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ABSTRACT

Coding tasks have been valuable for evaluating Large Language Models (LLMs),
as they demand the comprehension of high-level instructions, complex reason-
ing, and the implementation of functional programs — core capabilities for ad-
vancing Artificial General Intelligence. Despite the progress in Large Multimodal
Models (LMMs), which extend LLMs with visual perception and understanding
capabilities, there remains a notable lack of coding benchmarks that rigorously
assess these models, particularly in tasks that emphasize visual reasoning. To ad-
dress this gap, we introduce HumanEval-V, a novel and lightweight benchmark
specifically designed to evaluate LMMSs’ visual understanding and reasoning ca-
pabilities through code generation tasks. HumanEval-V includes 108 carefully
crafted, entry-level Python coding tasks derived from platforms like CodeForces
and Stack Overflow. Each task is adapted by modifying the context and algo-
rithmic patterns of the original problems, with visual elements redrawn to ensure
distinction from the source, preventing potential data leakage. LMMs are required
to complete the code solution based on the provided visual context and a prede-
fined Python function signature outlining the task requirements. Every task is
equipped with meticulously handcrafted test cases to ensure a thorough and reli-
able evaluation of the model-generated code solutions. We evaluate 19 state-of-
the-art LMMs using HumanEval-V, uncovering significant challenges. Propri-
etary models like GPT-40 achieve only 13% pass@1 and 36.4% pass@10, while
open-weight models with 70B parameters score below 4% pass@ 1. Ablation stud-
ies further demonstrate the limitations of current LMMs in vision reasoning and
coding abilities. These results highlight key areas for future research to enhance
LMMs’ capabilities.

1 INTRODUCTION

Coding ability is essential for both the development and evaluation of Large Language Models
(LLMs) (Sun et al., 2024). By enabling LLMs to solve complex tasks in a divide-and-conquer man-
ner, coding facilitates more autonomous and efficient interactions with the world (Patil et al.| 2023;
Liu et al. 2023bj; [Schick et al.| [2024). As a result, coding tasks serve as a valuable testbed for
advancing research in Artificial General Intelligence (Bubeck et al.| [2023). Recently, Large Multi-
modal Models (LMMs) composed of billions of parameters have emerged, with notable examples
such as GPT-40 (OpenAll 2024) and Claude 3.5 Sonnet (Anthropic, 2024)), demonstrating remark-
able capabilities in understanding and reasoning within visual contexts.

While several recent multimodal benchmarks offer evaluations across a wide range of vision-related
tasks (Goyal et al.L[2017}|Singh et al.,2019; [Lu et al., [2022; Liu et al.,[2023c} Yue et al.,[2024), there
remains a significant gap in benchmarks specifically designed for coding scenarios. These bench-
marks typically involve multiple-choice or open-ended questions based on commonsense reasoning,
neglecting more complex reasoning scenarios like coding. Notably, coding is a valuable form to
assess complex reasoning abilities and has been exploited in various reasoning tasks such as math-
ematical, symbolic, and algorithmic reasoning (Madaan et al.| 2022} |Gao et al., [2023). It demands
the ability to understand high-level instructions, apply complex logic, and implement functional pro-
grams. Moreover, coding enables a more robust evaluation of reasoning through program execution.
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Function Signature:
from typing import Tuple

def solution(linel: Tuple[int, int], line2: Tuple[int, int]) -> bool:
Determines if two line segments ultimately intersect.
Parameters:

linel: A tuple containing the numbers at both ends of the first line segment.
line2: A tuple containing the numbers at both ends of the second line segment.

Returns:
bool: True if the line segments intersect, False otherwise.

Test Cases:
assert solution((4, 7), (3, 5)) == True; assert solution((1, 7), (4, 3)) == False; assert solution(---

Figure 1: An example coding task in HumanEval-V that all LMMs evaluated in this work cannot
solve, including GPT-40 and Claude 3.5 Sonnet. Related error analysis can be found in Appendix@

To address this gap, we introduce HumanEval-V, a novel and lightweight benchmark tailored to
evaluate LMMs in coding scenarios. HumanEval-V consists of 108 manually crafted code gener-
ation tasks sourced from platforms such as CodeForces and Stack Overflow. Each task is adapted
from the source by carefully modifying the original problem’s context and algorithmic patterns as
well as redrawing the visual elements. As an example task shown in Figure[I] each task involves
completing a Python function based on a single image, a function signature, and problem descrip-
tions provided in the comment block. These tasks require reasoning over both visual and textual
contexts to complete a function, with the correctness of the predicted solution assessed using a
reliable set of human-annotated test cases.

HumanEval-V is novel in that it is the first benchmark where visual information plays an es-
sential role in solving coding tasks. For instance, the diagram in Figure [T] not only indicates the
available position options for the function inputs, but also offers important clues for determining
whether two lines intersect, significantly complementing the function signature and problem de-
scriptions. To solve these tasks, models have to accurately understand the nuances of the image,
such as the position of two lines on the circle and tick labels. Moreover, they need the ability to per-
form cross-modal reasoning, integrating visual elements with the structured function signature and
textual problem descriptions cohesively. In contrast to other benchmarks (L1 et al., |2024b)), which
suggest that visual information has limited impact on coding performance, HumanEval-V ensures
that all coding tasks are unsolvable without the visual context. Textual descriptions in the coding
tasks are minimized to prevent models from relying solely on textual information to infer solutions.

Another appealing characteristic of HumanEval-V is light-weight and easy to test. It mirrors
the difficulty of well-established code generation benchmarks like HumanEval (Chen et al.| [2021])
and MBPP (Austin et al.| 2021)) that target entry-level programmers. The simplicity of evaluation
has been one of the key reasons for the wide adoption of these benchmarks. In HumanEval-V,
each task is formulated in a Python code completion setting like HumanEval and annotated with
a comprehensive suite of test cases in a format of assertion statements, making it easy to execute
and efficient to measure the correctness of the completion. Additionally, the tasks are restricted to
using only common Python libraries, promoting the accessibility without requiring domain-specific
knowledge and avoiding compatibility issues with different library versions. We perform cross-
validation among several annotators to ensure the data integrity.

Through extensive experiments with 19 state-of-the-art LMMs, we have the following key findings:
(1) Even leading proprietary models like GPT-40 achieve only 13% pass@1 on HumanEval-V,
while open-weight models perform much worse, with none of them exceeding 4% pass@]1.
HumanEval-V reveals limitations of current LMMs. (2) Proprietary models significantly outper-
form open-weight LMMs, highlighting the challenges in developing more advanced open-weight
models. (3) Current LMMs remain limited in their visual reasoning abilities, as evidenced by the
significant performance gains when provided with human-annotated textual descriptions of the im-
ages. (4) Open-weight LMMs suffer from deteriorated coding performance after integrating the
vision encoder. These findings emphasize the need for future research to enhance LLMs’ visual
reasoning and coding abilities.
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2 BENCHMARK CONSTRUCTION

As shown in Figure[I} each coding task in HumanEval-V consists of three main components. The
first component is a single image input, denoted as I, which provides the essential visual context
necessary to solve the coding problem. The second component is a Python function signature,
denoted as o, which specifies the function name, input parameters, and return type, accompanied by
a brief problem description in the comment block. Both the image I and the function signature o
are formatted into a predefined prompt template, which is then provided to the LMM. The model’s
output, denoted as O, represents the complete Python function generated by the LMM based on o
and I. The third component is a set of test cases T = {t1,ta,...,t,}, which are used to validate
the functional correctness of O through execution. A solution is considered correct if O passes all
test cases, meaning it produces the expected outputs for each ¢; € T'.

Before constructing HumanEval-V, we establish rigorous standards to ensure the quality of the
coding task annotations: (1) the visual context provided must be essential for solving the task, with
all relevant information contained within a single image; (2) the coding task should be largely self-
explanatory through its visual context, requiring minimal textual descriptions; and (3) the coding
task should target entry-level programmers and be solvable using only common Python libraries.

The construction of HumanEval-V follows a collect-adapt-mutate pipeline. First, we collect cod-
ing problems with visual contexts from platforms such as CodeForces and Stack Overflow, iden-
tifying those suitable for adaptation based on the aforementioned standards. (Section [2.1)). Next,
we modify the selected problems by adapting their task descriptions and redrawing the visual ele-
ments to ensure they meet our quality requirements. During this stage, we annotate each task with
a function signature (o), a set of test cases (71'), and a ground truth solution. To further expand the
benchmark, some tasks undergo mutations, generating similar yet distinct versions by introducing
changes to the coding task’s visual patterns while preserving the core context. This iterative process
results in a final set of 108 code generation tasks (Section . After constructing the benchmark,
we perform rigorous validation to ensure that each coding task aligns with the standards: testing
visual reasoning, preventing data leakage, and maintaining an appropriate entry-level complexity.
Finally, we provide detailed benchmark statistics for reference (Section [2.3)).

2.1 DATA COLLECTION AND SCREENING

The coding tasks in HumanEval-V are sourced from prominent Q&A and coding challenge plat-
forms such as Stack Overflow and CodeForces. These platforms offer a diverse range of coding
problems and are also commonly used in the development of well-established benchmarks for code
generation (Yin et al.| 2018} [Lai et al.l [2023; [Wang et al.| 2023}, [Li et al.l [2023b} Jain et al.| 2024;
Wu et al) 2024b). From these sources, we collect a large set of coding problems that incorporate
visual elements in their problem descriptions.

However, the collected problems are unsuitable for direct inclusion in HumanEval-V. In most
cases, the visual context is non-essential for solving the task, with the problem primarily solvable
through rich textual descriptions alone. This makes it challenging to adapt such problems into our
benchmark, which emphasizes visual reasoning abilities. Therefore, we focus on identifying tasks
that already feature high-quality visual elements and present a moderate level of difficulty. After a
thorough screening process, we retain 40 candidate coding tasks out of the thousands reviewed for
further adaptation. A detailed discussion of the challenges encountered during data collection and
screening, along with demonstrating examples, is provided in Appendix [C.T}

2.2 CODING TASK ANNOTATION

The annotation process begins by adapting the screened coding problems. For each of the 40 selected
coding tasks, we first identify and summarize the essential context and algorithmic patterns required
to solve the problem. We then create a new coding problem by modifying the context and patterns
of the original problem and redrawing the corresponding images. This is to prevent data leakage
and ensure consistency with the standards of HumanEval-V. Detailed examples of the problem
adaptation can be found in Appendix
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During adaptation, we ensure that all critical visual information for each coding task is encapsu-
lated within a single image. The coding tasks in HumanEval-V span a variety of visual elements,
including trees, graphs, matrices, maps, grids, flowcharts, and other abstract representations. This
diversity allows for comprehensive testing of the model’s visual reasoning abilities. Next, we define
a Python function signature for each task, beginning with the input and output specifications. To
simplify the Input/Output (I/O) formats, we prioritize basic data structures such as numbers, strings,
lists, and dictionaries. After finalizing the image and I/O definitions, we craft a concise problem
description that directs models to rely primarily on the visual information to complete the Python
function. Once the task definition is completed, we manually construct test cases and implement
a ground truth solution for each coding problem to ensure its validity. To further verify the com-
prehensiveness of the test cases, we perform statement and branch coverage analysis on the ground
truth solution, ensuring that all logical branches and execution paths are thoroughly tested.

Following the initial annotation of the 40 coding tasks, we conduct an additional round of mutation-
based extensions. This process expands the number of coding tasks based on the initial annotations,
by creating similar yet distinct coding tasks. The mutated tasks retain most of the original visual
elements but incorporate different algorithms to solve. For example, we can change the rule of the
coding task in Figure[I]by just considering the situation where the line segments intersect within the
circle, regardless of outside the circle. It is important to note that not all of the 40 tasks are suitable
for mutation. For each suitable task, we create one or two mutations, resulting in a total of 108
coding tasks in HumanEval-V. Examples of the mutation process are provided in Appendix

2.3 QUALITY ASSURANCE AND DATASET STATISTICS

We implement a rigorous quality assurance process to ensure the quality of HumanEval-V. The
annotation team consists of three programmers, each with over four years of Python programming
experience. During each of the data collection, adaptation, and mutation stages, annotators inde-
pendently perform annotations based on pre-defined guidelines. After that, all annotators conduct a
cross-validation process to review and resolve any identified issues. A coding task is only finalized
when consensus is reached among all annotators. Additionally, one annotator maintains consistent
formatting and style across all visual representations and coding tasks. Each annotator dedicates
over 200 hours to the overall benchmark construction process. To validate the reliance on visual
context, we ensure that GPT-40 cannot solve any of the coding tasks without access to the images,
confirming the essential role of visual information. Finally, to facilitate continuous improvement, we
will publish an online data viewer for HumanEval-V after the review period, where the community
can review the dataset and report issues.

To provide a clearer understanding of our
benchmark, Table || presents key statistics for
several dataset attributes. Each coding task in-
cludes a single image input, with the image di-

Attributes Med Avg Min Max

Image Width (px) 1024 9982 596 1024
Image Height (px) 709 7290 216 1024

Textual Token Count 106 1113 59 230 mensions constrained to a maximum of 1024
GT Code Statements 14 16.3 3 44 pixels in height or width, to prevent overly long
Test Cases Count 10 9.8 4 16 or complex visual contexts. The average image

width and height are 998.2 and 729 pixels, re-
Table 1: The descriptive statistics for the key at- spectively. We also analyze the length of func-
tributes of HumanEval-V, showcasing the Me- tion signatures using the OpenAl tiktokerﬂtok-
dian, Average, Minimum, and Maximum values.  enizer. The longest function signature consists

of 230 tokens, while the average token count

is 111.3, demonstrating high succinctness. We
also quantify the complexity of the ground truth (GT) code solutions annotated by human experts.
On average, GT solutions contain 16.3 code statements, encompassing import statements, function
definitions, and the function body, reflecting the relative simplicity of the tasks. Finally, we provide
statistics on the number of test cases used for evaluation, with an average of 9.8 test cases per task.
We ensure the test cases achieve full statement and branch coverage on the GT solutions, guaran-
teeing rigorous testing of the generated code. We also include a detailed list of the I/O types and
module dependencies in Appendix

'"https://github.com/openai/tiktoken
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3 EXPERIMENTAL SETUP

Models: We conduct a comprehensive evaluation of 19 state-of-the-art LMMs to assess the current
progress in visual reasoning and coding capabilities. Our selection includes a representative set
of the most advanced proprietary and open-weight models. Specifically, we evaluate five of the
latest proprietary models: GPT-40 (0513), GPT-40-mini (0718) (OpenAl, [2024), Gemini 1.5 Pro
(001), Gemini 1.5 Flash (001) (Google, [2024), and Claude 3.5 Sonnet (0620) (Anthropic, |2024)).
In addition, we test 14 top-performing open-weight models, selected based on their rankings on
the OpenVLM Leaderboard (Duan et al., 2024). These models span various parameter sizes to
explore the impact of scale on performance in the HumanEval-V benchmark. The open-weight
models include Phi-3-Vision (4.2B) (Microsoft, [2024a), Phi-3.5-Vision (4.2B) (Microsoft, [2024b)),
LLaVA-OneVision (8.0B, 73.2B) (Li et al) [2024a), MiniCPM-V 2.5 (8.5B) and 2.6 (8.1B) (Yao
et al., 2024b), InternVL-Chat-V1.5 (26.0B) (Chen et al. 2023), InternVL-2 (4.2B, 8.1B, 25.5B,
40.1B) (OpenGVLabl 2024), and Qwen2-VL (8.3B, 73.4B) (Wang et al., 2024). We deliberately
include different versions within the same model series, such as Phi-3-Vision and Phi-3.5-Vision,
MiniCPM-V 2.5 and 2.6, as well as InternVL-Chat-V1.5 and InternVL-2, to investigate whether
iterative improvements in model development result in enhanced performance on HumanEval-V.
More details of the models can be found in Appendix D]

Prompting, Hyper-parameters, and Post-processing:
-~ - All the LMMs evaluated in our experiments have been
Instructions:** . . . . .
You are an exceptionally intelligent trained on instruction-following or conversational data. To
coding assistant that consistently align with this, we employ a conversational prompt tem-
delivers accurate and reliable responses . . . .
plate, formatted in Markdown, as illustrated in Figure [2]

to user instructions. Please complete
the function based on the provided image | to prompt the LMMs to generate code solutions for the

and code context. Return the complete tasks in HumanEval-V. For hyper-parameters, we fol-
solution, including the function . . . .

signature, in a single response, low the established practices in code generation bench-
formatted within a Python code block. marking (Chen et al.}[2021;|Austin et al.,|2021;|Chen et al.}
**Code Context :** 2022), using two dlstlpct settings. F1r§t, we employ greedy
***python search to generate a single code solution from each LMM,
{code_context} allowing us to assess the models’ performance in a deter-

ministic setting. Additionally, we sample 20 code solu-
tions using a Top-p sampling method with p = 0.95 and a
relatively high temperature of 0.8. This setting is designed
to explore the likelihood of the models generating correct
solutions when given more opportunities. Given the mod-
erate complexity of the benchmark, we set the maximum
number of new tokens for code generation to 1024. Early
stopping is triggered by “\n" " ~\n”, since the LMMs are instructed to enclose the generated code
within a Markdown code block. We also develop a post-processing pipeline to extract valid code
solutions from the model outputs. This pipeline identifies and extracts the content within the Mark-
down code block and uses an abstract syntax tree parser to detect any generated import statements,
along with class and function definitions. These components are then concatenated to form the final
predicted solution for test-execution-based evaluation.

Figure 2: The prompting template used
for LMMs to generate code solutions.
The {code_context} placeholder is for
the corresponding function signature.

Evaluation Metrics Following established practices in code generation (Chen et al.,2021; |Austin
et al 2021} |Chen et al.| 2022), we use the pass@k metric to evaluate the functional correctness of
the generated code solutions. For each coding task, n code samples are generated, and k solutions
are randomly selected from these samples to be tested against ground truth test cases. A task is
considered solved if at least one of the k selected solutions passes all test cases. The pass@Fk score
is then calculated as the percentage of successfully solved tasks. In our main experiments, we report
pass rate results for £ = 1, 10. For greedy search, we set n = 1 to compute pass@ 1. For sampling-
based evaluation, we set n = 20 to calculate pass@ 10.

We incorporate a second evaluation metric: Execution Success Rate. This metric measures the
syntactic correctness of the generated code, independent of its functional accuracy. A solution is
considered executable if it can be compiled and run without triggering syntax errors, null pointer
exceptions, or other runtime failures, regardless of passing the test cases. The execution success rate
is calculated as the proportion of executable code samples out of all generated samples.
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4 EXPERIMENTAL RESULTS

4.1 MAIN EXPERIMENTS

80
Exec. paSS@k Claude3.5
LMMs Params Rate k=1 k=10 g 70 Qwenvi2.728 Sornet GPr-z
Proprietary = 60 1 ¥ e
GPT-40 879 13.0 364
GPT-40-mini 904 65 154 501
Claude 3.5 Sonnet 91.8 185 259 — T T T
Gemini 1.5 Pro 929 102 222 0 10 20 30
Gemini 1.5 Flash 926 83 132 owenviz728
Open-Weight © 701 yavaov7e@ Claudes.5
76.3B 728 3.7 128 £ 604 S ry
40.1B 662 0.0 1.6 = PR erre
InternVL-2 25.5B 57.8 0.0 32 2 50 4 oemini @ @ TSP
8.1B 646 0.9 2.6 )
42B 765 00 23 I S , :
Qwen2-VL 734B 863 37 160 0 o 0 30
8.3B 58.1 0.0 1.6
80 A
- 73.2B 84.7 1.9 124 - e
LLaVA-OneVision 3.0B 696 09 1.9 8 tomini o o
= -
InternVL-Chat-V1.5  25.5B 620 0.0 2.1 = 601 TP
MiniCPM-V 2.6 8.1B 672 09 22
MiniCPM-V 2.5 8.5B 7577 0.0 2.3 |e®
Phi-3.5-Vision 4.2B 750 09 16 0 10 20 30
Phi-3-Vision 4.2B 76.1 0.0 2.6 HumanEval-V pass@10

Table 2: Performance of 19 LMMs on HumanEval-V. Figure 3: Correlation analysis between
Scores are shown as percentages, with the highest values HumanEval-V pass@10 results and
highlighted in bold. We also include model size (Params) three popular multimodal benchmarks
and code execution success rate (Exec. Rate). spanning multidisciplinary abilities.

We evaluate 19 state-of-the-art LMMs on HumanEval-V, with results presented in Table@ Based
on the results, we have the following key findings:

Current LMMs’ performance is underwhelming on our benchmark: While proprietary mod-
els like GPT-40 and Claude 3.5 Sonnet show the best results, even their highest pass@1 scores
(13% and 18.5% respectively) fall short of expectations. Moreover, there remains a substantial per-
formance gap between proprietary and open-weight models. Open-weight models spanning 4B to
76B parameters exhibit particularly weak performance, with none exceeding a 4% pass@1. This is
surprising given that the coding tasks in our benchmark are designed for entry-level programmers
with simplified problem context. None of the open-weight models with fewer than 70B parameters
achieve more than 4% pass@10. Even the best-performing model, GPT-40, achieves only 36.4%
pass@10, showing there is much room for improvement. In terms of execution success rate, we
observe a rough correlation with the pass rate. Most LMMs exhibit a high execution success rate,
while smaller-scale open-weight models show lower success rates. Most failed cases are due to com-
mon syntax errors, such as unclosed parentheses, generating code repeatedly without termination, or
encountering list index out-of-range issues. To further investigate, we perform another experiment
increasing the number of samples to evaluate model performance, as detailed in Appendix

Overfitting leads to hallucination errors in LMMSs’ generated solutions: Upon examining many
incorrect solutions produced by the LMMs, we identify a recurring issue: the models tend to gen-
erate solutions based on the context of the original problems rather than the new versions of coding
tasks in our benchmark. For instance, both GPT-40 and Claude 3.5 Sonnet fail to produce correct
solutions for the coding task shown in Figure[I] as they mistakenly assume that the numbers in the
image are arranged in a clockwise order. Furthermore, their solutions rely on the assumption that
the two line segments can only intersect within the circle, which reflects the context of the original
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Image Only Desc. Only Image & Desc.
Models Params pass@1 pass@10 pass@l pass@10 pass@] pass@10
Large Multimodal Models
GPT-40 13.0 36.4 4544324 6791316 44.4131.5 T1.0134.6
GPT-40-mini 6.5 154 33.3126.9 46.1130.7  35.2128.7  50.6135.2
76.3B 3.7 12.8 12.018.3 41.1128.3  23.2119.5  47.9135.1
25.5B 0.0 3.2 2.812.8 1571125 4.614.6 15.2112.0
InternVL.-2 8.1B 0.9 26 37128 103178 5616 12310
4.2B 0.0 2.3 5.615.6 16.2113.9  2.812.8 13.0110.7
73.4B 3.7 16.0 20.4116.7  38.9122.9 2321195 48.2132.2
Qwen2-VL 8.3B 0.0 1.6 5.615.6 13.5111.9  3.713.7 16.9115.2
MiniCPM-V 2.6 8.1B 0.9 2.2 3. 7128 71748 2.811.9 6.914.6
MiniCPM-V 2.5 8.5B 0.0 2.3 0.910.9 14.67122  2.872.8 14.2111.9
Phi-3.5-Vision 4.2B 0.9 1.6 0.010.9 9.818.2 2.811.9 10.018.3
Phi-3-Vision 4.2B 0.0 2.6 3.713.7 10.017.5 2.812.8 6.874.3
Large Code Language Models
CodeStral 22.2B 18.5 36.8
DSCoder-V2-Lite 15.7B 13.0 374
Yi-Coder-Chat 8.8B 25.0 40.2
DSCoder-V1.5 6.9B 13.0 21.5

Table 3: The performance of LMMs and Code LLMs on HumanEval-V using different input
settings. “Image Only” refers to the setting used in the main experiments. “Desc. Only” evaluates
models using annotated descriptions of images instead of the images themselves. “Image & Desc.”
provides both inputs to the models. Scores are presented as percentages. The | and | indicate
performance improvement and degradation over the “Image Only” setting.

problem on the CodeForces platform, rather than our adapted version. We attribute these halluci-
nation errors to that LMMs overfit on the previously seen data. This observation underscores the
necessity of our adaptation process, which aims to minimize data leakage and prevent models from
relying on memorized patterns.

Larger parameter size does not guarantee better performance in open-weight models: While
open-weight LMMs with over 70B parameters show superior results, smaller models (ranging from
4B to 40B parameters) exhibit highly variable performance. For example, Phi-3-Vision (4.2B)
and InternVL-2 (4.2B) achieve pass@10 scores of 2.6% and 2.3%, outperforming larger models
like QwenVL2 (8.3B) and InternVL-2 (40.1B). Notably, iterations of the Phi-Vision (3—3.5) and
MiniCPM-V(2.5—2.6) series do not lead to consistent performance improvements. This inconsis-
tency may be attributed to several factors. One possibility is the varying quality and scale of the
training data used for each model, which can impact their generalization ability.

Our benchmark reveals unique weaknesses in LMMs: Open-weight LMMs, such as Qwen2-
VL (Wang et al.}|2024) and InternVL-2 (OpenGV Lab}2024)), have demonstrated comparable or even
superior performance to proprietary LMMs on popular multimodal benchmarks like MMMU (Yue
et al.l [2024), MathVista (Lu et al.l [2023), and MM Vet (Yu et al., 2023). However, these models
perform significantly worse on HumanEval-V, suggesting that our benchmark exposes previously
undetected limitations in current LMMs. The three mentioned benchmarks evaluate a broad range
of multidisciplinary abilities, focusing on visual understanding, reasoning, and general knowledge
through formats such as question-answering or multiple-choice questions, using accuracy as the
primary evaluation metric. By contrast, HumanEval-V adopts a unique evaluation approach based
on coding tasks, where visual contexts are tightly integrated with algorithmic patterns, presenting a
distinct challenge that differs from existing benchmarks. To further investigate this discrepancy, we
perform a correlation analysis between HumanEval-V and the three mentioned benchmarks.

We collect the performance results of the 19 evaluated LMMs from the OpenVLM Leader-
board (Duan et al., [2024) as well as from corresponding papers and reports, and compare them
to pass @10 scores on HumanEval-V in a regression plot, shown in Figure[3] For proprietary mod-
els, we observe a rough positive correlation between HumanEval-V and the other benchmarks.
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Image: Function Signature:
— from typing import List
Bm 0 : il 8
[ def solution(numbers: List[int]) -> int:
S OR \g Ha ‘:: Given a sequence of numbers, determine the number of red segments that
( V] = would be illuminated.
S e L
bk 8 o q o 8 Parameters:
I ( e numbers (List[int]) A list of integers
R e Returns:
i OR OR The total number of segments that will turn red based on the
A = ( 0 = combination of the input numbers.
Image Description: An_Incorrect Solution Generated by InternVL-2-26B:
The image demonstrates the logical OR operation | def solution(numbers: List[int]) -> int:
between segments of seven-segment displays. In each segment_map = {
result, certain segments are highlighted in red. o: [6, 2, 5], 1: [5],
2: [2, 5, 31, 3: [5, 3],
Here's a detailed description of each example with 4: [4, 2, 3],
the highlighted segments: 5: [2, 3, 5],
6: [5, 41, 7: [2, 3],
### First Example: 8: [2, 3, 4, 5],
Operation: @ or 1, Result: Digit @. 9: [2, 3, 5]
### Second Example: illuminated_segments = set()
Operation: 5 or 3, Result: Digit 9. for num in numbers:
num_segments = segment_map[num]
### Third Example: illuminated_segments.update(num_segments)
...... return len(illuminated_segments)

Test Cases:
assert solution([@, 1]) == 6; assert solution([5, 3]) == 6; assert solution([7, 1]) == 3; assert solution(:--

Figure 4: A coding task that InternVL-2-26B fails to solve with grounded image description.

While many scatter points for our benchmark are concentrated around zero, even though they show
competitive results on the other three benchmarks, highlighting the distinct challenge posed by our
benchmark. A comprehensive analysis of correlations between HumanEval-V and 5 other bench-
marks can be found in Appendix[B.2]

4.2 ANALYSING EXPERIMENTS

To investigate the reasons behind the suboptimal performance of current LMMs on HumanEval-V,
we perform analyzing experiments by answering two key research questions.

Q1. Are LMMs Limited by Their Vision Capabilities?

We conduct an ablation study to evaluate whether the limitations in visual understanding contribute
to the underperformance of LMMs. In this study, we manually annotate detailed descriptions for
each image in the coding tasks, ensuring that these descriptions are descriptive rather than instruc-
tive, without revealing any specific algorithms. We design a new prompt template incorporating the
image description to provide LMMs with better-grounded visual context, thereby reducing issues
such as ambiguity and hallucination. Details of the new prompt template and examples of annota-
tions are provided in Appendix To further assess the quality of our annotations, we also test a
setting where LMMs receive only the image descriptions, without access to the images themselves.
Additionally, we evaluate several top-performing Code LLMs using image descriptions to explore
their potential in HumanEval-V. We present the results in Table[3] Below are the key findings:

(1) The inclusion of image descriptions leads to notable performance gains across all LMMs, with
higher-capability models showing the most significant improvements. For example, GPT-40 exhibits
a 31.5% absolute increase in pass@ 1. Similarly, large open-weight LMMs demonstrate substantial
improvement, indicating that current models still require enhanced visual understanding capabil-
ities. However, the limited improvement observed in smaller open-weight models suggests that
merely perceiving visual elements is insufficient for solving tasks that require deeper reasoning. We
illustrate this limitation with an example from InternVL-2 (25.5B) shown in Figure ] The task
requires determining the number of illuminated red segments based on an “OR” operation depicted
in the image. While the model’s solution correctly implements the algorithm, it fails to identify
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Params HumanEval™ MBPP+
LMMs LLM Decoders LLM LMM LLM LMM LLM LMM
InternVL-2 Nous-Hermes-2-Yi 344B 40.1B 66.5 384 579 47.1
InternVL-2 InternL.M2-Chat 199B 255B 652 549 554 519
InternVL-2 InternL.M?2.5-Chat 7.7B 8.1B 634 50.0 539 524
InternVL-2 Phi-3-Mini-Instruct 3.8B 4.2B 640 573 57.1 57.10.0
Phi-3.5-Vision Phi-3.5-Mini-Instruct 3.8B  4.2B 659 51.8 526 504
Qwen2-VL Qwen2 7.6B 8.3B 58.5 652167 53.1 436
LLaVA-OneVision Qwen2 7.6B 8.0B 58.5 59.1t06  53.1 51.6
MiniCPM-V 2.6 Qwen2 7.6B 8.1B 585 396 53.1 37.6
MiniCPM-V 2.5 Llama-3-Instruct 8.0B 8.5B 555  46.3 519 47.1
GPT-40 86.0 68.7
GPT-40-mini 84.8 65.7

Table 4: The performance comparison of open-weight LMMs and their corresponding LLM de-
coders on HumanEval™ and MBPP™ benchmarks. Scores are shown as percentages, with 7 and
indicating performance improvement and degradation of LMMs compared to their LLM decoders.

the segment mappings for each number, as this information is not explicitly provided in the image
description. This example underscores the challenge of integrating visual and textual reasoning in
coding tasks. (2) The “Desc. Only” setting performs comparably to the “Image & Desc.” setting,
underscoring that the annotated image descriptions can effectively capture the key visual informa-
tion to solving the task. (3) The Code LLMs with small-scale parameter sizes perform well on the
tasks when provided with image descriptions alone (i.e., without access to the images). For instance,
Yi-Coder-Chat (8.8B) achieves a 25% pass@1 and a 40.2% pass@10. This highlights the great po-
tential for current open-weight LMMs to further develop their reasoning and coding abilities.

Q2. Are LMMs Limited by Their Coding Abilities?

Open-weight LMMs with parameter sizes ranging from 4B to 40B exhibit surprisingly low per-
formance on HumanEval-V, even when utilizing grounded visual elements through image de-
scriptions. This suggests that open-weight LMMs may suffer from degradation of relevant coding
abilities. So we evaluate the models on a well-established code generation benchmark, EvalPlus|Liu
et al. (2023a)), to investigate their coding abilities. This benchmark includes two sub-datasets refined
from HumanEval (Chen et al., 2021) and MBPP (Austin et al.| 2021), both consisting of Python
function completion tasks with problem descriptions and test-execution-based evaluation. Different
from HumanEval-V, these datasets depend exclusively on textual context.

Given that open-weight LMMs typically employ a vision-encoder and language-decoder architec-
ture, we also evaluate their LLM decoders separately to determine whether their coding performance
deteriorates after integrating the vision abilities. The results presented in Table[d]lead to the follow-
ing findings: (1) Open-weight LMMs consistently experience performance degradation on coding
benchmarks compared to their LLM decoders, despite having similar parameter sizes. Among these,
InternVL-2 (40.1B) and MiniCPM-V 2.6 show the most degradation, while InternVL-2 (4.2B) and
LLaVA-OneVision (8B) show the least. (2) Despite this degradation, open-weight LMMs still ex-
hibit relatively strong coding capabilities. Although their performance on EvalPlus does not match
GPT-40, many of these models produce competitive results, indicating they retain a substantial de-
gree of code generation ability. These results highlight the need for further improvement in the
coding abilities of current open-weight LMMs.

5 RELATED WORK

While numerous benchmarks have been developed to evaluate various capabilities of LMMs, rang-
ing from optical character recognition (OCR) to multidisciplinary knowledge reasoning, few specif-
ically focus on the intersection of visual reasoning and code generation. This section reviews the
current progress of LMM benchmarking and demonstrates how HumanEval-V fills this gap.

OCR and Multidisciplinary Knowledge Abilities: A variety of benchmarks have been devel-
oped to evaluate multidisciplinary capabilities of LMMs. There are popular benchmarks like
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DocVQA (Mathew et al.|[2021)), ChartQA (Masry et al.,[2022)), TextVQA(Singh et al.| 2019), OCR-
Bench (Liu et al.l [2023d), and OCRVQA (Mishra et al., 2019) assess models’ ability to recognize
and interpret text embedded in visual formats, including documents, charts, and images, often com-
bining these with multiple-choice questions (MCQ) and visual question answering (VQA) tasks.
Meanwhile, benchmarks such as MMMU (Yue et al.,|2024), MME (Fu et al.,[2023)), MMBench (Liu
et al., |2023c), MM Vet (Yu et al.l |2023), SEEDBench (Li et al., |2023a), MMT-Bench (Ying et al.,
2024), and MMStar (Chen et al.,[2024) test models on their general knowledge and reasoning abil-
ities across diverse domains, such as scientific concepts, cultural knowledge, and logical reasoning.
In contrast, HumanEval-V distinguishes itself by expanding the evaluation format beyond tradi-
tional MCQ and VQA. HumanEval-V requires models to interpret visual elements and apply that
understanding to generate correct and executable code, which introduces a more complex challenge.

Specialized Abilities: There are also benchmarks focusing on specific capabilities of LMM:s.
MathVista (Lu et al.| 2023) evaluates mathematical problem-solving skills. Safety-related bench-
marks (Gu et al., [2024)) assess models on their ability to recognize and mitigate potential risks or
harmful content. ConvBench (Liu et all 2024) evaluates conversational abilities, testing models
on their proficiency in maintaining coherent and contextually relevant dialogues. Benchmarks for
instruction-following ability (Qian et al.l 2024) assess how well models can execute tasks based
on given instructions. Long-context reasoning benchmarks (Ma et al.| [2024) assess the ability of
models to maintain coherence and logical reasoning over extended dialogues or documents. Hallu-
sionBench (Guan et al.| 2024) focuses on hallucination detection abilities to differentiate between
factual information and generated content. There are also benchmarks (Zhang et al.| [2024) eval-
uating mobile app navigation, testing models on their ability to interpret and interact with user
interfaces. In contrast, HumanEval-V mainly focuses on integrating visual reasoning and coding.

Coding Abilities: Despite the wide range of benchmarks available, the coding ability of LMMs
remains under-explored. Coding capabilities are crucial for leveraging LMMs in autonomous and
agentic applications (Xie et al.|[2024). Current efforts focus primarily on derendering web pages (S1
et al.| 2024; Laurencon et al.|[2024) and scientific figures (Shi et al.,[2024;[Wu et al.| 2024a), where
models translate visual representations into code. The other related area is Program-based VQA,
where models are provided with a set of pre-defined modules (e.g., for OCR, object detection, and
segmentation) and tasked with invoking them to answer visual questions like counting or identifying
spatial relationships (Suris et al., 2023 Subramanian et al., 2023). These methods show how mod-
els can use existing tools to perform vision tasks, while they complicate evaluation due to reliance
on multiple heavy modules. In contrast, HumanEval-V utilizes simple Python coding tasks to
streamline evaluation and focuses on visual understanding in coding tasks. Another closely related
work is MMCode (Lt et al.| 2024b), which evaluates the coding ability of LMMs on visually rich
competition-level coding problems. utilizing existing coding challenges from competitive program-
ming websites. However, MMCode overlooks two critical issues: the potential for data leakage
when relying on scraped data, and the use of text-rich problem contexts, which makes visual in-
formation non-essential for solving tasks. By contrast, our approach addresses both concerns with
rigorous data screening and annotation. We list a detailed discussion on MMCode in Appendix

6 CONCLUSION

We present a novel and lightweight benchmark HumanEval-V designed to evaluate the visual rea-
soning capabilities of LMMs through 108 high-quality, entry-level Python coding tasks that rely
on visual context to solve. We ensure rigorous evaluation of generated code solutions using com-
prehensive test cases. Our benchmark effectively uncovers weaknesses in current LMMs that are
overlooked by existing benchmarks. Through our analysis, we identify three critical limitations
in the current generation of LMMs. First, their visual perception abilities remain inadequate. We
observe significant performance gains when we provide textual descriptions of visual elements, in-
dicating that models still struggle to understand visual context independently. Second, open-weight
LMMs exhibit a consistent decline in their coding proficiency compared to their LLM decoders,
suggesting that the current multimodal training strategy still needs improvement. Finally, halluci-
nation due to overfitting is a major issue, causing models to incorrectly apply memorized patterns
rather than adapt to the new visual context in the coding tasks. We hope these findings will inform
and guide future research on enhancing the visual reasoning and coding capabilities of LMMs. We
also provide a discussion on our work’s limitations in Appendix [F}
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REPRODUCIBILITY STATEMENT

We provide all code and data in a publicly available anonymous repository (https://
anonymous.4open.science/r/HumanEval-V-Anonymous/) for reference. The reposi-
tory includes the full dataset for our benchmark, accompanied by detailed usage instructions. Our
source code contains all the necessary components for running model inference to generate code
solutions, as well as evaluation scripts for obtaining and analyzing the results. Additionally, we
provide setup guides to replicate our experimental environment and reproduce the findings.
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A  ERROR ANALYSIS ON THE EXAMPLE TASK

Function Signature:
from typing import Tuple

def solution(linel: Tuple[int, int], line2: Tuple[int, int]) -> bool:
Determines if two line segments ultimately intersect.
Parameters:
linel: A tuple containing the numbers at both ends of the first line segment.

line2: A tuple containing the numbers at both ends of the second line segment.

Returns:
bool: True if the line segments intersect, False otherwise.

An_Incorrect Code Solution Generated by GPT-4o0:
def solution(linel: Tuple[int, int], line2: Tuple[int, int]) -> bool:
def is_between(a, b, c):
if a < b:
return a < c < b
return a < cor c< b
a, b = linel
c, d = line2
if a > b:

a, b = (b, a)
if ¢ > d:
¢, d=(d, c)
return is_between(a, b, c) != is_between(a, b, d) and is_between(c, d, a) != is_between(c, d, b)

An Incorrect Code Solution Generated by Claude 3.5 Sonnet:
def solution(linel: Tuple[int, int], line2: Tuple[int, int]) -> bool:
def normalize_segment(segment):
return (min(segment), max(segment))
linel = normalize_segment(linel)
line2 = normalize_segment(line2)
if linel[0@] <= line2[@] and linel[1] >= line2[1] or (line2[@] <= linel[@] and line2[1] >= linel[1]):
return True
if max(linel[@], line2[@]) <= min(linel[1], line2[1]):
return True
if linel[1] < line2[@] and line2[1] < 1linel[@] or (line2[1] < linel[@] and linel[1] < line2[0]):
return True
return False

Figure 5: Examples of incorrect solutions generated by GPT-40 and Claude 3.5 Sonnet for the coding
task shown in Figure|[T]}

Figure[T]illustrates a simple coding task in HumanEval-V. The task requires determining whether
two line segments, defined by pairs of numbers on a clock-like circle, will ultimately intersect if
allowed to extend outside the circle. The numbers on the circle are arranged in a non-standard
order. Despite the problem’s simplicity, all evaluated LMMs failed to solve it correctly even when
generating 20 samples. We present representative solutions generated by GPT-4o0 and Claude 3.5
Sonnet in Figure 5|

Both models implement sorting-based algorithms that compare the numbers at the endpoints of the
line segments. However, they fail to account for the critical scenario where the segments intersect
outside the circle, and fail to recognize the unordered arrangement of the numbers. This oversight
indicates that the models are not effectively capturing the essential visual details of the problem. No-
tably, this issue appears to stem from data leakage, as the original coding task is derived from a Code-
Forces problem (https://codeforces.com/contest/1971/problem/C), and the gen-
erated solutions in Figure[3|reflect patterns more suitable for the original context. This phenomenon
is not isolated to this task; we observe similar issues across many coding tasks in HumanEval-V.
This highlights that the models rely on memorized patterns instead of genuinely understanding the
visual context. Such failures emphasize the importance of preventing data leakage and validate the
rationale behind our careful adaptation and mutation processes during data annotation.
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pass@k (n = 100)

LMMs Params pass@1 pass@10 =10 k=20 k=50 k=100
Proprietary
GPT-40 13.0 36.4 39.0 441 499 53.7
GPT-40-mini 6.5 15.4 153 201 26.7 31.5
Open-Weight

InternVL-2 40.1B 0.0 1.6 3.0 4.9 8.0 10.2
InternVL-2 25.5B 0.0 3.2 3.2 4.9 7.7 10.2
InternVL-2 8.1B 0.9 2.6 3.0 5.0 8.4 10.2
InternVL-2 4.2B 0.0 2.3 2.3 4.4 94 14.8
Qwen2-VL 8.3B 0.0 1.6 3.1 5.2 8.7 11.1
LLaVA-OneVision 8.0B 0.9 1.9 1.9 34 6.7 10.2
InternVL-Chat-V1.5 25.5B 0.0 2.1 3.1 5.3 9.3 13.0
MiniCPM-V 2.6 8.1B 0.9 2.2 1.7 2.8 4.8 7.4
MiniCPM-V 2.5 8.5B 0.0 23 1.3 24 55 9.3
Phi-3.5-Vision 4.2B 0.9 1.6 2.1 33 5.0 6.5
Phi-3-Vision 4.2B 0.0 2.6 1.8 33 6.6 9.3

Table 5: The performance of 13 LMMs on HumanEval-V with more generated code solution
samples. The pass@1 and pass@10 columns are the results from Table 2} Scores are shown as
percentages, with the highest values highlighted in bold.

pass@k (n = 1,000)

LMMs pass@l  pass@10 -0 1500 k=400 k=600 k=800 k=1000
GPT-40 13.0 364 553 599 643 664 677 685
GPT-4o-mini 6.5 15.4 313 360 405 430 449 463

Table 6: The impact of scaling the number of samples on HumanEval-V. Scores are reported as
percentages. The pass@1 and pass@ 10 columns correspond to results from Table E}

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 PERFORMANCE WITH MORE SAMPLES

The results in Section [.T]indicate that increasing the number of samples can significantly enhance
model performance on HumanEval-V, so we conduct an ablation study to examine the effect
of scaling up sample sizes. Due to budgetary constraints, we primarily test open-weight LMMs
ranging from 4B to 40B parameters. For proprietary models, we evaluate GPT-40 and GPT-40-mini.
For all selected models, we increase the number of generated samples n to 100 to observe their
performance. The results are presented in Table 3]

From the results, we observe that increasing the sample size consistently improves performance
across most models. For example, GPT-40 achieves a substantial improvement, rising from 36.4%
pass@10 to 53.7% pass@100. Smaller-scale open-weight LMMs also show notable gains; for in-
stance, InternVL-2 (4.2B) improves from a pass@10 of 2.3% to a pass@100 of 14.8%. However,
not all models benefit equally from scaling the sample size. For instance, Phi-3.5-Vision, which has
the same 4B-level parameter size, achieves only a pass@ 100 score of 6.5%. These findings under-
score both the potential and the limitations of scaling sample numbers to improve current LMMSs’
performance on HumanEval-V.

To further evaluate the performance of current LMMs, we increase the sample size for GPT-4o
to 1,000. The results, presented in Table [6] show promising results with GPT-40 achieving a
pass@1000 of 68.5%, compared to the 36.4% pass@10. Similarly, GPT-40-mini demonstrates
strong performance, achieving a pass @ 1000 score of 46.3%, surpassing the pass@ 10 score of GPT-
4o0. These findings suggest that a significant proportion of the coding tasks in HumanEval-V are
solvable with current LMM capabilities, highlighting the need for further research on strategies to
better motivate the abilities of LMMs.
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It is important to note that there may be some variance between the pass@ 10 scores reported with
n=20 and those with n=100 or n=1,000. Increasing n typically improves the accuracy of the esti-
mated pass @k, making comparisons between different n values less straightforward. Moreover, the
pass@100 and pass@1000 values reported in Table [5|and Table [p|may exhibit bias due to using the
same k and n values for calculating pass @k, potentially affecting reproducing the results.

B.2 COMPARISON WITH OTHER MULTIMODAL BENCHMARKS

Multidisciplinary Multimodal Benchmarks HumanEval-V

Models Params MMMU MathVista MM Vet MME RealWorldQA pass@1 pass@10
Proprietary
GPT-40 69.2 61.3 69.1 23103 75.4 13.0 36.4
GPT-40-mini 60.0 52.4 66.9 2003.4 67.1 6.5 15.4
Claude 3.5 Sonnet 65.9 61.6 66.0 1920.0 60.1 18.5 25.9
Gemini 1.5 Pro 60.6 57.7 64.0 2110.6 64.1 10.2 22.2
Gemini 1.5 Flash 58.2 51.2 63.2 20779 69.0 8.3 13.2
Open-Weight
76.3B 58.3 65.6 64.4  2397.6 72.7 3.7 12.8
40.1B 55.2 64.0 61.8 2293.1 70.1 0.0 1.6
InternVL-2 25.5B 50.7 59.4 60.0 2259.8 68.1 0.0 32
8.1B 51.2 58.3 543 2215.1 64.2 0.9 2.6
4.2B 48.3 58.1 50.9 2064.6 60.5 0.0 2.3
Qwen2-VL 73.4B 64.5 70.5 74.0 2482.7 77.8 3.7 16.0
w 8.3B 54.1 58.2 62.0 2326.8 70.1 0.0 1.6
- 73.2B 56.8 67.5 63.7 2261.0 71.9 1.9 12.4
LLaVA-OneVision —¢'op 488 632 575 19980 663 09 19
InternVL-Chat-V1.5 25.5B 46.8 54.7 55.4  2189.6 65.6 0.0 2.1
MiniCPM-V 2.6 8.1B 49.8 60.6 60.0 2268.7 65.0 0.9 2.2
MiniCPM-V 2.5 8.5B 458 54.3 52.8  2024.6 63.5 0.0 2.3
Phi-3.5-Vision 4.2B 44.6 43.2 432 1838.1 53.6 0.9 1.6
Phi-3-Vision 4.2B 46.1 44.6 44.1 1508.0 58.8 0.0 2.6

Table 7: A performance comparison of 19 LMMs on HumanEval-V and five other popular multi-
modal benchmarks. The pass@1 and pass@ 10 columns correspond to results from Table[2] Values

are highlighted using a |blue color scale, where darker shades indicate higher scores.

MMMU MathVista MM Vet MME RealWorldQA HumanEval-V

MMMU - 0.51 0.88 0.42 0.61 0.90
MathVista 0.51 - 0.72 0.77 0.73 0.28
MM Vet 0.88 0.72 - 0.68 0.81 0.67
MME 0.42 0.77 0.68 - 0.80 0.17
RealWorldQA  0.61 0.73 0.81 0.80 - 0.38
HumanEval-V 0.90 0.28 0.67 0.17 0.38 -

Average 0.66 0.60 0.75 0.57 0.67 0.48

Table 8: The Pearson correlation coefficients between pairs of six multimodal benchmarks. Lower
correlation values highlight benchmarks that capture distinct aspects of model performance.

To analyze whether HumanEval-V identifies specific weaknesses that are not captured by exist-
ing benchmarks, we select five widely used multimodal benchmarks that cover multidisciplinary
abilities. The selected benchmarks include MMMU (Yue et al., 2024}, MathVista (Lu et al., 2023)),
MM Vet (Yu et al.L[2023), MME (Fu et al.,|2023), and RealWorldQA (xAlL|2024)). We collect the per-
formance results of the 19 LMMs evaluated in this paper from the OpenVLM Leaderboard (Duan
et al., |2024) and the corresponding papers and reports. These results are presented alongside the
pass@1 and pass@10 scores on HumanEval-V in Table[7] From the results, we observe that open-
weight LMMs with over 70B parameters generally perform well on the selected benchmarks, with
models such as InternVL-2 (76.3B) and Qwen2-VL (73.4B) even surpassing proprietary models
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Figure 6: The correlations between six multimodal benchmarks, including HumanEval-V. Each
subplot, except on the diagonal, visualizes the relationship between two benchmarks.

like GPT-40 and Claude 3.5 Sonnet in some cases. However, these open-weight LMMs show sig-
nificantly lower performance on HumanEval-V, indicating that our benchmark can uncover model
weaknesses that are not apparent in other evaluations.

To quantify the relationship between HumanEval-V and the five selected benchmarks, we calcu-
late the Pearson correlation coefficient using the data in Table m The results, shown in Table ﬂ
reveal that HumanEval-V has the lowest average correlation coefficient across all benchmarks,
suggesting that it captures aspects of model performance that are overlooked by existing bench-
marks. Among the benchmarks, HumanEval-V shows the highest correlation with MMMU, which
primarily evaluates advanced perception and reasoning abilities—key focuses of our benchmark as
well. We also visualize these relationships using regression plots for each benchmark pair in Fig-
ure [0} providing an intuitive view of the correlations. From the plots, we observe that many of the
scatter points for HumanEval-V are concentrated around zero, contributing to the low correlation
with other benchmarks and highlighting the distinct challenges posed by our benchmark.
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Image Description:

This image shows three different examples of matrix pooling, where each example starts with a larger
matrix and results in a smaller matrix. The pooling process involves selecting elements from the larger
matrix to form the smaller one. The details are as follows:

Example Case 1:
In the first example, the original matrix is a 2x2 matrix with the numbers [[1, 2], [3, 4]]. After
pooling, the resulting 1x1 matrix contains the value 1.

Example Case 2:
In the second example, the original matrix is a 4x4 matrix. By reducing each 2x2 region into a single
value, the resulting 2x2 matrix contains the values [[1, 4], [2, ©o]].

Example Case 3:
In the third example, the original matrix is a 6x6 matrix. Each 2x2 region is reduced to a single value,
and the final 3x3 matrix contains the values [[1, 2, o], [2, 3, o], [2, 4, 2]].

Ima_qe:
Case 1: Case 3:
112 ] 214217190
3| 4 : 1129|753
11270
al6|7]3]7]2
Case 2: m)| 2|30
ase 2 712l9l3]8]o0
13|46 2042
825|485
5|(3|8]|7 1] 4
= 349892
62|90 2
8| 21511

Figure 7: An example of image description annotation.

B.3 EXPERIMENTING WITH IMAGE DESCRIPTIONS

We provide two examples in Figure [7]and Figure [§]to illustrate our annotation process and demon-
strate how we construct image descriptions. When creating these descriptions, we ensure they
are purely descriptive rather than instructive, refraining from disclosing any specific algorithms or
problem-solving strategies. This approach allows us to evaluate whether current LMMs possess gen-
uine visual understanding capabilities and whether they can perform well when the visual elements
are grounded through detailed textual descriptions.

This process poses a unique challenge. While humans can intuitively identify patterns in images
and summarize them succinctly, we require our annotators to use precise descriptive language that
details every visual aspect without inferring the specific steps to solve the problem. This increases
the complexity of annotation and often results in verbose image descriptions. Despite this verbosity,
maintaining a purely descriptive approach is crucial for our benchmark, as it ensures that solving
the task requires the model to interpret and reason about the visual content, rather than simply
interpreting the description into code.

Once the image descriptions are finalized, we employ the prompt template shown in Figure 9] to
guide the LMMs in generating code solutions for the tasks in HumanEval-V.

C BENCHMARK CONSTRUCTION DETAILS

C.1 ADDITIONAL DETAILS OF DATA COLLECTION
Our data collection process involves two primary sources: Stack Overflow (SO) and coding chal-

lenge platforms. Each coding problem undergoes a strict screening process to ensure that it aligns
with the standards of HumanEval-V. Annotators are instructed to identify suitable problems by
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Image Description:

The image demonstrates the logical **AND** operation between segments of seven-segment displays, and in
each result, certain segments are **highlighted in red** to indicate the active segments common to both
input digits.

Here’s a detailed description of each example with the highlighted segments:

#i#t# **First Example**:
- **QOperation**: **@ & 1**
- **Result**: Digit **1**, where only the two right segments are **red**.

### **Second Example**:
- **Qperation**: **5 & 3**

- **Result**: The top, middle, right-bottom vertical and bottom horizontal segments are highlighted in
*Eped**,

### **Third Example**:
- **QOperation**: **2 & 6 & 4%**
- **Result**: Only middle horizontal segment is **red**

### **Fourth Example**:
- **QOperation**: **7 & 8 & 9**
- **Result**: Digit **7** in **red**.

Figure 8: An example of image description annotation.

**Instructions:**

You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable
responses to user instructions. Please complete the function based on the provided image with textual

description and the code context. Return the complete solution, including the function signature, in a
single response, formatted within a Python code block.

**Image Description:**
{image_description}
**Code Context:**

" python
{code_context}

Figure 9: The template used for prompting LMMs to solve code generation tasks with image de-
scriptions. The {image_description} placeholder is replaced with the annotated image description.
The {code_context} placeholder is replaced with the corresponding function signature.

assessing whether they can be adapted with minimal effort to meet the predefined standards, which
include the following criteria: (1) the visual context must be essential to solving the task, with all
relevant visual information able to fit within a single image; (2) the problem should be largely self-
explanatory through its visual context, requiring minimal textual description; and (3) the problem
should target entry-level programmers and be solvable using only common Python libraries.

We select SO due to its extensive repository of real-world programming problems. To identify
relevant posts, we filter for questions from 2020 that have non-negative votes and accepted answers.
Next, we focus on posts with images in the question body and code blocks in the corresponding
answers, narrowing down to those tagged with python. After this automated filtering, we manually
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Problem Description:

Shaass has n books. He wants to make a bookshelf for all his books. He wants the bookshelf's dimensions
to be as small as possible. The thickness of the i-th book is t; and its pages' width is equal to w;. The
thickness of each book is either 1 or 2. All books have the same page heights.

Shaass puts the books on the bookshelf in the following way. First he selects some of the books and put
them vertically. Then he puts the rest of the books horizontally above the vertical books. The sum of
the widths of the horizontal books must be no more than the total thickness of the vertical books. A
sample arrangement of the books is depicted in the image.

Help Shaass to find the minimum total thickness of the vertical books that we can achieve.

The first line of the input contains an integern, (1 <n < 100). Each of the next m lines contains two
integers t; and w; denoting the thickness and width of the i-th book correspondingly, (1 < t; < 2, 1 < w;
< 100).

Output:

On the only line of the output print the minimum total thickness of the vertical books that we can
achieve.

Figure 10: A negative example in our data screening process, sourced from CodeForces (https:
//codeforces.com/problemset/problem/294/B), where the image is non-essential for
solving the problem.

Problem Description:

Given a binary matrix of dimensions with R rows and C columns. Start from cell(®, ©), moving in
the right direction. Perform the following operations:

e If the value of matrix[i][j] is ©, then traverse in the same direction and check the next value.
e If the value of matrix[i][j] is 1, then update matrix[i][j] to @ and change the current direction
clockwise. ie - up, right, down, or left directions change to right, down, left, and up respectively.

Find the index of the cell where you will be forced to exit the matrix while performing the given
traversal.

Image:
=0 [ 1 01 3 0o
110 1 0 110 1 0
Cell contains @. Hence, no change
Starting from (0,0) and Cell contains 1. Hence, change in in direction. Cell coordinates
moving in right direction. direction. Change '1' value to 0. out of range. Return (1, 1)
Input:
A two-dimensional matrix matrix[][], and the number of rows R and columns C.
Output:

The index of the cell from which you can exit the matrix.

Figure 11: A negative example in our data screening process, sourced from GeeksforGeeks
(https://www.geeksforgeeks.org/problems/last-cell-in—-a-matrix/1),
where the visual elements require extensive textual descriptions to interpret.

review the remaining posts, excluding topics such as front-end, mobile, or UI development, as these
often require high-level API usage and do not align with the goals of our benchmark. We also
filter out many posts containing images that only provide supplementary details (e.g., code snippets,
error messages, or execution outputs) rather than being essential to problem-solving. Ultimately,
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Problem Description:
I have four coordinates in my table:
latl lonl lat2 lon2 lat3 lon3 lat4 lon4
51.071833 6.237204 51.071836 6.237195 51.071833 6.237195 51.071836 6.237204

Based on this data, I want to connect the points in such a way that a parallelogram is created.
Image:

6.23800 * 6.23800

6.23775 623775

623750 connect ...

6237251 o . |:> 623725

6.23700 623700

623675 623675

6.23650 6.23650

623625 _® 623625

35 40 45 50 55 35 40 45 50 55
1le-6+5.1071830000e1 1e-6+5.1071830000e1

Input:
An array of DataFrame type containing the coordinates of four points.
OQutput:
An image of a parallelogram in the coordinate system with the input four points as vertices.

Figure 12: A positive example in our data screening process, sourced from Stack Overflow (https:
//stackoverflow.com/questions/69163515).

Problem Description:

If you fold the paper along the vertical line x = f, what will be the area of the resulting shape? When
you fold, the part of the paper to the left of the line is symmetrically reflected on the right side.

Your task is to answer g independent queries for values fi,...,f;.

—

The first line contains two integers n, q-— the number of polygon vertices and queries, respectively.
Each of the next n lines contains two integers x;, y; — the coordinates of the i-th point of the polygon.

Each of the next q lines contains a single integer f; — the x-coordinate of the i-th fold query.

Output:
For each query, output the area A4; of the paper if you fold it along the line x =f;.

Figure 13: A positive example in our data screening process, sourced from CodeForces (https:
//codeforces.com/problemset/problem/1381/E).

we identify 8 posts satisfying our standards, covering topics like geometry, plotting, and image
processing. The final screened SO posts account for less than 1% of the total viewed posts, and even
the selected problems often require significant adaptation to fit our benchmark’s requirements.

Regarding the coding challenge platforms, we utilize the open-source MMCode dataset |Li et al.
(2024b)), which already scraped coding problems from various coding challenge platforms that in-
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Problem Description:

Tina has a square grid with n rows and n columns. Each cell in the grid is either 0 or 1.

Tina wants to reduce the grid by a factor of k (k is a divisor of n). To do this, Tina splits the grid
into k X k nonoverlapping blocks of cells such that every cell belongs to exactly one block.

Tina then replaces each block of cells with a single cell equal to the value of the cells in the block.
It is guaranteed that every cell in the same block has the same value.

For example, the following demonstration shows a grid being reduced by factor of 3.

Image:
000111
000111
000111 01
111000 [::::::> 1 0
1j1/1/j0/0/0 Reduced grid
111000
Original grid
Iput: T

The first line contains t - the number of test cases.

The first line of each test case contains two integers n and k — the number of rows and columns of the
grid, and the factor that Tina wants to reduce the grid by.

Each of the following n lines contain n characters describing the cells of the grid. Each character is
either @ or 1. It is guaranteed every k by k block has the same value.

Output:

For each test case, output the grid reduced by a factor of k on a new line.

Figure 14: A positive example in our data screening process, sourced from CodeForces (https:
//codeforces.com/problemset/problem/1996/B).

corporate visual elements in problem descriptions. However, we find that most of these problems
are unsuitable for HumanEval-V. Many images merely display s1mple mathematical equations,
which are essentially textual in nature and do not require visual reasoning. In other cases, the visual
content is redundant, as it can be easily inferred from the text alone, rendering the images non-
essential. Some problems, although containing relevant visual information, are overly complex and
require extensive textual descriptions to interpret, violating our requirement for self-explanatory vi-
sual contexts. After careful screening, we identify 32 problems suitable for our benchmark: 23 from
CodeForces, 5 from LeetCode, and 1 each from GeeksforGeeks, AtCoder, Open Kattis, and Project
Euler. These selected problems account for less than 5% of the total viewed problems.

To further illustrate our screening process, we present two negative examples that do not meet our
standards in Figure [10] and Figure along with three positive examples that are selected for our
benchmark in Figure[12] Figure[T3] and Figure[T4] Below are the detailed explanations:

In Figures[T0]and[T1] we present two negative examples that do not meet the standards for inclusion
in our benchmark. Figure [T0]is a coding problem sourced from CodeForces that requires deter-
mining an optimal stacking method for a set of books with identical heights, given their respective
thickness and width, to minimize the total thickness. Although the provided image illustrates a
possible stacking configuration, it lacks essential information, such as constraints on the stacking
method and precise book dimensions. Furthermore, the core problem-solving information is con-
veyed predominantly through text, making the image non-essential for understanding the solution.
Figure [TT] depicts a coding problem from GeeksForGeeks that involves traversing a 2D matrix ac-
cording to a specified pattern, starting from the top-left corner and identifying the traversal endpoint.
Although the image provides a basic representation of the matrix, the traversal pattern is too intri-
cate to be effectively captured visually and requires substantial textual explanation. As a result, the
textual description contains more problem-solving information than the image itself, violating our
requirement that the visual context be self-explanatory and the primary source of information.
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Function Signature:
def solution(points: list[tuple[int, int]], point_a_index: int, point_b_index: int) -> bool:

Given a list of points and the index of two points, determine whether the two points should be connected
to form the shape in the figure.

Parameters:
points (list[tuple[int, int]]): An list of tuples, where each tuple consists of two integers repres-
enting the x and y coordinates of a point. The points are not guaranteed to be in any particular order.
point_a_index (int): The ©-based index of the first point.
point_b_index (int): The ©-based index of the second point.

Returns:
bool: True if the two points should be connected, False otherwise.

Image
Example 1 A Example 2 A Example3 A Example 4
8 8 8 8
7 7 7 7
6 6 6 6 Five-pointed Star
5 5 5 5
4 4 4 4
3 3 3 3
2 2 2 2
1 1 1 1
S S S S
1234567 8° 1234567 8° 1234567 8° 1234567 8°
Test Cases:

assert solution([(2, 5), (4, 7), (3, 2), (5, 2), (6, 5)], 2, 4) == True; assert solution([(2, 5), (4, 7), (3,
2), (5, 2), (6, 5)1, 2, 3) == False; assert solution(---

Figure 15: The adapted coding task from Figure [12{as incorporated into HumanEval-V.

In Figure [12] Figure[13] and Figure[14] we present three examples that are well-suited for inclusion
in our benchmark. Figure[I2]illustrates a practical problem from Stack Overflow, where a developer
seeks to draw a parallelogram on a coordinate plane using four specified points. The image visu-
ally demonstrates how these points are connected to form the parallelogram, serving as the critical
piece of information needed to solve the task. Additionally, the text merely reiterates the geometric
properties shown in the image, making it possible to reduce the textual content significantly without
loss of essential details. This ensures that the image itself is indispensable for solving the problem
while relying on the text alone would be insufficient. Figure[I3|features a problem from CodeForces
involving the folding of a polygon, where the goal is to compute the area of the resulting shape
after a series of folds. The image clearly depicts the folding process along the designated dashed
lines, showing both the original shape and its transformation after folding. These visual details are
integral to solving the problem, as understanding the fold pattern and resulting shape is necessary.
Figure[14] also sourced from CodeForces, involves reducing a grid according to a specified pattern.
The image effectively conveys the grid reduction process, showing the transformation step-by-step.
Any redundant textual description of the pattern can be omitted, ensuring that the problem can be
solved primarily by interpreting the visual information, with minimal reliance on the accompanying
text. These three examples are relatively straightforward yet require precise visual understanding,
making them ideal candidates for adaptation into coding tasks within HumanEval-V.

C.2 EXAMPLES OF ADAPTING CODING PROBLEMS

We present three adapted examples in Figure[T5] Figure[I6] and Figure[I7] derived from the original
coding tasks shown in Figure [12] Figure [13] and Figure [I4 For each problem, we redesign the
questions, redraw the accompanying images to include the critical problem-solving context, and
simplify the textual descriptions. Furthermore, we adjust the difficulty to ensure that entry-level
programmers can interpret the visual information accurately and implement the solution using basic
coding skills.

In Figure we transform the original parallelogram problem into the coding task involving a
five-pointed star, incorporating richer visual information. To enhance the visual cues, we include
four examples in the image demonstrating different ways to connect five points to form a star. In
the adapted function signature, we specify the implementation requirements for the model, clearly
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Function Signature:

def solution(colors: list[list[int]], line_position: int) -> list[list[int]]:

You are given a matrix of colors represented as a 2D list of integers. Your task is to generate a new
color matrix based on the given dashed line position.

Parameters:
colors (list[list[int]]): A 2D list of integers representing the initial state of the color matrix.
Each integer corresponds to a specific color: @ represents white, 1 represents light blue, and 2
represents dark blue.
line_position (int): An integer indicating the position of the dashed line in the transformation
process.

Returns:
list[list[int]: Return a 2D list of integers that represents the newly generated matrix after the
transformation. The colors should be represented as © (white), 1 (light blue), and 2 (dark blue).

Image
Input: Output: ) Input _Output:
1x3 Matrix 1x2 Matrix 2x4 hhnnﬁij | 2x3 Matrix
<:J I — |
—
0 2 3 0 3
o 1 2 3 a4 3 2 1 0
v
(< NN I
Input: Ez:a Output:
1x5 Matrix IIIII 1x3 Matrix
0 1 2 3 4 5 3 2 1 0
1 1
Test Cases:

assert solution([[®, 1, @, 1]], 2) == [[1, 1]]; assert solution([[e, 1, @, @], [0, 1, 1, 1]1], 3) == [[0, 1,
0], [2, 1, @]]; assert solution(:--

Figure 16: The adapted coding task from Figure[13|as incorporated into HumanEval-V.

defining the function’s objectives, input parameters, and constraints on the return value. Unlike the
original problem, which requires generating an image of a parallelogram, the adapted task simply
asks whether two specified points should be connected. This adaptation reduces the complexity
while maintaining a strong focus on assessing the model’s visual reasoning abilities. Additionally,
the structured I/O format allows us to evaluate the generated solutions through test cases.

In Figure [T6] we simplify the original polygon folding problem into a matrix folding task. After
folding, overlapping sections of the matrix result in color changes, and the model is required to
determine the resulting color distribution. We restrict the input matrix to two initial colors: white
and light blue, such that after folding, the matrix can display three distinct color outcomes: white,
light blue, and dark blue. This adaptation preserves the visual reasoning involved in understanding
the folding process while reducing the programming difficulty. We also provide three illustrative
examples within the image to ensure clarity.

In Figure [T7] we slightly increase the difficulty of the original problem. We remove redundant
textual details that can be inferred from the image. We omit the reduction factor k from the function
parameters, setting k as a fixed value instead. The model is expected to deduce that kK = 2 based on
the three provided examples. Moreover, instead of performing simple scaling operations with 0 and
1 values as in the original problem, we adapt it into a pooling operation based on statistical features
(e.g., determining the minimum value), which requires not only OCR capabilities but also deeper
visual reasoning.

C.3 EXAMPLES OF MUTATING CODING TASKS

We apply mutations to some of the 40 screened coding tasks to expand the volume of our benchmark.
The objective is to generate new tasks that retain the essence of the original tasks but introduce

distinct patterns with minimal modification. As illustrated in Figures[T8] Figure[T9] and Figure 20]
these mutated tasks are derived from the coding problems in Figures and |17} respectively.
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Function Signature:
def solution(matrix: list[list[int]]) -> list[list[int]]:
Refer to the example cases illustrated in the figure, identify and implement the pooling operation on the
matrix.
Parameters:
matrix: A 2d list representing the initial matrix. For example, [[1,3,4,2], [2,1,1,3], [1,2,2,4], [3,
2,1,0]]
Returns:
list[list[int]]: A 2d list representing the resulting matrix after the pooling operation.
Image:
Case 1: Case 3
1 ] 2[al2]7]9]0
3 4 112(9|7|5|3
11210
416|713 |7)|2
Case 2: ‘ 213]|0
71219(3|8]|0
1 3|1 4|6 21412
8|12|5(4|8]|5
5|13 |8 |7 114
) 3l4|9|8]9]2
612|190 2
8|1 2|5 |1
Test Cases: T TTTToTTTTTTmTmmmmmmmmmmmmmmmmmmTT
assert solution([[1, 3, 4, 2], [2, 1, 1, 31, [1, 2, 2, 4], [3, 2, 1, @]]) == [[1, 1], [1, @]]; assert
solution(---

Figure 17: The adapted coding task from Figure [14|as incorporated into HumanEval-V.

In Figure [T8] we maintain the same function signature as in the original task but modify the image
pattern from a five-pointed star to a six-pointed star, altering the visual configuration while preserv-
ing the overall task settings. In Figure[I9} we transform the color addition rule in the folded matrix
into a numeric addition rule, requiring the model to recognize and infer the numerical changes
before and after folding. This mutation introduces additional complexity, further evaluating the
model’s OCR capabilities. For Figure [20] we increase the pooling stride from 2 to 3, requiring the
model to observe a larger matrix to deduce the pattern, thereby raising the demands on both visual
reasoning and OCR proficiency. In each case, we adjust the test cases to align with the modified
patterns introduced through the mutations, ensuring that the new tasks remain consistent with the
requirements of our benchmark.

C.4 ADDITIONAL DATASET STATISTICS

dict float int 1Dlist 2Dlist np.ndamay str  tuple pd.DataFrame bool

Input 8 3 34 35 24 2 4 12 - -
Output - 3 5 34 6 6 3 3 3 45

Table 9: The distribution of Input/Output types for the coding tasks in HumanEval-V.

The input and output (I/O) types used in the coding tasks in HumanEval-V are designed to maintain
a low level of complexity. A distribution of their frequencies is shown in Table[9] We focus on using
simple and commonly used data structures, such as integers, lists, dictionaries, and tuples, which
are frequently encountered in standard programming tasks. Most of the tasks utilize basic types like
integers, 1D and 2D lists, or simple boolean outputs, ensuring that solving them does not require
specialized fine-tuning on domain-specific data. These I/O types are prevalent in open-source code
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Function Signature:
def solution(points: list[tuple[int, int]], point_a_index: int, point_b_index: int) -> bool:

Given a list of points and the index of two points, determine whether the two points should be connected
to form the shape in the figure.

Parameters:
points (list[tuple[int, int]]): An list of tuples, where each tuple consists of two integers repres-
enting the x and y coordinates of a point. The points are not guaranteed to be in any particular order.
point_a_index (int): The @-based index of the first point.
point_b_index (int): The @-based index of the second point.

Returns:
bool: True if the two points should be connected, False otherwise.

Image
Example 1 Example 2 Example 3 Example 4
8 8 8 8
7 7 7 7
6 6 6 6 Six-pointed Star
5 5 5 5 yd
4 4 4 4
3 3 3 3
2 2 2 2
1 1 1 1
S S S S
123456787 123456787 123456787 123456787
Test Cases:

assert solution([(2, 5), (4, 7), (6, 5), (5, 2), (3, 1), (1, 2)], 2, 4) == True; assert solution([(2, 5), (4,
7), (6, 5), (5, 2), (3, 1), (1, 2)], 2, 3) == False; assert solution(:--

Figure 18: A mutated version of the coding task from Figure

used for model pretraining, making our benchmark compatible with general-purpose LMMs without
requiring additional adaptation or targeted training on specified datasets.

In terms of module dependencies, HumanEval-V utilizes a minimal set of common Python li-
braries, including t yping, pandas, numpy, math, heapq, and collections. These libraries
are well-supported and widely used in both general programming and scientific computing contexts.
This ensures that our benchmark can comprehensively assess the visual reasoning capabilities of
models using common and accessible libraries, without introducing dependencies that are rarely
present in the training data. Notably, the coding tasks in HumanEval-V use only the stable APIs
from these libraries, ensuring consistent and reliable testing.

D DETAILS OF THE EVALUATED MODELS

To facilitate the reproducibility of our results, we provide detailed information on all the evaluated
models in Table[10} The open-weight models are sourced from Hugging Faceﬂ while the proprietary
models are accessed via their respective APIs.

For model inference, we utilize 8 NVIDIA A800 GPUs and maintain the original tensor data types
specified by each model to ensure consistent evaluation. To further optimize inference efficiency,
we leverage the open-source framework vLLNﬂ

Additionally, the Code LLM:s used in Section[4.2]are also listed in Table[I0] These models are fine-
tuned versions of foundational LLMs, specifically trained on large-scale, multilingual programming
datasets to enhance their performance across diverse coding scenarios.

E DISCUSSION ON THE MMCODE DATASET

MMCode (Li et al., [2024b)) introduces a multimodal coding dataset aimed at evaluating LMMs’
algorithmic problem-solving skills in visually rich contexts. The dataset includes 3,548 questions

Zhttps://huggingface.co
*https://docs.vllm.ai/en/latest/
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Function Signature:
def solution(matrix: list[list[int]], line_position: int) -> list[list[int]]:
You are given a matrix of numbers. Your task is to generate a new matrix based on the given dashed line
position.
Parameters:
matrix (list[list[int]]): A 2D list of integers representing the initial state of the matrix.
line_position (int): An integer indicating the position of the dashed line in the transformation
process.
Returns:
list[list[int]: Return a 2D list of integers that represents the newly generated matrix after the
transformation.
Image
. A Input Output
) UW“‘* ) L”@P*l, 2x4 Matrix 2x3 Matrix
3 Matrix 1x2 Matrix cl I
C:J I
112|314 7121
516|718
0 2 3 0 3 15 6 S
0 1 2 3 4 2 1 0
(<N !
Input: E:::C Output
1x5 Matrix 1 2 3 2 1 5 3 1 1x3 Matrix
0 1 2 3 4 5 2 1 0
1 1
Test Cases:
assert solution([[1, 2, 3]], 1) == [[3, 3]]; assert solution([[1, 2, 3, 4], [5, 6, 7, 811, 3) == [[7, 2, 1],
[15, 6, 5]]; assert solution(---

Figure 19: A mutated version of the coding task from Figure

scraped from various competitive programming websites. However, as discussed in Appendix [A]
the issue of data leakage poses a significant challenge, as many of these coding tasks may have
been previously encountered and memorized by the models, making them unsuitable for direct use
as test data. Additionally, as demonstrated in Appendix [C.I} a majority of the coding challenges
in MMCode contain visual content that is redundant; the information conveyed through images
can often be inferred from the textual descriptions alone, rendering the visuals non-essential. The
reported results from MMCode further confirm this issue, as the performance using “language-only”
inputs is similar to that with *“vision + language” inputs.

In contrast, HumanEval-V is specifically designed to focus on visual understanding and reason-
ing abilities, rather than general coding proficiency, ensuring an irreplaceable dependency on visual
context. During the annotation phase, we verify that language-only inputs achieve a 0% pass rate
for GPT-40, demonstrating the necessity of visual context in HumanEval-V. Moreover, our care-
ful adaptation and mutation processes prevent data leakage, ensuring that evaluations accurately
measure visual reasoning and coding abilities, rather than memorization of previously seen tasks.

F LIMITATIONS

Despite the contributions of our benchmark, several limitations remain that we aim to address in
future work:

(1) Limited Number of Coding Tasks: The size of our benchmark is currently restricted due to the
difficulty of identifying suitable coding problems and the challenges associated with adapting these
problems to meet our standards. Each annotator has dedicated over 200 hours to constructing the
benchmark, ensuring that every task is meticulously curated and aligns with our goals of testing
visual reasoning. Our priority has been to maintain high quality, which we believe is crucial for
deriving meaningful insights. Fortunately, the current version of HumanEval-V has already en-
abled us to identify several unique findings about the limitations of current LMMs. Moving forward,
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Function Signature:
def solution(matrix: list[list[int]]) -> list[list[int]]:
Refer to the example cases illustrated in the figure, identify and implement the pooling operation on the
matrix.
Parameters:
matrix: A 2d list representing the initial matrix. For example, [[1,3,4], [2,1,1], [1,2,2]
Returns:
list[list[int]]: A 2d list representing the resulting matrix after the pooling operation.
Image: T TTTTTToTTToTTmmTmmmmmmmmmmmmmmmen
Case 1: Case 3:
2 1(3|4|7(3|7|6([9]|5
= |1 5/3[8|9|3(8|8|5(4
6|12|9(5|4|8(4|9]|8
3|7(2|3|8[7|7|9]s 1134
Case 2: 380290756-005
2(4(2|7|910
4/8(5(2(5|1|8|7]|5 2123
1(2(9(7|5]|3 2191713719
5(3(8
416|7|3|7]|2 110
=) 6(7|13[3|8|3
3|s|9l6|9]|3 > |3 | [
4l8lsl715]a 8(2(5(2(9|3|4|8|5
819(2|14|9|8
Test Cases: T TTTTTTTTTTTTTTmTTmTmTmmmTmmTTTTT
assert solution([[1, 3, 4, 2, o, 3], [2, 1, 1, 3, 2, 6], [1, 2, 2, 4, 4, 7], [3, 2, 1, @, 1, @], [3, 2, 1, @,
i, el, [1, 7, 5, 2, 2, @], [2, 9, 1, 2, 3, 1]]) == [[1, @], [1, @]]; assert solution(:--

Figure 20: A mutated version of the coding task from Figure

we plan to expand HumanEval-V by continuing to annotate additional tasks using our established
pipeline and guidelines. To benefit the community, we will open-source our annotation process and
release all details of our work.

(2) Limited Model Coverage: While our experiments evaluate a diverse set of representative top-
performing LMMs, the rapid pace of development in this area means that new models are frequently
released, which may not be covered in our evaluation. We acknowledge that broader model coverage
could provide a more comprehensive understanding of current capabilities. To address this, we will
publicly release the evaluation toolkit and dataset, along with an up-to-date leaderboard to track
ongoing advancements and benchmark new models as they become available. This will help keep
our benchmark relevant and provide a platform for continuous assessment.

(3) Limited Scope of Experimental Analysis: Due to budget constraints, our in-depth analysis is
limited to a subset of the evaluated models and hyper-parameter settings. While we have included
as many models as possible to ensure that our findings are not biased toward specific LMMs, there
are areas that remain unexplored, such as evaluating the impact of different prompting templates and
experimenting with alternative sampling strategies, including varying temperature settings. Never-
theless, we have carefully chosen hyper-parameters that are widely used and deemed fair for cross-
model comparisons. We believe that the settings used in our experiments provide reliable insights
and lead to trustworthy conclusions. Additionally, our investigation into advanced reasoning meth-
ods is limited. In preliminary experiments, we applied the zero-shot Chain-of-Thoughts (CoT) (Wei
et al., 2022) approach, which prompts the model to perform step-by-step reasoning before generat-
ing code. However, this method showed limited improvement in our coding tasks. Given that zero-
shot CoT is a relatively weak baseline for reasoning research, fully exploring more sophisticated
reasoning-enhancement techniques (Yao et al.l [2024a; [Mitra et al., [2024) would require significant
resources. We leave this comprehensive study to future work.
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Models Params Links
Proprietary
GPT-40-0513 https://platform.openai.com/docs/models/gpt-40
GPT-40-mini-0718 https://platform.openai.com/docs/models/gpt—4o-mini
Claude 3.5 Sonnet https://docs.anthropic.com/en/docs/about-claude/models
Gemini 1.5 Pro (001 ) https://ai.google.dev/gemini-api/docs/models/gemini
Gemini 1.5 Flash (001) https://ai.google.dev/gemini-api/docs/models/gemini
Open-Weight LMM
QWCHZ-VL 73.4B https://huggingface.co/Qwen/Qwen2-VL-72B-Instruct
QWCHZ-VL 8.3B https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct
MiniCPM-V 2.6 8.1B https://huggingface.co/openbmb/MiniCPM-V-2_6
MiniCPM-V 2.5 8.5B https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5
InternVL-Chat-V1.5 25.5B https://huggingface.co/OpenGVLab/InternVL-Chat-V1-5
InternVL2 76.3B https://huggingface.co/OpenGVLab/InternvVL2-Llama3-76B
InternVL2 40.1B https://huggingface.co/OpenGVLab/InternVL2-40B
InternVL2 25.5B https://huggingface.co/OpenGVLab/InternvVL2-26B
InternVL2 8.1B https://huggingface.co/OpenGVLab/InternvL2-8B
InternVL2 4.2B https://huggingface.co/OpenGVLab/InternVL2-4B
LLaVA-OneVision 73.2B https://huggingface.co/lmms-1lab/llava-onevision-qwen2-72b-ov
LLaVA-OneVision 8.0B https://huggingface.co/lmms-lab/llava-onevision-qwen2-7b-ov
Phi-3.5-Vision 4.2B https://huggingface.co/microsoft/Phi-3.5-vision-instruct
Phi-3-Vision 4.2B https://huggingface.co/microsoft/Phi-3-vision-128k-instruct
Open-Weight LLM
Nous-Hermes-2-Yi 34.4B https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B
InternLM2-Chat 199B https://huggingface.co/internlm/internlm2-chat-20b
InternL.M2.5-Chat 7.7B https://huggingface.co/internlm/internlm2_5-7b-chat
Phi-3-Mini-Ineruct 3.8B https://huggingface.co/microsoft/Phi-3-mini-128k-instruct
Phi-3.5-Mini-Instruct 3.8B https://huggingface.co/microsoft/Phi-3.5-mini-instruct
QWCH2 7.6B https://huggingface.co/Qwen/Qwen2-7B
Llama-3-Instruct 8.0B https://huggingface.co/meta-1lama/Meta-Llama-3-8B-Instruct
Open-Weight Code LLM
CodeStral 22.2B https://huggingface.co/mistralai/Codestral-22B-v0.1
DSCoder-V2-Lite 15.7B https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct
Yi-Coder-Chat 8.8B https://huggingface.co/01-ai/Yi-Coder-9B-Chat
DSCoder-V1.5 6.9B https://huggingface.co/deepseek-ai/deepseek-coder-7b-instruct-v1l.5

Table 10: The model identification links.
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