models on their general knowledge and reasoning abil-
ities across diverse domains, such as scientific concepts, cultural knowledge, and logical reasoning.
In contrast, HumanEval-V distinguishes itself by expanding the evaluation format beyond tradi-
tional MCQ and VQA. HumanEval-V requires models to interpret visual elements and apply that
understanding to generate correct and executable code, which introduces a more complex challenge.

Specialized Abilities: There are also benchmarks focusing on specific capabilities of LMMs.
MathVista (Lu et al., 2023) evaluates mathematical problem-solving skills. Safety-related bench-
marks (Gu et al., 2024) assess models on their ability to recognize and mitigate potential risks or
harmful content. ConvBench (Liu et al., 2024) evaluates conversational abilities, testing models
on their proficiency in maintaining coherent and contextually relevant dialogues. Benchmarks for
instruction-following ability (Qian et al., 2024) assess how well models can execute tasks based
on given instructions. Long-context reasoning benchmarks (Ma et al., 2024) assess the ability of
models to maintain coherence and logical reasoning over extended dialogues or documents. Hallu-
sionBench (Guan et al., 2024) focuses on hallucination detection abilities to differentiate between
factual information and generated content. There are also benchmarks (Zhang et al., 2024) eval-
uating mobile app navigation, testing models on their ability to interpret and interact with user
interfaces. In contrast, HumanEval-V mainly focuses on integrating visual reasoning and coding.

Coding Abilities: Despite the wide range of benchmarks available, the coding ability of LMMs
remains under-explored. Coding capabilities are crucial for leveraging LMMs in autonomous and
agentic applications (Xie et al., 2024). Current efforts focus primarily on derendering web pages (Si
et al., 2024; Laurençon et al., 2024) and scientific figures (Shi et al., 2024; Wu et al., 2024a), where
models translate visual representations into code. The other related area is Program-based VQA,
where models are provided with a set of pre-defined modules (e.g., for OCR, object detection, and
segmentation) and tasked with invoking them to answer visual questions like counting or identifying
spatial relationships (Surı́s et al., 2023; Subramanian et al., 2023). These methods show how mod-
els can use existing tools to perform vision tasks, while they complicate evaluation due to reliance
on multiple heavy modules. In contrast, HumanEval-V utilizes simple Python coding tasks to
streamline evaluation and focuses on visual understanding in coding tasks. Another closely related
work is MMCode (Li et al., 2024b), which evaluates the coding ability of LMMs on visually rich
competition-level coding problems. utilizing existing coding challenges from competitive program-
ming websites. However, MMCode overlooks two critical issues: the potential for data leakage
when relying on scraped data, and the use of text-rich problem contexts, which makes visual in-
formation non-essential for solving tasks. By contrast, our approach addresses both concerns with
rigorous data screening and annotation. We list a detailed discussion on MMCode in Appendix E.

6 CONCLUSION

We present a novel and lightweight benchmark HumanEval-V designed to evaluate the visual rea-
soning capabilities of LMMs through 108 high-quality, entry-level Python coding tasks that rely
on visual context to solve. We ensure rigorous evaluation of generated code solutions using com-
prehensive test cases. Our benchmark effectively uncovers weaknesses in current LMMs that are
overlooked by existing benchmarks. Through our analysis, we identify three critical limitations
in the current generation of LMMs. First, their visual perception abilities remain inadequate. We
observe significant performance gains when we provide textual descriptions of visual elements, in-
dicating that models still struggle to understand visual context independently. Second, open-weight
LMMs exhibit a consistent decline in their coding proficiency compared to their LLM decoders,
suggesting that the current multimodal training strategy still needs improvement. Finally, halluci-
nation due to overfitting is a major issue, causing models to incorrectly apply memorized patterns
rather than adapt to the new visual context in the coding tasks. We hope these findings will inform
and guide future research on enhancing the visual reasoning and coding capabilities of LMMs. We
also provide a discussion on our work’s limitations in Appendix F.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

We provide all code and data in a publicly available anonymous repository (https://
anonymous.4open.science/r/HumanEval-V-Anonymous/) for reference. The reposi-
tory includes the full dataset for our benchmark, accompanied by detailed usage instructions. Our
source code contains all the necessary components for running model inference to generate code
solutions, as well as evaluation scripts for obtaining and analyzing the results. Additionally, we
provide setup guides to replicate our experimental environment and reproduce the findings.

REFERENCES

Anthropic. Claude 3.5 sonnet, June 2024. URL https://www.anthropic.com/news/
claude-3-5-sonnet.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu
Chen. Codet: Code generation with generated tests. arXiv preprint arXiv:2207.10397, 2022.

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language
models? arXiv preprint arXiv:2403.20330, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qing-
long Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, and Jifeng Dai. In-
ternvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks. arXiv
preprint arXiv:2312.14238, 2023.

Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong,
Yuhang Zang, Pan Zhang, Jiaqi Wang, Dahua Lin, and Kai Chen. Vlmevalkit: An open-source
toolkit for evaluating large multi-modality models, 2024. URL https://arxiv.org/abs/
2407.11691.

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
Zheng, Ke Li, Xing Sun, et al. Mme: A comprehensive evaluation benchmark for multimodal
large language models. arXiv preprint arXiv:2306.13394, 2023.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Google. Introducing gemini 1.5, google’s next-generation ai model,
February 2024. URL https://blog.google/technology/ai/
google-gemini-next-generation-model-february-2024/.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
matter: Elevating the role of image understanding in visual question answering. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 6904–6913, 2017.

Tianle Gu, Zeyang Zhou, Kexin Huang, Dandan Liang, Yixu Wang, Haiquan Zhao, Yuanqi Yao,
Xingge Qiao, Keqing Wang, Yujiu Yang, et al. Mllmguard: A multi-dimensional safety evaluation
suite for multimodal large language models. arXiv preprint arXiv:2406.07594, 2024.

11

https://anonymous.4open.science/r/HumanEval-V-Anonymous/
https://anonymous.4open.science/r/HumanEval-V-Anonymous/
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://arxiv.org/abs/2407.11691
https://arxiv.org/abs/2407.11691
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang
Chen, Furong Huang, Yaser Yacoob, et al. Hallusionbench: an advanced diagnostic suite for
entangled language hallucination and visual illusion in large vision-language models. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14375–
14385, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau
Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for data
science code generation. In International Conference on Machine Learning, pp. 18319–18345.
PMLR, 2023.

Hugo Laurençon, Léo Tronchon, and Victor Sanh. Unlocking the conversion of web screenshots
into html code with the websight dataset. arXiv preprint arXiv:2403.09029, 2024.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei
Li, Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326, 2024a.

Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Bench-
marking multimodal llms with generative comprehension. arXiv preprint arXiv:2307.16125,
2023a.

Kaixin Li, Yuchen Tian, Qisheng Hu, Ziyang Luo, and Jing Ma. Mmcode: Evaluating multi-
modal code large language models with visually rich programming problems. arXiv preprint
arXiv:2404.09486, 2024b.

Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong Sun, Chen Lyu, Guang Liu, Zhi Jin, and
Ge Li. Taco: Topics in algorithmic code generation dataset. arXiv preprint arXiv:2312.14852,
2023b.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatGPT really correct? rigorous evaluation of large language models for code generation. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023a. URL https:
//openreview.net/forum?id=1qvx610Cu7.

Shuo Liu, Kaining Ying, Hao Zhang, Yue Yang, Yuqi Lin, Tianle Zhang, Chuanhao Li, Yu Qiao,
Ping Luo, Wenqi Shao, et al. Convbench: A multi-turn conversation evaluation benchmark with
hierarchical capability for large vision-language models. arXiv preprint arXiv:2403.20194, 2024.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023b.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around
player? arXiv preprint arXiv:2307.06281, 2023c.

Yuliang Liu, Zhang Li, Biao Yang, Chunyuan Li, Xucheng Yin, Cheng-lin Liu, Lianwen Jin,
and Xiang Bai. On the hidden mystery of ocr in large multimodal models. arXiv preprint
arXiv:2305.07895, 2023d.

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
science question answering. Advances in Neural Information Processing Systems, 35:2507–2521,
2022.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. arXiv preprint arXiv:2310.02255, 2023.

12

https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yubo Ma, Yuhang Zang, Liangyu Chen, Meiqi Chen, Yizhu Jiao, Xinze Li, Xinyuan Lu, Ziyu
Liu, Yan Ma, Xiaoyi Dong, et al. Mmlongbench-doc: Benchmarking long-context document
understanding with visualizations. arXiv preprint arXiv:2407.01523, 2024.

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang, and Graham Neubig. Language models of
code are few-shot commonsense learners. arXiv preprint arXiv:2210.07128, 2022.

Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A bench-
mark for question answering about charts with visual and logical reasoning. arXiv preprint
arXiv:2203.10244, 2022.

Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Docvqa: A dataset for vqa on document
images. In Proceedings of the IEEE/CVF winter conference on applications of computer vision,
pp. 2200–2209, 2021.

Microsoft. New models added to the phi-3 family, available on microsoft azure,
May 2024a. URL https://azure.microsoft.com/en-us/blog/
new-models-added-to-the-phi-3-family-available-on-microsoft-azure/.

Microsoft. Discover the new multi-lingual, high-quality phi-3.5 slms, Aug 2024b. URL https:
//techcommunity.microsoft.com/t5/ai-azure-ai-services-blog/
discover-the-new-multi-lingual-high-quality-phi-3-5-slms/ba-p/
4225280.

Anand Mishra, Shashank Shekhar, Ajeet Kumar Singh, and Anirban Chakraborty. Ocr-vqa: Visual
question answering by reading text in images. In 2019 international conference on document
analysis and recognition (ICDAR), pp. 947–952. IEEE, 2019.

Chancharik Mitra, Brandon Huang, Trevor Darrell, and Roei Herzig. Compositional chain-of-
thought prompting for large multimodal models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 14420–14431, 2024.

OpenAI. Hello gpt-4o, May 2024. URL https://openai.com/index/hello-gpt-4o/.

OpenGVLab. Internvl2: Better than the best—expanding performance boundaries of open-
source multimodal models with the progressive scaling strategy, July 2024. URL https:
//internvl.github.io/blog/2024-07-02-InternVL-2.0/.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

Yusu Qian, Hanrong Ye, Jean-Philippe Fauconnier, Peter Grasch, Yinfei Yang, and Zhe Gan. Mia-
bench: Towards better instruction following evaluation of multimodal llms. arXiv preprint
arXiv:2407.01509, 2024.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36, 2024.

Chufan Shi, Cheng Yang, Yaxin Liu, Bo Shui, Junjie Wang, Mohan Jing, Linran Xu, Xinyu Zhu,
Siheng Li, Yuxiang Zhang, et al. Chartmimic: Evaluating lmm’s cross-modal reasoning capability
via chart-to-code generation. arXiv preprint arXiv:2406.09961, 2024.

Chenglei Si, Yanzhe Zhang, Zhengyuan Yang, Ruibo Liu, and Diyi Yang. Design2code: How far
are we from automating front-end engineering? arXiv preprint arXiv:2403.03163, 2024.

Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
and Marcus Rohrbach. Towards vqa models that can read. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 8317–8326, 2019.

Sanjay Subramanian, Medhini Narasimhan, Kushal Khangaonkar, Kevin Yang, Arsha Nagrani,
Cordelia Schmid, Andy Zeng, Trevor Darrell, and Dan Klein. Modular visual question answering
via code generation. arXiv preprint arXiv:2306.05392, 2023.

13

https://azure.microsoft.com/en-us/blog/new-models-added-to-the-phi-3-family-available-on-microsoft-azure/
https://azure.microsoft.com/en-us/blog/new-models-added-to-the-phi-3-family-available-on-microsoft-azure/
https://techcommunity.microsoft.com/t5/ai-azure-ai-services-blog/discover-the-new-multi-lingual-high-quality-phi-3-5-slms/ba-p/4225280
https://techcommunity.microsoft.com/t5/ai-azure-ai-services-blog/discover-the-new-multi-lingual-high-quality-phi-3-5-slms/ba-p/4225280
https://techcommunity.microsoft.com/t5/ai-azure-ai-services-blog/discover-the-new-multi-lingual-high-quality-phi-3-5-slms/ba-p/4225280
https://techcommunity.microsoft.com/t5/ai-azure-ai-services-blog/discover-the-new-multi-lingual-high-quality-phi-3-5-slms/ba-p/4225280
https://openai.com/index/hello-gpt-4o/
https://internvl.github.io/blog/2024-07-02-InternVL-2.0/
https://internvl.github.io/blog/2024-07-02-InternVL-2.0/


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Qiushi Sun, Zhirui Chen, Fangzhi Xu, Kanzhi Cheng, Chang Ma, Zhangyue Yin, Jianing Wang,
Chengcheng Han, Renyu Zhu, Shuai Yuan, et al. A survey of neural code intelligence: Paradigms,
advances and beyond. arXiv preprint arXiv:2403.14734, 2024.

Dı́dac Surı́s, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution for
reasoning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
11888–11898, 2023.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
world at any resolution. arXiv preprint arXiv:2409.12191, 2024.

Zhiruo Wang, Shuyan Zhou, Daniel Fried, and Graham Neubig. Execution-based evaluation for
open-domain code generation. In Findings of the Association for Computational Linguistics:
EMNLP 2023, pp. 1271–1290, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Chengyue Wu, Yixiao Ge, Qiushan Guo, Jiahao Wang, Zhixuan Liang, Zeyu Lu, Ying Shan, and
Ping Luo. Plot2code: A comprehensive benchmark for evaluating multi-modal large language
models in code generation from scientific plots. arXiv preprint arXiv:2405.07990, 2024a.

Tongtong Wu, Weigang Wu, Xingyu Wang, Kang Xu, Suyu Ma, Bo Jiang, Ping Yang, Zhenchang
Xing, Yuan-Fang Li, and Gholamreza Haffari. Versicode: Towards version-controllable code
generation. arXiv preprint arXiv:2406.07411, 2024b.

xAI. Grok-1.5 vision preview, April 2024. URL https://x.ai/blog/grok-1.5v.

Junlin Xie, Zhihong Chen, Ruifei Zhang, Xiang Wan, and Guanbin Li. Large multimodal agents: A
survey. arXiv preprint arXiv:2402.15116, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in Neural Information Processing Systems, 36, 2024a.

Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
Weilin Zhao, Zhihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. arXiv preprint
arXiv:2408.01800, 2024b.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan Vasilescu, and Graham Neubig. Learning to
mine aligned code and natural language pairs from stack overflow. In Proceedings of the 15th
international conference on mining software repositories, pp. 476–486, 2018.

Kaining Ying, Fanqing Meng, Jin Wang, Zhiqian Li, Han Lin, Yue Yang, Hao Zhang, Wenbo Zhang,
Yuqi Lin, Shuo Liu, et al. Mmt-bench: A comprehensive multimodal benchmark for evaluating
large vision-language models towards multitask agi. arXiv preprint arXiv:2404.16006, 2024.

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. arXiv
preprint arXiv:2308.02490, 2023.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
modal understanding and reasoning benchmark for expert agi. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9556–9567, 2024.

Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao, Nuo Xu, Xiao Xiao, Zhongyu Wei, and
Duyu Tang. Android in the zoo: Chain-of-action-thought for gui agents. arXiv preprint
arXiv:2403.02713, 2024.

14

https://x.ai/blog/grok-1.5v


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A ERROR ANALYSIS ON THE EXAMPLE TASK

Figure 5: Examples of incorrect solutions generated by GPT-4o and Claude 3.5 Sonnet for the coding
task shown in Figure 1.

Figure 1 illustrates a simple coding task in HumanEval-V. The task requires determining whether
two line segments, defined by pairs of numbers on a clock-like circle, will ultimately intersect if
allowed to extend outside the circle. The numbers on the circle are arranged in a non-standard
order. Despite the problem’s simplicity, all evaluated LMMs failed to solve it correctly even when
generating 20 samples. We present representative solutions generated by GPT-4o and Claude 3.5
Sonnet in Figure 5.

Both models implement sorting-based algorithms that compare the numbers at the endpoints of the
line segments. However, they fail to account for the critical scenario where the segments intersect
outside the circle, and fail to recognize the unordered arrangement of the numbers. This oversight
indicates that the models are not effectively capturing the essential visual details of the problem. No-
tably, this issue appears to stem from data leakage, as the original coding task is derived from a Code-
Forces problem (https://codeforces.com/contest/1971/problem/C), and the gen-
erated solutions in Figure 5 reflect patterns more suitable for the original context. This phenomenon
is not isolated to this task; we observe similar issues across many coding tasks in HumanEval-V.
This highlights that the models rely on memorized patterns instead of genuinely understanding the
visual context. Such failures emphasize the importance of preventing data leakage and validate the
rationale behind our careful adaptation and mutation processes during data annotation.

15

https://codeforces.com/contest/1971/problem/C


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

LMMs Params pass@1 pass@10
pass@k (n = 100)

k=10 k=20 k=50 k=100

Proprietary
GPT-4o 13.0 36.4 39.0 44.1 49.9 53.7
GPT-4o-mini 6.5 15.4 15.3 20.1 26.7 31.5

Open-Weight
InternVL-2 40.1B 0.0 1.6 3.0 4.9 8.0 10.2
InternVL-2 25.5B 0.0 3.2 3.2 4.9 7.7 10.2
InternVL-2 8.1B 0.9 2.6 3.0 5.0 8.4 10.2
InternVL-2 4.2B 0.0 2.3 2.3 4.4 9.4 14.8
Qwen2-VL 8.3B 0.0 1.6 3.1 5.2 8.7 11.1
LLaVA-OneVision 8.0B 0.9 1.9 1.9 3.4 6.7 10.2
InternVL-Chat-V1.5 25.5B 0.0 2.1 3.1 5.3 9.3 13.0
MiniCPM-V 2.6 8.1B 0.9 2.2 1.7 2.8 4.8 7.4
MiniCPM-V 2.5 8.5B 0.0 2.3 1.3 2.4 5.5 9.3
Phi-3.5-Vision 4.2B 0.9 1.6 2.1 3.3 5.0 6.5
Phi-3-Vision 4.2B 0.0 2.6 1.8 3.3 6.6 9.3

Table 5: The performance of 13 LMMs on HumanEval-V with more generated code solution
samples. The pass@1 and pass@10 columns are the results from Table 2. Scores are shown as
percentages, with the highest values highlighted in bold.

LMMs pass@1 pass@10
pass@k (n = 1, 000)

k=100 k=200 k=400 k=600 k=800 k=1000

GPT-4o 13.0 36.4 55.3 59.9 64.3 66.4 67.7 68.5
GPT-4o-mini 6.5 15.4 31.3 36.0 40.5 43.0 44.9 46.3

Table 6: The impact of scaling the number of samples on HumanEval-V. Scores are reported as
percentages. The pass@1 and pass@10 columns correspond to results from Table 2.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 PERFORMANCE WITH MORE SAMPLES

The results in Section 4.1 indicate that increasing the number of samples can significantly enhance
model performance on HumanEval-V, so we conduct an ablation study to examine the effect
of scaling up sample sizes. Due to budgetary constraints, we primarily test open-weight LMMs
ranging from 4B to 40B parameters. For proprietary models, we evaluate GPT-4o and GPT-4o-mini.
For all selected models, we increase the number of generated samples n to 100 to observe their
performance. The results are presented in Table 5.

From the results, we observe that increasing the sample size consistently improves performance
across most models. For example, GPT-4o achieves a substantial improvement, rising from 36.4%
pass@10 to 53.7% pass@100. Smaller-scale open-weight LMMs also show notable gains; for in-
stance, InternVL-2 (4.2B) improves from a pass@10 of 2.3% to a pass@100 of 14.8%. However,
not all models benefit equally from scaling the sample size. For instance, Phi-3.5-Vision, which has
the same 4B-level parameter size, achieves only a pass@100 score of 6.5%. These findings under-
score both the potential and the limitations of scaling sample numbers to improve current LMMs’
performance on HumanEval-V.

To further evaluate the performance of current LMMs, we increase the sample size for GPT-4o
to 1,000. The results, presented in Table 6, show promising results with GPT-4o achieving a
pass@1000 of 68.5%, compared to the 36.4% pass@10. Similarly, GPT-4o-mini demonstrates
strong performance, achieving a pass@1000 score of 46.3%, surpassing the pass@10 score of GPT-
4o. These findings suggest that a significant proportion of the coding tasks in HumanEval-V are
solvable with current LMM capabilities, highlighting the need for further research on strategies to
better motivate the abilities of LMMs.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

It is important to note that there may be some variance between the pass@10 scores reported with
n=20 and those with n=100 or n=1,000. Increasing n typically improves the accuracy of the esti-
mated pass@k, making comparisons between different n values less straightforward. Moreover, the
pass@100 and pass@1000 values reported in Table 5 and Table 6 may exhibit bias due to using the
same k and n values for calculating pass@k, potentially affecting reproducing the results.

B.2 COMPARISON WITH OTHER MULTIMODAL BENCHMARKS

Models Params
Multidisciplinary Multimodal Benchmarks HumanEval-V

MMMU MathVista MMVet MME RealWorldQA pass@1 pass@10

Proprietary
GPT-4o 69.2 61.3 69.1 2310.3 75.4 13.0 36.4
GPT-4o-mini 60.0 52.4 66.9 2003.4 67.1 6.5 15.4
Claude 3.5 Sonnet 65.9 61.6 66.0 1920.0 60.1 18.5 25.9
Gemini 1.5 Pro 60.6 57.7 64.0 2110.6 64.1 10.2 22.2
Gemini 1.5 Flash 58.2 51.2 63.2 2077.9 69.0 8.3 13.2

Open-Weight

InternVL-2

76.3B 58.3 65.6 64.4 2397.6 72.7 3.7 12.8
40.1B 55.2 64.0 61.8 2293.1 70.1 0.0 1.6
25.5B 50.7 59.4 60.0 2259.8 68.1 0.0 3.2
8.1B 51.2 58.3 54.3 2215.1 64.2 0.9 2.6
4.2B 48.3 58.1 50.9 2064.6 60.5 0.0 2.3

Qwen2-VL 73.4B 64.5 70.5 74.0 2482.7 77.8 3.7 16.0
8.3B 54.1 58.2 62.0 2326.8 70.1 0.0 1.6

LLaVA-OneVision 73.2B 56.8 67.5 63.7 2261.0 71.9 1.9 12.4
8.0B 48.8 63.2 57.5 1998.0 66.3 0.9 1.9

InternVL-Chat-V1.5 25.5B 46.8 54.7 55.4 2189.6 65.6 0.0 2.1
MiniCPM-V 2.6 8.1B 49.8 60.6 60.0 2268.7 65.0 0.9 2.2
MiniCPM-V 2.5 8.5B 45.8 54.3 52.8 2024.6 63.5 0.0 2.3
Phi-3.5-Vision 4.2B 44.6 43.2 43.2 1838.1 53.6 0.9 1.6
Phi-3-Vision 4.2B 46.1 44.6 44.1 1508.0 58.8 0.0 2.6

Table 7: A performance comparison of 19 LMMs on HumanEval-V and five other popular multi-
modal benchmarks. The pass@1 and pass@10 columns correspond to results from Table 2. Values
are highlighted using a blue color scale, where darker shades indicate higher scores.

MMMU MathVista MMVet MME RealWorldQA HumanEval-V

MMMU - 0.51 0.88 0.42 0.61 0.90
MathVista 0.51 - 0.72 0.77 0.73 0.28
MMVet 0.88 0.72 - 0.68 0.81 0.67
MME 0.42 0.77 0.68 - 0.80 0.17
RealWorldQA 0.61 0.73 0.81 0.80 - 0.38
HumanEval-V 0.90 0.28 0.67 0.17 0.38 -

Average 0.66 0.60 0.75 0.57 0.67 0.48

Table 8: The Pearson correlation coefficients between pairs of six multimodal benchmarks. Lower
correlation values highlight benchmarks that capture distinct aspects of model performance.

To analyze whether HumanEval-V identifies specific weaknesses that are not captured by exist-
ing benchmarks, we select five widely used multimodal benchmarks that cover multidisciplinary
abilities. The selected benchmarks include MMMU (Yue et al., 2024), MathVista (Lu et al., 2023),
MMVet (Yu et al., 2023), MME (Fu et al., 2023), and RealWorldQA (xAI, 2024). We collect the per-
formance results of the 19 LMMs evaluated in this paper from the OpenVLM Leaderboard (Duan
et al., 2024) and the corresponding papers and reports. These results are presented alongside the
pass@1 and pass@10 scores on HumanEval-V in Table 7. From the results, we observe that open-
weight LMMs with over 70B parameters generally perform well on the selected benchmarks, with
models such as InternVL-2 (76.3B) and Qwen2-VL (73.4B) even surpassing proprietary models

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 6: The correlations between six multimodal benchmarks, including HumanEval-V. Each
subplot, except on the diagonal, visualizes the relationship between two benchmarks.

like GPT-4o and Claude 3.5 Sonnet in some cases. However, these open-weight LMMs show sig-
nificantly lower performance on HumanEval-V, indicating that our benchmark can uncover model
weaknesses that are not apparent in other evaluations.

To quantify the relationship between HumanEval-V and the five selected benchmarks, we calcu-
late the Pearson correlation coefficient using the data in Table 7. The results, shown in Table 8,
reveal that HumanEval-V has the lowest average correlation coefficient across all benchmarks,
suggesting that it captures aspects of model performance that are overlooked by existing bench-
marks. Among the benchmarks, HumanEval-V shows the highest correlation with MMMU, which
primarily evaluates advanced perception and reasoning abilities—key focuses of our benchmark as
well. We also visualize these relationships using regression plots for each benchmark pair in Fig-
ure 6, providing an intuitive view of the correlations. From the plots, we observe that many of the
scatter points for HumanEval-V are concentrated around zero, contributing to the low correlation
with other benchmarks and highlighting the distinct challenges posed by our benchmark.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 7: An example of image description annotation.

B.3 EXPERIMENTING WITH IMAGE DESCRIPTIONS

We provide two examples in Figure 7 and Figure 8 to illustrate our annotation process and demon-
strate how we construct image descriptions. When creating these descriptions, we ensure they
are purely descriptive rather than instructive, refraining from disclosing any specific algorithms or
problem-solving strategies. This approach allows us to evaluate whether current LMMs possess gen-
uine visual understanding capabilities and whether they can perform well when the visual elements
are grounded through detailed textual descriptions.

This process poses a unique challenge. While humans can intuitively identify patterns in images
and summarize them succinctly, we require our annotators to use precise descriptive language that
details every visual aspect without inferring the specific steps to solve the problem. This increases
the complexity of annotation and often results in verbose image descriptions. Despite this verbosity,
maintaining a purely descriptive approach is crucial for our benchmark, as it ensures that solving
the task requires the model to interpret and reason about the visual content, rather than simply
interpreting the description into code.

Once the image descriptions are finalized, we employ the prompt template shown in Figure 9 to
guide the LMMs in generating code solutions for the tasks in HumanEval-V.

C BENCHMARK CONSTRUCTION DETAILS

C.1 ADDITIONAL DETAILS OF DATA COLLECTION

Our data collection process involves two primary sources: Stack Overflow (SO) and coding chal-
lenge platforms. Each coding problem undergoes a strict screening process to ensure that it aligns
with the standards of HumanEval-V. Annotators are instructed to identify suitable problems by

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 8: An example of image description annotation.

Figure 9: The template used for prompting LMMs to solve code generation tasks with image de-
scriptions. The {image description} placeholder is replaced with the annotated image description.
The {code context} placeholder is replaced with the corresponding function signature.

assessing whether they can be adapted with minimal effort to meet the predefined standards, which
include the following criteria: (1) the visual context must be essential to solving the task, with all
relevant visual information able to fit within a single image; (2) the problem should be largely self-
explanatory through its visual context, requiring minimal textual description; and (3) the problem
should target entry-level programmers and be solvable using only common Python libraries.

We select SO due to its extensive repository of real-world programming problems. To identify
relevant posts, we filter for questions from 2020 that have non-negative votes and accepted answers.
Next, we focus on posts with images in the question body and code blocks in the corresponding
answers, narrowing down to those tagged with python. After this automated filtering, we manually

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 10: A negative example in our data screening process, sourced from CodeForces (https:
//codeforces.com/problemset/problem/294/B), where the image is non-essential for
solving the problem.

Figure 11: A negative example in our data screening process, sourced from GeeksforGeeks
(https://www.geeksforgeeks.org/problems/last-cell-in-a-matrix/1),
where the visual elements require extensive textual descriptions to interpret.

review the remaining posts, excluding topics such as front-end, mobile, or UI development, as these
often require high-level API usage and do not align with the goals of our benchmark. We also
filter out many posts containing images that only provide supplementary details (e.g., code snippets,
error messages, or execution outputs) rather than being essential to problem-solving. Ultimately,

21

https://codeforces.com/problemset/problem/294/B
https://codeforces.com/problemset/problem/294/B
https://www.geeksforgeeks.org/problems/last-cell-in-a-matrix/1


1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 12: A positive example in our data screening process, sourced from Stack Overflow (https:
//stackoverflow.com/questions/69163515).

Figure 13: A positive example in our data screening process, sourced from CodeForces (https:
//codeforces.com/problemset/problem/1381/E).

we identify 8 posts satisfying our standards, covering topics like geometry, plotting, and image
processing. The final screened SO posts account for less than 1% of the total viewed posts, and even
the selected problems often require significant adaptation to fit our benchmark’s requirements.

Regarding the coding challenge platforms, we utilize the open-source MMCode dataset Li et al.
(2024b), which already scraped coding problems from various coding challenge platforms that in-

22

https://stackoverflow.com/questions/69163515
https://stackoverflow.com/questions/69163515
https://codeforces.com/problemset/problem/1381/E
https://codeforces.com/problemset/problem/1381/E


1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 14: A positive example in our data screening process, sourced from CodeForces (https:
//codeforces.com/problemset/problem/1996/B).

corporate visual elements in problem descriptions. However, we find that most of these problems
are unsuitable for HumanEval-V. Many images merely display simple mathematical equations,
which are essentially textual in nature and do not require visual reasoning. In other cases, the visual
content is redundant, as it can be easily inferred from the text alone, rendering the images non-
essential. Some problems, although containing relevant visual information, are overly complex and
require extensive textual descriptions to interpret, violating our requirement for self-explanatory vi-
sual contexts. After careful screening, we identify 32 problems suitable for our benchmark: 23 from
CodeForces, 5 from LeetCode, and 1 each from GeeksforGeeks, AtCoder, Open Kattis, and Project
Euler. These selected problems account for less than 5% of the total viewed problems.

To further illustrate our screening process, we present two negative examples that do not meet our
standards in Figure 10 and Figure 11, along with three positive examples that are selected for our
benchmark in Figure 12, Figure 13, and Figure 14. Below are the detailed explanations:

In Figures 10 and 11, we present two negative examples that do not meet the standards for inclusion
in our benchmark. Figure 10 is a coding problem sourced from CodeForces that requires deter-
mining an optimal stacking method for a set of books with identical heights, given their respective
thickness and width, to minimize the total thickness. Although the provided image illustrates a
possible stacking configuration, it lacks essential information, such as constraints on the stacking
method and precise book dimensions. Furthermore, the core problem-solving information is con-
veyed predominantly through text, making the image non-essential for understanding the solution.
Figure 11 depicts a coding problem from GeeksForGeeks that involves traversing a 2D matrix ac-
cording to a specified pattern, starting from the top-left corner and identifying the traversal endpoint.
Although the image provides a basic representation of the matrix, the traversal pattern is too intri-
cate to be effectively captured visually and requires substantial textual explanation. As a result, the
textual description contains more problem-solving information than the image itself, violating our
requirement that the visual context be self-explanatory and the primary source of information.

23

https://codeforces.com/problemset/problem/1996/B
https://codeforces.com/problemset/problem/1996/B


1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 15: The adapted coding task from Figure 12 as incorporated into HumanEval-V.

In Figure 12, Figure 13, and Figure 14, we present three examples that are well-suited for inclusion
in our benchmark. Figure 12 illustrates a practical problem from Stack Overflow, where a developer
seeks to draw a parallelogram on a coordinate plane using four specified points. The image visu-
ally demonstrates how these points are connected to form the parallelogram, serving as the critical
piece of information needed to solve the task. Additionally, the text merely reiterates the geometric
properties shown in the image, making it possible to reduce the textual content significantly without
loss of essential details. This ensures that the image itself is indispensable for solving the problem
while relying on the text alone would be insufficient. Figure 13 features a problem from CodeForces
involving the folding of a polygon, where the goal is to compute the area of the resulting shape
after a series of folds. The image clearly depicts the folding process along the designated dashed
lines, showing both the original shape and its transformation after folding. These visual details are
integral to solving the problem, as understanding the fold pattern and resulting shape is necessary.
Figure 14, also sourced from CodeForces, involves reducing a grid according to a specified pattern.
The image effectively conveys the grid reduction process, showing the transformation step-by-step.
Any redundant textual description of the pattern can be omitted, ensuring that the problem can be
solved primarily by interpreting the visual information, with minimal reliance on the accompanying
text. These three examples are relatively straightforward yet require precise visual understanding,
making them ideal candidates for adaptation into coding tasks within HumanEval-V.

C.2 EXAMPLES OF ADAPTING CODING PROBLEMS

We present three adapted examples in Figure 15, Figure 16, and Figure 17, derived from the original
coding tasks shown in Figure 12, Figure 13, and Figure 14. For each problem, we redesign the
questions, redraw the accompanying images to include the critical problem-solving context, and
simplify the textual descriptions. Furthermore, we adjust the difficulty to ensure that entry-level
programmers can interpret the visual information accurately and implement the solution using basic
coding skills.

In Figure 15, we transform the original parallelogram problem into the coding task involving a
five-pointed star, incorporating richer visual information. To enhance the visual cues, we include
four examples in the image demonstrating different ways to connect five points to form a star. In
the adapted function signature, we specify the implementation requirements for the model, clearly

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 16: The adapted coding task from Figure 13 as incorporated into HumanEval-V.

defining the function’s objectives, input parameters, and constraints on the return value. Unlike the
original problem, which requires generating an image of a parallelogram, the adapted task simply
asks whether two specified points should be connected. This adaptation reduces the complexity
while maintaining a strong focus on assessing the model’s visual reasoning abilities. Additionally,
the structured I/O format allows us to evaluate the generated solutions through test cases.

In Figure 16, we simplify the original polygon folding problem into a matrix folding task. After
folding, overlapping sections of the matrix result in color changes, and the model is required to
determine the resulting color distribution. We restrict the input matrix to two initial colors: white
and light blue, such that after folding, the matrix can display three distinct color outcomes: white,
light blue, and dark blue. This adaptation preserves the visual reasoning involved in understanding
the folding process while reducing the programming difficulty. We also provide three illustrative
examples within the image to ensure clarity.

In Figure 17, we slightly increase the difficulty of the original problem. We remove redundant
textual details that can be inferred from the image. We omit the reduction factor k from the function
parameters, setting k as a fixed value instead. The model is expected to deduce that k = 2 based on
the three provided examples. Moreover, instead of performing simple scaling operations with 0 and
1 values as in the original problem, we adapt it into a pooling operation based on statistical features
(e.g., determining the minimum value), which requires not only OCR capabilities but also deeper
visual reasoning.

C.3 EXAMPLES OF MUTATING CODING TASKS

We apply mutations to some of the 40 screened coding tasks to expand the volume of our benchmark.
The objective is to generate new tasks that retain the essence of the original tasks but introduce
distinct patterns with minimal modification. As illustrated in Figures 18, Figure 19, and Figure 20,
these mutated tasks are derived from the coding problems in Figures 15, 16, and 17, respectively.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 17: The adapted coding task from Figure 14 as incorporated into HumanEval-V.

In Figure 18, we maintain the same function signature as in the original task but modify the image
pattern from a five-pointed star to a six-pointed star, altering the visual configuration while preserv-
ing the overall task settings. In Figure 19, we transform the color addition rule in the folded matrix
into a numeric addition rule, requiring the model to recognize and infer the numerical changes
before and after folding. This mutation introduces additional complexity, further evaluating the
model’s OCR capabilities. For Figure 20, we increase the pooling stride from 2 to 3, requiring the
model to observe a larger matrix to deduce the pattern, thereby raising the demands on both visual
reasoning and OCR proficiency. In each case, we adjust the test cases to align with the modified
patterns introduced through the mutations, ensuring that the new tasks remain consistent with the
requirements of our benchmark.

C.4 ADDITIONAL DATASET STATISTICS

dict float int 1D list 2D list np.ndarray str tuple pd.DataFrame bool

Input 8 3 34 35 24 2 4 12 - -
Output - 3 5 34 6 6 3 3 3 45

Table 9: The distribution of Input/Output types for the coding tasks in HumanEval-V.

The input and output (I/O) types used in the coding tasks in HumanEval-V are designed to maintain
a low level of complexity. A distribution of their frequencies is shown in Table 9. We focus on using
simple and commonly used data structures, such as integers, lists, dictionaries, and tuples, which
are frequently encountered in standard programming tasks. Most of the tasks utilize basic types like
integers, 1D and 2D lists, or simple boolean outputs, ensuring that solving them does not require
specialized fine-tuning on domain-specific data. These I/O types are prevalent in open-source code

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Figure 18: A mutated version of the coding task from Figure 15.

used for model pretraining, making our benchmark compatible with general-purpose LMMs without
requiring additional adaptation or targeted training on specified datasets.

In terms of module dependencies, HumanEval-V utilizes a minimal set of common Python li-
braries, including typing, pandas, numpy, math, heapq, and collections. These libraries
are well-supported and widely used in both general programming and scientific computing contexts.
This ensures that our benchmark can comprehensively assess the visual reasoning capabilities of
models using common and accessible libraries, without introducing dependencies that are rarely
present in the training data. Notably, the coding tasks in HumanEval-V use only the stable APIs
from these libraries, ensuring consistent and reliable testing.

D DETAILS OF THE EVALUATED MODELS

To facilitate the reproducibility of our results, we provide detailed information on all the evaluated
models in Table 10. The open-weight models are sourced from Hugging Face2, while the proprietary
models are accessed via their respective APIs.

For model inference, we utilize 8 NVIDIA A800 GPUs and maintain the original tensor data types
specified by each model to ensure consistent evaluation. To further optimize inference efficiency,
we leverage the open-source framework vLLM3.

Additionally, the Code LLMs used in Section 4.2 are also listed in Table 10. These models are fine-
tuned versions of foundational LLMs, specifically trained on large-scale, multilingual programming
datasets to enhance their performance across diverse coding scenarios.

E DISCUSSION ON THE MMCODE DATASET

MMCode (Li et al., 2024b) introduces a multimodal coding dataset aimed at evaluating LMMs’
algorithmic problem-solving skills in visually rich contexts. The dataset includes 3,548 questions

2https://huggingface.co
3https://docs.vllm.ai/en/latest/

27

https://huggingface.co
https://docs.vllm.ai/en/latest/


1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 19: A mutated version of the coding task from Figure 16.

scraped from various competitive programming websites. However, as discussed in Appendix A,
the issue of data leakage poses a significant challenge, as many of these coding tasks may have
been previously encountered and memorized by the models, making them unsuitable for direct use
as test data. Additionally, as demonstrated in Appendix C.1, a majority of the coding challenges
in MMCode contain visual content that is redundant; the information conveyed through images
can often be inferred from the textual descriptions alone, rendering the visuals non-essential. The
reported results from MMCode further confirm this issue, as the performance using “language-only”
inputs is similar to that with “vision + language” inputs.

In contrast, HumanEval-V is specifically designed to focus on visual understanding and reason-
ing abilities, rather than general coding proficiency, ensuring an irreplaceable dependency on visual
context. During the annotation phase, we verify that language-only inputs achieve a 0% pass rate
for GPT-4o, demonstrating the necessity of visual context in HumanEval-V. Moreover, our care-
ful adaptation and mutation processes prevent data leakage, ensuring that evaluations accurately
measure visual reasoning and coding abilities, rather than memorization of previously seen tasks.

F LIMITATIONS

Despite the contributions of our benchmark, several limitations remain that we aim to address in
future work:

(1) Limited Number of Coding Tasks: The size of our benchmark is currently restricted due to the
difficulty of identifying suitable coding problems and the challenges associated with adapting these
problems to meet our standards. Each annotator has dedicated over 200 hours to constructing the
benchmark, ensuring that every task is meticulously curated and aligns with our goals of testing
visual reasoning. Our priority has been to maintain high quality, which we believe is crucial for
deriving meaningful insights. Fortunately, the current version of HumanEval-V has already en-
abled us to identify several unique findings about the limitations of current LMMs. Moving forward,

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 20: A mutated version of the coding task from Figure 17.

we plan to expand HumanEval-V by continuing to annotate additional tasks using our established
pipeline and guidelines. To benefit the community, we will open-source our annotation process and
release all details of our work.

(2) Limited Model Coverage: While our experiments evaluate a diverse set of representative top-
performing LMMs, the rapid pace of development in this area means that new models are frequently
released, which may not be covered in our evaluation. We acknowledge that broader model coverage
could provide a more comprehensive understanding of current capabilities. To address this, we will
publicly release the evaluation toolkit and dataset, along with an up-to-date leaderboard to track
ongoing advancements and benchmark new models as they become available. This will help keep
our benchmark relevant and provide a platform for continuous assessment.

(3) Limited Scope of Experimental Analysis: Due to budget constraints, our in-depth analysis is
limited to a subset of the evaluated models and hyper-parameter settings. While we have included
as many models as possible to ensure that our findings are not biased toward specific LMMs, there
are areas that remain unexplored, such as evaluating the impact of different prompting templates and
experimenting with alternative sampling strategies, including varying temperature settings. Never-
theless, we have carefully chosen hyper-parameters that are widely used and deemed fair for cross-
model comparisons. We believe that the settings used in our experiments provide reliable insights
and lead to trustworthy conclusions. Additionally, our investigation into advanced reasoning meth-
ods is limited. In preliminary experiments, we applied the zero-shot Chain-of-Thoughts (CoT) (Wei
et al., 2022) approach, which prompts the model to perform step-by-step reasoning before generat-
ing code. However, this method showed limited improvement in our coding tasks. Given that zero-
shot CoT is a relatively weak baseline for reasoning research, fully exploring more sophisticated
reasoning-enhancement techniques (Yao et al., 2024a; Mitra et al., 2024) would require significant
resources. We leave this comprehensive study to future work.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Models Params Links
Proprietary

GPT-4o-0513 https://platform.openai.com/docs/models/gpt-4o

GPT-4o-mini-0718 https://platform.openai.com/docs/models/gpt-4o-mini

Claude 3.5 Sonnet https://docs.anthropic.com/en/docs/about-claude/models

Gemini 1.5 Pro (001) https://ai.google.dev/gemini-api/docs/models/gemini

Gemini 1.5 Flash (001) https://ai.google.dev/gemini-api/docs/models/gemini

Open-Weight LMM
Qwen2-VL 73.4B https://huggingface.co/Qwen/Qwen2-VL-72B-Instruct

Qwen2-VL 8.3B https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct

MiniCPM-V 2.6 8.1B https://huggingface.co/openbmb/MiniCPM-V-2_6

MiniCPM-V 2.5 8.5B https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5

InternVL-Chat-V1.5 25.5B https://huggingface.co/OpenGVLab/InternVL-Chat-V1-5

InternVL2 76.3B https://huggingface.co/OpenGVLab/InternVL2-Llama3-76B

InternVL2 40.1B https://huggingface.co/OpenGVLab/InternVL2-40B

InternVL2 25.5B https://huggingface.co/OpenGVLab/InternVL2-26B

InternVL2 8.1B https://huggingface.co/OpenGVLab/InternVL2-8B

InternVL2 4.2B https://huggingface.co/OpenGVLab/InternVL2-4B

LLaVA-OneVision 73.2B https://huggingface.co/lmms-lab/llava-onevision-qwen2-72b-ov

LLaVA-OneVision 8.0B https://huggingface.co/lmms-lab/llava-onevision-qwen2-7b-ov

Phi-3.5-Vision 4.2B https://huggingface.co/microsoft/Phi-3.5-vision-instruct

Phi-3-Vision 4.2B https://huggingface.co/microsoft/Phi-3-vision-128k-instruct

Open-Weight LLM
Nous-Hermes-2-Yi 34.4B https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B

InternLM2-Chat 19.9B https://huggingface.co/internlm/internlm2-chat-20b

InternLM2.5-Chat 7.7B https://huggingface.co/internlm/internlm2_5-7b-chat

Phi-3-Mini-Instruct 3.8B https://huggingface.co/microsoft/Phi-3-mini-128k-instruct

Phi-3.5-Mini-Instruct 3.8B https://huggingface.co/microsoft/Phi-3.5-mini-instruct

Qwen2 7.6B https://huggingface.co/Qwen/Qwen2-7B

Llama-3-Instruct 8.0B https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

Open-Weight Code LLM
CodeStral 22.2B https://huggingface.co/mistralai/Codestral-22B-v0.1

DSCoder-V2-Lite 15.7B https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct

Yi-Coder-Chat 8.8B https://huggingface.co/01-ai/Yi-Coder-9B-Chat

DSCoder-V1.5 6.9B https://huggingface.co/deepseek-ai/deepseek-coder-7b-instruct-v1.5

Table 10: The model identification links.

30

https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/models/gpt-4o-mini
https://docs.anthropic.com/en/docs/about-claude/models
https://ai.google.dev/gemini-api/docs/models/gemini
https://ai.google.dev/gemini-api/docs/models/gemini
https://huggingface.co/Qwen/Qwen2-VL-72B-Instruct
https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct
https://huggingface.co/openbmb/MiniCPM-V-2_6
https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5
https://huggingface.co/OpenGVLab/InternVL-Chat-V1-5
https://huggingface.co/OpenGVLab/InternVL2-Llama3-76B
https://huggingface.co/OpenGVLab/InternVL2-40B
https://huggingface.co/OpenGVLab/InternVL2-26B
https://huggingface.co/OpenGVLab/InternVL2-8B
https://huggingface.co/OpenGVLab/InternVL2-4B
https://huggingface.co/lmms-lab/llava-onevision-qwen2-72b-ov
https://huggingface.co/lmms-lab/llava-onevision-qwen2-7b-ov
https://huggingface.co/microsoft/Phi-3.5-vision-instruct
https://huggingface.co/microsoft/Phi-3-vision-128k-instruct
https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B
https://huggingface.co/internlm/internlm2-chat-20b
https://huggingface.co/internlm/internlm2_5-7b-chat
https://huggingface.co/microsoft/Phi-3-mini-128k-instruct
https://huggingface.co/microsoft/Phi-3.5-mini-instruct
https://huggingface.co/Qwen/Qwen2-7B
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/mistralai/Codestral-22B-v0.1
https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct
https://huggingface.co/01-ai/Yi-Coder-9B-Chat
https://huggingface.co/deepseek-ai/deepseek-coder-7b-instruct-v1.5

	Introduction
	Benchmark Construction
	Data Collection and Screening
	Coding Task Annotation
	Quality Assurance and Dataset Statistics

	Experimental Setup
	Experimental Results
	Main Experiments
	Analysing Experiments

	Related Work
	Conclusion
	Error Analysis on the Example Task
	Additional Experimental Results
	Performance with More Samples
	Comparison with Other Multimodal Benchmarks
	Experimenting with Image Descriptions

	Benchmark Construction Details
	Additional Details of Data Collection
	Examples of Adapting Coding Problems
	Examples of Mutating Coding Tasks
	Additional Dataset Statistics

	Details of the Evaluated Models
	Discussion on the MMCode Dataset
	Limitations

